fbpx
Wikipedia

Lustre (mineralogy)

Lustre (British English) or luster (American English; see spelling differences) is the way light interacts with the surface of a crystal, rock, or mineral. The word traces its origins back to the Latin lux, meaning "light", and generally implies radiance, gloss, or brilliance.

A range of terms are used to describe lustre, such as earthy, metallic, greasy, and silky. Similarly, the term vitreous (derived from the Latin for glass, vitrum) refers to a glassy lustre. A list of these terms is given below.

Lustre varies over a wide continuum, and so there are no rigid boundaries between the different types of lustre. (For this reason, different sources can often describe the same mineral differently. This ambiguity is further complicated by lustre's ability to vary widely within a particular mineral species). The terms are frequently combined to describe intermediate types of lustre (for example, a "vitreous greasy" lustre).

Some minerals exhibit unusual optical phenomena, such as asterism (the display of a star-shaped luminous area) or chatoyancy (the display of luminous bands, which appear to move as the specimen is rotated). A list of such phenomena is given below.

Common terms

Adamantine lustre

Adamantine minerals possess a superlative[clarification needed] lustre, which is most notably seen in diamond.[1] Such minerals are transparent or translucent, and have a high refractive index (of 1.9 or more).[2] Minerals with a true adamantine lustre are uncommon, with examples including cerussite, zircon, and cubic zirconia.[2]

Minerals with a lesser (but still relatively high) degree of lustre are referred to as subadamantine, with some examples being garnet and corundum.[1]

Dull lustre

Dull (or earthy) minerals exhibit little to no lustre, due to coarse granulations which scatter light in all directions, approximating a Lambertian reflector. An example is kaolinite.[3] A distinction is sometimes drawn between dull minerals and earthy minerals,[4] with the latter being coarser, and having even less lustre.

 
Moss opal

Greasy lustre

Greasy minerals resemble fat or grease. A greasy lustre often occurs in minerals containing a great abundance of microscopic inclusions, with examples including opal and cordierite, jadeite.[2] Many minerals with a greasy lustre also feel greasy to the touch.[5]

Metallic lustre

Metallic (or splendent) minerals have the lustre of polished metal, and with ideal surfaces will work as a reflective surface. Examples include galena,[6] pyrite[7] and magnetite.[8]

Pearly lustre

Pearly minerals consist of thin transparent co-planar sheets. Light reflecting from these layers give them a lustre reminiscent of pearls.[9] Such minerals possess perfect cleavage, with examples including muscovite and stilbite.[2]

Resinous lustre

Resinous minerals have the appearance of resin, chewing gum or (smooth-surfaced) plastic. A principal example is amber, which is a form of fossilized resin.[10]

 
Satin spar variety of gypsum

Silky lustre

Silky minerals have a parallel arrangement of extremely fine fibres,[2] giving them a lustre reminiscent of silk. Examples include asbestos, ulexite and the satin spar variety of gypsum. A fibrous lustre is similar, but has a coarser texture.

Submetallic lustre

Submetallic minerals have similar lustre to metal, but are duller and less reflective. A submetallic lustre often occurs in near-opaque minerals with very high refractive indices,[2] such as sphalerite, cinnabar, anthracite, and cuprite.

Vitreous lustre

Vitreous minerals have the lustre of glass. (The term is derived from the Latin for glass, vitrum.) This type of lustre is one of the most commonly seen,[9] and occurs in transparent or translucent minerals with relatively low refractive indices.[2] Common examples include calcite, quartz, topaz, beryl, tourmaline and fluorite, among others.

 

Waxy lustre

Waxy minerals have a lustre resembling wax. Examples include jade[11] and chalcedony.[12]

Optical phenomena

 
Sapphire

Asterism

Asterism is the display of a star-shaped luminous area. It is seen in some sapphires and rubies, where it is caused by impurities of rutile.[12][13] It can also occur in garnet, diopside and spinel.

Aventurescence

Aventurescence (or aventurization) is a reflectance effect like that of glitter. It arises from minute, preferentially oriented mineral platelets within the material. These platelets are so numerous that they also influence the material's body colour. In aventurine quartz, chrome-bearing fuchsite makes for a green stone and various iron oxides make for a red stone.[12]

Chatoyancy

Chatoyant minerals display luminous bands, which appear to move as the specimen is rotated. Such minerals are composed of parallel fibers (or contain fibrous voids or inclusions), which reflect light into a direction perpendicular to their orientation, thus forming narrow bands of light. The most famous examples are tiger's eye and cymophane, but the effect may also occur in other minerals such as aquamarine, moonstone and tourmaline.

Colour change

Colour change is most commonly found in alexandrite, a variety of chrysoberyl gemstones. Other gems also occur in colour-change varieties, including (but not limited to) sapphire, garnet, spinel. Alexandrite displays a colour change dependent upon light, along with strong pleochroism. The gem results from small-scale replacement of aluminium by chromium oxide, which is responsible for alexandrite's characteristic green to red colour change. Alexandrite from the Ural Mountains in Russia is green by daylight and red by incandescent light. Other varieties of alexandrite may be yellowish or pink in daylight and a columbine or raspberry red by incandescent light. The optimum or "ideal" colour change would be fine emerald green to fine purplish red, but this is rare.

Iridescence

Iridescence is the 'play' or 'fire' of rainbow-coloured light caused by very thin regular structures or layers beneath the surface of a gemstone. Similar to a thin film of oil on water, these layers interfere with the rays of reflected light, reinforcing some colours and cancelling others. Iridescence is seen at its best in precious opal.[14]

Schiller

Schiller (German, literally "shimmer"), is the metallic iridescence originating from below the surface of a stone that occurs when light is reflected between layers of minerals. It is seen in moonstone and labradorite and is very similar to adularescence and aventurescence.[15]

References

  1. ^ a b GIA Gem Reference Guide. Gemological Institute of America. 1995. ISBN 0-87311-019-6.
  2. ^ a b c d e f g Duda, Rudolf & Rejl, Lubos (1990). Minerals of the World. Arch Cape Press. ISBN 0-517-68030-0.
  3. ^ "Webmineral: Kaolinite Mineral Data". Retrieved 2008-06-21.
  4. ^ Hankin, Rosie (1998). Rocks, Crystals & Minerals. Quintet Publishing. ISBN 1-86155-480-X.
  5. ^ . Archived from the original on 2011-06-12. Retrieved 2008-06-19.
  6. ^ "Webmineral: Galena Mineral Data". Retrieved 2008-07-05.
  7. ^ "Webmineral: Pyrite Mineral Data". Retrieved 2008-07-05.
  8. ^ "Webmineral: Magnetite Mineral Data". Retrieved 2008-07-05.
  9. ^ a b "Optical properties of Rocks and Minerals". Retrieved 2008-06-01.
  10. ^ "Webmineral: Amber Mineral Data". Retrieved 2008-06-21.
  11. ^ . Archived from the original on 2011-06-12. Retrieved 2008-07-14.
  12. ^ a b c Bonewitz, Ronald Louis (2005). Rock and Gem. Dorling Kindersley. pp. 152–153. ISBN 0-7513-4400-1.
  13. ^ Emsley, John (2001). Nature's Building Blocks: An A-Z Guide to the Elements. Oxford University Press. pp. 451–53. ISBN 0-19-850341-5.
  14. ^ G., Read, Peter (2008). Gemmology (3rd ed.). London: N.A.G. ISBN 9780719803611. OCLC 226280870.
  15. ^ Shipley, Robert M. (2007). Dictionary of gems and gemology. Read Books. p. 93. ISBN 978-0-87311-007-5.

lustre, mineralogy, lustre, british, english, luster, american, english, spelling, differences, light, interacts, with, surface, crystal, rock, mineral, word, traces, origins, back, latin, meaning, light, generally, implies, radiance, gloss, brilliance, range,. Lustre British English or luster American English see spelling differences is the way light interacts with the surface of a crystal rock or mineral The word traces its origins back to the Latin lux meaning light and generally implies radiance gloss or brilliance A range of terms are used to describe lustre such as earthy metallic greasy and silky Similarly the term vitreous derived from the Latin for glass vitrum refers to a glassy lustre A list of these terms is given below Lustre varies over a wide continuum and so there are no rigid boundaries between the different types of lustre For this reason different sources can often describe the same mineral differently This ambiguity is further complicated by lustre s ability to vary widely within a particular mineral species The terms are frequently combined to describe intermediate types of lustre for example a vitreous greasy lustre Some minerals exhibit unusual optical phenomena such as asterism the display of a star shaped luminous area or chatoyancy the display of luminous bands which appear to move as the specimen is rotated A list of such phenomena is given below Contents 1 Common terms 1 1 Adamantine lustre 1 2 Dull lustre 1 3 Greasy lustre 1 4 Metallic lustre 1 5 Pearly lustre 1 6 Resinous lustre 1 7 Silky lustre 1 8 Submetallic lustre 1 9 Vitreous lustre 1 10 Waxy lustre 2 Optical phenomena 2 1 Asterism 2 2 Aventurescence 2 3 Chatoyancy 2 4 Colour change 2 5 Iridescence 2 6 Schiller 3 ReferencesCommon terms Edit Cut diamonds Adamantine lustre Edit Adamantine minerals possess a superlative clarification needed lustre which is most notably seen in diamond 1 Such minerals are transparent or translucent and have a high refractive index of 1 9 or more 2 Minerals with a true adamantine lustre are uncommon with examples including cerussite zircon and cubic zirconia 2 Minerals with a lesser but still relatively high degree of lustre are referred to as subadamantine with some examples being garnet and corundum 1 Kaolinite Dull lustre Edit Dull or earthy minerals exhibit little to no lustre due to coarse granulations which scatter light in all directions approximating a Lambertian reflector An example is kaolinite 3 A distinction is sometimes drawn between dull minerals and earthy minerals 4 with the latter being coarser and having even less lustre Moss opal Greasy lustre Edit Greasy minerals resemble fat or grease A greasy lustre often occurs in minerals containing a great abundance of microscopic inclusions with examples including opal and cordierite jadeite 2 Many minerals with a greasy lustre also feel greasy to the touch 5 Pyrite Metallic lustre Edit Metallic or splendent minerals have the lustre of polished metal and with ideal surfaces will work as a reflective surface Examples include galena 6 pyrite 7 and magnetite 8 Muscovite Pearly lustre Edit Pearly minerals consist of thin transparent co planar sheets Light reflecting from these layers give them a lustre reminiscent of pearls 9 Such minerals possess perfect cleavage with examples including muscovite and stilbite 2 Amber Resinous lustre Edit Resinous minerals have the appearance of resin chewing gum or smooth surfaced plastic A principal example is amber which is a form of fossilized resin 10 Satin spar variety of gypsum Silky lustre Edit Silky minerals have a parallel arrangement of extremely fine fibres 2 giving them a lustre reminiscent of silk Examples include asbestos ulexite and the satin spar variety of gypsum A fibrous lustre is similar but has a coarser texture Sphalerite Submetallic lustre Edit Submetallic minerals have similar lustre to metal but are duller and less reflective A submetallic lustre often occurs in near opaque minerals with very high refractive indices 2 such as sphalerite cinnabar anthracite and cuprite Quartz Vitreous lustre Edit Vitreous minerals have the lustre of glass The term is derived from the Latin for glass vitrum This type of lustre is one of the most commonly seen 9 and occurs in transparent or translucent minerals with relatively low refractive indices 2 Common examples include calcite quartz topaz beryl tourmaline and fluorite among others Jade Waxy lustre Edit Waxy minerals have a lustre resembling wax Examples include jade 11 and chalcedony 12 Optical phenomena Edit Sapphire Asterism Edit Asterism is the display of a star shaped luminous area It is seen in some sapphires and rubies where it is caused by impurities of rutile 12 13 It can also occur in garnet diopside and spinel Aventurine Aventurescence Edit Aventurescence or aventurization is a reflectance effect like that of glitter It arises from minute preferentially oriented mineral platelets within the material These platelets are so numerous that they also influence the material s body colour In aventurine quartz chrome bearing fuchsite makes for a green stone and various iron oxides make for a red stone 12 Tiger s eye Chatoyancy Edit Chatoyant minerals display luminous bands which appear to move as the specimen is rotated Such minerals are composed of parallel fibers or contain fibrous voids or inclusions which reflect light into a direction perpendicular to their orientation thus forming narrow bands of light The most famous examples are tiger s eye and cymophane but the effect may also occur in other minerals such as aquamarine moonstone and tourmaline Alexandrite Colour change Edit Colour change is most commonly found in alexandrite a variety of chrysoberyl gemstones Other gems also occur in colour change varieties including but not limited to sapphire garnet spinel Alexandrite displays a colour change dependent upon light along with strong pleochroism The gem results from small scale replacement of aluminium by chromium oxide which is responsible for alexandrite s characteristic green to red colour change Alexandrite from the Ural Mountains in Russia is green by daylight and red by incandescent light Other varieties of alexandrite may be yellowish or pink in daylight and a columbine or raspberry red by incandescent light The optimum or ideal colour change would be fine emerald green to fine purplish red but this is rare Iridescence Edit Iridescence is the play or fire of rainbow coloured light caused by very thin regular structures or layers beneath the surface of a gemstone Similar to a thin film of oil on water these layers interfere with the rays of reflected light reinforcing some colours and cancelling others Iridescence is seen at its best in precious opal 14 Labradorite Schiller Edit Schiller German literally shimmer is the metallic iridescence originating from below the surface of a stone that occurs when light is reflected between layers of minerals It is seen in moonstone and labradorite and is very similar to adularescence and aventurescence 15 References Edit a b GIA Gem Reference Guide Gemological Institute of America 1995 ISBN 0 87311 019 6 a b c d e f g Duda Rudolf amp Rejl Lubos 1990 Minerals of the World Arch Cape Press ISBN 0 517 68030 0 Webmineral Kaolinite Mineral Data Retrieved 2008 06 21 Hankin Rosie 1998 Rocks Crystals amp Minerals Quintet Publishing ISBN 1 86155 480 X Emporia State University GO 340 Gemstones amp Gemology Visual Properties Archived from the original on 2011 06 12 Retrieved 2008 06 19 Webmineral Galena Mineral Data Retrieved 2008 07 05 Webmineral Pyrite Mineral Data Retrieved 2008 07 05 Webmineral Magnetite Mineral Data Retrieved 2008 07 05 a b Optical properties of Rocks and Minerals Retrieved 2008 06 01 Webmineral Amber Mineral Data Retrieved 2008 06 21 Emporia State University GO 340 Gemstones amp Gemology Jade Archived from the original on 2011 06 12 Retrieved 2008 07 14 a b c Bonewitz Ronald Louis 2005 Rock and Gem Dorling Kindersley pp 152 153 ISBN 0 7513 4400 1 Emsley John 2001 Nature s Building Blocks An A Z Guide to the Elements Oxford University Press pp 451 53 ISBN 0 19 850341 5 G Read Peter 2008 Gemmology 3rd ed London N A G ISBN 9780719803611 OCLC 226280870 Shipley Robert M 2007 Dictionary of gems and gemology Read Books p 93 ISBN 978 0 87311 007 5 Retrieved from https en wikipedia org w index php title Lustre mineralogy amp oldid 1129898440, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.