fbpx
Wikipedia

Olenekian

In the geologic timescale, the Olenekian is an age in the Early Triassic epoch; in chronostratigraphy, it is a stage in the Lower Triassic series. It spans the time between 251.2 Ma and 247.2 Ma (million years ago).[7] The Olenekian is sometimes divided into the Smithian and the Spathian subages or substages.[8] The Olenekian follows the Induan and is followed by the Anisian (Middle Triassic).[9]

Olenekian
251.2 – 247.2 Ma
Chronology
Etymology
Name formalityFormal
Usage information
Celestial bodyEarth
Regional usageGlobal (ICS)
Time scale(s) usedICS Time Scale
Definition
Chronological unitAge
Stratigraphic unitStage
Time span formalityFormal
Lower boundary definitionNot formally defined
Lower boundary definition candidatesFAD of the Conodont Neospathodus waageni
Lower boundary GSSP candidate section(s)Mud (Muth) village, Spiti valley, India[6]
Upper boundary definitionNot formally defined
Upper boundary definition candidates
Upper boundary GSSP candidate section(s)

The Olenekian saw the deposition of a large part of the Buntsandstein in Europe. The Olenekian is roughly coeval with the regional Yongningzhenian Stage used in China.

Stratigraphic definitions edit

The Olenekian Stage was introduced into scientific literature by Russian stratigraphers in 1956.[10] The stage is named after Olenëk in Siberia. Before the subdivision in Olenekian and Induan became established, both stages formed the Scythian Stage, which has since disappeared from the official timescale.

The base of the Olenekian is at the lowest occurrence of the ammonoids Hedenstroemia or Meekoceras gracilitatis, and of the conodont Neospathodus waageni. It is defined as ending near the lowest occurrences of genera Japonites, Paradanubites, and Paracrochordiceras; and of the conodont Chiosella timorensis. A GSSP (global reference profile for the base) has not been established as of December 2020.

In the 1960s, English paleontologist Edward T. Tozer (sometimes collaborating with American geologist Norman J. Silberling) crafted Triassic timescales based on North American ammonoid zones, further refining it in the following decades. Tozer's nomenclature was largely derived from Mojsisovics's work, who coined most of the Triassic stages and substages, but he redefined them using North American sites. He recommended the Lower Triassic series be divided into the Griesbachian, Dienerian, Smithian, and Spathian. The latter two roughly correspond with the Olenekian. Tozer's timescale became popular in the Americas.[11] He named the Smithian after Smith Creek on Ellesmere Island, Canada (the creek itself is named after geologist J. P. Smith). The Smithian is defined by the Arctoceras bloomstrandi ammonoid zone (contains Euflemingites romunderi and Juvenites crassus) and the overlying Meekoceras gracilitatis and Wasatchites tardus subzones. He named the Spathian after Spath Creek on Ellesmere Island (this creek is named after geologist L. F. Spath), and defined it by the Procolumbites subrobustus ammonoid zone.[8]

Olenekian life edit

Life was still recovering from the severe end-Permian mass extinction. During the Olenekian, the flora changed from lycopod dominated (e.g. Pleuromeia) to gymnosperm and pteridophyte dominated.[12][13] These vegetation changes are due to global changes in temperature and precipitation. Conifers (gymnosperms) were the dominant plants during most of the Mesozoic. Among land vertebrates, the archosaurs - a group of diapsid reptiles encompassing crocodiles, pterosaurs, dinosaurs, and ultimately birds - first evolved from archosauriform ancestors during the Olenekian. This group includes ferocious predators like Erythrosuchus.

In the oceans, microbial reefs were common during the Early Triassic, possibly due to lack of competition with metazoan reef builders as a result of the extinction.[14] However, transient metazoan reefs reoccurred during the Olenekian wherever permitted by environmental conditions.[15] Ammonoids and conodonts diversified, but both suffered losses during the Smithian-Spathian boundary extinction[16] at the end of the Smithian subage.

Ray-finned fishes largely remained unaffected by the Permian-Triassic extinction event. Coelacanths show their highest post-Devonian diversity during the Early Triassic.[17][18] Many fish genera show a cosmopolitan distribution during the Induan and Olenekian, such as Australosomus, Birgeria, Parasemionotidae, Pteronisculus, Ptycholepidae, Saurichthys and Whiteia. This is well exemplified in the Griesbachian (early Induan) aged fish assemblages of the Wordie Creek Formation (East Greenland),[19][20] the Dienerian (late Induan) aged assemblages of the Middle Sakamena Formation (Madagascar),[21] Candelaria Formation (Nevada, United States),[22] and Mikin Formation (Himachal Pradesh, India),[23] and Daye Formation (Guizhou, China),[24] and the Smithian aged assemblages of the Vikinghøgda Formation (Spitsbergen, Norway),[25][26][27] and Thaynes Group (western United States),[28][29] and Helongshan Formation (Anhui, China),[30] and several Early Triassic layers of the Sulphur Mountain Formation (western Canada).[31] The ray-finned fishes diversified after the mass extinction and reached peak diversity during the Middle Triassic. This diversification is, however, obscured by a taphonomic megabias during the late Olenekian and early middle Anisian.[32]

Olenekian chondrichthyan fishes include hybodonts and neoselachians,[25][33][34] but also a few surviving lineages of eugeneodontid holocephalians,[35] a mainly Palaeozoic group that went extinct during the Early Triassic.

Marine temnospondyl amphibians, such as the superficially crocodile-shaped trematosaurids Aphaneramma and Wantzosaurus, show wide geographic ranges during the Induan and Olenekian ages. Their fossils are found in Greenland, Spitsbergen, Pakistan and Madagascar.[36] Others, such as Trematosaurus, inhabited freshwater environments and were less widespread.

The first marine reptiles appeared during the Olenekian.[36] Hupehsuchia, Ichthyopterygia and Sauropterygia are among the first marine reptiles to enter the scene (e.g. Cartorhynchus, Chaohusaurus, Utatsusaurus, Hupehsuchus, Grippia, Omphalosaurus, Corosaurus). Sauropterygians and ichthyosaurs ruled the oceans during the Mesozoic Era.

An example of an exceptionally diverse Early Triassic assemblage is the Paris biota, fossils of which were discovered near Paris, Idaho[37] and other nearby sites in Idaho and Nevada.[38] The Paris Biota was deposited in the wake of the SSBM and it features at least 7 phyla and 20 distinct metazoan orders, including leptomitid protomonaxonid sponges (previously only known from the Paleozoic), thylacocephalans, crustaceans, nautiloids, ammonoids, coleoids, ophiuroids, crinoids, and vertebrates.[39] Such diverse assemblages show that organisms diversified wherever and whenever climatic an environmental conditions ameliorated.

Smithian–Spathian boundary event edit

 
Early Triassic and Anisian marine predators:[36] 1. Wantzosaurus, 2. Fadenia, 3. Saurichthys, 4. Rebellatrix, 5. Hovasaurus, 6. Birgeria, 7. Aphaneramma, 8. Bobasatrania, 9. Hybodontiformes, 10. Mylacanthus, 11. Tanystropheus, 12. Corosaurus, 13. Ticinepomis, 14. Mixosaurus, 15. Cymbospondylidae, 16. Neoselachii, 17. Omphalosaurus skeleton, 18. Placodus

An important extinction event occurred during the Olenekian age of the Early Triassic, near the Smithian and Spathian subage boundary. The main victims of this Smithian–Spathian boundary event, often called the Smithian–Spathian extinction,[40] were 'disaster taxa': Palaeozoic species that survived the Permian–Triassic extinction event and flourished in the immediate aftermath of the extinction;[41] ammonoids, conodonts, and radiolarians in particular suffered drastic biodiversity losses,[42][41] which is accentuated, among others, by the cosmopolitan distribution of the ammonoid Anasibirites.[43][44] Marine reptiles, such as ichthyopterygians and sauropterygians, diversified after the extinction.[36]

The flora was also affected significantly. It changed from lycopod dominated (e.g. Pleuromeia) during the Dienerian and Smithian subages to gymnosperm and pteridophyte dominated in the Spathian.[45][13] These vegetation changes are due to global changes in temperature and precipitation. Conifers (gymnosperms) were the dominant plants during most of the Mesozoic. Until recently[when?] the existence of this extinction event about 249.4 Ma ago[46] was not recognised.[47]

The Smithian–Spathian boundary extinction was linked to late eruptions of the Siberian Traps,[48][49] which released warming greenhouse gases, resulting in global warming[50] and in acidification, both on land[51] and in the ocean.[52] A large spike in mercury concentrations relative to total organic carbon, much like during the Permian-Triassic extinction, has been suggested as another contributor to the extinction,[53] although this is controversial and has been disputed by other research that suggests elevated mercury levels already existed by the middle Spathian.[54] Prior to the Smithian-Spathian Boundary extinction event, a flat gradient of latitudinal species richness is observed, suggesting that warmer temperatures extended into higher latitudes, allowing extension of geographic ranges of species adapted to warmer temperatures, and displacement or extinctions of species adapted to cooler temperatures.[43] Oxygen isotope studies on conodonts have revealed that temperatures rose in the first 2 million years of the Triassic, ultimately reaching sea surface temperatures of up to 40 °C (104 °F) in the tropics during the Smithian.[55] The extinction itself occurred during a subsequent drop in global temperatures (ca. 8°C over a geologically short period) in the latest Smithian; however, temperature alone cannot account for the Smithian-Spathian boundary extinction, because several factors were at play.[13][46] An alternative explanation for the extinction event hypothesises the biotic crisis took place not at the Smithian-Spathian boundary but shortly before, during the Late Smithian Thermal Maximum (LSTM), with the Smithian-Spathian boundary itself being associated with cessation of intrusive magmatic activity of the Siberian Traps,[56] along with significant global cooling,[57][58] after which a gradual biotic recovery took place over the early and middle Spathian,[56] along with a decline in continental weathering[59] and a rejuvenation of ocean circulation.[60]

In the ocean, many large and mobile species moved away from the tropics, but large fish remained,[29] and amongst the immobile species such as molluscs, only the ones that could cope with the heat survived; half the bivalves disappeared.[61] Conodonts decreased in average size as a result of the extinction.[62] On land, the tropics were nearly devoid of life,[63] with exceptionally arid conditions recorded in Iberia and other parts of Europe then at low latitude.[64] Many big, active animals returned to the tropics, and plants recolonised on land, only when temperatures returned to normal.

There is evidence that life had recovered rapidly, at least locally. This is indicated by sites that show exceptionally high biodiversity (e.g. the earliest Spathian Paris Biota),[37][38] which suggest that food webs were complex and comprised several trophic levels.

Notable formations edit

* Tentatively assigned to the Olenekian; age estimated primarily via terrestrial tetrapod biostratigraphy (see Triassic land vertebrate faunachrons)

References edit

  1. ^ Widmann, Philipp; Bucher, Hugo; Leu, Marc; et al. (2020). "Dynamics of the Largest Carbon Isotope Excursion During the Early Triassic Biotic Recovery". Frontiers in Earth Science. 8 (196): 196. Bibcode:2020FrEaS...8..196W. doi:10.3389/feart.2020.00196.
  2. ^ McElwain, J. C.; Punyasena, S. W. (2007). "Mass extinction events and the plant fossil record". Trends in Ecology & Evolution. 22 (10): 548–557. doi:10.1016/j.tree.2007.09.003. PMID 17919771.
  3. ^ Retallack, G. J.; Veevers, J.; Morante, R. (1996). "Global coal gap between Permian–Triassic extinctions and middle Triassic recovery of peat forming plants". GSA Bulletin. 108 (2): 195–207. Bibcode:1996GSAB..108..195R. doi:10.1130/0016-7606(1996)108<0195:GCGBPT>2.3.CO;2. Retrieved 2007-09-29.
  4. ^ Payne, J. L.; Lehrmann, D. J.; Wei, J.; Orchard, M. J.; Schrag, D. P.; Knoll, A. H. (2004). "Large Perturbations of the Carbon Cycle During Recovery from the End-Permian Extinction". Science. 305 (5683): 506–9. Bibcode:2004Sci...305..506P. doi:10.1126/science.1097023. PMID 15273391. S2CID 35498132.
  5. ^ Ogg, James G.; Ogg, Gabi M.; Gradstein, Felix M. (2016). "Triassic". A Concise Geologic Time Scale: 2016. Elsevier. pp. 133–149. ISBN 978-0-444-63771-0.
  6. ^ "Global Boundary Stratotype Section and Point". International Commission of Stratigraphy. Retrieved 23 December 2020.
  7. ^ According to Gradstein (2004). Brack et al. (2005) give 251 to 248 Ma
  8. ^ a b Tozer, E. T. (1965). "Lower Triassic stages and ammonoid zones of Arctic Canada". Geological Survey of Canada Paper. 65–12: 1–14. doi:10.4095/100985.
  9. ^ See for a detailed geologic timescale Gradstein et al. (2004)
  10. ^ Kiparisova & Popov (1956)
  11. ^ Lucas, S. G. (2010). "The Triassic chronostratigraphic scale: history and status". Geological Society, London, Special Publications. 334 (1): 17–39. Bibcode:2010GSLSP.334...17L. doi:10.1144/sp334.2. S2CID 129648527.
  12. ^ Schneebeli-Hermann, Elke; Kürschner, Wolfram M.; Kerp, Hans; Bomfleur, Benjamin; Hochuli, Peter A.; Bucher, Hugo; Ware, David; Roohi, Ghazala (April 2015). "Vegetation history across the Permian–Triassic boundary in Pakistan (Amb section, Salt Range)". Gondwana Research. 27 (3): 911–924. Bibcode:2015GondR..27..911S. doi:10.1016/j.gr.2013.11.007.
  13. ^ a b c Goudemand, Nicolas; Romano, Carlo; Leu, Marc; Bucher, Hugo; Trotter, Julie A.; Williams, Ian S. (August 2019). "Dynamic interplay between climate and marine biodiversity upheavals during the early Triassic Smithian -Spathian biotic crisis". Earth-Science Reviews. 195: 169–178. Bibcode:2019ESRv..195..169G. doi:10.1016/j.earscirev.2019.01.013.
  14. ^ Foster, William J.; Heindel, Katrin; Richoz, Sylvain; Gliwa, Jana; Lehrmann, Daniel J.; Baud, Aymon; Kolar‐Jurkovšek, Tea; Aljinović, Dunja; Jurkovšek, Bogdan; Korn, Dieter; Martindale, Rowan C.; Peckmann, Jörn (20 November 2019). "Suppressed competitive exclusion enabled the proliferation of Permian/Triassic boundary microbialites". The Depositional Record. 6 (1): 62–74. doi:10.1002/dep2.97. PMC 7043383. PMID 32140241.
  15. ^ Brayard, Arnaud; Vennin, Emmanuelle; Olivier, Nicolas; Bylund, Kevin G.; Jenks, Jim; Stephen, Daniel A.; Bucher, Hugo; Hofmann, Richard; Goudemand, Nicolas; Escarguel, Gilles (18 September 2011). "Transient metazoan reefs in the aftermath of the end-Permian mass extinction". Nature Geoscience. 4 (10): 693–697. Bibcode:2011NatGe...4..693B. doi:10.1038/ngeo1264.
  16. ^ Galfetti, Thomas; Hochuli, Peter A.; Brayard, Arnaud; Bucher, Hugo; Weissert, Helmut; Vigran, Jorunn Os (2007). "Smithian-Spathian boundary event: Evidence for global climatic change in the wake of the end-Permian biotic crisis". Geology. 35 (4): 291. Bibcode:2007Geo....35..291G. doi:10.1130/G23117A.1.
  17. ^ Romano, Carlo; Koot, Martha B.; Kogan, Ilja; Brayard, Arnaud; Minikh, Alla V.; Brinkmann, Winand; Bucher, Hugo; Kriwet, Jürgen (February 2016). "Permian-Triassic Osteichthyes (bony fishes): diversity dynamics and body size evolution". Biological Reviews. 91 (1): 106–147. doi:10.1111/brv.12161. PMID 25431138. S2CID 5332637.
  18. ^ Smithwick, Fiann M.; Stubbs, Thomas L. (2 February 2018). "Phanerozoic survivors: Actinopterygian evolution through the Permo‐Triassic and Triassic‐Jurassic mass extinction events". Evolution. 72 (2): 348–362. doi:10.1111/evo.13421. PMC 5817399. PMID 29315531.
  19. ^ Stensiö, Erik (1932). "Triassic Fishes from East Greenland collected by the Danish expeditions in 1929-1931". Meddelelser om Grønland. 83 (3): 1–305. OCLC 938169014.
  20. ^ Nielsen, Eigil (1936). "Some few preliminary remarks on Triassic fishes from East Greenland". Meddelelser om Grønland. 112 (3): 1–55.
  21. ^ Beltan, Laurence (1996). "Overview of systematics, paleobiology, and paleoecology of Triassic fishes of northwestern Madagascar". In G. Arratia; G. Viohl (eds.). Mesozoic Fishes—Systematics and Paleoecology. München: Dr. Friedrich Pfeil. pp. 479–500.
  22. ^ Romano, Carlo; López-Arbarello, Adriana; Ware, David; Jenks, James F.; Brinkmann, Winand (April 2019). "Marine Early Triassic Actinopterygii from the Candelaria Hills (Esmeralda County, Nevada, USA)". Journal of Paleontology. 93 (5): 971–1000. Bibcode:2019JPal...93..971R. doi:10.1017/jpa.2019.18. S2CID 155564297.
  23. ^ Romano, Carlo; Ware, David; Brühwiler, Thomas; Bucher, Hugo; Brinkmann, Winand (2016). "Marine Early Triassic Osteichthyes from Spiti, Indian Himalayas". Swiss Journal of Palaeontology. 135 (2): 275–294. Bibcode:2016SwJP..135..275R. doi:10.1007/s13358-015-0098-6.
  24. ^ Dai, X.; Davies, J. H. F. L.; Yuan, Z.; Brayard, A.; Ovtcharova, M.; Xu, G.; Liu, X.; Smith, C. P. A.; Schweitzer, C. E.; Li, M.; Perrot, M. G.; Jiang, S.; Miao, L.; Cao, Y.; Yan, J.; Bai, R.; Wang, F.; Guo, W.; Song, H.; Tian, L.; Dal Corso, J.; Liu, Y.; Chu, D.; Song, H. (2023). "A Mesozoic fossil lagerstätte from 250.8 million years ago shows a modern-type marine ecosystem". Science. 379 (6632): 567–572. Bibcode:2023Sci...379..567D. doi:10.1126/science.adf1622. PMID 36758082. S2CID 256697946.
  25. ^ a b Stensiö, E. (1921). Triassic fishes from Spitzbergen 1. Wien: Adolf Holzhausen. pp. xxviii+307.
  26. ^ Stensiö, E. (1925). "Triassic fishes from Spitzbergen 2". Kungliga Svenska Vetenskapsakademiens Handlingar. 3: 1–261.
  27. ^ Kogan, Ilja; Romano, Carlo (2016). "A new postcranium of Saurichthys from the Early Triassic of Spitsbergen" (PDF). Freiberger Forschungshefte C (Paläontologie, Stratigraphie, Fazies 23). 550: 205–221. ISBN 9783860125526.
  28. ^ Romano C., Kogan I., Jenks J., Jerjen I., Brinkmann W. (2012). "Saurichthys and other fossil fishes from the late Smithian (Early Triassic) of Bear Lake County (Idaho, USA), with a discussion of saurichthyid palaeogeography and evolution" (PDF). Bulletin of Geosciences. 87: 543–570. doi:10.3140/bull.geosci.1337.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  29. ^ a b Romano, Carlo; Jenks, James F.; Jattiot, Romain; Scheyer, Torsten M.; Bylund, Kevin G.; Bucher, Hugo (19 July 2017). "Marine Early Triassic Actinopterygii from Elko County (Nevada, USA): implications for the Smithian equatorial vertebrate eclipse". Journal of Paleontology. 91 (5): 1025–1046. Bibcode:2017JPal...91.1025R. doi:10.1017/jpa.2017.36.
  30. ^ Tong, Jinnan; Zhou, Xiugao; Erwin, Douglas H.; Zuo, Jingxun; Zhao, Laishi (2006). "Fossil fishes from the Lower Triassic of Majiashan, Chaohu, Anhui Province, China". Journal of Paleontology. 80 (1): 146–161. doi:10.1666/0022-3360(2006)080[0146:FFFTLT]2.0.CO;2. S2CID 131176315.
  31. ^ Schaeffer, Bobb; Mangus, Marlyn (1976). "An Early Triassic fish assemblage from British Columbia". Bulletin of the American Museum of Natural History. 156 (5): 516–563. hdl:2246/619.
  32. ^ Romano, Carlo (January 2021). "A Hiatus Obscures the Early Evolution of Modern Lineages of Bony Fishes". Frontiers in Earth Science. 8: 618853. doi:10.3389/feart.2020.618853.
  33. ^ Romano, Carlo; Brinkmann, Winand (December 2010). "A new specimen of the hybodont shark Palaeobates polaris with threedimensionally preserved Meckel's cartilage from the Smithian (Early Triassic) of Spitsbergen". Journal of Vertebrate Paleontology. 30 (6): 1673–1683. Bibcode:2010JVPal..30.1673R. doi:10.1080/02724634.2010.521962. S2CID 86411191.
  34. ^ Bratvold, Janne; Delsett, Lene Liebe; Hurum, Jørn Harald (2018-10-04). "Chondrichthyans from the Grippia bonebed (Early Triassic) of Marmierfjellet, Spitsbergen". Norwegian Journal of Geology. 98 (2): 189–217. doi:10.17850/njg98-2-03. hdl:10852/71103. S2CID 132293043.
  35. ^ Mutter, Raoul J.; Neuman, Andrew G. (2008). "New eugeneodontid sharks from the Lower Triassic Sulphur Mountain Formation of Western Canada". In Cavin, L.; Longbottom, A.; Richter, M. (eds.). Fishes and the Break-up of Pangaea. Geological Society of London, Special Publications. Vol. 295. London: Geological Society of London. pp. 9–41. doi:10.1144/sp295.3. S2CID 130268582.
  36. ^ a b c d Scheyer, Torsten M.; Romano, Carlo; Jenks, Jim; Bucher, Hugo; Farke, Andrew A. (19 March 2014). "Early Triassic Marine Biotic Recovery: The Predators' Perspective". PLOS ONE. 9 (3): e88987. Bibcode:2014PLoSO...988987S. doi:10.1371/journal.pone.0088987. PMC 3960099. PMID 24647136.
  37. ^ a b Brayard, Arnaud; Krumenacker, L. J.; Botting, Joseph P.; Jenks, James F.; Bylund, Kevin G.; Fara, Emmanuel; Vennin, Emmanuelle; Olivier, Nicolas; Goudemand, Nicolas; Saucède, Thomas; Charbonnier, Sylvain; Romano, Carlo; Doguzhaeva, Larisa; Thuy, Ben; Hautmann, Michael; Stephen, Daniel A.; Thomazo, Christophe; Escarguel, Gilles (15 February 2017). "Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna". Science Advances. 3 (2): e1602159. Bibcode:2017SciA....3E2159B. doi:10.1126/sciadv.1602159. PMC 5310825. PMID 28246643.
  38. ^ a b Smith, Christopher P.A.; Laville, Thomas; Fara, Emmauel; Escarguel, Gilles; Olivier, Nicolas; Vennin, Emmanuelle; Goudemand, Nicolas; Bylund, Kevin G.; Jenks, James F.; Stephen, Daniel A.; Hautmann, Michael; Charbonnier, Sylvain; Krumenacker, L. J.; Brayard, Arnaud (4 October 2021). "Exceptional fossil assemblages confirm the existence of complex Early Triassic ecosystems during the early Spathian". Scientific Reports. 11 (1): 19657. Bibcode:2021NatSR..1119657S. doi:10.1038/s41598-021-99056-8. PMC 8490361. PMID 34608207.
  39. ^ Special issue on Paris Biota: https://www.sciencedirect.com/journal/geobios/vol/54
  40. ^ Galfetti, Thomas; Hochuli, Peter A.; Brayard, Arnaud; Bucher, Hugo; Weissert, Helmut; Vigran, Jorunn Os (2007). "Smithian-Spathian boundary event: Evidence for global climatic change in the wake of the end-Permian biotic crisis". Geology. 35 (4): 291. Bibcode:2007Geo....35..291G. doi:10.1130/G23117A.1.
  41. ^ a b Sun, Y. D.; Wignall, Paul B.; Joachimski, M. M.; Bond, David P. G.; Grasby, S. E.; Sun, S.; Yan, C. B.; Wang, L. N.; Chen, Y. L.; Lai, X. L. (1 June 2015). "High amplitude redox changes in the late Early Triassic of South China and the Smithian–Spathian extinction". Palaeogeography, Palaeoclimatology, Palaeoecology. 427: 62–78. Bibcode:2015PPP...427...62S. doi:10.1016/j.palaeo.2015.03.038. Retrieved 12 December 2022.
  42. ^ Zhang, Lei; Orchard, Michael J.; Brayard, Arnaud; Algeo, Thomas J.; Zhao, Laishi; Chen, Zhong-Qiang; Lyu, Zhengyi (August 2019). "The Smithian/Spathian boundary (late Early Triassic): A review of ammonoid, conodont, and carbon-isotopic criteria". Earth-Science Reviews. 195: 7–36. Bibcode:2019ESRv..195....7Z. doi:10.1016/j.earscirev.2019.02.014. S2CID 134513553. Retrieved 12 December 2022.
  43. ^ a b Brayard, Arnaud; Bucher, Hugo; Escarguel, Gilles; Fluteau, Frédéric; Bourquin, Sylvie; Galfetti, Thomas (September 2006). "The Early Triassic ammonoid recovery: paleoclimatic significance of diversity gradients". Palaeogeography, Palaeoclimatology, Palaeoecology. 239 (3–4): 374–395. Bibcode:2006PPP...239..374B. doi:10.1016/j.palaeo.2006.02.003.
  44. ^ Jattiot, Romain; Bucher, Hugo; Brayard, Arnaud; Monnet, Claude; Jenks, James F.; Hautmann, Michael (2016). "Revision of the genus Anasibirites Mojsisovics (Ammonoidea): An iconic and cosmopolitan taxon of the late Smithian (Early Triassic) extinction". Papers in Palaeontology. 2 (1): 155–188. Bibcode:2016PPal....2..155J. doi:10.1002/spp2.1036. hdl:20.500.12210/34589. S2CID 85908694.
  45. ^ Schneebeli-Hermann, Elke; Kürschner, Wolfram M.; Kerp, Hans; Bomfleur, Benjamin; Hochuli, Peter A.; Bucher, Hugo; Ware, David; Roohi, Ghazala (April 2015). "Vegetation history across the Permian–Triassic boundary in Pakistan (Amb section, Salt Range)". Gondwana Research. 27 (3): 911–924. Bibcode:2015GondR..27..911S. doi:10.1016/j.gr.2013.11.007.
  46. ^ a b Widmann, Philipp; Bucher, Hugo; Leu, Marc; Vennemann, Torsten; Bagherpour, Borhan; Schneebeli-Hermann, Elke; Goudemand, Nicolas; Schaltegger, Urs (2020). "Dynamics of the Largest Carbon Isotope Excursion During the Early Triassic Biotic Recovery". Frontiers in Earth Science. 8 (196): 196. Bibcode:2020FrEaS...8..196W. doi:10.3389/feart.2020.00196.
  47. ^ Hallam, A.; Wignall, P. B. (1997). Mass Extinctions and Their Aftermath. Oxford University Press, UK. p. 143. ISBN 978-0-19-158839-6. Extinctions with and at the close of the Triassic
  48. ^ Du, Yong; Song, Huyue; Algeo, Thomas J.; Song, Haijun; Tian, Li; Chu, Daoliang; Shi, Wei; Li, Chao; Tong, Jinnan (1 August 2022). "A massive magmatic degassing event drove the Late Smithian Thermal Maximum and Smithian–Spathian boundary mass extinction". Global and Planetary Change. 215: 103878. doi:10.1016/j.gloplacha.2022.103878. ISSN 0921-8181. Retrieved 3 January 2024 – via Elsevier Science Direct.
  49. ^ Paton, M. T.; Ivanov, A. V.; Fiorentini, M. L.; McNaughton, M. J.; Mudrovska, I.; Reznitskii, L. Z.; Demonterova, E. I. (1 September 2010). "Late Permian and Early Triassic magmatic pulses in the Angara–Taseeva syncline, Southern Siberian Traps and their possible influence on the environment". Russian Geology and Geophysics. 51 (9): 1012–1020. Bibcode:2010RuGG...51.1012P. doi:10.1016/j.rgg.2010.08.009. Retrieved 12 January 2023.
  50. ^ Romano, Carlo; Goudemand, Nicolas; Vennemann, Torsten W.; Ware, David; Schneebeli-Hermann, Elke; Hochuli, Peter A.; Brühwiler, Thomas; Brinkmann, Winand; Bucher, Hugo (21 December 2012). "Climatic and biotic upheavals following the end-Permian mass extinction". Nature Geoscience. 6 (1): 57–60. doi:10.1038/ngeo1667. S2CID 129296231.
  51. ^ Borruel-Abadía, Violeta; Barrenechea, José F.; Galán-Abellán, Ana Belén; De la Horra, Raúl; López-Gómez, José; Ronchi, Ausonio; Luque, Francisco Javier; Alonso-Azcárate, Jacinto; Marzo, Mariano (20 June 2019). "Could acidity be the reason behind the Early Triassic biotic crisis on land?". Chemical Geology. 515: 77–86. Bibcode:2019ChGeo.515...77B. doi:10.1016/j.chemgeo.2019.03.035. S2CID 134704729. Retrieved 18 December 2022.
  52. ^ Song, Haijin; Song, Huyue; Tong, Jinnan; Gordon, Gwyneth W.; Wignall, Paul B.; Tian, Li; Zheng, Wang; Algeo, Thomas J.; Liang, Lei; Bai, Ruoyu; Wu, Kui; Anbar, Ariel D. (20 February 2021). "Conodont calcium isotopic evidence for multiple shelf acidification events during the Early Triassic". Chemical Geology. 562: 120038. Bibcode:2021ChGeo.56220038S. doi:10.1016/j.chemgeo.2020.120038. S2CID 233915627. Retrieved 18 December 2022.
  53. ^ Grasby, Stephen E.; Beauchamp, Benoit; Bond, David P. G.; Wignall, Paul B.; Sanei, Hamed (2016). "Mercury anomalies associated with three extinction events (Capitanian Crisis, Latest Permian Extinction and the Smithian/Spathian Extinction) in NW Pangea". Geological Magazine. 153 (2): 285–297. Bibcode:2016GeoM..153..285G. doi:10.1017/S0016756815000436. S2CID 85549730. Retrieved 16 September 2022.
  54. ^ Hammer, Øyvind; Jones, Morgan T.; Schneebeli-Hermann, Elke; Hansen, Bitten Bolvig; Bucher, Hugo (August 2019). "Are Early Triassic extinction events associated with mercury anomalies? A reassessment of the Smithian/Spathian boundary extinction". Earth-Science Reviews. 195: 179–190. Bibcode:2019ESRv..195..179H. doi:10.1016/j.earscirev.2019.04.016. hdl:10852/76482. S2CID 146638929. Retrieved 28 October 2022.
  55. ^ Marshall, Michael (18 October 2012). "Roasting Triassic heat exterminated tropical life". New Scientist.
  56. ^ a b Zhang, L.; Zhao, L.; Chen, Zhong-Qiang; Algeo, Thomas J.; Li, Y.; Cao, L. (12 March 2015). "Amelioration of marine environments at the Smithian–Spathian boundary, Early Triassic". Biogeosciences. 12 (5): 1597–1613. Bibcode:2015BGeo...12.1597Z. doi:10.5194/bg-12-1597-2015. Retrieved 11 January 2023.
  57. ^ Song, Huyue; Du, Yong; Algeo, Thomas J.; Tong, Jinnan; Owens, Jeremy D.; Song, Haijun; Tian, Li; Qiu, Haiou; Zhu, Yuanyuan; Lyons, Timothy W. (August 2019). "Cooling-driven oceanic anoxia across the Smithian/Spathian boundary (mid-Early Triassic)". Earth-Science Reviews. 195: 133–146. Bibcode:2019ESRv..195..133S. doi:10.1016/j.earscirev.2019.01.009. S2CID 134105720.
  58. ^ Zhao, He; Dahl, Tais W.; Chen, Zhong-Qiang; Algeo, Thomas J.; Zhang, Lei; Liu, Yongsheng; Hu, Zhaochu; Hu, Zihao (December 2000). "Anomalous marine calcium cycle linked to carbonate factory change after the Smithian Thermal Maximum (Early Triassic)". Earth-Science Reviews. 211: 103418. doi:10.1016/j.earscirev.2020.103418. S2CID 228986247. Retrieved 12 January 2023.
  59. ^ Song, Haijun; Wignall, Paul B.; Tong, Jinnan; Song, Huyue; Chen, Jing; Chu, Daoliang; Tian, Li; Luo, Mao; Zong, Keqing; Chen, Yanlong; Lai, Xulong; Zhang, Kexin; Wang, Hongmei (15 August 2015). "Integrated Sr isotope variations and global environmental changes through the Late Permian to early Late Triassic". Earth and Planetary Science Letters. 424: 140–147. Bibcode:2015E&PSL.424..140S. doi:10.1016/j.epsl.2015.05.035. Retrieved 16 January 2023.
  60. ^ Song, Huyue; Tong, Jinnan; Algeo, Thomas J.; Koracek, Micha; Qiu, Haiou; Song, Haijun; Tian, Li; Chen, Zhong-Qiang (June 2013). "Large vertical δ13CDIC gradients in Early Triassic seas of the South China craton: Implications for oceanographic changes related to Siberian Traps volcanism". Global and Planetary Change. 105: 7–20. Bibcode:2013GPC...105....7S. doi:10.1016/j.gloplacha.2012.10.023. Retrieved 16 January 2023.
  61. ^ Hallam, A.; Wignall, P. B. (1997). Mass Extinctions and Their Aftermath. Oxford University Press, UK. p. 144. ISBN 978-0-19-158839-6.
  62. ^ Chen, Yanlong; Richoz, Sylvain; Krystyn, Leopold; Zhang, Zhifei (August 2019). "Quantitative stratigraphic correlation of Tethyan conodonts across the Smithian-Spathian (Early Triassic) extinction event". Earth-Science Reviews. 195: 37–51. Bibcode:2019ESRv..195...37C. doi:10.1016/j.earscirev.2019.03.004. S2CID 135139479. Retrieved 28 October 2022.
  63. ^ Sun, Y.; Joachimski, M. M.; Wignall, P. B.; Yan, C.; Chen, Y.; Jiang, H.; Wang, L.; Lai, X. (18 October 2012). "Lethally Hot Temperatures During the Early Triassic Greenhouse". Science. 338 (6105): 366–370. Bibcode:2012Sci...338..366S. doi:10.1126/science.1224126. PMID 23087244. S2CID 41302171.
  64. ^ Lloret, Joan; De la Hora, Raúl; Gretter, Nicola; Borruel-Abadía, Violeta; Barrenechea, José F.; Ronchi, Ausonio; Diez, José B.; Arche, Alfredo; López-Gómez, José (September 2020). "Gradual changes in the Olenekian-Anisian continental record and biotic implications in the Central-Eastern Pyrenean basin, NE Spain". Global and Planetary Change. 192: 103252. Bibcode:2020GPC...19203252L. doi:10.1016/j.gloplacha.2020.103252. S2CID 225301237. Retrieved 11 December 2022.

Further reading edit

  • Brack, Peter; Rieber, Hans; Nicora, Alda; Mundil, Roland (1 December 2005). "The Global boundary Stratotype Section and Point (GSSP) of the Ladinian Stage (Middle Triassic) at Bagolino (Southern Alps, Northern Italy) and its implications for the Triassic time scale". Episodes. 28 (4): 233–244. doi:10.18814/epiiugs/2005/v28i4/001.
  • Gradstein, F.M.; Ogg, J.G. & Smith, A.G.; 2004: A Geologic Time Scale 2004, Cambridge University Press.
  • Kiparisova, L.D. & Popov, J.N.; 1956: Расчленение нижнего отдела триасовой системы на ярусы (Subdivision of the lower series of the Triassic System into stages), Doklady Akademii Nauk SSSR 109(4), pp 842–845 (in Russian).

External links edit

  • GeoWhen Database - Olenekian
  • Lower Triassic timescale at the website of the subcommission for stratigraphic information of the ICS
  • at the website of Norges Network of offshore records of geology and stratigraphy.

31°57′55″N 78°01′29″E / 31.9653°N 78.0247°E / 31.9653; 78.0247

olenekian, geologic, timescale, early, triassic, epoch, chronostratigraphy, stage, lower, triassic, series, spans, time, between, million, years, sometimes, divided, into, smithian, spathian, subages, substages, follows, induan, followed, anisian, middle, tria. In the geologic timescale the Olenekian is an age in the Early Triassic epoch in chronostratigraphy it is a stage in the Lower Triassic series It spans the time between 251 2 Ma and 247 2 Ma million years ago 7 The Olenekian is sometimes divided into the Smithian and the Spathian subages or substages 8 The Olenekian follows the Induan and is followed by the Anisian Middle Triassic 9 Olenekian251 2 247 2 Ma PreꞒ Ꞓ O S D C P T J K Pg N Olenekian Buntsandstein in Heligoland GermanyChronology 255 250 245 240 235 230 225 220 215 210 205 200 PzMesozoicPTriassicJEarMiddleLateEJChanghsing OlenekianInduanAnisianLadinianCarnianNorianRhaetianHettangian Permian Triassic extinction event Smithian Spathian boundary event 1 Carnian pluvial episode Full recovery of woody trees 2 Coals return 3 Scleractiniancorals amp calcified sponges 4 Triassic Jurassic extinction event Manicouagan impactSubdivision of the Triassic according to the ICS as of 2021 5 Vertical axis scale millions of years ago EtymologyName formalityFormalUsage informationCelestial bodyEarthRegional usageGlobal ICS Time scale s usedICS Time ScaleDefinitionChronological unitAgeStratigraphic unitStageTime span formalityFormalLower boundary definitionNot formally definedLower boundary definition candidatesFAD of the Conodont Neospathodus waageniLower boundary GSSP candidate section s Mud Muth village Spiti valley India 6 Upper boundary definitionNot formally definedUpper boundary definition candidatesFAD of the Conodont Chiosella timorensis Base of magnetic zone MT1nUpper boundary GSSP candidate section s Desli Caira Northern Dobruja Romania Guandao Guizhou ChinaThe Olenekian saw the deposition of a large part of the Buntsandstein in Europe The Olenekian is roughly coeval with the regional Yongningzhenian Stage used in China Contents 1 Stratigraphic definitions 2 Olenekian life 2 1 Smithian Spathian boundary event 3 Notable formations 4 References 5 Further reading 6 External linksStratigraphic definitions editThe Olenekian Stage was introduced into scientific literature by Russian stratigraphers in 1956 10 The stage is named after Olenek in Siberia Before the subdivision in Olenekian and Induan became established both stages formed the Scythian Stage which has since disappeared from the official timescale The base of the Olenekian is at the lowest occurrence of the ammonoids Hedenstroemia or Meekoceras gracilitatis and of the conodont Neospathodus waageni It is defined as ending near the lowest occurrences of genera Japonites Paradanubites and Paracrochordiceras and of the conodont Chiosella timorensis A GSSP global reference profile for the base has not been established as of December 2020 In the 1960s English paleontologist Edward T Tozer sometimes collaborating with American geologist Norman J Silberling crafted Triassic timescales based on North American ammonoid zones further refining it in the following decades Tozer s nomenclature was largely derived from Mojsisovics s work who coined most of the Triassic stages and substages but he redefined them using North American sites He recommended the Lower Triassic series be divided into the Griesbachian Dienerian Smithian and Spathian The latter two roughly correspond with the Olenekian Tozer s timescale became popular in the Americas 11 He named the Smithian after Smith Creek on Ellesmere Island Canada the creek itself is named after geologist J P Smith The Smithian is defined by the Arctoceras bloomstrandi ammonoid zone contains Euflemingites romunderi and Juvenites crassus and the overlying Meekoceras gracilitatis and Wasatchites tardus subzones He named the Spathian after Spath Creek on Ellesmere Island this creek is named after geologist L F Spath and defined it by the Procolumbites subrobustus ammonoid zone 8 Olenekian life editSee also Category Olenekian life Life was still recovering from the severe end Permian mass extinction During the Olenekian the flora changed from lycopod dominated e g Pleuromeia to gymnosperm and pteridophyte dominated 12 13 These vegetation changes are due to global changes in temperature and precipitation Conifers gymnosperms were the dominant plants during most of the Mesozoic Among land vertebrates the archosaurs a group of diapsid reptiles encompassing crocodiles pterosaurs dinosaurs and ultimately birds first evolved from archosauriform ancestors during the Olenekian This group includes ferocious predators like Erythrosuchus In the oceans microbial reefs were common during the Early Triassic possibly due to lack of competition with metazoan reef builders as a result of the extinction 14 However transient metazoan reefs reoccurred during the Olenekian wherever permitted by environmental conditions 15 Ammonoids and conodonts diversified but both suffered losses during the Smithian Spathian boundary extinction 16 at the end of the Smithian subage Ray finned fishes largely remained unaffected by the Permian Triassic extinction event Coelacanths show their highest post Devonian diversity during the Early Triassic 17 18 Many fish genera show a cosmopolitan distribution during the Induan and Olenekian such as Australosomus Birgeria Parasemionotidae Pteronisculus Ptycholepidae Saurichthys and Whiteia This is well exemplified in the Griesbachian early Induan aged fish assemblages of the Wordie Creek Formation East Greenland 19 20 the Dienerian late Induan aged assemblages of the Middle Sakamena Formation Madagascar 21 Candelaria Formation Nevada United States 22 and Mikin Formation Himachal Pradesh India 23 and Daye Formation Guizhou China 24 and the Smithian aged assemblages of the Vikinghogda Formation Spitsbergen Norway 25 26 27 and Thaynes Group western United States 28 29 and Helongshan Formation Anhui China 30 and several Early Triassic layers of the Sulphur Mountain Formation western Canada 31 The ray finned fishes diversified after the mass extinction and reached peak diversity during the Middle Triassic This diversification is however obscured by a taphonomic megabias during the late Olenekian and early middle Anisian 32 Olenekian chondrichthyan fishes include hybodonts and neoselachians 25 33 34 but also a few surviving lineages of eugeneodontid holocephalians 35 a mainly Palaeozoic group that went extinct during the Early Triassic Marine temnospondyl amphibians such as the superficially crocodile shaped trematosaurids Aphaneramma and Wantzosaurus show wide geographic ranges during the Induan and Olenekian ages Their fossils are found in Greenland Spitsbergen Pakistan and Madagascar 36 Others such as Trematosaurus inhabited freshwater environments and were less widespread The first marine reptiles appeared during the Olenekian 36 Hupehsuchia Ichthyopterygia and Sauropterygia are among the first marine reptiles to enter the scene e g Cartorhynchus Chaohusaurus Utatsusaurus Hupehsuchus Grippia Omphalosaurus Corosaurus Sauropterygians and ichthyosaurs ruled the oceans during the Mesozoic Era An example of an exceptionally diverse Early Triassic assemblage is the Paris biota fossils of which were discovered near Paris Idaho 37 and other nearby sites in Idaho and Nevada 38 The Paris Biota was deposited in the wake of the SSBM and it features at least 7 phyla and 20 distinct metazoan orders including leptomitid protomonaxonid sponges previously only known from the Paleozoic thylacocephalans crustaceans nautiloids ammonoids coleoids ophiuroids crinoids and vertebrates 39 Such diverse assemblages show that organisms diversified wherever and whenever climatic an environmental conditions ameliorated nbsp Life restoration of Pleuromeia a genus of lycophyte that was globally abundant during the Olenekinian nbsp Skull of the ray finned fish Birgeria americana nbsp Skull of the temnospondyl amphibian Trematosaurus brauni nbsp Skull of the archosauriform reptile Erythrosuchus africanus nbsp Marine ichthyosauromorph reptile Chaohusaurus Smithian Spathian boundary event edit nbsp Early Triassic and Anisian marine predators 36 1 Wantzosaurus 2 Fadenia 3 Saurichthys 4 Rebellatrix 5 Hovasaurus 6 Birgeria 7 Aphaneramma 8 Bobasatrania 9 Hybodontiformes 10 Mylacanthus 11 Tanystropheus 12 Corosaurus 13 Ticinepomis 14 Mixosaurus 15 Cymbospondylidae 16 Neoselachii 17 Omphalosaurus skeleton 18 PlacodusAn important extinction event occurred during the Olenekian age of the Early Triassic near the Smithian and Spathian subage boundary The main victims of this Smithian Spathian boundary event often called the Smithian Spathian extinction 40 were disaster taxa Palaeozoic species that survived the Permian Triassic extinction event and flourished in the immediate aftermath of the extinction 41 ammonoids conodonts and radiolarians in particular suffered drastic biodiversity losses 42 41 which is accentuated among others by the cosmopolitan distribution of the ammonoid Anasibirites 43 44 Marine reptiles such as ichthyopterygians and sauropterygians diversified after the extinction 36 The flora was also affected significantly It changed from lycopod dominated e g Pleuromeia during the Dienerian and Smithian subages to gymnosperm and pteridophyte dominated in the Spathian 45 13 These vegetation changes are due to global changes in temperature and precipitation Conifers gymnosperms were the dominant plants during most of the Mesozoic Until recently when the existence of this extinction event about 249 4 Ma ago 46 was not recognised 47 The Smithian Spathian boundary extinction was linked to late eruptions of the Siberian Traps 48 49 which released warming greenhouse gases resulting in global warming 50 and in acidification both on land 51 and in the ocean 52 A large spike in mercury concentrations relative to total organic carbon much like during the Permian Triassic extinction has been suggested as another contributor to the extinction 53 although this is controversial and has been disputed by other research that suggests elevated mercury levels already existed by the middle Spathian 54 Prior to the Smithian Spathian Boundary extinction event a flat gradient of latitudinal species richness is observed suggesting that warmer temperatures extended into higher latitudes allowing extension of geographic ranges of species adapted to warmer temperatures and displacement or extinctions of species adapted to cooler temperatures 43 Oxygen isotope studies on conodonts have revealed that temperatures rose in the first 2 million years of the Triassic ultimately reaching sea surface temperatures of up to 40 C 104 F in the tropics during the Smithian 55 The extinction itself occurred during a subsequent drop in global temperatures ca 8 C over a geologically short period in the latest Smithian however temperature alone cannot account for the Smithian Spathian boundary extinction because several factors were at play 13 46 An alternative explanation for the extinction event hypothesises the biotic crisis took place not at the Smithian Spathian boundary but shortly before during the Late Smithian Thermal Maximum LSTM with the Smithian Spathian boundary itself being associated with cessation of intrusive magmatic activity of the Siberian Traps 56 along with significant global cooling 57 58 after which a gradual biotic recovery took place over the early and middle Spathian 56 along with a decline in continental weathering 59 and a rejuvenation of ocean circulation 60 In the ocean many large and mobile species moved away from the tropics but large fish remained 29 and amongst the immobile species such as molluscs only the ones that could cope with the heat survived half the bivalves disappeared 61 Conodonts decreased in average size as a result of the extinction 62 On land the tropics were nearly devoid of life 63 with exceptionally arid conditions recorded in Iberia and other parts of Europe then at low latitude 64 Many big active animals returned to the tropics and plants recolonised on land only when temperatures returned to normal There is evidence that life had recovered rapidly at least locally This is indicated by sites that show exceptionally high biodiversity e g the earliest Spathian Paris Biota 37 38 which suggest that food webs were complex and comprised several trophic levels Notable formations editMiddle Buntsandstein Germany Cynognathus Assemblage Zone Burgersdorp Formation subzones A B South Africa Lower Ermaying Formation Shaanxi and Shanxi China Upper Fremouw Formation Antarctica Jialingjiang Formation South China Moenkopi Formation Torrey and Wutapki members SW USA Nanlinghu Formation Anhui China Rybinskian Gorizont European Russia Sanga do Cabral Formation Rio Grande do Sul Brazil Sludkian Gorizont European Russia Sulphur Mountain Formation British Columbia Canada Thaynes Group Limestone western USA Ustmylian Gorizont European Russia Virgin Formation Utah USA Vikinghogda Formation Lusitaniadalen and Vendomdalen members Svalbard Norway Yarenskian Gorizont European Russia Tentatively assigned to the Olenekian age estimated primarily via terrestrial tetrapod biostratigraphy see Triassic land vertebrate faunachrons References edit Widmann Philipp Bucher Hugo Leu Marc et al 2020 Dynamics of the Largest Carbon Isotope Excursion During the Early Triassic Biotic Recovery Frontiers in Earth Science 8 196 196 Bibcode 2020FrEaS 8 196W doi 10 3389 feart 2020 00196 McElwain J C Punyasena S W 2007 Mass extinction events and the plant fossil record Trends in Ecology amp Evolution 22 10 548 557 doi 10 1016 j tree 2007 09 003 PMID 17919771 Retallack G J Veevers J Morante R 1996 Global coal gap between Permian Triassic extinctions and middle Triassic recovery of peat forming plants GSA Bulletin 108 2 195 207 Bibcode 1996GSAB 108 195R doi 10 1130 0016 7606 1996 108 lt 0195 GCGBPT gt 2 3 CO 2 Retrieved 2007 09 29 Payne J L Lehrmann D J Wei J Orchard M J Schrag D P Knoll A H 2004 Large Perturbations of the Carbon Cycle During Recovery from the End Permian Extinction Science 305 5683 506 9 Bibcode 2004Sci 305 506P doi 10 1126 science 1097023 PMID 15273391 S2CID 35498132 Ogg James G Ogg Gabi M Gradstein Felix M 2016 Triassic A Concise Geologic Time Scale 2016 Elsevier pp 133 149 ISBN 978 0 444 63771 0 Global Boundary Stratotype Section and Point International Commission of Stratigraphy Retrieved 23 December 2020 According to Gradstein 2004 Brack et al 2005 give 251 to 248 Ma a b Tozer E T 1965 Lower Triassic stages and ammonoid zones of Arctic Canada Geological Survey of Canada Paper 65 12 1 14 doi 10 4095 100985 See for a detailed geologic timescale Gradstein et al 2004 Kiparisova amp Popov 1956 Lucas S G 2010 The Triassic chronostratigraphic scale history and status Geological Society London Special Publications 334 1 17 39 Bibcode 2010GSLSP 334 17L doi 10 1144 sp334 2 S2CID 129648527 Schneebeli Hermann Elke Kurschner Wolfram M Kerp Hans Bomfleur Benjamin Hochuli Peter A Bucher Hugo Ware David Roohi Ghazala April 2015 Vegetation history across the Permian Triassic boundary in Pakistan Amb section Salt Range Gondwana Research 27 3 911 924 Bibcode 2015GondR 27 911S doi 10 1016 j gr 2013 11 007 a b c Goudemand Nicolas Romano Carlo Leu Marc Bucher Hugo Trotter Julie A Williams Ian S August 2019 Dynamic interplay between climate and marine biodiversity upheavals during the early Triassic Smithian Spathian biotic crisis Earth Science Reviews 195 169 178 Bibcode 2019ESRv 195 169G doi 10 1016 j earscirev 2019 01 013 Foster William J Heindel Katrin Richoz Sylvain Gliwa Jana Lehrmann Daniel J Baud Aymon Kolar Jurkovsek Tea Aljinovic Dunja Jurkovsek Bogdan Korn Dieter Martindale Rowan C Peckmann Jorn 20 November 2019 Suppressed competitive exclusion enabled the proliferation of Permian Triassic boundary microbialites The Depositional Record 6 1 62 74 doi 10 1002 dep2 97 PMC 7043383 PMID 32140241 Brayard Arnaud Vennin Emmanuelle Olivier Nicolas Bylund Kevin G Jenks Jim Stephen Daniel A Bucher Hugo Hofmann Richard Goudemand Nicolas Escarguel Gilles 18 September 2011 Transient metazoan reefs in the aftermath of the end Permian mass extinction Nature Geoscience 4 10 693 697 Bibcode 2011NatGe 4 693B doi 10 1038 ngeo1264 Galfetti Thomas Hochuli Peter A Brayard Arnaud Bucher Hugo Weissert Helmut Vigran Jorunn Os 2007 Smithian Spathian boundary event Evidence for global climatic change in the wake of the end Permian biotic crisis Geology 35 4 291 Bibcode 2007Geo 35 291G doi 10 1130 G23117A 1 Romano Carlo Koot Martha B Kogan Ilja Brayard Arnaud Minikh Alla V Brinkmann Winand Bucher Hugo Kriwet Jurgen February 2016 Permian Triassic Osteichthyes bony fishes diversity dynamics and body size evolution Biological Reviews 91 1 106 147 doi 10 1111 brv 12161 PMID 25431138 S2CID 5332637 Smithwick Fiann M Stubbs Thomas L 2 February 2018 Phanerozoic survivors Actinopterygian evolution through the Permo Triassic and Triassic Jurassic mass extinction events Evolution 72 2 348 362 doi 10 1111 evo 13421 PMC 5817399 PMID 29315531 Stensio Erik 1932 Triassic Fishes from East Greenland collected by the Danish expeditions in 1929 1931 Meddelelser om Gronland 83 3 1 305 OCLC 938169014 Nielsen Eigil 1936 Some few preliminary remarks on Triassic fishes from East Greenland Meddelelser om Gronland 112 3 1 55 Beltan Laurence 1996 Overview of systematics paleobiology and paleoecology of Triassic fishes of northwestern Madagascar In G Arratia G Viohl eds Mesozoic Fishes Systematics and Paleoecology Munchen Dr Friedrich Pfeil pp 479 500 Romano Carlo Lopez Arbarello Adriana Ware David Jenks James F Brinkmann Winand April 2019 Marine Early Triassic Actinopterygii from the Candelaria Hills Esmeralda County Nevada USA Journal of Paleontology 93 5 971 1000 Bibcode 2019JPal 93 971R doi 10 1017 jpa 2019 18 S2CID 155564297 Romano Carlo Ware David Bruhwiler Thomas Bucher Hugo Brinkmann Winand 2016 Marine Early Triassic Osteichthyes from Spiti Indian Himalayas Swiss Journal of Palaeontology 135 2 275 294 Bibcode 2016SwJP 135 275R doi 10 1007 s13358 015 0098 6 Dai X Davies J H F L Yuan Z Brayard A Ovtcharova M Xu G Liu X Smith C P A Schweitzer C E Li M Perrot M G Jiang S Miao L Cao Y Yan J Bai R Wang F Guo W Song H Tian L Dal Corso J Liu Y Chu D Song H 2023 A Mesozoic fossil lagerstatte from 250 8 million years ago shows a modern type marine ecosystem Science 379 6632 567 572 Bibcode 2023Sci 379 567D doi 10 1126 science adf1622 PMID 36758082 S2CID 256697946 a b Stensio E 1921 Triassic fishes from Spitzbergen 1 Wien Adolf Holzhausen pp xxviii 307 Stensio E 1925 Triassic fishes from Spitzbergen 2 Kungliga Svenska Vetenskapsakademiens Handlingar 3 1 261 Kogan Ilja Romano Carlo 2016 A new postcranium of Saurichthys from the Early Triassic of Spitsbergen PDF Freiberger Forschungshefte C Palaontologie Stratigraphie Fazies 23 550 205 221 ISBN 9783860125526 Romano C Kogan I Jenks J Jerjen I Brinkmann W 2012 Saurichthys and other fossil fishes from the late Smithian Early Triassic of Bear Lake County Idaho USA with a discussion of saurichthyid palaeogeography and evolution PDF Bulletin of Geosciences 87 543 570 doi 10 3140 bull geosci 1337 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link a b Romano Carlo Jenks James F Jattiot Romain Scheyer Torsten M Bylund Kevin G Bucher Hugo 19 July 2017 Marine Early Triassic Actinopterygii from Elko County Nevada USA implications for the Smithian equatorial vertebrate eclipse Journal of Paleontology 91 5 1025 1046 Bibcode 2017JPal 91 1025R doi 10 1017 jpa 2017 36 Tong Jinnan Zhou Xiugao Erwin Douglas H Zuo Jingxun Zhao Laishi 2006 Fossil fishes from the Lower Triassic of Majiashan Chaohu Anhui Province China Journal of Paleontology 80 1 146 161 doi 10 1666 0022 3360 2006 080 0146 FFFTLT 2 0 CO 2 S2CID 131176315 Schaeffer Bobb Mangus Marlyn 1976 An Early Triassic fish assemblage from British Columbia Bulletin of the American Museum of Natural History 156 5 516 563 hdl 2246 619 Romano Carlo January 2021 A Hiatus Obscures the Early Evolution of Modern Lineages of Bony Fishes Frontiers in Earth Science 8 618853 doi 10 3389 feart 2020 618853 Romano Carlo Brinkmann Winand December 2010 A new specimen of the hybodont shark Palaeobates polaris with threedimensionally preserved Meckel s cartilage from the Smithian Early Triassic of Spitsbergen Journal of Vertebrate Paleontology 30 6 1673 1683 Bibcode 2010JVPal 30 1673R doi 10 1080 02724634 2010 521962 S2CID 86411191 Bratvold Janne Delsett Lene Liebe Hurum Jorn Harald 2018 10 04 Chondrichthyans from the Grippia bonebed Early Triassic of Marmierfjellet Spitsbergen Norwegian Journal of Geology 98 2 189 217 doi 10 17850 njg98 2 03 hdl 10852 71103 S2CID 132293043 Mutter Raoul J Neuman Andrew G 2008 New eugeneodontid sharks from the Lower Triassic Sulphur Mountain Formation of Western Canada In Cavin L Longbottom A Richter M eds Fishes and the Break up of Pangaea Geological Society of London Special Publications Vol 295 London Geological Society of London pp 9 41 doi 10 1144 sp295 3 S2CID 130268582 a b c d Scheyer Torsten M Romano Carlo Jenks Jim Bucher Hugo Farke Andrew A 19 March 2014 Early Triassic Marine Biotic Recovery The Predators Perspective PLOS ONE 9 3 e88987 Bibcode 2014PLoSO 988987S doi 10 1371 journal pone 0088987 PMC 3960099 PMID 24647136 a b Brayard Arnaud Krumenacker L J Botting Joseph P Jenks James F Bylund Kevin G Fara Emmanuel Vennin Emmanuelle Olivier Nicolas Goudemand Nicolas Saucede Thomas Charbonnier Sylvain Romano Carlo Doguzhaeva Larisa Thuy Ben Hautmann Michael Stephen Daniel A Thomazo Christophe Escarguel Gilles 15 February 2017 Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna Science Advances 3 2 e1602159 Bibcode 2017SciA 3E2159B doi 10 1126 sciadv 1602159 PMC 5310825 PMID 28246643 a b Smith Christopher P A Laville Thomas Fara Emmauel Escarguel Gilles Olivier Nicolas Vennin Emmanuelle Goudemand Nicolas Bylund Kevin G Jenks James F Stephen Daniel A Hautmann Michael Charbonnier Sylvain Krumenacker L J Brayard Arnaud 4 October 2021 Exceptional fossil assemblages confirm the existence of complex Early Triassic ecosystems during the early Spathian Scientific Reports 11 1 19657 Bibcode 2021NatSR 1119657S doi 10 1038 s41598 021 99056 8 PMC 8490361 PMID 34608207 Special issue on Paris Biota https www sciencedirect com journal geobios vol 54 Galfetti Thomas Hochuli Peter A Brayard Arnaud Bucher Hugo Weissert Helmut Vigran Jorunn Os 2007 Smithian Spathian boundary event Evidence for global climatic change in the wake of the end Permian biotic crisis Geology 35 4 291 Bibcode 2007Geo 35 291G doi 10 1130 G23117A 1 a b Sun Y D Wignall Paul B Joachimski M M Bond David P G Grasby S E Sun S Yan C B Wang L N Chen Y L Lai X L 1 June 2015 High amplitude redox changes in the late Early Triassic of South China and the Smithian Spathian extinction Palaeogeography Palaeoclimatology Palaeoecology 427 62 78 Bibcode 2015PPP 427 62S doi 10 1016 j palaeo 2015 03 038 Retrieved 12 December 2022 Zhang Lei Orchard Michael J Brayard Arnaud Algeo Thomas J Zhao Laishi Chen Zhong Qiang Lyu Zhengyi August 2019 The Smithian Spathian boundary late Early Triassic A review of ammonoid conodont and carbon isotopic criteria Earth Science Reviews 195 7 36 Bibcode 2019ESRv 195 7Z doi 10 1016 j earscirev 2019 02 014 S2CID 134513553 Retrieved 12 December 2022 a b Brayard Arnaud Bucher Hugo Escarguel Gilles Fluteau Frederic Bourquin Sylvie Galfetti Thomas September 2006 The Early Triassic ammonoid recovery paleoclimatic significance of diversity gradients Palaeogeography Palaeoclimatology Palaeoecology 239 3 4 374 395 Bibcode 2006PPP 239 374B doi 10 1016 j palaeo 2006 02 003 Jattiot Romain Bucher Hugo Brayard Arnaud Monnet Claude Jenks James F Hautmann Michael 2016 Revision of the genus Anasibirites Mojsisovics Ammonoidea An iconic and cosmopolitan taxon of the late Smithian Early Triassic extinction Papers in Palaeontology 2 1 155 188 Bibcode 2016PPal 2 155J doi 10 1002 spp2 1036 hdl 20 500 12210 34589 S2CID 85908694 Schneebeli Hermann Elke Kurschner Wolfram M Kerp Hans Bomfleur Benjamin Hochuli Peter A Bucher Hugo Ware David Roohi Ghazala April 2015 Vegetation history across the Permian Triassic boundary in Pakistan Amb section Salt Range Gondwana Research 27 3 911 924 Bibcode 2015GondR 27 911S doi 10 1016 j gr 2013 11 007 a b Widmann Philipp Bucher Hugo Leu Marc Vennemann Torsten Bagherpour Borhan Schneebeli Hermann Elke Goudemand Nicolas Schaltegger Urs 2020 Dynamics of the Largest Carbon Isotope Excursion During the Early Triassic Biotic Recovery Frontiers in Earth Science 8 196 196 Bibcode 2020FrEaS 8 196W doi 10 3389 feart 2020 00196 Hallam A Wignall P B 1997 Mass Extinctions and Their Aftermath Oxford University Press UK p 143 ISBN 978 0 19 158839 6 Extinctions with and at the close of the Triassic Du Yong Song Huyue Algeo Thomas J Song Haijun Tian Li Chu Daoliang Shi Wei Li Chao Tong Jinnan 1 August 2022 A massive magmatic degassing event drove the Late Smithian Thermal Maximum and Smithian Spathian boundary mass extinction Global and Planetary Change 215 103878 doi 10 1016 j gloplacha 2022 103878 ISSN 0921 8181 Retrieved 3 January 2024 via Elsevier Science Direct Paton M T Ivanov A V Fiorentini M L McNaughton M J Mudrovska I Reznitskii L Z Demonterova E I 1 September 2010 Late Permian and Early Triassic magmatic pulses in the Angara Taseeva syncline Southern Siberian Traps and their possible influence on the environment Russian Geology and Geophysics 51 9 1012 1020 Bibcode 2010RuGG 51 1012P doi 10 1016 j rgg 2010 08 009 Retrieved 12 January 2023 Romano Carlo Goudemand Nicolas Vennemann Torsten W Ware David Schneebeli Hermann Elke Hochuli Peter A Bruhwiler Thomas Brinkmann Winand Bucher Hugo 21 December 2012 Climatic and biotic upheavals following the end Permian mass extinction Nature Geoscience 6 1 57 60 doi 10 1038 ngeo1667 S2CID 129296231 Borruel Abadia Violeta Barrenechea Jose F Galan Abellan Ana Belen De la Horra Raul Lopez Gomez Jose Ronchi Ausonio Luque Francisco Javier Alonso Azcarate Jacinto Marzo Mariano 20 June 2019 Could acidity be the reason behind the Early Triassic biotic crisis on land Chemical Geology 515 77 86 Bibcode 2019ChGeo 515 77B doi 10 1016 j chemgeo 2019 03 035 S2CID 134704729 Retrieved 18 December 2022 Song Haijin Song Huyue Tong Jinnan Gordon Gwyneth W Wignall Paul B Tian Li Zheng Wang Algeo Thomas J Liang Lei Bai Ruoyu Wu Kui Anbar Ariel D 20 February 2021 Conodont calcium isotopic evidence for multiple shelf acidification events during the Early Triassic Chemical Geology 562 120038 Bibcode 2021ChGeo 56220038S doi 10 1016 j chemgeo 2020 120038 S2CID 233915627 Retrieved 18 December 2022 Grasby Stephen E Beauchamp Benoit Bond David P G Wignall Paul B Sanei Hamed 2016 Mercury anomalies associated with three extinction events Capitanian Crisis Latest Permian Extinction and the Smithian Spathian Extinction in NW Pangea Geological Magazine 153 2 285 297 Bibcode 2016GeoM 153 285G doi 10 1017 S0016756815000436 S2CID 85549730 Retrieved 16 September 2022 Hammer Oyvind Jones Morgan T Schneebeli Hermann Elke Hansen Bitten Bolvig Bucher Hugo August 2019 Are Early Triassic extinction events associated with mercury anomalies A reassessment of the Smithian Spathian boundary extinction Earth Science Reviews 195 179 190 Bibcode 2019ESRv 195 179H doi 10 1016 j earscirev 2019 04 016 hdl 10852 76482 S2CID 146638929 Retrieved 28 October 2022 Marshall Michael 18 October 2012 Roasting Triassic heat exterminated tropical life New Scientist a b Zhang L Zhao L Chen Zhong Qiang Algeo Thomas J Li Y Cao L 12 March 2015 Amelioration of marine environments at the Smithian Spathian boundary Early Triassic Biogeosciences 12 5 1597 1613 Bibcode 2015BGeo 12 1597Z doi 10 5194 bg 12 1597 2015 Retrieved 11 January 2023 Song Huyue Du Yong Algeo Thomas J Tong Jinnan Owens Jeremy D Song Haijun Tian Li Qiu Haiou Zhu Yuanyuan Lyons Timothy W August 2019 Cooling driven oceanic anoxia across the Smithian Spathian boundary mid Early Triassic Earth Science Reviews 195 133 146 Bibcode 2019ESRv 195 133S doi 10 1016 j earscirev 2019 01 009 S2CID 134105720 Zhao He Dahl Tais W Chen Zhong Qiang Algeo Thomas J Zhang Lei Liu Yongsheng Hu Zhaochu Hu Zihao December 2000 Anomalous marine calcium cycle linked to carbonate factory change after the Smithian Thermal Maximum Early Triassic Earth Science Reviews 211 103418 doi 10 1016 j earscirev 2020 103418 S2CID 228986247 Retrieved 12 January 2023 Song Haijun Wignall Paul B Tong Jinnan Song Huyue Chen Jing Chu Daoliang Tian Li Luo Mao Zong Keqing Chen Yanlong Lai Xulong Zhang Kexin Wang Hongmei 15 August 2015 Integrated Sr isotope variations and global environmental changes through the Late Permian to early Late Triassic Earth and Planetary Science Letters 424 140 147 Bibcode 2015E amp PSL 424 140S doi 10 1016 j epsl 2015 05 035 Retrieved 16 January 2023 Song Huyue Tong Jinnan Algeo Thomas J Koracek Micha Qiu Haiou Song Haijun Tian Li Chen Zhong Qiang June 2013 Large vertical d13CDIC gradients in Early Triassic seas of the South China craton Implications for oceanographic changes related to Siberian Traps volcanism Global and Planetary Change 105 7 20 Bibcode 2013GPC 105 7S doi 10 1016 j gloplacha 2012 10 023 Retrieved 16 January 2023 Hallam A Wignall P B 1997 Mass Extinctions and Their Aftermath Oxford University Press UK p 144 ISBN 978 0 19 158839 6 Chen Yanlong Richoz Sylvain Krystyn Leopold Zhang Zhifei August 2019 Quantitative stratigraphic correlation of Tethyan conodonts across the Smithian Spathian Early Triassic extinction event Earth Science Reviews 195 37 51 Bibcode 2019ESRv 195 37C doi 10 1016 j earscirev 2019 03 004 S2CID 135139479 Retrieved 28 October 2022 Sun Y Joachimski M M Wignall P B Yan C Chen Y Jiang H Wang L Lai X 18 October 2012 Lethally Hot Temperatures During the Early Triassic Greenhouse Science 338 6105 366 370 Bibcode 2012Sci 338 366S doi 10 1126 science 1224126 PMID 23087244 S2CID 41302171 Lloret Joan De la Hora Raul Gretter Nicola Borruel Abadia Violeta Barrenechea Jose F Ronchi Ausonio Diez Jose B Arche Alfredo Lopez Gomez Jose September 2020 Gradual changes in the Olenekian Anisian continental record and biotic implications in the Central Eastern Pyrenean basin NE Spain Global and Planetary Change 192 103252 Bibcode 2020GPC 19203252L doi 10 1016 j gloplacha 2020 103252 S2CID 225301237 Retrieved 11 December 2022 Further reading editBrack Peter Rieber Hans Nicora Alda Mundil Roland 1 December 2005 The Global boundary Stratotype Section and Point GSSP of the Ladinian Stage Middle Triassic at Bagolino Southern Alps Northern Italy and its implications for the Triassic time scale Episodes 28 4 233 244 doi 10 18814 epiiugs 2005 v28i4 001 Gradstein F M Ogg J G amp Smith A G 2004 A Geologic Time Scale 2004 Cambridge University Press Kiparisova L D amp Popov J N 1956 Raschlenenie nizhnego otdela triasovoj sistemy na yarusy Subdivision of the lower series of the Triassic System into stages Doklady Akademii Nauk SSSR 109 4 pp 842 845 in Russian External links editGeoWhen Database Olenekian Lower Triassic timescale at the website of the subcommission for stratigraphic information of the ICS Lower Triassic timescale at the website of Norges Network of offshore records of geology and stratigraphy 31 57 55 N 78 01 29 E 31 9653 N 78 0247 E 31 9653 78 0247 Retrieved from https en wikipedia org w index php title Olenekian amp oldid 1200257251, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.