fbpx
Wikipedia

National Science Foundation Network

The National Science Foundation Network (NSFNET) was a program of coordinated, evolving projects sponsored by the National Science Foundation (NSF) from 1985 to 1995 to promote advanced research and education networking in the United States.[1] The program created several nationwide backbone computer networks in support of these initiatives. Initially created to link researchers to the NSF-funded supercomputing centers, through further public funding and private industry partnerships it developed into a major part of the Internet backbone.

National Science Foundation Network
NSFNET logo
TypeData
LocationUSA
ProtocolsTCP/IP and OSI
OperatorMerit Network with IBM, MCI, the State of Michigan, and later ANS
Established1985; 39 years ago (1985)
Current statusDecommissioned April 30, 1995, superseded by the commercial Internet
Commercial?No
FundingNational Science Foundation
WebsiteNSFNET history

The National Science Foundation permitted only government agencies and universities to use the network until 1989 when the first commercial Internet service provider emerged. By 1991, the NSF removed access restrictions and the commercial ISP business grew rapidly.[2]

History edit

Following the deployment of the Computer Science Network (CSNET), a network that provided Internet services to academic computer science departments, in 1981, the U.S. National Science Foundation (NSF) aimed to create an academic research network facilitating access by researchers to the supercomputing centers funded by NSF in the United States.[3]

In 1985, NSF began funding the creation of five new supercomputing centers:

 
NSF's three tiered network architecture

Also in 1985, under the leadership of Dennis Jennings, the NSF established the National Science Foundation Network (NSFNET). NSFNET was to be a general-purpose research network, a hub to connect the five supercomputing centers along with the NSF-funded National Center for Atmospheric Research (NCAR) to each other and to the regional research and education networks that would in turn connect campus networks. Using this three tier network architecture NSFNET would provide access between the supercomputer centers and other sites over the backbone network at no cost to the centers or to the regional networks using the open TCP/IP protocols initially deployed successfully on the ARPANET.

56 kbit/s backbone edit

 
56K NSFNET Backbone, c. 1988
 
T1 NSFNET Backbone, c. 1991
 
T3 NSFNET Backbone, c. 1992
 
NSFNET Traffic 1991, NSFNET backbone nodes are shown at the top, regional networks below, traffic volume is depicted from purple (zero bytes) to white (100 billion bytes), visualization by NCSA using traffic data provided by the Merit Network.

The NSFNET initiated operations in 1986 using TCP/IP. Its six backbone sites were interconnected with leased 56-kbit/s links, built by a group including the University of Illinois National Center for Supercomputing Applications (NCSA), Cornell University Theory Center, University of Delaware, and Merit Network. PDP-11/73 minicomputers with routing and management software, called Fuzzballs, served as the network routers since they already implemented the TCP/IP standard.

This original 56 kbit/s backbone was overseen by the supercomputer centers themselves with the lead taken by Ed Krol at the University of Illinois at Urbana–Champaign. PDP-11/73 Fuzzball routers were configured and run by Hans-Werner Braun at the Merit Network[4] and statistics were collected by Cornell University.

Support for NSFNET end-users was provided by the NSF Network Service Center (NNSC), located at BBN Technologies and included publishing the softbound "Internet Manager's Phonebook" which listed the contact information for every issued domain name and IP address in 1990.[5] Incidentally, Ed Krol also authored the Hitchhiker's Guide to the Internet to help users of the NSFNET understand its capabilities.[6] The Hitchhiker's Guide became one of the first help manuals for the Internet.

As regional networks grew the 56 kbit/s NSFNET backbone experienced rapid increases in network traffic and became seriously congested. In June 1987 NSF issued a new solicitation to upgrade and expand NSFNET.[7]

1.5 Mbit/s (T-1) backbone edit

As a result of a November 1987 NSF award to the Merit Network, a networking consortium by public universities in Michigan, the original 56 kbit/s network was expanded to include 13 nodes interconnected at 1.5 Mbit/s (T-1) by July 1988. Additional links were added to form a multi-path network, and a node located in Atlanta was added. Each of the backbone nodes was a router called the Nodal Switching System (NSS). The NSSes were a collection of multiple (typically nine) IBM RT PC systems connected by a Token Ring local area network. The RT PCs ran AOS, IBM's version of Berkeley UNIX, and was dedicated to a particular packet processing task.[8]

Under its cooperative agreement with NSF the Merit Network was the lead organization in a partnership that included IBM, MCI, and the State of Michigan. Merit provided overall project coordination, network design and engineering, a Network Operations Center (NOC), and information services to assist the regional networks. IBM provided equipment, software development, installation, maintenance and operations support. MCI provided the T-1 data circuits at reduced rates. The state of Michigan provided funding for facilities and personnel. Eric M. Aupperle, Merit's President, was the NSFNET Project Director, and Hans-Werner Braun was Co-Principal Investigator.

From 1987 to 1994, Merit organized a series of "Regional-Techs" meetings, where technical staff from the regional networks met to discuss operational issues of common concern with each other and the Merit engineering staff.

During this period, but separate from its support for the NSFNET backbone, NSF funded:

  • the NSF Connections Program that helped colleges and universities obtain or upgrade connections to regional networks;
  • regional networks to obtain or upgrade equipment and data communications circuits;
  • the NNSC, and successor Network Information Services Manager (aka InterNIC) information help desks;[9]
  • the International Connections Manager (ICM), a task performed by Sprint, that encouraged connections between the NSFNET backbone and international research and education networks; and
  • various ad hoc grants to organizations such as the Federation of American Research Networks (FARNET).

The NSFNET became the principal Internet backbone starting in the Summer of 1986, when MIDnet, the first NSFNET regional backbone network became operational. By 1988, in addition to the five NSF supercomputer centers, NSFNET included connectivity to the regional networks BARRNet, JVNCNet, Merit/MichNet, MIDnet, NCAR, NorthWestNet, NYSERNet, SESQUINET, SURAnet, and Westnet, which in turn connected about 170 additional networks to the NSFNET.[10] Three new nodes were added as part of the upgrade to T-3: NEARNET in Cambridge, Massachusetts; Argone National Laboratory outside of Chicago; and SURAnet in Atlanta, Georgia.[11] NSFNET connected to other federal government networks including the NASA Science Internet, the Energy Science Network (ESnet), and others.

Connections were also established to research and education networks in other countries starting in 1988 with Canada, France,[12][13] NORDUnet (serving Denmark, Finland, Iceland, Norway, and Sweden),[14] the Netherlands,[15] and many other countries in subsequent years.[16][17]

Two Federal Internet Exchanges (FIXes) were established in June 1989[18] under the auspices of the Federal Engineering Planning Group (FEPG). FIX East, at the University of Maryland in College Park and FIX West, at the NASA Ames Research Center in Mountain View, California. The existence of NSFNET and the FIXes allowed the ARPANET to be phased out in mid-1990.[19]

Starting in August 1990 the NSFNET backbone supported the OSI Connectionless Network Protocol (CLNP) in addition to TCP/IP.[20] However, CLNP usage remained low when compared to TCP/IP.

Traffic on the network continued its rapid growth, doubling every seven months. Projections indicated that the T-1 backbone would become overloaded sometime in 1990.

A critical routing technology, Border Gateway Protocol (BGP), originated during this period of Internet history. BGP allowed routers on the NSFNET backbone to differentiate routes originally learned via multiple paths. Prior to BGP, interconnection between IP network was inherently hierarchical, and careful planning was needed to avoid routing loops.[21] BGP turned the Internet into a meshed topology, moving away from the centric architecture which the ARPANET emphasized.

45 Mbit/s (T-3) backbone edit

 
Packet Traffic on the NSFNET Backbone, January 1988 to June 1994

During 1991, an upgraded backbone built with 45 Mbit/s (T-3) transmission circuits was deployed to interconnect 16 nodes. The routers on the upgraded backbone were IBM RS/6000 servers running AIX UNIX. Core nodes were located at MCI facilities with end nodes at the connected regional networks and supercomputing centers. Completed in November 1991, the transition from T-1 to T-3 did not go as smoothly as the previous transition from 56 kbit/s DDS to 1.5  mbit/s T-1, as it took longer than planned. As a result, there was at times serious congestion on the overloaded T-1 backbone. Following the transition to T-3, portions of the T-1 backbone were left in place to act as a backup for the new T-3 backbone.

In anticipation of the T-3 upgrade and the approaching end of the 5-year NSFNET cooperative agreement, in September 1990 Merit, IBM, and MCI formed Advanced Network and Services (ANS), a new non-profit corporation with a more broadly based Board of Directors than the Michigan-based Merit Network. Under its cooperative agreement with NSF, Merit remained ultimately responsible for the operation of NSFNET, but subcontracted much of the engineering and operations work to ANS. Both IBM and MCI made substantial new financial and other commitments to help support the new venture. Allan Weis left IBM to become ANS's first President and Managing Director. Douglas Van Houweling, former Chair of the Merit Network Board and Vice Provost for Information Technology at the University of Michigan, was Chairman of the ANS Board of Directors.

The new T-3 backbone was named ANSNet and provided the physical infrastructure used by Merit to deliver the NSFNET Backbone Service.

Regional networks edit

In addition to the five NSF supercomputer centers (which operated regional networks, e.g., SDSCnet[22] and NCSAnet[23]), NSFNET provided connectivity to eleven regional networks and through these networks to many smaller regional and campus networks. The NSFNET regional networks were:[11][24]

  • BARRNet, the Bay Area Regional Research Network in Palo Alto, California;
  • CERFnet, California Education and Research Federation Network in San Diego, California, serving California and Nevada;
  • CICNet, the Committee on Institutional Cooperation Network via the Merit Network in Ann Arbor, Michigan and later as part of the T-3 upgrade via Argonne National Laboratory outside of Chicago, serving the Big Ten Universities and the University of Chicago in Illinois, Indiana, Iowa, Michigan, Minnesota, Ohio, and Wisconsin;
  • JVNCNet, the John von Neumann National Supercomputer Center Network in Princeton, New Jersey, connected the universities that made up the Consortium for Scientific Computing as well as a few New Jersey Universities. There were 1.5 Mbit/s (T-1) links to Princeton University, Rutgers University, Massachusetts Institute of Technology, Harvard University, Brown University, University of Pennsylvania, University of Pittsburgh, Yale University, The Institute for Advanced Study, Pennsylvania State University, Rochester Institute of Technology, New York University, The University of Colorado and The University of Arizona.[25]
  • Merit/MichNet in Ann Arbor, Michigan serving Michigan, formed in 1966, still in operation as of 2013;[26]
  • MIDnet in Lincoln, Nebraska the first NSFNET regional backbone to become operational in the Summer of 1986, serving Arkansas, Iowa, Kansas, Missouri, Nebraska, Oklahoma, and South Dakota, later acquired by Global Internet, which was acquired by Verio, Inc.;
  • NEARNET, the New England Academic and Research Network in Cambridge, Massachusetts, added as part of the upgrade to T-3, serving Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont, established in late 1988, operated by BBN under contract to MIT, BBN assumed responsibility for NEARNET on 1 July 1993;[27]
  • NorthWestNet in Seattle, Washington, serving Alaska, Idaho, Montana, North Dakota, Oregon, and Washington, founded in 1987;[28]
  • NYSERNet, New York State Education and Research Network in Ithaca, New York;
  • SESQUINET, the Sesquicentennial Network in Houston, Texas, founded during the 150th anniversary of the State of Texas;
  • SURAnet, the Southeastern Universities Research Association network in College Park, Maryland and later as part of the T-3 upgrade in Atlanta, Georgia serving Alabama, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, North Carolina, South Carolina, Tennessee, Virginia, and West Virginia, sold to BBN in 1994; and
  • Westnet in Salt Lake City, Utah and Boulder, Colorado, serving Arizona, Colorado, New Mexico, Utah, and Wyoming.

Commercial traffic edit

The NSF's appropriations act authorized NSF to "foster and support the development and use of computer and other scientific and engineering methods and technologies, primarily for research and education in the sciences and engineering." This allowed NSF to support NSFNET and related networking initiatives, but only to the extent that that support was "primarily for research and education in the sciences and engineering."[29] And this in turn was taken to mean that use of NSFNET for commercial purposes was not allowed.

Acceptable use policy edit

To ensure that NSF support was used appropriately, NSF developed the NSFNET Acceptable Use Policy (AUP) that outlined in broad terms the uses of NSFNET that were and were not allowed.[30] The AUP was revised several times to make it clearer and to allow the broadest possible use of NSFNET, consistent with Congress' wishes as expressed in the appropriations act.

A notable feature of the AUP is that it cites acceptable uses of the network that are not directly related to who or what type of organization is making that use. Use from for-profit organizations is acceptable when it is in support of open research and education. And some uses such as fundraising, advertising, public relations activities, extensive personal or private use, for-profit consulting, and all illegal activities are never acceptable, even when that use is by a non-profit college, university, K-12 school, or library. And while these AUP provisions seem quite reasonable, in specific cases they often proved difficult to interpret and enforce. NSF did not monitor the content of traffic that was sent over NSFNET or actively police the use of the network. And it did not require Merit or the regional networks to do so. NSF, Merit, and the regional networks did investigate possible cases of inappropriate use, when such use was brought to their attention.[31]

An example may help to illustrate the problem. Is it acceptable for a parent to exchange e-mail with a child enrolled at a college or university, if that exchange uses the NSFNET backbone? It would be acceptable, if the subject of the e-mail was the student's instruction or a research project. Even if the subject was not instruction or research, the e-mail still might be acceptable as private or personal business as long as the use was not extensive.[32]

The prohibition on commercial use of the NSFNET backbone[33] meant that some organizations could not connect to the Internet via regional networks that were connected to the NSFNET backbone, while to be fully connected other organizations (or regional networks on their behalf), including some non-profit research and educational institutions, would need to obtain two connections, one to an NSFNET attached regional network and one to a non-NSFNET attached network provider. In either case the situation was confusing and inefficient. It prevented economies of scale, increased costs, or both. And this slowed the growth of the Internet and its adoption by new classes of users, something no one was happy about.

In 1988, Vint Cerf, then at the Corporation for National Research Initiatives (CNRI), proposed to the Federal Networking Council (FNC) and to MCI to interconnect the commercial MCI Mail system to NSFNET. MCI provided funding and FNC provided permission and in the summer of 1989, this linkage was made. In effect, the FNC permitted experimental use of the NSFNET backbone to carry commercial email traffic into and out of the NSFNET. Other email providers such as Telenet's Telemail, Tymnet's OnTyme and CompuServe also obtained permission to establish experimental gateways for the same purpose at about the same time. The interesting side effect of these links to NSFNET was that the users of the heretofore disconnected commercial email services were able to exchange email with one another via the Internet. Coincidentally, three commercial Internet service providers emerged in the same general time period: AlterNet (built by UUNET), PSINet and CERFnet.

Commercial ISPs, ANS CO+RE, and the CIX edit

During the period when NSFNET was being established, Internet service providers that allowed commercial traffic began to emerge, such as Alternet, PSINet, CERFNet, and others. The commercial networks in many cases were interconnected to the NSFNET and routed traffic over the NSFNET nominally accordingly to the NSFNET acceptable use policy[34] Additionally, these early commercial networks often directly interconnected with each other as well as, on a limited basis, with some of the regional Internet networks.

In 1991, the Commercial Internet eXchange (CIX, pronounced "kicks") was created by PSINet, UUNET and CERFnet to provide a location at which multiple networks could exchange traffic free from traffic-based settlements and restrictions imposed by an acceptable use policy.[35]

In 1991, a new ISP, ANS CO+RE (commercial plus research), raised concerns and unique questions regarding commercial and non-commercial interoperability policies. ANS CO+RE was the for-profit subsidiary of the non-profit Advanced Network and Services (ANS) that had been created earlier by the NSFNET partners, Merit, IBM, and MCI.[36] ANS CO+RE was created specifically to allow commercial traffic on ANSNet without jeopardizing its parent's non-profit status or violating any tax laws. The NSFNET Backbone Service and ANS CO+RE both used and shared the common ANSNet infrastructure. NSF agreed to allow ANS CO+RE to carry commercial traffic subject to several conditions:

  • that the NSFNET Backbone Service was not diminished;
  • that ANS CO+RE recovered at least the average cost of the commercial traffic traversing the network; and
  • that any excess revenues recovered above the cost of carrying the commercial traffic would be placed into an infrastructure pool to be distributed by an allocation committee broadly representative of the networking community to enhance and extend national and regional networking infrastructure and support.

For a time ANS CO+RE refused to connect to the CIX and the CIX refused to purchase a connection to ANS CO+RE. In May 1992 Mitch Kapor and Al Weis forged an agreement where ANS would connect to the CIX as a "trial" with the ability to disconnect at a moment's notice and without the need to join the CIX as a member.[37] This compromise resolved things for a time, but later the CIX started to block access from regional networks that had not paid the $10,000 fee to become members of the CIX.[38]

Meanwhile, Congress passed its Scientific and Advanced-Technology Act of 1992 [39] that formally permitted NSF to connect to commercial networks in support of research and education.

An unfortunate state of affairs edit

The creation of ANS CO+RE and its initial refusal to connect to the CIX was one of the factors that lead to the controversy described later in this article.[40] Other issues had to do with:

  • differences in the cultures of the non-profit research and education community and the for-profit community with ANS trying to be a member of both camps and not being fully accepted by either;
  • differences of opinion about the best approach to take to open the Internet to commercial use and to maintain and encourage a fully interconnected Internet; and
  • differences of opinion about the correct type and level of involvement in Internet networking initiatives by the public and the private sectors.

For a time this state of affairs kept the networking community as a whole from fully implementing the vision for the Internet as a worldwide network of fully interconnected TCP/IP networks allowing any connected site to communicate with any other connected site. These issues would not be fully resolved until a new network architecture was developed and the NSFNET Backbone Service was turned off in 1995.[11]

Privatization and a new network architecture edit

The NSFNET Backbone Service was primarily used by academic and educational entities, and was a transitional network bridging the era of the ARPANET and CSNET into the modern Internet of today. With its success, the "federally-funded backbone" model gave way to a vision of commercially operated networks operating together to which the users purchased access.[41]

 
New network architecture, c. 1995

On April 30, 1995, the NSFNET Backbone Service had been successfully transitioned to a new architecture[42] and the NSFNET fiber optic backbone was decommissioned.[43] At this point the NSFNET regional backbone networks were still central to the infrastructure of the expanding Internet, and there were still other NSFNET programs, but there was no longer a central NSFNET optical networking service.

After the transition, network traffic was carried on the NSFNET fiber optic regional backbone networks and any of several commercial backbone networks, internetMCI, PSINet, SprintLink, ANSNet, and others. Traffic between networks was exchanged at four Network Access Points or NAPs. Competitively established, and initially funded by NSF, the NAPs were located in New York (actually New Jersey), Washington, D.C., Chicago, and San Jose and run by Sprint, MFS Datanet, Ameritech, and Pacific Bell.[44] The NAPs were the forerunners of modern Internet exchange points.

The NSFNET regional backbone networks could connect to any of their newer peer commercial backbone networks or directly to the NAPs, but in either case they would need to pay for their own connection infrastructure. NSF provided some funding for the NAPs and interim funding to help the regional networks make the transition, but did not fund the new commercial backbone networks directly.

To help ensure the stability of the Internet during and immediately after the transition from NSFNET, NSF conducted a solicitation to select a Routing Arbiter (RA) and ultimately made a joint award to the Merit Network and USC's Information Science Institute to act as the RA.

To continue its promotion of advanced networking technology the NSF conducted a solicitation to create a very high-speed Backbone Network Service (vBNS) which, like NSFNET before it, would focus on providing service to the research and education community. MCI won this award and created a 155 Mbit/s (OC3c) and later a 622 Mbit/s (OC12c) and 2.5 Gbit/s (OC48c) ATM network to carry TCP/IP traffic primarily between the supercomputing centers and their users. NSF support[45] was available to organizations that could demonstrate a need for very high speed networking capabilities and wished to connect to the vBNS or to the Abilene Network, the high speed network operated by the University Corporation for Advanced Internet Development (UCAID, aka Internet2).[46]

At the February 1994 regional techs meeting in San Diego, the group revised its charter[47] to include a broader base of network service providers, and subsequently adopted North American Network Operators' Group (NANOG) as its new name. Elise Gerich and Mark Knopper were the founders of NANOG and its first coordinators, followed by Bill Norton, Craig Labovitz, and Susan Harris.[48]

Controversy edit

For much of the period from 1987 to 1995, following the opening up of the Internet through NSFNET and in particular after the creation of the for-profit ANS CO+RE in May 1991, some Internet stakeholders[49] were concerned over the effects of privatization and the manner in which ANS, IBM, and MCI received a perceived competitive advantage in leveraging federal research money to gain ground in fields in which other companies allegedly were more competitive. The Cook Report on the Internet,[50] which still exists, evolved as one of its largest critics. Other writers, such as Chetly Zarko, a University of Michigan alumnus and freelance investigative writer, offered their own critiques.[51]

On March 12, 1992 the Subcommittee on Science of the Committee on Science, Space, and Technology, U.S. House of Representatives, held a hearing to review the management of NSFNET.[31] Witnesses at the hearing were asked to focus on the agreement(s) that NSF put in place for the operation of the NSFNET backbone, the foundation's plan for recompetition of those agreements, and to help the subcommittee explore whether the NSF's policies provided a level playing field for network service providers, ensured that the network was responsive to user needs, and provided for effective network management. The subcommittee heard from seven witnesses, asked them a number of questions, and received written statements from all seven as well as from three others. At the end of the hearing, speaking to the two witnesses from NSF, Dr. Nico Habermann, Assistant NSF Director for the Computer and Information Science and Engineering Directorate (CISE), and Dr. Stephen Wolff, Director of NSF's Division of Networking & Communications Research & Infrastructure (DNCRI), Representative Boucher, Chairman of the subcommittee, said:

… I think you should be very proud of what you have accomplished. Even those who have some constructive criticism of the way that the network is presently managed acknowledge at the outset that you have done a terrific job in accomplishing the goal of this NSFNET, and its user-ship is enormously up, its cost to the users has come down, and you certainly have our congratulations for that excellent success.

Subsequently, the subcommittee drafted legislation, becoming law on October 23, 1992, which authorized the National Science Foundation

… to foster and support access by the research and education communities to computer networks which may be used substantially for purposes in addition to research and education in the sciences and engineering, if the additional uses will tend to increase the overall capabilities of the networks to support such research and education activities (that is to say, commercial traffic).[52]

This legislation allowed, but did not require, NSF to repeal or modify its existing NSFNET Acceptable Use Policy (AUP)[30] which restricted network use to activities in support of research and education.[33]

The hearing also led to a request from Rep. Boucher asking the NSF Inspector General to conduct a review of NSF's administration of NSFNET. The NSF Office of the Inspector General released its report on March 23, 1993.[36] The report concluded by:

  • stating that "[i]n general we were favorably impressed with the NSFNET program and staff";
  • finding no serious problems with the administration, management, and use of the NSFNET Backbone Service;
  • complimenting the NSFNET partners, saying that "the exchange of views among NSF, the NSFNET provider (Merit/ANS), and the users of NSFNET [via a bulletin board system], is truly remarkable in a program of the federal government"; and
  • making 17 "recommendations to correct certain deficiencies and strengthen the upcoming re-solicitation."

See also edit

References edit

  1. ^ NSFNET: The Partnership That Changed The World, Web site for an event held to celebrate the NSFNET, November 2007
  2. ^ Schuster, Jenna (June 10, 2016). . Archived from the original on 2019-04-28. Retrieved January 15, 2020.
  3. ^ The Internet – changing the way we communicate 2008-09-07 at the Wayback Machine, the National Science Foundation's Internet history
  4. ^ The Merit Network, Inc. is an independent non-profit 501(c)(3) corporation governed by Michigan's public universities. Merit receives administrative services under an agreement with the University of Michigan.
  5. ^ "Re: [IFWP] Re: [ga] Essay on ICANN". Mail-archive.com. 1999-07-24. Retrieved 2013-06-15.
  6. ^ RFC 1118: The Hitchhikers Guide to the Internet, E. Krol, September 1989
  7. ^ NSF 87-37: Project Solicitation for Management and Operation of the NSFNET Backbone Network, June 15, 1987.
  8. ^ Claffy, Kimberly C.; Braun, Hans-Werner; Polyzos, George C. (August 1994). "Tracking long-term growth of the NSFNET". Communications of the ACM. 37 (8): 34–45. CiteSeerX 10.1.1.30.937. doi:10.1145/179606.179616. S2CID 3013869.
  9. ^ InterNIC Review Paper 2011-07-19 at the Wayback Machine
  10. ^ NSFNET – National Science Foundation Network in the history section of the Living Internet
  11. ^ a b c "Retiring the NSFNET Backbone Service: Chronicling the End of an Era", Susan R. Harris and Elise Gerich, ConneXions, Vol. 10, No. 4, April 1996
  12. ^ "The path to digital literacy and network culture in France (1980s to 1990s)". The Routledge Companion to Global Internet Histories. Taylor & Francis. 2017. pp. 84–89. ISBN 978-1317607656.
  13. ^ Andrianarisoa, Menjanirina (2 March 2012). "A brief history of the internet".
  14. ^ Lehtisalo, Kaarina (2005). The history of NORDUnet: twenty-five years of networking cooperation in the noridic countries (PDF). NORDUnet. ISBN 978-87-990712-0-3. (PDF) from the original on 2006-05-17.
  15. ^ "CWI History: details". CWI. Retrieved 2020-02-09.
  16. ^ Zakon, Robert (November 1997). RFC 2235. IETF. p. 8. doi:10.17487/RFC2235. Retrieved 2 Dec 2020.
  17. ^ Fluckiger, Francois (February 2000). "The European Researchers' Network" (PDF). La Recherche (328).
  18. ^ Profile: At Home's Milo Medin, Wired, January 20, 1999
  19. ^ "The Technology Timetable", Link Letter, Volume 7, No. 1 (July 1994), p.8, Merit/NSFNET Information Services, Merit Network, Ann Arbor
  20. ^ Link Letter, Volume 4, No. 3 (Sept/Oct 1991), p. 1, NSFNET Information Services, Merit Network, Inc., Ann Arbor
  21. ^ "coprorations using BGP for advertising prefixes in mid-1990s", e-mail to the NANOG list from Jessica Yu, 13 May 2011
  22. ^ Patella, Rick (1990). LaQuey, Tracy (ed.). The User's Directory of Computer Networks. Digital Press. pp. 303–305.
  23. ^ Catlett, Charlie (1990). LaQuey, Tracy (ed.). The User's Directory of Computer Networks. Digital Press. pp. 285–287.
  24. ^ "NSFNET: The Community", panel presentation slides, Doug Gale moderator, NSFNET: The Partnership That Changed The World, 29 November 2007
  25. ^ "The John von Neumann Computer Center: An Analysis", Al Brenner, Frontiers of Supercomputing II: A National Reassessment, Karyn R. Ames and Alan Brenner (eds.), University of California Press, 1994, pages 470-481. Retrieved 14 November 2013.
  26. ^ "Merit–Who, What, and Why, Part One: The Early Years, 1964-1983" 2013-04-23 at the Wayback Machine, Eric M. Aupperle, Merit Network, Inc., in Library Hi Tech, vol. 16, No. 1 (1998)
  27. ^ "BBN to operate NEARnet", MIT News, 14 July 1993
  28. ^ "About NorthWestNet", NorthWestNet User Services Internet Resource Guide, NorthWestNet Academic Computing Consortium, Inc., 24 March 1992 accessed 3 July 2012
  29. ^ March 16, 1992 memo from Mariam Leder, NSF Assistant General Counsel to Steven Wolff, Division Director, NSF DNCRI (included at page 128 of Management of NSFNET, a transcript of the March 12, 1992 hearing before the Subcommittee on Science of the Committee on Science, Space, and Technology, U.S. House of Representatives, One Hundred Second Congress, Second Session, Hon. Rick Boucher, subcommittee chairman, presiding)
  30. ^ a b c NSFNET Acceptable Use Policy (AUP), c. 1992
  31. ^ a b Management of NSFNET, a transcript of the March 12, 1992 hearing before the Subcommittee on Science of the Committee on Science, Space, and Technology, U.S. House of Representatives, One Hundred Second Congress, Second Session, Hon. Rick Boucher, subcommittee chairman, presiding
  32. ^ "… I would dearly love to be able to exchange electronic mail with my son in college in Minnesota, but I feel that is probably not acceptable …", Steve Wolff, NSF DNCRI Director, speaking as a witness during the March 12, 1992 Management of NSFNET Congressional Hearing (page 124)
  33. ^ a b Even after the appropriations act was amended in 1992 to give NSF more flexibility with regard to commercial traffic, NSF never felt that it could entirely do away with the AUP and its restrictions on commercial traffic, see the response to Recommendation 5 in NSF's response to the Inspector General's review (an April 19, 1993 memo from Frederick Bernthal, Acting Director, to Linda Sundro, Inspector General, that is included at the end of Review of NSFNET, Office of the Inspector General, National Science Foundation, 23 March 1993)
  34. ^ R. Adams UUNET/NSFNET interconnection email
  35. ^ The Commercial Internet eXchange Association Router Agreement, c. 2000
  36. ^ a b Review of NSFNET, Office of the Inspector General, National Science Foundation, 23 March 1993
  37. ^ "ANS CO+RE and CIX Agree to Interconnect" 2008-11-29 at the Wayback Machine, EFFector Online, Issue 2.10, June 9, 1992, Electronic Frontier Foundation, ISSN 1062-9424
  38. ^ A series of e-mail messages that talk about various aspects of the CIX as seen from MichNet, the regional network operated by Merit in the State of Michigan: 1June1992 2011-07-19 at the Wayback Machine, 29June1992 2011-07-19 at the Wayback Machine, 29Sep1992 2011-07-19 at the Wayback Machine, 4Jan1994 2011-07-19 at the Wayback Machine, 6Jan1994 2011-07-19 at the Wayback Machine, and 10Jan1994 2011-07-19 at the Wayback Machine
  39. ^ "Scientific and Advanced-Technology Act of 1992 (1992 - S. 1146)".
  40. ^ NSFNET: A Partnership for High-Speed Networking, Final Report 1987-1995, Karen D. Frazer, Merit Network. Retrieved 14 November 2013.
  41. ^ RFC 1167, V. Cerf, "Thoughts on the National Research and Education Network", July 1990. Retrieved 6 January 2014.
  42. ^ NSF Solicitation 93-52 2016-03-05 at the Wayback Machine - Network Access Point Manager, Routing Arbiter, Regional Network Providers, and Very High Speed Backbone Network Services Provider for NSFNET and the NREN(SM) Program, May 6, 1993
  43. ^ "Retiring the NSFNET Backbone Service: Chronicling the End of an Era" 2011-07-19 at the Wayback Machine, Susan R. Harris, Ph.D., and Elise Gerich, ConneXions, Vol. 10, No. 4, April 1996
  44. ^ E-mail regarding Network Access Points from Steve Wolff (NSF) to the com-priv list 2013-10-29 at the Wayback Machine, sent 13:51 EST 2 March 1994
  45. ^ NSF Program Solicitation 01-73: High Performance Network Connections for Science and Engineering Research (HPNC), Advanced Networking Infrastructure and Research Program, Directorate for Computer and Information Science and Engineering, National Science Foundation, February 16, 2001, 16 pp.
  46. ^ E-mail regarding the launch of Internet2's Abillene network 2011-07-19 at the Wayback Machine, Merit Joint Technical Staff, 25 February 1999
  47. ^ Original 1994 NANOG Charter 2011-02-07 at the Wayback Machine
  48. ^ NANOG FAQ
  49. ^ Performance Systems International (PSI), AlterNet, Commercial Internet Exchange Association (CIX), Electronic Frontier Foundation (EFF), Gordon Cook, among others, see Cyber Telecom's Web page on "Internet History :: NSFNET"
  50. ^ The Cook Report on the Internet
  51. ^ "A Critical Look at the University of Michigan's Role in the 1987 Merit Agreement", Chetly Zarko in The Cook Report on the Internet, January 1995, pp. 9-17
  52. ^ Scientific and Advanced-Technology Act of 1992 2016-07-05 at the Wayback Machine, Public Law No: 102-476, 43 U.S.C. 1862(g)

External links edit

  • The Internet - the Launch of NSFNET, National Science Foundation
  • , Karen D. Frazer, Merit Network, Inc., 1995
  • NSF and the Birth of the Internet, National Science Foundation, December 2007
  • NSFNET notes, summary, photos, reflections, and a video, from Hans-Werner Braun, Co-Principal Investigator for the NSFNET Project at Merit Network, and later, Research Scientist at the University of California, San Diego, and Adjunct Professor at San Diego State University
  • , Jay P. Kesan and Rajiv C. Shah, Washington University Law Review, Volume 79, Issue 1 (2001)
  • "The Rise of the Internet", one of IBM’s 100 Icons of Progress, by Stephen Grillo, February 11, 2011, highlights IBM's contribution to NSFNET as part of its celebration of IBM's centennial year
  • Merit Network: A history
  • NSFNET Link Letter Archive, April 1988 (Vol. 1 No. 1) to July 1994 (Vol. 7 No. 1), text only, a web and FTP site provided by the Finnish IT center for science
  • Reflection on NSFNet

national, science, foundation, network, nsfnet, program, coordinated, evolving, projects, sponsored, national, science, foundation, from, 1985, 1995, promote, advanced, research, education, networking, united, states, program, created, several, nationwide, bac. The National Science Foundation Network NSFNET was a program of coordinated evolving projects sponsored by the National Science Foundation NSF from 1985 to 1995 to promote advanced research and education networking in the United States 1 The program created several nationwide backbone computer networks in support of these initiatives Initially created to link researchers to the NSF funded supercomputing centers through further public funding and private industry partnerships it developed into a major part of the Internet backbone National Science Foundation NetworkNSFNET logoTypeDataLocationUSAProtocolsTCP IP and OSIOperatorMerit Network with IBM MCI the State of Michigan and later ANSEstablished1985 39 years ago 1985 Current statusDecommissioned April 30 1995 superseded by the commercial InternetCommercial NoFundingNational Science FoundationWebsiteNSFNET historyThe National Science Foundation permitted only government agencies and universities to use the network until 1989 when the first commercial Internet service provider emerged By 1991 the NSF removed access restrictions and the commercial ISP business grew rapidly 2 Contents 1 History 1 1 56 kbit s backbone 1 2 1 5 Mbit s T 1 backbone 1 3 45 Mbit s T 3 backbone 2 Regional networks 3 Commercial traffic 3 1 Acceptable use policy 3 2 Commercial ISPs ANS CO RE and the CIX 3 3 An unfortunate state of affairs 4 Privatization and a new network architecture 5 Controversy 6 See also 7 References 8 External linksHistory editFollowing the deployment of the Computer Science Network CSNET a network that provided Internet services to academic computer science departments in 1981 the U S National Science Foundation NSF aimed to create an academic research network facilitating access by researchers to the supercomputing centers funded by NSF in the United States 3 In 1985 NSF began funding the creation of five new supercomputing centers John von Neumann Center at Princeton University Cornell Theory Center at Cornell University Pittsburgh Supercomputing Center PSC a joint effort of Carnegie Mellon University the University of Pittsburgh and Westinghouse National Center for Supercomputing Applications NCSA at the University of Illinois at Urbana Champaign San Diego Supercomputer Center SDSC on the campus of the University of California San Diego UCSD nbsp NSF s three tiered network architectureAlso in 1985 under the leadership of Dennis Jennings the NSF established the National Science Foundation Network NSFNET NSFNET was to be a general purpose research network a hub to connect the five supercomputing centers along with the NSF funded National Center for Atmospheric Research NCAR to each other and to the regional research and education networks that would in turn connect campus networks Using this three tier network architecture NSFNET would provide access between the supercomputer centers and other sites over the backbone network at no cost to the centers or to the regional networks using the open TCP IP protocols initially deployed successfully on the ARPANET 56 kbit s backbone edit nbsp 56K NSFNET Backbone c 1988 nbsp T1 NSFNET Backbone c 1991 nbsp T3 NSFNET Backbone c 1992 nbsp NSFNET Traffic 1991 NSFNET backbone nodes are shown at the top regional networks below traffic volume is depicted from purple zero bytes to white 100 billion bytes visualization by NCSA using traffic data provided by the Merit Network The NSFNET initiated operations in 1986 using TCP IP Its six backbone sites were interconnected with leased 56 kbit s links built by a group including the University of Illinois National Center for Supercomputing Applications NCSA Cornell University Theory Center University of Delaware and Merit Network PDP 11 73 minicomputers with routing and management software called Fuzzballs served as the network routers since they already implemented the TCP IP standard This original 56 kbit s backbone was overseen by the supercomputer centers themselves with the lead taken by Ed Krol at the University of Illinois at Urbana Champaign PDP 11 73 Fuzzball routers were configured and run by Hans Werner Braun at the Merit Network 4 and statistics were collected by Cornell University Support for NSFNET end users was provided by the NSF Network Service Center NNSC located at BBN Technologies and included publishing the softbound Internet Manager s Phonebook which listed the contact information for every issued domain name and IP address in 1990 5 Incidentally Ed Krol also authored the Hitchhiker s Guide to the Internet to help users of the NSFNET understand its capabilities 6 The Hitchhiker s Guide became one of the first help manuals for the Internet As regional networks grew the 56 kbit s NSFNET backbone experienced rapid increases in network traffic and became seriously congested In June 1987 NSF issued a new solicitation to upgrade and expand NSFNET 7 1 5 Mbit s T 1 backbone edit As a result of a November 1987 NSF award to the Merit Network a networking consortium by public universities in Michigan the original 56 kbit s network was expanded to include 13 nodes interconnected at 1 5 Mbit s T 1 by July 1988 Additional links were added to form a multi path network and a node located in Atlanta was added Each of the backbone nodes was a router called the Nodal Switching System NSS The NSSes were a collection of multiple typically nine IBM RT PC systems connected by a Token Ring local area network The RT PCs ran AOS IBM s version of Berkeley UNIX and was dedicated to a particular packet processing task 8 Under its cooperative agreement with NSF the Merit Network was the lead organization in a partnership that included IBM MCI and the State of Michigan Merit provided overall project coordination network design and engineering a Network Operations Center NOC and information services to assist the regional networks IBM provided equipment software development installation maintenance and operations support MCI provided the T 1 data circuits at reduced rates The state of Michigan provided funding for facilities and personnel Eric M Aupperle Merit s President was the NSFNET Project Director and Hans Werner Braun was Co Principal Investigator From 1987 to 1994 Merit organized a series of Regional Techs meetings where technical staff from the regional networks met to discuss operational issues of common concern with each other and the Merit engineering staff During this period but separate from its support for the NSFNET backbone NSF funded the NSF Connections Program that helped colleges and universities obtain or upgrade connections to regional networks regional networks to obtain or upgrade equipment and data communications circuits the NNSC and successor Network Information Services Manager aka InterNIC information help desks 9 the International Connections Manager ICM a task performed by Sprint that encouraged connections between the NSFNET backbone and international research and education networks and various ad hoc grants to organizations such as the Federation of American Research Networks FARNET The NSFNET became the principal Internet backbone starting in the Summer of 1986 when MIDnet the first NSFNET regional backbone network became operational By 1988 in addition to the five NSF supercomputer centers NSFNET included connectivity to the regional networks BARRNet JVNCNet Merit MichNet MIDnet NCAR NorthWestNet NYSERNet SESQUINET SURAnet and Westnet which in turn connected about 170 additional networks to the NSFNET 10 Three new nodes were added as part of the upgrade to T 3 NEARNET in Cambridge Massachusetts Argone National Laboratory outside of Chicago and SURAnet in Atlanta Georgia 11 NSFNET connected to other federal government networks including the NASA Science Internet the Energy Science Network ESnet and others Connections were also established to research and education networks in other countries starting in 1988 with Canada France 12 13 NORDUnet serving Denmark Finland Iceland Norway and Sweden 14 the Netherlands 15 and many other countries in subsequent years 16 17 Two Federal Internet Exchanges FIXes were established in June 1989 18 under the auspices of the Federal Engineering Planning Group FEPG FIX East at the University of Maryland in College Park and FIX West at the NASA Ames Research Center in Mountain View California The existence of NSFNET and the FIXes allowed the ARPANET to be phased out in mid 1990 19 Starting in August 1990 the NSFNET backbone supported the OSI Connectionless Network Protocol CLNP in addition to TCP IP 20 However CLNP usage remained low when compared to TCP IP Traffic on the network continued its rapid growth doubling every seven months Projections indicated that the T 1 backbone would become overloaded sometime in 1990 A critical routing technology Border Gateway Protocol BGP originated during this period of Internet history BGP allowed routers on the NSFNET backbone to differentiate routes originally learned via multiple paths Prior to BGP interconnection between IP network was inherently hierarchical and careful planning was needed to avoid routing loops 21 BGP turned the Internet into a meshed topology moving away from the centric architecture which the ARPANET emphasized 45 Mbit s T 3 backbone edit nbsp Packet Traffic on the NSFNET Backbone January 1988 to June 1994During 1991 an upgraded backbone built with 45 Mbit s T 3 transmission circuits was deployed to interconnect 16 nodes The routers on the upgraded backbone were IBM RS 6000 servers running AIX UNIX Core nodes were located at MCI facilities with end nodes at the connected regional networks and supercomputing centers Completed in November 1991 the transition from T 1 to T 3 did not go as smoothly as the previous transition from 56 kbit s DDS to 1 5 mbit s T 1 as it took longer than planned As a result there was at times serious congestion on the overloaded T 1 backbone Following the transition to T 3 portions of the T 1 backbone were left in place to act as a backup for the new T 3 backbone In anticipation of the T 3 upgrade and the approaching end of the 5 year NSFNET cooperative agreement in September 1990 Merit IBM and MCI formed Advanced Network and Services ANS a new non profit corporation with a more broadly based Board of Directors than the Michigan based Merit Network Under its cooperative agreement with NSF Merit remained ultimately responsible for the operation of NSFNET but subcontracted much of the engineering and operations work to ANS Both IBM and MCI made substantial new financial and other commitments to help support the new venture Allan Weis left IBM to become ANS s first President and Managing Director Douglas Van Houweling former Chair of the Merit Network Board and Vice Provost for Information Technology at the University of Michigan was Chairman of the ANS Board of Directors The new T 3 backbone was named ANSNet and provided the physical infrastructure used by Merit to deliver the NSFNET Backbone Service Regional networks editThis section needs expansion with more detailed descriptions of the regional networks the regions and organizations they served and what happened to them You can help by adding to it September 2011 In addition to the five NSF supercomputer centers which operated regional networks e g SDSCnet 22 and NCSAnet 23 NSFNET provided connectivity to eleven regional networks and through these networks to many smaller regional and campus networks The NSFNET regional networks were 11 24 BARRNet the Bay Area Regional Research Network in Palo Alto California CERFnet California Education and Research Federation Network in San Diego California serving California and Nevada CICNet the Committee on Institutional Cooperation Network via the Merit Network in Ann Arbor Michigan and later as part of the T 3 upgrade via Argonne National Laboratory outside of Chicago serving the Big Ten Universities and the University of Chicago in Illinois Indiana Iowa Michigan Minnesota Ohio and Wisconsin JVNCNet the John von Neumann National Supercomputer Center Network in Princeton New Jersey connected the universities that made up the Consortium for Scientific Computing as well as a few New Jersey Universities There were 1 5 Mbit s T 1 links to Princeton University Rutgers University Massachusetts Institute of Technology Harvard University Brown University University of Pennsylvania University of Pittsburgh Yale University The Institute for Advanced Study Pennsylvania State University Rochester Institute of Technology New York University The University of Colorado and The University of Arizona 25 Merit MichNet in Ann Arbor Michigan serving Michigan formed in 1966 still in operation as of 2013 26 MIDnet in Lincoln Nebraska the first NSFNET regional backbone to become operational in the Summer of 1986 serving Arkansas Iowa Kansas Missouri Nebraska Oklahoma and South Dakota later acquired by Global Internet which was acquired by Verio Inc NEARNET the New England Academic and Research Network in Cambridge Massachusetts added as part of the upgrade to T 3 serving Connecticut Maine Massachusetts New Hampshire Rhode Island and Vermont established in late 1988 operated by BBN under contract to MIT BBN assumed responsibility for NEARNET on 1 July 1993 27 NorthWestNet in Seattle Washington serving Alaska Idaho Montana North Dakota Oregon and Washington founded in 1987 28 NYSERNet New York State Education and Research Network in Ithaca New York SESQUINET the Sesquicentennial Network in Houston Texas founded during the 150th anniversary of the State of Texas SURAnet the Southeastern Universities Research Association network in College Park Maryland and later as part of the T 3 upgrade in Atlanta Georgia serving Alabama Florida Georgia Kentucky Louisiana Maryland Mississippi North Carolina South Carolina Tennessee Virginia and West Virginia sold to BBN in 1994 and Westnet in Salt Lake City Utah and Boulder Colorado serving Arizona Colorado New Mexico Utah and Wyoming Commercial traffic editThe NSF s appropriations act authorized NSF to foster and support the development and use of computer and other scientific and engineering methods and technologies primarily for research and education in the sciences and engineering This allowed NSF to support NSFNET and related networking initiatives but only to the extent that that support was primarily for research and education in the sciences and engineering 29 And this in turn was taken to mean that use of NSFNET for commercial purposes was not allowed Acceptable use policy edit To ensure that NSF support was used appropriately NSF developed the NSFNET Acceptable Use Policy AUP that outlined in broad terms the uses of NSFNET that were and were not allowed 30 The AUP was revised several times to make it clearer and to allow the broadest possible use of NSFNET consistent with Congress wishes as expressed in the appropriations act A notable feature of the AUP is that it cites acceptable uses of the network that are not directly related to who or what type of organization is making that use Use from for profit organizations is acceptable when it is in support of open research and education And some uses such as fundraising advertising public relations activities extensive personal or private use for profit consulting and all illegal activities are never acceptable even when that use is by a non profit college university K 12 school or library And while these AUP provisions seem quite reasonable in specific cases they often proved difficult to interpret and enforce NSF did not monitor the content of traffic that was sent over NSFNET or actively police the use of the network And it did not require Merit or the regional networks to do so NSF Merit and the regional networks did investigate possible cases of inappropriate use when such use was brought to their attention 31 An example may help to illustrate the problem Is it acceptable for a parent to exchange e mail with a child enrolled at a college or university if that exchange uses the NSFNET backbone It would be acceptable if the subject of the e mail was the student s instruction or a research project Even if the subject was not instruction or research the e mail still might be acceptable as private or personal business as long as the use was not extensive 32 The prohibition on commercial use of the NSFNET backbone 33 meant that some organizations could not connect to the Internet via regional networks that were connected to the NSFNET backbone while to be fully connected other organizations or regional networks on their behalf including some non profit research and educational institutions would need to obtain two connections one to an NSFNET attached regional network and one to a non NSFNET attached network provider In either case the situation was confusing and inefficient It prevented economies of scale increased costs or both And this slowed the growth of the Internet and its adoption by new classes of users something no one was happy about In 1988 Vint Cerf then at the Corporation for National Research Initiatives CNRI proposed to the Federal Networking Council FNC and to MCI to interconnect the commercial MCI Mail system to NSFNET MCI provided funding and FNC provided permission and in the summer of 1989 this linkage was made In effect the FNC permitted experimental use of the NSFNET backbone to carry commercial email traffic into and out of the NSFNET Other email providers such as Telenet s Telemail Tymnet s OnTyme and CompuServe also obtained permission to establish experimental gateways for the same purpose at about the same time The interesting side effect of these links to NSFNET was that the users of the heretofore disconnected commercial email services were able to exchange email with one another via the Internet Coincidentally three commercial Internet service providers emerged in the same general time period AlterNet built by UUNET PSINet and CERFnet Commercial ISPs ANS CO RE and the CIX edit During the period when NSFNET was being established Internet service providers that allowed commercial traffic began to emerge such as Alternet PSINet CERFNet and others The commercial networks in many cases were interconnected to the NSFNET and routed traffic over the NSFNET nominally accordingly to the NSFNET acceptable use policy 34 Additionally these early commercial networks often directly interconnected with each other as well as on a limited basis with some of the regional Internet networks In 1991 the Commercial Internet eXchange CIX pronounced kicks was created by PSINet UUNET and CERFnet to provide a location at which multiple networks could exchange traffic free from traffic based settlements and restrictions imposed by an acceptable use policy 35 In 1991 a new ISP ANS CO RE commercial plus research raised concerns and unique questions regarding commercial and non commercial interoperability policies ANS CO RE was the for profit subsidiary of the non profit Advanced Network and Services ANS that had been created earlier by the NSFNET partners Merit IBM and MCI 36 ANS CO RE was created specifically to allow commercial traffic on ANSNet without jeopardizing its parent s non profit status or violating any tax laws The NSFNET Backbone Service and ANS CO RE both used and shared the common ANSNet infrastructure NSF agreed to allow ANS CO RE to carry commercial traffic subject to several conditions that the NSFNET Backbone Service was not diminished that ANS CO RE recovered at least the average cost of the commercial traffic traversing the network and that any excess revenues recovered above the cost of carrying the commercial traffic would be placed into an infrastructure pool to be distributed by an allocation committee broadly representative of the networking community to enhance and extend national and regional networking infrastructure and support For a time ANS CO RE refused to connect to the CIX and the CIX refused to purchase a connection to ANS CO RE In May 1992 Mitch Kapor and Al Weis forged an agreement where ANS would connect to the CIX as a trial with the ability to disconnect at a moment s notice and without the need to join the CIX as a member 37 This compromise resolved things for a time but later the CIX started to block access from regional networks that had not paid the 10 000 fee to become members of the CIX 38 Meanwhile Congress passed its Scientific and Advanced Technology Act of 1992 39 that formally permitted NSF to connect to commercial networks in support of research and education An unfortunate state of affairs edit The creation of ANS CO RE and its initial refusal to connect to the CIX was one of the factors that lead to the controversy described later in this article 40 Other issues had to do with differences in the cultures of the non profit research and education community and the for profit community with ANS trying to be a member of both camps and not being fully accepted by either differences of opinion about the best approach to take to open the Internet to commercial use and to maintain and encourage a fully interconnected Internet and differences of opinion about the correct type and level of involvement in Internet networking initiatives by the public and the private sectors For a time this state of affairs kept the networking community as a whole from fully implementing the vision for the Internet as a worldwide network of fully interconnected TCP IP networks allowing any connected site to communicate with any other connected site These issues would not be fully resolved until a new network architecture was developed and the NSFNET Backbone Service was turned off in 1995 11 Privatization and a new network architecture editThe NSFNET Backbone Service was primarily used by academic and educational entities and was a transitional network bridging the era of the ARPANET and CSNET into the modern Internet of today With its success the federally funded backbone model gave way to a vision of commercially operated networks operating together to which the users purchased access 41 nbsp New network architecture c 1995On April 30 1995 the NSFNET Backbone Service had been successfully transitioned to a new architecture 42 and the NSFNET fiber optic backbone was decommissioned 43 At this point the NSFNET regional backbone networks were still central to the infrastructure of the expanding Internet and there were still other NSFNET programs but there was no longer a central NSFNET optical networking service After the transition network traffic was carried on the NSFNET fiber optic regional backbone networks and any of several commercial backbone networks internetMCI PSINet SprintLink ANSNet and others Traffic between networks was exchanged at four Network Access Points or NAPs Competitively established and initially funded by NSF the NAPs were located in New York actually New Jersey Washington D C Chicago and San Jose and run by Sprint MFS Datanet Ameritech and Pacific Bell 44 The NAPs were the forerunners of modern Internet exchange points The NSFNET regional backbone networks could connect to any of their newer peer commercial backbone networks or directly to the NAPs but in either case they would need to pay for their own connection infrastructure NSF provided some funding for the NAPs and interim funding to help the regional networks make the transition but did not fund the new commercial backbone networks directly To help ensure the stability of the Internet during and immediately after the transition from NSFNET NSF conducted a solicitation to select a Routing Arbiter RA and ultimately made a joint award to the Merit Network and USC s Information Science Institute to act as the RA To continue its promotion of advanced networking technology the NSF conducted a solicitation to create a very high speed Backbone Network Service vBNS which like NSFNET before it would focus on providing service to the research and education community MCI won this award and created a 155 Mbit s OC3c and later a 622 Mbit s OC12c and 2 5 Gbit s OC48c ATM network to carry TCP IP traffic primarily between the supercomputing centers and their users NSF support 45 was available to organizations that could demonstrate a need for very high speed networking capabilities and wished to connect to the vBNS or to the Abilene Network the high speed network operated by the University Corporation for Advanced Internet Development UCAID aka Internet2 46 At the February 1994 regional techs meeting in San Diego the group revised its charter 47 to include a broader base of network service providers and subsequently adopted North American Network Operators Group NANOG as its new name Elise Gerich and Mark Knopper were the founders of NANOG and its first coordinators followed by Bill Norton Craig Labovitz and Susan Harris 48 Controversy editFor much of the period from 1987 to 1995 following the opening up of the Internet through NSFNET and in particular after the creation of the for profit ANS CO RE in May 1991 some Internet stakeholders 49 were concerned over the effects of privatization and the manner in which ANS IBM and MCI received a perceived competitive advantage in leveraging federal research money to gain ground in fields in which other companies allegedly were more competitive The Cook Report on the Internet 50 which still exists evolved as one of its largest critics Other writers such as Chetly Zarko a University of Michigan alumnus and freelance investigative writer offered their own critiques 51 On March 12 1992 the Subcommittee on Science of the Committee on Science Space and Technology U S House of Representatives held a hearing to review the management of NSFNET 31 Witnesses at the hearing were asked to focus on the agreement s that NSF put in place for the operation of the NSFNET backbone the foundation s plan for recompetition of those agreements and to help the subcommittee explore whether the NSF s policies provided a level playing field for network service providers ensured that the network was responsive to user needs and provided for effective network management The subcommittee heard from seven witnesses asked them a number of questions and received written statements from all seven as well as from three others At the end of the hearing speaking to the two witnesses from NSF Dr Nico Habermann Assistant NSF Director for the Computer and Information Science and Engineering Directorate CISE and Dr Stephen Wolff Director of NSF s Division of Networking amp Communications Research amp Infrastructure DNCRI Representative Boucher Chairman of the subcommittee said I think you should be very proud of what you have accomplished Even those who have some constructive criticism of the way that the network is presently managed acknowledge at the outset that you have done a terrific job in accomplishing the goal of this NSFNET and its user ship is enormously up its cost to the users has come down and you certainly have our congratulations for that excellent success Subsequently the subcommittee drafted legislation becoming law on October 23 1992 which authorized the National Science Foundation to foster and support access by the research and education communities to computer networks which may be used substantially for purposes in addition to research and education in the sciences and engineering if the additional uses will tend to increase the overall capabilities of the networks to support such research and education activities that is to say commercial traffic 52 This legislation allowed but did not require NSF to repeal or modify its existing NSFNET Acceptable Use Policy AUP 30 which restricted network use to activities in support of research and education 33 The hearing also led to a request from Rep Boucher asking the NSF Inspector General to conduct a review of NSF s administration of NSFNET The NSF Office of the Inspector General released its report on March 23 1993 36 The report concluded by stating that i n general we were favorably impressed with the NSFNET program and staff finding no serious problems with the administration management and use of the NSFNET Backbone Service complimenting the NSFNET partners saying that the exchange of views among NSF the NSFNET provider Merit ANS and the users of NSFNET via a bulletin board system is truly remarkable in a program of the federal government and making 17 recommendations to correct certain deficiencies and strengthen the upcoming re solicitation See also editHistory of the InternetReferences edit NSFNET The Partnership That Changed The World Web site for an event held to celebrate the NSFNET November 2007 Schuster Jenna June 10 2016 A brief history of internet service providers Archived from the original on 2019 04 28 Retrieved January 15 2020 The Internet changing the way we communicate Archived 2008 09 07 at the Wayback Machine the National Science Foundation s Internet history The Merit Network Inc is an independent non profit 501 c 3 corporation governed by Michigan s public universities Merit receives administrative services under an agreement with the University of Michigan Re IFWP Re ga Essay on ICANN Mail archive com 1999 07 24 Retrieved 2013 06 15 RFC 1118 The Hitchhikers Guide to the Internet E Krol September 1989 NSF 87 37 Project Solicitation for Management and Operation of the NSFNET Backbone Network June 15 1987 Claffy Kimberly C Braun Hans Werner Polyzos George C August 1994 Tracking long term growth of the NSFNET Communications of the ACM 37 8 34 45 CiteSeerX 10 1 1 30 937 doi 10 1145 179606 179616 S2CID 3013869 InterNIC Review Paper Archived 2011 07 19 at the Wayback Machine NSFNET National Science Foundation Network in the history section of the Living Internet a b c Retiring the NSFNET Backbone Service Chronicling the End of an Era Susan R Harris and Elise Gerich ConneXions Vol 10 No 4 April 1996 The path to digital literacy and network culture in France 1980s to 1990s The Routledge Companion to Global Internet Histories Taylor amp Francis 2017 pp 84 89 ISBN 978 1317607656 Andrianarisoa Menjanirina 2 March 2012 A brief history of the internet Lehtisalo Kaarina 2005 The history of NORDUnet twenty five years of networking cooperation in the noridic countries PDF NORDUnet ISBN 978 87 990712 0 3 Archived PDF from the original on 2006 05 17 CWI History details CWI Retrieved 2020 02 09 Zakon Robert November 1997 RFC 2235 IETF p 8 doi 10 17487 RFC2235 Retrieved 2 Dec 2020 Fluckiger Francois February 2000 The European Researchers Network PDF La Recherche 328 Profile At Home s Milo Medin Wired January 20 1999 The Technology Timetable Link Letter Volume 7 No 1 July 1994 p 8 Merit NSFNET Information Services Merit Network Ann Arbor Link Letter Volume 4 No 3 Sept Oct 1991 p 1 NSFNET Information Services Merit Network Inc Ann Arbor coprorations using BGP for advertising prefixes in mid 1990s e mail to the NANOG list from Jessica Yu 13 May 2011 Patella Rick 1990 LaQuey Tracy ed The User s Directory of Computer Networks Digital Press pp 303 305 Catlett Charlie 1990 LaQuey Tracy ed The User s Directory of Computer Networks Digital Press pp 285 287 NSFNET The Community panel presentation slides Doug Gale moderator NSFNET The Partnership That Changed The World 29 November 2007 The John von Neumann Computer Center An Analysis Al Brenner Frontiers of Supercomputing II A National Reassessment Karyn R Ames and Alan Brenner eds University of California Press 1994 pages 470 481 Retrieved 14 November 2013 Merit Who What and Why Part One The Early Years 1964 1983 Archived 2013 04 23 at the Wayback Machine Eric M Aupperle Merit Network Inc in Library Hi Tech vol 16 No 1 1998 BBN to operate NEARnet MIT News 14 July 1993 About NorthWestNet NorthWestNet User Services Internet Resource Guide NorthWestNet Academic Computing Consortium Inc 24 March 1992 accessed 3 July 2012 March 16 1992 memo from Mariam Leder NSF Assistant General Counsel to Steven Wolff Division Director NSF DNCRI included at page 128 of Management of NSFNET a transcript of the March 12 1992 hearing before the Subcommittee on Science of the Committee on Science Space and Technology U S House of Representatives One Hundred Second Congress Second Session Hon Rick Boucher subcommittee chairman presiding a b c NSFNET Acceptable Use Policy AUP c 1992 a b Management of NSFNET a transcript of the March 12 1992 hearing before the Subcommittee on Science of the Committee on Science Space and Technology U S House of Representatives One Hundred Second Congress Second Session Hon Rick Boucher subcommittee chairman presiding I would dearly love to be able to exchange electronic mail with my son in college in Minnesota but I feel that is probably not acceptable Steve Wolff NSF DNCRI Director speaking as a witness during the March 12 1992 Management of NSFNET Congressional Hearing page 124 a b Even after the appropriations act was amended in 1992 to give NSF more flexibility with regard to commercial traffic NSF never felt that it could entirely do away with the AUP and its restrictions on commercial traffic see the response to Recommendation 5 in NSF s response to the Inspector General s review an April 19 1993 memo from Frederick Bernthal Acting Director to Linda Sundro Inspector General that is included at the end of Review of NSFNET Office of the Inspector General National Science Foundation 23 March 1993 R Adams UUNET NSFNET interconnection email The Commercial Internet eXchange Association Router Agreement c 2000 a b Review of NSFNET Office of the Inspector General National Science Foundation 23 March 1993 ANS CO RE and CIX Agree to Interconnect Archived 2008 11 29 at the Wayback Machine EFFector Online Issue 2 10 June 9 1992 Electronic Frontier Foundation ISSN 1062 9424 A series of e mail messages that talk about various aspects of the CIX as seen from MichNet the regional network operated by Merit in the State of Michigan 1June1992 Archived 2011 07 19 at the Wayback Machine 29June1992 Archived 2011 07 19 at the Wayback Machine 29Sep1992 Archived 2011 07 19 at the Wayback Machine 4Jan1994 Archived 2011 07 19 at the Wayback Machine 6Jan1994 Archived 2011 07 19 at the Wayback Machine and 10Jan1994 Archived 2011 07 19 at the Wayback Machine Scientific and Advanced Technology Act of 1992 1992 S 1146 NSFNET A Partnership for High Speed Networking Final Report 1987 1995 Karen D Frazer Merit Network Retrieved 14 November 2013 RFC 1167 V Cerf Thoughts on the National Research and Education Network July 1990 Retrieved 6 January 2014 NSF Solicitation 93 52 Archived 2016 03 05 at the Wayback Machine Network Access Point Manager Routing Arbiter Regional Network Providers and Very High Speed Backbone Network Services Provider for NSFNET and the NREN SM Program May 6 1993 Retiring the NSFNET Backbone Service Chronicling the End of an Era Archived 2011 07 19 at the Wayback Machine Susan R Harris Ph D and Elise Gerich ConneXions Vol 10 No 4 April 1996 E mail regarding Network Access Points from Steve Wolff NSF to the com priv list Archived 2013 10 29 at the Wayback Machine sent 13 51 EST 2 March 1994 NSF Program Solicitation 01 73 High Performance Network Connections for Science and Engineering Research HPNC Advanced Networking Infrastructure and Research Program Directorate for Computer and Information Science and Engineering National Science Foundation February 16 2001 16 pp E mail regarding the launch of Internet2 s Abillene network Archived 2011 07 19 at the Wayback Machine Merit Joint Technical Staff 25 February 1999 Original 1994 NANOG Charter Archived 2011 02 07 at the Wayback Machine NANOG FAQ Performance Systems International PSI AlterNet Commercial Internet Exchange Association CIX Electronic Frontier Foundation EFF Gordon Cook among others see Cyber Telecom s Web page on Internet History NSFNET The Cook Report on the Internet A Critical Look at the University of Michigan s Role in the 1987 Merit Agreement Chetly Zarko in The Cook Report on the Internet January 1995 pp 9 17 Scientific and Advanced Technology Act of 1992 Archived 2016 07 05 at the Wayback Machine Public Law No 102 476 43 U S C 1862 g External links edit nbsp Wikimedia Commons has media related to National Science Foundation Network The Internet the Launch of NSFNET National Science Foundation NSFNET A Partnership for High Speed Networking Final Report 1987 1995 Karen D Frazer Merit Network Inc 1995 NSF and the Birth of the Internet National Science Foundation December 2007 NSFNET notes summary photos reflections and a video from Hans Werner Braun Co Principal Investigator for the NSFNET Project at Merit Network and later Research Scientist at the University of California San Diego and Adjunct Professor at San Diego State University Fool Us Once Shame on You Fool Us Twice Shame on Us What We Can Learn from the Privatizations of the Internet Backbone Network and the Domain Name System Jay P Kesan and Rajiv C Shah Washington University Law Review Volume 79 Issue 1 2001 The Rise of the Internet one of IBM s 100 Icons of Progress by Stephen Grillo February 11 2011 highlights IBM s contribution to NSFNET as part of its celebration of IBM s centennial year Merit Network A history NSFNET Link Letter Archive April 1988 Vol 1 No 1 to July 1994 Vol 7 No 1 text only a web and FTP site provided by the Finnish IT center for science Full copies of volumes 4 7 1991 1994 are also available from the Hathi Trust Digital Library Reflection on NSFNet Retrieved from https en wikipedia org w index php title National Science Foundation Network amp oldid 1194862951, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.