fbpx
Wikipedia

Multiple zeta function

In mathematics, the multiple zeta functions are generalizations of the Riemann zeta function, defined by

and converge when Re(s1) + ... + Re(si) > i for all i. Like the Riemann zeta function, the multiple zeta functions can be analytically continued to be meromorphic functions (see, for example, Zhao (1999)). When s1, ..., sk are all positive integers (with s1 > 1) these sums are often called multiple zeta values (MZVs) or Euler sums. These values can also be regarded as special values of the multiple polylogarithms.[1][2]

The k in the above definition is named the "depth" of a MZV, and the n = s1 + ... + sk is known as the "weight".[3]

The standard shorthand for writing multiple zeta functions is to place repeating strings of the argument within braces and use a superscript to indicate the number of repetitions. For example,

Definition

Multiple zeta functions arise as special cases of the multiple polylogarithms

 

which are generalizations of the polylogarithm functions. When all of the   are nth roots of unity and the   are all nonnegative integers, the values of the multiple polylogarithm are called colored multiple zeta values of level  . In particular, when  , they are called Euler sums or alternating multiple zeta values, and when   they are simply called multiple zeta values. Multiple zeta values are often written

 

and Euler sums are written

 

where  . Sometimes, authors will write a bar over an   corresponding to an   equal to  , so for example

 .

Integral structure and identities

It was noticed by Kontsevich that it is possible to express colored multiple zeta values (and thus their special cases) as certain multivariable integrals. This result is often stated with the use of a convention for iterated integrals, wherein

 

Using this convention, the result can be stated as follows:[2]

  where   for  .

This result is extremely useful due to a well-known result regarding products of iterated integrals, namely that

  where   and   is the symmetric group on   symbols.

To utilize this in the context of multiple zeta values, define  ,   to be the free monoid generated by   and   to be the free  -vector space generated by  .   can be equipped with the shuffle product, turning it into an algebra. Then, the multiple zeta function can be viewed as an evaluation map, where we identify  ,  , and define

  for any  ,

which, by the aforementioned integral identity, makes

 

Then, the integral identity on products gives[2]

 

Two parameters case

In the particular case of only two parameters we have (with s > 1 and n, m integers):[4]

 
  where   are the generalized harmonic numbers.

Multiple zeta functions are known to satisfy what is known as MZV duality, the simplest case of which is the famous identity of Euler:

 

where Hn are the harmonic numbers.

Special values of double zeta functions, with s > 0 and even, t > 1 and odd, but s+t = 2N+1 (taking if necessary ζ(0) = 0):[4]

 
s t approximate value explicit formulae OEIS
2 2 0.811742425283353643637002772406   A197110
3 2 0.228810397603353759768746148942   A258983
4 2 0.088483382454368714294327839086   A258984
5 2 0.038575124342753255505925464373   A258985
6 2 0.017819740416835988 A258947
2 3 0.711566197550572432096973806086   A258986
3 3 0.213798868224592547099583574508   A258987
4 3 0.085159822534833651406806018872   A258988
5 3 0.037707672984847544011304782294   A258982
2 4 0.674523914033968140491560608257   A258989
3 4 0.207505014615732095907807605495   A258990
4 4 0.083673113016495361614890436542   A258991

Note that if   we have   irreducibles, i.e. these MZVs cannot be written as function of   only.[5]

Three parameters case

In the particular case of only three parameters we have (with a > 1 and n, j, i integers):

 

Euler reflection formula

The above MZVs satisfy the Euler reflection formula:

  for  

Using the shuffle relations, it is easy to prove that:[5]

  for  

This function can be seen as a generalization of the reflection formulas.

Symmetric sums in terms of the zeta function

Let  , and for a partition   of the set  , let  . Also, given such a   and a k-tuple   of exponents, define  .

The relations between the   and   are:   and  

Theorem 1 (Hoffman)

For any real  ,  .

Proof. Assume the   are all distinct. (There is no loss of generality, since we can take limits.) The left-hand side can be written as  . Now thinking on the symmetric

group   as acting on k-tuple   of positive integers. A given k-tuple   has an isotropy group

  and an associated partition   of  :   is the set of equivalence classes of the relation given by   iff  , and  . Now the term   occurs on the left-hand side of   exactly   times. It occurs on the right-hand side in those terms corresponding to partitions   that are refinements of  : letting   denote refinement,   occurs   times. Thus, the conclusion will follow if   for any k-tuple   and associated partition  . To see this, note that   counts the permutations having cycle type specified by  : since any elements of   has a unique cycle type specified by a partition that refines  , the result follows.[6]

For  , the theorem says   for  . This is the main result of.[7]

Having  . To state the analog of Theorem 1 for the  , we require one bit of notation. For a partition

  of  , let  .

Theorem 2 (Hoffman)

For any real  ,  .

Proof. We follow the same line of argument as in the preceding proof. The left-hand side is now  , and a term   occurs on the left-hand since once if all the   are distinct, and not at all otherwise. Thus, it suffices to show   (1)

To prove this, note first that the sign of   is positive if the permutations of cycle type   are even, and negative if they are odd: thus, the left-hand side of (1) is the signed sum of the number of even and odd permutations in the isotropy group  . But such an isotropy group has equal numbers of even and odd permutations unless it is trivial, i.e. unless the associated partition   is  .[6]

The sum and duality conjectures[6]

We first state the sum conjecture, which is due to C. Moen.[8]

Sum conjecture (Hoffman). For positive integers k and n,  , where the sum is extended over k-tuples   of positive integers with  .

Three remarks concerning this conjecture are in order. First, it implies  . Second, in the case   it says that  , or using the relation between the   and   and Theorem 1,  

This was proved by Euler[9] and has been rediscovered several times, in particular by Williams.[10] Finally, C. Moen[8] has proved the same conjecture for k=3 by lengthy but elementary arguments. For the duality conjecture, we first define an involution   on the set   of finite sequences of positive integers whose first element is greater than 1. Let   be the set of strictly increasing finite sequences of positive integers, and let   be the function that sends a sequence in   to its sequence of partial sums. If   is the set of sequences in   whose last element is at most  , we have two commuting involutions   and   on   defined by   and   = complement of   in   arranged in increasing order. The our definition of   is   for   with  .

For example,   We shall say the sequences   and   are dual to each other, and refer to a sequence fixed by   as self-dual.[6]

Duality conjecture (Hoffman). If   is dual to  , then  .

This sum conjecture is also known as Sum Theorem, and it may be expressed as follows: the Riemann zeta value of an integer n ≥ 2 is equal to the sum of all the valid (i.e. with s1 > 1) MZVs of the partitions of length k and weight n, with 1 ≤ k ≤ n − 1. In formula:[3]

 

For example with length k = 2 and weight n = 7:

 

Euler sum with all possible alternations of sign

The Euler sum with alternations of sign appears in studies of the non-alternating Euler sum.[5]

Notation

  with   are the generalized harmonic numbers.
  with  
 
  with  
  with  
 
 

As a variant of the Dirichlet eta function we define

  with  
 

Reflection formula

The reflection formula   can be generalized as follows:

 
 
 

if   we have  

Other relations

Using the series definition it is easy to prove:

  with  
  with  

A further useful relation is:[5]

 

where   and  

Note that   must be used for all value   for which the argument of the factorials is  

Other results

For all positive integers  :

  or more generally:
 
 
 
 
 
 
 
 
 

Mordell–Tornheim zeta values

The Mordell–Tornheim zeta function, introduced by Matsumoto (2003) who was motivated by the papers Mordell (1958) and Tornheim (1950), is defined by

 

It is a special case of the Shintani zeta function.

References

  • Tornheim, Leonard (1950). "Harmonic double series". American Journal of Mathematics. 72 (2): 303–314. doi:10.2307/2372034. ISSN 0002-9327. JSTOR 2372034. MR 0034860.
  • Mordell, Louis J. (1958). "On the evaluation of some multiple series". Journal of the London Mathematical Society. Second Series. 33 (3): 368–371. doi:10.1112/jlms/s1-33.3.368. ISSN 0024-6107. MR 0100181.
  • Apostol, Tom M.; Vu, Thiennu H. (1984), "Dirichlet series related to the Riemann zeta function", Journal of Number Theory, 19 (1): 85–102, doi:10.1016/0022-314X(84)90094-5, ISSN 0022-314X, MR 0751166
  • Crandall, Richard E.; Buhler, Joe P. (1994). "On the evaluation of Euler Sums". Experimental Mathematics. 3 (4): 275. doi:10.1080/10586458.1994.10504297. MR 1341720.
  • Borwein, Jonathan M.; Girgensohn, Roland (1996). "Evaluation of Triple Euler Sums". Electron. J. Comb. 3 (1): #R23. doi:10.37236/1247. MR 1401442.
  • Flajolet, Philippe; Salvy, Bruno (1998). "Euler Sums and contour integral representations". Exp. Math. 7: 15–35. CiteSeerX 10.1.1.37.652. doi:10.1080/10586458.1998.10504356.
  • Zhao, Jianqiang (1999). "Analytic continuation of multiple zeta functions". Proceedings of the American Mathematical Society. 128 (5): 1275–1283. doi:10.1090/S0002-9939-99-05398-8. MR 1670846.
  • Matsumoto, Kohji (2003), "On Mordell–Tornheim and other multiple zeta-functions", Proceedings of the Session in Analytic Number Theory and Diophantine Equations, Bonner Math. Schriften, vol. 360, Bonn: Univ. Bonn, MR 2075634
  • Espinosa, Olivier; Moll, Victor Hugo (2008). "The evaluation of Tornheim double sums". arXiv:math/0505647.
  • Espinosa, Olivier; Moll, Victor Hugo (2010). "The evaluation of Tornheim double sums II". Ramanujan J. 22: 55–99. arXiv:0811.0557. doi:10.1007/s11139-009-9181-1. MR 2610609. S2CID 17055581.
  • Borwein, J.M.; Chan, O-Y. (2010). "Duality in tails of multiple zeta values". Int. J. Number Theory. 6 (3): 501–514. CiteSeerX 10.1.1.157.9158. doi:10.1142/S1793042110003058. MR 2652893.
  • Basu, Ankur (2011). "On the evaluation of Tornheim sums and allied double sums". Ramanujan J. 26 (2): 193–207. doi:10.1007/s11139-011-9302-5. MR 2853480. S2CID 120229489.

Notes

  1. ^ Zhao, Jianqiang (2010). "Standard relations of multiple polylogarithm values at roots of unity". Documenta Mathematica. 15: 1–34. arXiv:0707.1459.
  2. ^ a b c Zhao, Jianqiang (2016). Multiple Zeta Functions, Multiple Polylogarithms and Their Special Values. Series on Number Theory and its Applications. Vol. 12. World Scientific Publishing. doi:10.1142/9634. ISBN 978-981-4689-39-7.
  3. ^ a b Hoffman, Mike. "Multiple Zeta Values". Mike Hoffman's Home Page. U.S. Naval Academy. Retrieved June 8, 2012.
  4. ^ a b Borwein, David; Borwein, Jonathan; Bradley, David (September 23, 2004). "Parametric Euler Sum Identities" (PDF). CARMA, AMSI Honours Course. The University of Newcastle. Retrieved June 3, 2012.
  5. ^ a b c d Broadhurst, D. J. (1996). "On the enumeration of irreducible k-fold Euler sums and their roles in knot theory and field theory". arXiv:hep-th/9604128.
  6. ^ a b c d Hoffman, Michael (1992). "Multiple Harmonic Series". Pacific Journal of Mathematics. 152 (2): 276–278. doi:10.2140/pjm.1992.152.275. MR 1141796. Zbl 0763.11037.
  7. ^ Ramachandra Rao, R. Sita; M. V. Subbarao (1984). "Transformation formulae for multiple series". Pacific Journal of Mathematics. 113 (2): 417–479. doi:10.2140/pjm.1984.113.471.
  8. ^ a b Moen, C. "Sums of Simple Series". Preprint.
  9. ^ Euler, L. (1775). "Meditationes circa singulare serierum genus". Novi Comm. Acad. Sci. Petropol. 15 (20): 140–186.
  10. ^ Williams, G. T. (1958). "On the evaluation of some multiple series". Journal of the London Mathematical Society. 33 (3): 368–371. doi:10.1112/jlms/s1-33.3.368.

External links

  • Borwein, Jonathan; Zudilin, Wadim. "Lecture notes on the Multiple Zeta Function".
  • Hoffman, Michael (2012). "Multiple zeta values".
  • Zhao, Jianqiang (2016). Multiple Zeta Functions, Multiple Polylogarithms and Their Special Values. Series on Number Theory and its Applications. Vol. 12. World Scientific Publishing. doi:10.1142/9634. ISBN 978-981-4689-39-7.
  • Burgos Gil, José Ignacio; Fresán, Javier. "Multiple zeta values: from numbers to motives" (PDF).

multiple, zeta, function, different, related, multiple, zeta, function, barnes, zeta, function, mathematics, multiple, zeta, functions, generalizations, riemann, zeta, function, defined, displaystyle, zeta, ldots, cdots, frac, cdots, cdots, prod, frac, converg. For a different but related multiple zeta function see Barnes zeta function In mathematics the multiple zeta functions are generalizations of the Riemann zeta function defined by z s 1 s k n 1 gt n 2 gt gt n k gt 0 1 n 1 s 1 n k s k n 1 gt n 2 gt gt n k gt 0 i 1 k 1 n i s i displaystyle zeta s 1 ldots s k sum n 1 gt n 2 gt cdots gt n k gt 0 frac 1 n 1 s 1 cdots n k s k sum n 1 gt n 2 gt cdots gt n k gt 0 prod i 1 k frac 1 n i s i and converge when Re s1 Re si gt i for all i Like the Riemann zeta function the multiple zeta functions can be analytically continued to be meromorphic functions see for example Zhao 1999 When s1 sk are all positive integers with s1 gt 1 these sums are often called multiple zeta values MZVs or Euler sums These values can also be regarded as special values of the multiple polylogarithms 1 2 The k in the above definition is named the depth of a MZV and the n s1 sk is known as the weight 3 The standard shorthand for writing multiple zeta functions is to place repeating strings of the argument within braces and use a superscript to indicate the number of repetitions For example z 2 1 2 1 3 z 2 1 2 3 displaystyle zeta 2 1 2 1 3 zeta 2 1 2 3 Contents 1 Definition 2 Integral structure and identities 3 Two parameters case 4 Three parameters case 5 Euler reflection formula 6 Symmetric sums in terms of the zeta function 6 1 Theorem 1 Hoffman 6 2 Theorem 2 Hoffman 7 The sum and duality conjectures 6 8 Euler sum with all possible alternations of sign 8 1 Notation 8 2 Reflection formula 8 3 Other relations 9 Other results 10 Mordell Tornheim zeta values 11 References 12 Notes 13 External linksDefinition EditMultiple zeta functions arise as special cases of the multiple polylogarithms L i s 1 s d m 1 m d k 1 gt gt k d gt 0 m 1 k 1 m d k d k 1 s 1 k d s d displaystyle mathrm Li s 1 ldots s d mu 1 ldots mu d sum limits k 1 gt cdots gt k d gt 0 frac mu 1 k 1 cdots mu d k d k 1 s 1 cdots k d s d which are generalizations of the polylogarithm functions When all of the m i displaystyle mu i are nth roots of unity and the s i displaystyle s i are all nonnegative integers the values of the multiple polylogarithm are called colored multiple zeta values of level n displaystyle n In particular when n 2 displaystyle n 2 they are called Euler sums or alternating multiple zeta values and when n 1 displaystyle n 1 they are simply called multiple zeta values Multiple zeta values are often written z s 1 s d k 1 gt gt k d gt 0 1 k 1 s 1 k d s d displaystyle zeta s 1 ldots s d sum limits k 1 gt cdots gt k d gt 0 frac 1 k 1 s 1 cdots k d s d and Euler sums are written z s 1 s d e 1 e d k 1 gt gt k d gt 0 e 1 k 1 e k d k 1 s 1 k d s d displaystyle zeta s 1 ldots s d varepsilon 1 ldots varepsilon d sum limits k 1 gt cdots gt k d gt 0 frac varepsilon 1 k 1 cdots varepsilon k d k 1 s 1 cdots k d s d where e i 1 displaystyle varepsilon i pm 1 Sometimes authors will write a bar over an s i displaystyle s i corresponding to an e i displaystyle varepsilon i equal to 1 displaystyle 1 so for example z a b z a b 1 1 displaystyle zeta overline a b zeta a b 1 1 Integral structure and identities EditIt was noticed by Kontsevich that it is possible to express colored multiple zeta values and thus their special cases as certain multivariable integrals This result is often stated with the use of a convention for iterated integrals wherein 0 x f 1 t d t f d t d t 0 x f 1 t 1 0 t 1 f 2 t 2 0 t 2 0 t d f d t d d t d d t 2 d t 1 displaystyle int 0 x f 1 t dt cdots f d t dt int 0 x f 1 t 1 left int 0 t 1 f 2 t 2 left int 0 t 2 cdots left int 0 t d f d t d dt d right right dt 2 right dt 1 Using this convention the result can be stated as follows 2 L i s 1 s d m 1 m d 0 1 d t t s 1 1 d t a 1 t d t t s d 1 d t a d t displaystyle mathrm Li s 1 ldots s d mu 1 ldots mu d int 0 1 left frac dt t right s 1 1 frac dt a 1 t cdots left frac dt t right s d 1 frac dt a d t where a j i 1 j m i 1 displaystyle a j prod limits i 1 j mu i 1 for j 1 2 d displaystyle j 1 2 ldots d This result is extremely useful due to a well known result regarding products of iterated integrals namely that 0 x f 1 t d t f n t d t 0 x f n 1 t d t f m t d t s S h n m 0 x f s 1 t f s m t displaystyle left int 0 x f 1 t dt cdots f n t dt right left int 0 x f n 1 t dt cdots f m t dt right sum limits sigma in mathfrak Sh n m int 0 x f sigma 1 t cdots f sigma m t where S h n m s S m s 1 lt lt s n s n 1 lt lt s m displaystyle mathfrak Sh n m sigma in S m mid sigma 1 lt cdots lt sigma n sigma n 1 lt cdots lt sigma m and S m displaystyle S m is the symmetric group on m displaystyle m symbols To utilize this in the context of multiple zeta values define X a b displaystyle X a b X displaystyle X to be the free monoid generated by X displaystyle X and A displaystyle mathfrak A to be the free Q displaystyle mathbb Q vector space generated by X displaystyle X A displaystyle mathfrak A can be equipped with the shuffle product turning it into an algebra Then the multiple zeta function can be viewed as an evaluation map where we identify a d t t displaystyle a frac dt t b d t 1 t displaystyle b frac dt 1 t and define z w 0 1 w displaystyle zeta mathbf w int 0 1 mathbf w for any w X displaystyle mathbf w in X which by the aforementioned integral identity makes z a s 1 1 b a s d 1 b z s 1 s d displaystyle zeta a s 1 1 b cdots a s d 1 b zeta s 1 ldots s d Then the integral identity on products gives 2 z w z v z w v displaystyle zeta w zeta v zeta w text v Two parameters case EditIn the particular case of only two parameters we have with s gt 1 and n m integers 4 z s t n gt m 1 1 n s m t n 2 1 n s m 1 n 1 1 m t n 1 1 n 1 s m 1 n 1 m t displaystyle zeta s t sum n gt m geq 1 frac 1 n s m t sum n 2 infty frac 1 n s sum m 1 n 1 frac 1 m t sum n 1 infty frac 1 n 1 s sum m 1 n frac 1 m t z s t n 1 H n t n 1 s displaystyle zeta s t sum n 1 infty frac H n t n 1 s where H n t displaystyle H n t are the generalized harmonic numbers Multiple zeta functions are known to satisfy what is known as MZV duality the simplest case of which is the famous identity of Euler n 1 H n n 1 2 z 2 1 z 3 n 1 1 n 3 displaystyle sum n 1 infty frac H n n 1 2 zeta 2 1 zeta 3 sum n 1 infty frac 1 n 3 where Hn are the harmonic numbers Special values of double zeta functions with s gt 0 and even t gt 1 and odd but s t 2N 1 taking if necessary z 0 0 4 z s t z s z t 1 2 s t s 1 z s t r 1 N 1 2 r s 1 2 r t 1 z 2 r 1 z s t 1 2 r displaystyle zeta s t zeta s zeta t tfrac 1 2 Big tbinom s t s 1 Big zeta s t sum r 1 N 1 Big tbinom 2r s 1 tbinom 2r t 1 Big zeta 2r 1 zeta s t 1 2r s t approximate value explicit formulae OEIS2 2 0 811742425283353643637002772406 3 4 z 4 displaystyle tfrac 3 4 zeta 4 A1971103 2 0 228810397603353759768746148942 3 z 2 z 3 11 2 z 5 displaystyle 3 zeta 2 zeta 3 tfrac 11 2 zeta 5 A2589834 2 0 088483382454368714294327839086 z 3 2 4 3 z 6 displaystyle left zeta 3 right 2 tfrac 4 3 zeta 6 A2589845 2 0 038575124342753255505925464373 5 z 2 z 5 2 z 3 z 4 11 z 7 displaystyle 5 zeta 2 zeta 5 2 zeta 3 zeta 4 11 zeta 7 A2589856 2 0 017819740416835988 A2589472 3 0 711566197550572432096973806086 9 2 z 5 2 z 2 z 3 displaystyle tfrac 9 2 zeta 5 2 zeta 2 zeta 3 A2589863 3 0 213798868224592547099583574508 1 2 z 3 2 z 6 displaystyle tfrac 1 2 left left zeta 3 right 2 zeta 6 right A2589874 3 0 085159822534833651406806018872 17 z 7 10 z 2 z 5 displaystyle 17 zeta 7 10 zeta 2 zeta 5 A2589885 3 0 037707672984847544011304782294 5 z 3 z 5 147 24 z 8 5 2 z 6 2 displaystyle 5 zeta 3 zeta 5 tfrac 147 24 zeta 8 tfrac 5 2 zeta 6 2 A2589822 4 0 674523914033968140491560608257 25 12 z 6 z 3 2 displaystyle tfrac 25 12 zeta 6 left zeta 3 right 2 A2589893 4 0 207505014615732095907807605495 10 z 2 z 5 z 3 z 4 18 z 7 displaystyle 10 zeta 2 zeta 5 zeta 3 zeta 4 18 zeta 7 A2589904 4 0 083673113016495361614890436542 1 2 z 4 2 z 8 displaystyle tfrac 1 2 left left zeta 4 right 2 zeta 8 right A258991Note that if s t 2 p 2 displaystyle s t 2p 2 we have p 3 displaystyle p 3 irreducibles i e these MZVs cannot be written as function of z a displaystyle zeta a only 5 Three parameters case EditIn the particular case of only three parameters we have with a gt 1 and n j i integers z a b c n gt j gt i 1 1 n a j b i c n 1 1 n 2 a j 1 n 1 j 1 b i 1 j 1 i c n 1 1 n 2 a j 1 n H i c j 1 b displaystyle zeta a b c sum n gt j gt i geq 1 frac 1 n a j b i c sum n 1 infty frac 1 n 2 a sum j 1 n frac 1 j 1 b sum i 1 j frac 1 i c sum n 1 infty frac 1 n 2 a sum j 1 n frac H i c j 1 b Euler reflection formula EditThe above MZVs satisfy the Euler reflection formula z a b z b a z a z b z a b displaystyle zeta a b zeta b a zeta a zeta b zeta a b for a b gt 1 displaystyle a b gt 1 Using the shuffle relations it is easy to prove that 5 z a b c z a c b z b a c z b c a z c a b z c b a z a z b z c 2 z a b c z a z b c z b z a c z c z a b displaystyle zeta a b c zeta a c b zeta b a c zeta b c a zeta c a b zeta c b a zeta a zeta b zeta c 2 zeta a b c zeta a zeta b c zeta b zeta a c zeta c zeta a b for a b c gt 1 displaystyle a b c gt 1 This function can be seen as a generalization of the reflection formulas Symmetric sums in terms of the zeta function EditLet S i 1 i 2 i k n 1 n 2 n k 1 1 n 1 i 1 n 2 i 2 n k i k displaystyle S i 1 i 2 cdots i k sum n 1 geq n 2 geq cdots n k geq 1 frac 1 n 1 i 1 n 2 i 2 cdots n k i k and for a partition P P 1 P 2 P l displaystyle Pi P 1 P 2 dots P l of the set 1 2 k displaystyle 1 2 dots k let c P P 1 1 P 2 1 P l 1 displaystyle c Pi left P 1 right 1 left P 2 right 1 cdots left P l right 1 Also given such a P displaystyle Pi and a k tuple i i 1 i k displaystyle i i 1 i k of exponents define s 1 l z j P s i j displaystyle prod s 1 l zeta sum j in P s i j The relations between the z displaystyle zeta and S displaystyle S are S i 1 i 2 z i 1 i 2 z i 1 i 2 displaystyle S i 1 i 2 zeta i 1 i 2 zeta i 1 i 2 and S i 1 i 2 i 3 z i 1 i 2 i 3 z i 1 i 2 i 3 z i 1 i 2 i 3 z i 1 i 2 i 3 displaystyle S i 1 i 2 i 3 zeta i 1 i 2 i 3 zeta i 1 i 2 i 3 zeta i 1 i 2 i 3 zeta i 1 i 2 i 3 Theorem 1 Hoffman Edit For any real i 1 i k gt 1 displaystyle i 1 cdots i k gt 1 s S k S i s 1 i s k partitions P of 1 k c P z i P displaystyle sum sigma in Sigma k S i sigma 1 dots i sigma k sum text partitions Pi text of 1 dots k c Pi zeta i Pi Proof Assume the i j displaystyle i j are all distinct There is no loss of generality since we can take limits The left hand side can be written as s n 1 n 2 n k 1 1 n i 1 s 1 n i 2 s 2 n i k s k displaystyle sum sigma sum n 1 geq n 2 geq cdots geq n k geq 1 frac 1 n i 1 sigma 1 n i 2 sigma 2 cdots n i k sigma k Now thinking on the symmetricgroup S k displaystyle Sigma k as acting on k tuple n 1 k displaystyle n 1 cdots k of positive integers A given k tuple n n 1 n k displaystyle n n 1 cdots n k has an isotropy groupS k n displaystyle Sigma k n and an associated partition L displaystyle Lambda of 1 2 k displaystyle 1 2 cdots k L displaystyle Lambda is the set of equivalence classes of the relation given by i j displaystyle i sim j iff n i n j displaystyle n i n j and S k n s S k s i i displaystyle Sigma k n sigma in Sigma k sigma i sim forall i Now the term 1 n i 1 s 1 n i 2 s 2 n i k s k displaystyle frac 1 n i 1 sigma 1 n i 2 sigma 2 cdots n i k sigma k occurs on the left hand side of s S k S i s 1 i s k partitions P of 1 k c P z i P displaystyle sum sigma in Sigma k S i sigma 1 dots i sigma k sum text partitions Pi text of 1 dots k c Pi zeta i Pi exactly S k n displaystyle left Sigma k n right times It occurs on the right hand side in those terms corresponding to partitions P displaystyle Pi that are refinements of L displaystyle Lambda letting displaystyle succeq denote refinement 1 n i 1 s 1 n i 2 s 2 n i k s k displaystyle frac 1 n i 1 sigma 1 n i 2 sigma 2 cdots n i k sigma k occurs P L P displaystyle sum Pi succeq Lambda Pi times Thus the conclusion will follow if S k n P L c P displaystyle left Sigma k n right sum Pi succeq Lambda c Pi for any k tuple n n 1 n k displaystyle n n 1 cdots n k and associated partition L displaystyle Lambda To see this note that c P displaystyle c Pi counts the permutations having cycle type specified by P displaystyle Pi since any elements of S k n displaystyle Sigma k n has a unique cycle type specified by a partition that refines L displaystyle Lambda the result follows 6 For k 3 displaystyle k 3 the theorem says s S 3 S i s 1 i s 2 i s 3 z i 1 z i 2 z i 3 z i 1 i 2 z i 3 z i 1 z i 2 i 3 z i 1 i 3 z i 2 2 z i 1 i 2 i 3 displaystyle sum sigma in Sigma 3 S i sigma 1 i sigma 2 i sigma 3 zeta i 1 zeta i 2 zeta i 3 zeta i 1 i 2 zeta i 3 zeta i 1 zeta i 2 i 3 zeta i 1 i 3 zeta i 2 2 zeta i 1 i 2 i 3 for i 1 i 2 i 3 gt 1 displaystyle i 1 i 2 i 3 gt 1 This is the main result of 7 Having z i 1 i 2 i k n 1 gt n 2 gt n k 1 1 n 1 i 1 n 2 i 2 n k i k displaystyle zeta i 1 i 2 cdots i k sum n 1 gt n 2 gt cdots n k geq 1 frac 1 n 1 i 1 n 2 i 2 cdots n k i k To state the analog of Theorem 1 for the z s displaystyle zeta s we require one bit of notation For a partitionP P 1 P l displaystyle Pi P 1 cdots P l of 1 2 k displaystyle 1 2 cdots k let c P 1 k l c P displaystyle tilde c Pi 1 k l c Pi Theorem 2 Hoffman Edit For any real i 1 i k gt 1 displaystyle i 1 cdots i k gt 1 s S k z i s 1 i s k partitions P of 1 k c P z i P displaystyle sum sigma in Sigma k zeta i sigma 1 dots i sigma k sum text partitions Pi text of 1 dots k tilde c Pi zeta i Pi Proof We follow the same line of argument as in the preceding proof The left hand side is now s n 1 gt n 2 gt gt n k 1 1 n i 1 s 1 n i 2 s 2 n i k s k displaystyle sum sigma sum n 1 gt n 2 gt cdots gt n k geq 1 frac 1 n i 1 sigma 1 n i 2 sigma 2 cdots n i k sigma k and a term 1 n 1 i 1 n 2 i 2 n k i k displaystyle frac 1 n 1 i 1 n 2 i 2 cdots n k i k occurs on the left hand since once if all the n i displaystyle n i are distinct and not at all otherwise Thus it suffices to show P L c P 1 if L k 0 otherwise displaystyle sum Pi succeq Lambda tilde c Pi begin cases 1 text if left Lambda right k 0 text otherwise end cases 1 To prove this note first that the sign of c P displaystyle tilde c Pi is positive if the permutations of cycle type P displaystyle Pi are even and negative if they are odd thus the left hand side of 1 is the signed sum of the number of even and odd permutations in the isotropy group S k n displaystyle Sigma k n But such an isotropy group has equal numbers of even and odd permutations unless it is trivial i e unless the associated partition L displaystyle Lambda is 1 2 k displaystyle 1 2 cdots k 6 The sum and duality conjectures 6 EditWe first state the sum conjecture which is due to C Moen 8 Sum conjecture Hoffman For positive integers k and n i 1 i k n i 1 gt 1 z i 1 i k z n displaystyle sum i 1 cdots i k n i 1 gt 1 zeta i 1 cdots i k zeta n where the sum is extended over k tuples i 1 i k displaystyle i 1 cdots i k of positive integers with i 1 gt 1 displaystyle i 1 gt 1 Three remarks concerning this conjecture are in order First it implies i 1 i k n i 1 gt 1 S i 1 i k n 1 k 1 z n displaystyle sum i 1 cdots i k n i 1 gt 1 S i 1 cdots i k n 1 choose k 1 zeta n Second in the case k 2 displaystyle k 2 it says that z n 1 1 z n 2 2 z 2 n 2 z n displaystyle zeta n 1 1 zeta n 2 2 cdots zeta 2 n 2 zeta n or using the relation between the z s displaystyle zeta s and S s displaystyle S s and Theorem 1 2 S n 1 1 n 1 z n k 2 n 2 z k z n k displaystyle 2S n 1 1 n 1 zeta n sum k 2 n 2 zeta k zeta n k This was proved by Euler 9 and has been rediscovered several times in particular by Williams 10 Finally C Moen 8 has proved the same conjecture for k 3 by lengthy but elementary arguments For the duality conjecture we first define an involution t displaystyle tau on the set ℑ displaystyle Im of finite sequences of positive integers whose first element is greater than 1 Let T displaystyle mathrm T be the set of strictly increasing finite sequences of positive integers and let S ℑ T displaystyle Sigma Im rightarrow mathrm T be the function that sends a sequence in ℑ displaystyle Im to its sequence of partial sums If T n displaystyle mathrm T n is the set of sequences in T displaystyle mathrm T whose last element is at most n displaystyle n we have two commuting involutions R n displaystyle R n and C n displaystyle C n on T n displaystyle mathrm T n defined by R n a 1 a 2 a l n 1 a l n 1 a l 1 n 1 a 1 displaystyle R n a 1 a 2 dots a l n 1 a l n 1 a l 1 dots n 1 a 1 and C n a 1 a l displaystyle C n a 1 dots a l complement of a 1 a l displaystyle a 1 dots a l in 1 2 n displaystyle 1 2 dots n arranged in increasing order The our definition of t displaystyle tau is t I S 1 R n C n S I S 1 C n R n S I displaystyle tau I Sigma 1 R n C n Sigma I Sigma 1 C n R n Sigma I for I i 1 i 2 i k ℑ displaystyle I i 1 i 2 dots i k in Im with i 1 i k n displaystyle i 1 cdots i k n For example t 3 4 1 S 1 C 8 R 8 3 7 8 S 1 3 4 5 7 8 3 1 1 2 1 displaystyle tau 3 4 1 Sigma 1 C 8 R 8 3 7 8 Sigma 1 3 4 5 7 8 3 1 1 2 1 We shall say the sequences i 1 i k displaystyle i 1 dots i k and t i 1 i k displaystyle tau i 1 dots i k are dual to each other and refer to a sequence fixed by t displaystyle tau as self dual 6 Duality conjecture Hoffman If h 1 h n k displaystyle h 1 dots h n k is dual to i 1 i k displaystyle i 1 dots i k then z h 1 h n k z i 1 i k displaystyle zeta h 1 dots h n k zeta i 1 dots i k This sum conjecture is also known as Sum Theorem and it may be expressed as follows the Riemann zeta value of an integer n 2 is equal to the sum of all the valid i e with s1 gt 1 MZVs of the partitions of length k and weight n with 1 k n 1 In formula 3 s 1 gt 1 s 1 s k n z s 1 s k z n displaystyle sum stackrel s 1 cdots s k n s 1 gt 1 zeta s 1 ldots s k zeta n For example with length k 2 and weight n 7 z 6 1 z 5 2 z 4 3 z 3 4 z 2 5 z 7 displaystyle zeta 6 1 zeta 5 2 zeta 4 3 zeta 3 4 zeta 2 5 zeta 7 Euler sum with all possible alternations of sign EditThe Euler sum with alternations of sign appears in studies of the non alternating Euler sum 5 Notation Edit n 1 H n b 1 n 1 n 1 a z a b displaystyle sum n 1 infty frac H n b 1 n 1 n 1 a zeta bar a b with H n b 1 1 2 b 1 3 b displaystyle H n b 1 frac 1 2 b frac 1 3 b cdots are the generalized harmonic numbers n 1 H n b n 1 a z a b displaystyle sum n 1 infty frac bar H n b n 1 a zeta a bar b with H n b 1 1 2 b 1 3 b displaystyle bar H n b 1 frac 1 2 b frac 1 3 b cdots n 1 H n b 1 n 1 n 1 a z a b displaystyle sum n 1 infty frac bar H n b 1 n 1 n 1 a zeta bar a bar b n 1 1 n n 2 a n 1 H n c 1 n 1 n 1 b z a b c displaystyle sum n 1 infty frac 1 n n 2 a sum n 1 infty frac bar H n c 1 n 1 n 1 b zeta bar a bar b bar c with H n c 1 1 2 c 1 3 c displaystyle bar H n c 1 frac 1 2 c frac 1 3 c cdots n 1 1 n n 2 a n 1 H n c n 1 b z a b c displaystyle sum n 1 infty frac 1 n n 2 a sum n 1 infty frac H n c n 1 b zeta bar a b c with H n c 1 1 2 c 1 3 c displaystyle H n c 1 frac 1 2 c frac 1 3 c cdots n 1 1 n 2 a n 1 H n c 1 n 1 n 1 b z a b c displaystyle sum n 1 infty frac 1 n 2 a sum n 1 infty frac H n c 1 n 1 n 1 b zeta a bar b c n 1 1 n 2 a n 1 H n c n 1 b z a b c displaystyle sum n 1 infty frac 1 n 2 a sum n 1 infty frac bar H n c n 1 b zeta a b bar c As a variant of the Dirichlet eta function we define ϕ s 1 2 s 1 2 s 1 z s displaystyle phi s frac 1 2 s 1 2 s 1 zeta s with s gt 1 displaystyle s gt 1 ϕ 1 ln 2 displaystyle phi 1 ln 2 Reflection formula Edit The reflection formula z a b z b a z a z b z a b displaystyle zeta a b zeta b a zeta a zeta b zeta a b can be generalized as follows z a b z b a z a ϕ b ϕ a b displaystyle zeta a bar b zeta bar b a zeta a phi b phi a b z a b z b a z b ϕ a ϕ a b displaystyle zeta bar a b zeta b bar a zeta b phi a phi a b z a b z b a ϕ a ϕ b z a b displaystyle zeta bar a bar b zeta bar b bar a phi a phi b zeta a b if a b displaystyle a b we have z a a 1 2 ϕ 2 a z 2 a displaystyle zeta bar a bar a tfrac 1 2 Big phi 2 a zeta 2a Big Other relations Edit Using the series definition it is easy to prove z a b z a b z a b z a b z a b 2 a b 2 displaystyle zeta a b zeta a bar b zeta bar a b zeta bar a bar b frac zeta a b 2 a b 2 with a gt 1 displaystyle a gt 1 z a b c z a b c z a b c z a b c z a b c z a b c z a b c z a b c z a b c 2 a b c 3 displaystyle zeta a b c zeta a b bar c zeta a bar b c zeta bar a b c zeta a bar b bar c zeta bar a b bar c zeta bar a bar b c zeta bar a bar b bar c frac zeta a b c 2 a b c 3 with a gt 1 displaystyle a gt 1 A further useful relation is 5 z a b z a b s gt 0 a b s 1 Z a a b s s a s b 1 Z b a b s s b s a 1 displaystyle zeta a b zeta bar a bar b sum s gt 0 a b s 1 Big frac Z a a b s s a s b 1 frac Z b a b s s b s a 1 Big where Z a s t z s t z s t z s t z s t 2 s 1 displaystyle Z a s t zeta s t zeta bar s t frac Big zeta s t zeta s t Big 2 s 1 and Z b s t z s t 2 s 1 displaystyle Z b s t frac zeta s t 2 s 1 Note that s displaystyle s must be used for all value gt 1 displaystyle gt 1 for which the argument of the factorials is 0 displaystyle geqslant 0 Other results EditFor all positive integers a b k displaystyle a b dots k n 2 z n k z k 1 displaystyle sum n 2 infty zeta n k zeta k 1 or more generally n 2 z n a b k z a 1 b k displaystyle sum n 2 infty zeta n a b dots k zeta a 1 b dots k n 2 z n k ϕ k 1 displaystyle sum n 2 infty zeta n bar k phi k 1 n 2 z n a b z a 1 b displaystyle sum n 2 infty zeta n bar a b zeta overline a 1 b n 2 z n a b z a 1 b displaystyle sum n 2 infty zeta n a bar b zeta a 1 bar b n 2 z n a b z a 1 b displaystyle sum n 2 infty zeta n bar a bar b zeta overline a 1 bar b lim k z n k z n 1 displaystyle lim k to infty zeta n k zeta n 1 1 z 2 z 3 z 4 1 2 displaystyle 1 zeta 2 zeta 3 zeta 4 cdots frac 1 2 z a a 1 2 z a 2 z 2 a displaystyle zeta a a tfrac 1 2 Big zeta a 2 zeta 2a Big z a a a 1 6 z a 3 1 3 z 3 a 1 2 z a z 2 a displaystyle zeta a a a tfrac 1 6 zeta a 3 tfrac 1 3 zeta 3a tfrac 1 2 zeta a zeta 2a Mordell Tornheim zeta values EditThe Mordell Tornheim zeta function introduced by Matsumoto 2003 who was motivated by the papers Mordell 1958 and Tornheim 1950 is defined by z M T r s 1 s r s r 1 m 1 m r gt 0 1 m 1 s 1 m r s r m 1 m r s r 1 displaystyle zeta MT r s 1 dots s r s r 1 sum m 1 dots m r gt 0 frac 1 m 1 s 1 cdots m r s r m 1 dots m r s r 1 It is a special case of the Shintani zeta function References EditTornheim Leonard 1950 Harmonic double series American Journal of Mathematics 72 2 303 314 doi 10 2307 2372034 ISSN 0002 9327 JSTOR 2372034 MR 0034860 Mordell Louis J 1958 On the evaluation of some multiple series Journal of the London Mathematical Society Second Series 33 3 368 371 doi 10 1112 jlms s1 33 3 368 ISSN 0024 6107 MR 0100181 Apostol Tom M Vu Thiennu H 1984 Dirichlet series related to the Riemann zeta function Journal of Number Theory 19 1 85 102 doi 10 1016 0022 314X 84 90094 5 ISSN 0022 314X MR 0751166 Crandall Richard E Buhler Joe P 1994 On the evaluation of Euler Sums Experimental Mathematics 3 4 275 doi 10 1080 10586458 1994 10504297 MR 1341720 Borwein Jonathan M Girgensohn Roland 1996 Evaluation of Triple Euler Sums Electron J Comb 3 1 R23 doi 10 37236 1247 MR 1401442 Flajolet Philippe Salvy Bruno 1998 Euler Sums and contour integral representations Exp Math 7 15 35 CiteSeerX 10 1 1 37 652 doi 10 1080 10586458 1998 10504356 Zhao Jianqiang 1999 Analytic continuation of multiple zeta functions Proceedings of the American Mathematical Society 128 5 1275 1283 doi 10 1090 S0002 9939 99 05398 8 MR 1670846 Matsumoto Kohji 2003 On Mordell Tornheim and other multiple zeta functions Proceedings of the Session in Analytic Number Theory and Diophantine Equations Bonner Math Schriften vol 360 Bonn Univ Bonn MR 2075634 Espinosa Olivier Moll Victor Hugo 2008 The evaluation of Tornheim double sums arXiv math 0505647 Espinosa Olivier Moll Victor Hugo 2010 The evaluation of Tornheim double sums II Ramanujan J 22 55 99 arXiv 0811 0557 doi 10 1007 s11139 009 9181 1 MR 2610609 S2CID 17055581 Borwein J M Chan O Y 2010 Duality in tails of multiple zeta values Int J Number Theory 6 3 501 514 CiteSeerX 10 1 1 157 9158 doi 10 1142 S1793042110003058 MR 2652893 Basu Ankur 2011 On the evaluation of Tornheim sums and allied double sums Ramanujan J 26 2 193 207 doi 10 1007 s11139 011 9302 5 MR 2853480 S2CID 120229489 Notes Edit Zhao Jianqiang 2010 Standard relations of multiple polylogarithm values at roots of unity Documenta Mathematica 15 1 34 arXiv 0707 1459 a b c Zhao Jianqiang 2016 Multiple Zeta Functions Multiple Polylogarithms and Their Special Values Series on Number Theory and its Applications Vol 12 World Scientific Publishing doi 10 1142 9634 ISBN 978 981 4689 39 7 a b Hoffman Mike Multiple Zeta Values Mike Hoffman s Home Page U S Naval Academy Retrieved June 8 2012 a b Borwein David Borwein Jonathan Bradley David September 23 2004 Parametric Euler Sum Identities PDF CARMA AMSI Honours Course The University of Newcastle Retrieved June 3 2012 a b c d Broadhurst D J 1996 On the enumeration of irreducible k fold Euler sums and their roles in knot theory and field theory arXiv hep th 9604128 a b c d Hoffman Michael 1992 Multiple Harmonic Series Pacific Journal of Mathematics 152 2 276 278 doi 10 2140 pjm 1992 152 275 MR 1141796 Zbl 0763 11037 Ramachandra Rao R Sita M V Subbarao 1984 Transformation formulae for multiple series Pacific Journal of Mathematics 113 2 417 479 doi 10 2140 pjm 1984 113 471 a b Moen C Sums of Simple Series Preprint Euler L 1775 Meditationes circa singulare serierum genus Novi Comm Acad Sci Petropol 15 20 140 186 Williams G T 1958 On the evaluation of some multiple series Journal of the London Mathematical Society 33 3 368 371 doi 10 1112 jlms s1 33 3 368 External links EditBorwein Jonathan Zudilin Wadim Lecture notes on the Multiple Zeta Function Hoffman Michael 2012 Multiple zeta values Zhao Jianqiang 2016 Multiple Zeta Functions Multiple Polylogarithms and Their Special Values Series on Number Theory and its Applications Vol 12 World Scientific Publishing doi 10 1142 9634 ISBN 978 981 4689 39 7 Burgos Gil Jose Ignacio Fresan Javier Multiple zeta values from numbers to motives PDF Retrieved from https en wikipedia org w index php title Multiple zeta function amp oldid 1136461032, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.