fbpx
Wikipedia

Mount Rittmann

Mount Rittmann is a volcano in Antarctica. Discovered in 1988–1989 by an Italian expedition, it was named after the volcanologist Alfred Rittmann (1893–1980). It features a 2 kilometres (1.2 mi) or 8 by 5 kilometres (5.0 mi × 3.1 mi) wide caldera which crops out from underneath the Aviator Glacier. The volcano was active during the Pliocene and into the Holocene, including large explosive eruptions; a major eruption occurred in 1254 CE and deposited tephra over much of Antarctica. Currently, the volcano is classified as dormant.

Mount Rittmann
Highest point
Elevation2,600 m (8,500 ft)[1]
Coordinates73°27′S 165°30′E / 73.45°S 165.5°E / -73.45; 165.5[1]
Naming
EtymologyVolcanologist Alfred Rittmann
Geography
Parent rangeMountaineer Range
Geology
Age of rockPliocene
Mountain typeVolcano
Volcanic beltMcMurdo Volcanic Group
Last eruption>1254 CE

The volcano is fumarolically active. The geothermal activity keeps part of the caldera ice-free; mosses and various microorganisms grow on this ice-free terrain. Such an occurrence of mosses on fumarolically active volcanoes of Antarctica is limited to Mount Rittmann, Mount Melbourne and Mount Erebus and has led to efforts to establish a protected area on the volcano.

Geography and geomorphology edit

It lies in Victoria Land on the Ross Sea,[2] 100 kilometres (62 mi) from Terranova Bay[3] and 150 kilometres (93 mi) from the Italian Mario Zucchelli Station.[4] It was discovered by an Italian expedition in 1988–1989[5] and named in honour of the volcanologist Alfred Rittmann.[6] Owing to having only been recently discovered and being remote, the volcano is poorly studied.[7]

Mount Rittmann is 2,600 metres (8,500 ft) high[1] and lies in the Mountaineer Range.[5] A 2 kilometres (1.2 mi)[8] or 8 by 5 kilometres (5.0 mi × 3.1 mi) wide caldera is located underneath the Aviator Glacier;[1] it is outlined by a ring of volcanic hills and outcrops[5] that emerge slightly[9] from an almost flat surrounding terrain.[10] The name Mt. Rittmann is sometimes applied to a fumarolically active nunatak on the caldera rim.[11] The base of the volcano crops out from the Pilot Glacier,[5] which together with the caldera is one of the few parts of the[6] otherwise snow- and ice-covered volcano[2] that aren't encased in ice.[6] Outcrops consist of hyaloclastites, lava flows and pillow lavas.[10]

Fumaroles and their ecosystems edit

An Italian expedition in 1990–1991 discovered heated ground and fumaroles at the caldera, implying that molten magma exists underneath the volcano.[5] The fumarolic activity occurs at a 200 metres (660 ft) wide and 80 metres (260 ft) high face[12] with sandy-gravelly soil;[13] another warm area is reported from the lower slopes.[2]

The vents of the fumaroles are centimetres wide and surrounded by efflorescences formed by hydrothermally altered rocks.[5] Fumarolic gases contain carbon dioxide and methane and lack hydrogen sulfide and sulfur dioxide.[14] The fumaroles keep an area of the caldera at 2,250 metres (7,380 ft) elevation ice-free;[2] at 2,100 metres (6,900 ft) elevation mean temperatures are −20 °C (−4 °F), but fumarolic activity heats the surrounding rocks up to 60 °C (140 °F).[3] Surface temperatures reach 43.4 °C (110.1 °F).[12]

Patches of[2] moss grow in rosette form[15] on sandy soil in the fumarolic areas[2] at temperatures of 17–35 °C (63–95 °F).[16] A steady supply of water, the fumarolic warmth and shelter allow the growth of this vegetation;[2] such volcanic vegetation is also found at volcanoes Mount Erebus and Mount Melbourne.[5] The mosses may have arrived there by wind;[17] Pohlia nutans, the moss found at Mount Rittmann, is a cosmopolitan species which is also encountered elsewhere in Victoria Land.[18] Genetic analysis indicates that the mosses growing at Mount Rittmann arrived there in one event and are not diverse.[19]

Research on microbial communities at Mount Rittmann fumaroles has found bacteria including cyanobacteria,[20] fungi including yeast[21] and cyanobacterial microbial mats.[22] Algae and protozoa have been identified at Mount Rittmann fumaroles.[18] The bacterial species Anoxybacillus amylolyticus[23] and the subspecies Alicyclobacillus acidocaldarius subsp. rittmannii were discovered at fumaroles of Mount Rittmann,[24] and the bacterium Bacillus fumarioli was cultured from Mount Rittmann and Mount Melbourne.[25] Alicyclobacillus acidocaldarius subsp. rittmannii is used in studied of thermophilic enzymes.[26] Another thermophilic bacteria reported from Mount Rittmann is Aneurinibacillus terranovensis.[27]

Together with Deception Island, Mount Erebus and Mount Melbourne, Mount Rittmann is one of the four volcanoes in Antarctica with known geothermal habitats[28] and the least studied of these.[4] Three other volcanoes show evidence of past or present fumarolic activity.[28]

There are efforts by Antarctica New Zealand to establish an Antarctic Specially Protected Area (ASPA) on Mount Rittmann,[13] and in 2014 Mount Rittmann was reportedly part of ASPA 175.[29]

Geology edit

The volcano is part of the McMurdo Volcanic Group, one of the largest provinces of alkaline volcanism in the world. It has been subdivided into four subprovinces; Mount Rittmann is considered part of the Melbourne subprovince[5] or of the Mount Overlord volcanic field.[30] The volcanic province is related to the tectonic events that occurred during the rifting of the Ross Sea. Activity commenced during the Eocene-Oligocene and continued into the Holocene.[10]

The outcrops around the caldera rim are formed by breccia, which contains juvenile pumice and xenoliths.[5] The volcanic rocks define a basanitic, hawaiitic, mugearitic,[31] phonolithic and trachytic suite[10] that is alkaline and sodic[32] and features olivine and plagioclase phenocrysts.[31] Xenoliths include both granite and metamorphic rocks from the basement and volcanic rocks.[10] Hydrothermal alteration has occurred close to the fumaroles.[33]

Eruption history edit

The volcano is of Pliocene age[34] and was active between 4 million years ago and 70,000 years ago,[1] although the oldest rocks may actually be from a separate volcano.[35] Radiometric dating has yielded ages of 3.97 million years for rocks at the base of Mount Rittmann and 240,000 ± 200,000, 170,000 ± 20,000 and 70,000 ± 20,000 years ago for lava flows.[30] The caldera appears to be younger than the volcanic rocks at Pilot Glacier,[5] although its unimpressive topographical expression might indicate an old age.[35] It was possibly formed by a Plinian eruption.[36] Tephra deposits at Outback Nunataks,[37] various marine and ice core tephras,[38] Eemian-age tephras at Talos Dome in East Antarctica[39] and dust bands found in blue-ice areas of Frontier Mountain and Lichen Hill in Victoria Land may originate from Mount Rittmann,[30] and at least four large eruptions took place in the last 74,000 years.[38] The eruption history of the volcano is poorly known due to the scarcity of outcrops.[40]

About 11,000 years ago, Mount Rittmann had a large explosive eruption which deposited the "Aviator Tephra" in the Aviator Basin of the Ross Sea. Reconstructions imply that the eruption commenced as a hydromagmatic event which then transitioned into a Plinian eruption which yielded lapilli and volcanic ash.[41] Presumably, the volcano was ice-clad when the eruption commenced and meltwater from the ice interacted with the magma to trigger hydromagmatic activity.[38] At the end, a caldera collapse may have occurred, and the volcano produced ignimbrites.[41]

Tephrochronology has found evidence that Mount Rittmann erupted in 1254[42] and deposited a tephra layer across Antarctica.[43] This Rittmann tephra[44] or "1254 C.E. tephra" has been identified in ice cores of East and West Antarctica;[43] its discovery at Edisto Inlet expands its occurrence to an area of over 950,000 square kilometres (370,000 sq mi) all around the volcano and to distances of over 2,000 kilometres (1,200 mi). Magma was efficiently fragmented during the eruption,[42] which may[44] or may not have been intense.[42] It probably was one of the largest Holocene eruptions of Antarctica;[44] before its source at Mount Rittmann was discovered it was attributed to The Pleiades volcanoes.[8]

Additional eruptions may have occurred after 1254.[8] Presently, the volcano is considered quiescent[34] and is not monitored[11] although a seismo-tectonic station was installed in its vicinity[45] and has recorded seismic activity, some of which may be due to ice movements and the other of volcanic origin.[46] Small thermal anomalies have been observed from Landsat satellite images and may correspond to fumarolic activity.[47] A repeat of the 1254 eruption could form a long-lasting ash cloud, ashfall on nearby research stations[48] and disruption of air traffic to and from McMurdo Station.[11]

References edit

  1. ^ a b c d e "Mount Rittmann". Global Volcanism Program. Smithsonian Institution.
  2. ^ a b c d e f g Skotnicki, Bargagli & Ninham 2002, p. 771.
  3. ^ a b Nicolaus et al. 1998, p. 134.
  4. ^ a b Herbold, McDonald & Cary 2014, p. 185.
  5. ^ a b c d e f g h i j Bargagli, Broady & Walton 2004, p. 121.
  6. ^ a b c Armienti & Tripodo 1991, p. 427.
  7. ^ Gambino et al. 2021, p. 751.
  8. ^ a b c Lee et al. 2019, p. 174.
  9. ^ Gambino et al. 2021, p. 748.
  10. ^ a b c d e Armienti & Tripodo 1991, p. 430.
  11. ^ a b c Lee et al. 2019, p. 175.
  12. ^ a b Herbold, McDonald & Cary 2014, p. 189.
  13. ^ a b Herbold, McDonald & Cary 2014, p. 190.
  14. ^ Gambino et al. 2021, p. 754.
  15. ^ Smith, R. I. Lewis (March 2005). "The thermophilic bryoflora of Deception Island: unique plant communities as a criterion for designating an Antarctic Specially Protected Area". Antarctic Science. 17 (1): 25. Bibcode:2005AntSc..17...17S. doi:10.1017/S0954102005002385. ISSN 1365-2079. S2CID 129016393.
  16. ^ Herbold, McDonald & Cary 2014, p. 201.
  17. ^ Skotnicki, Bargagli & Ninham 2002, p. 776.
  18. ^ a b Bargagli, Broady & Walton 2004, p. 125.
  19. ^ Bergstrom, D. M.; Convey, P.; Huiskes, A. H. L., eds. (2006). Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator. Dordrecht: Springer Netherlands. p. 164. doi:10.1007/1-4020-5277-4. ISBN 978-1-4020-5276-7.
  20. ^ Herbold, McDonald & Cary 2014, pp. 194–195.
  21. ^ Herbold, McDonald & Cary 2014, p. 196.
  22. ^ Herbold, McDonald & Cary 2014, p. 204.
  23. ^ Poli, Annarita; Esposito, Enrico; Lama, Licia; Orlando, Pierangelo; Nicolaus, Giancarlo; de Appolonia, Francesca; Gambacorta, Agata; Nicolaus, Barbara (June 2006). "Anoxybacillus amylolyticus sp. nov., a thermophilic amylase producing bacterium isolated from Mount Rittmann (Antarctica)". Systematic and Applied Microbiology. 29 (4): 300–307. doi:10.1016/j.syapm.2005.10.003. PMID 16682297.
  24. ^ Nicolaus et al. 1998, p. 140.
  25. ^ Flores, Patricio A.; Amenábar, Maximiliano J.; Blamey, Jenny M. (2013), Satyanarayana, Tulasi; Littlechild, Jennifer; Kawarabayasi, Yutaka (eds.), "Hot Environments from Antarctica: Source of Thermophiles and Hyperthermophiles, with Potential Biotechnological Applications", Thermophilic Microbes in Environmental and Industrial Biotechnology: Biotechnology of Thermophiles, Springer Netherlands, p. 101, doi:10.1007/978-94-007-5899-5_3, ISBN 978-94-007-5899-5
  26. ^ Herbold, McDonald & Cary 2014, p. 206.
  27. ^ Kirby, Bronwyn M.; Easton, Samantha; Tuffin, I. Marla; Cowan, Don A. (2012-01-01). "Bacterial Diversity in Polar Habitats". Polar Microbiology: Life in a Deep Freeze: 12. doi:10.1128/9781555817183.ch1. ISBN 9781555816049.
  28. ^ a b Herbold, McDonald & Cary 2014, p. 184.
  29. ^ "Management Plan For Antarctic Specially Protected Area No. 175 HIGH ALTITUDE GEOTHERMAL SITES OF THE ROSS SEA REGION (including parts of the summits of Mount Erebus, Ross Island and Mount Melbourne and Mount Rittmann, northern Victoria Land)" (PDF). Antarctic Treaty Secretariat (ATS). 2014. Retrieved 27 January 2020.
  30. ^ a b c Perchiazzi, Natale; Folco, Luigi; Mellini, Marcello (6 May 2004). "Volcanic ash bands in the Frontier Mountain and Lichen Hills blue-ice fields, northern Victoria Land". Antarctic Science. 11 (3): 360. doi:10.1017/S0954102099000449. S2CID 131337143 – via ResearchGate.
  31. ^ a b Armienti & Tripodo 1991, p. 432.
  32. ^ Armienti & Tripodo 1991, p. 431.
  33. ^ Bonaccorso et al. 1991, p. 455.
  34. ^ a b Narcisi et al. 2016, p. 71.
  35. ^ a b Smellie, John L.; Rocchi, Sergio (2021). "Chapter 5.1a Northern Victoria Land: volcanology". Geological Society, London, Memoirs. 55 (1): 371. doi:10.1144/M55-2018-60. ISSN 0435-4052. S2CID 233887403.
  36. ^ Armienti & Tripodo 1991, p. 442.
  37. ^ Baroni, Carlo; Frezzotti, Massimo; Salvatore, Maria Cristina; Meneghel, Mirco; Tabacco, Ignazio E.; Vittuari, Luca; Bondesan, Aldino; Biasini, Alessandro; Cimbelli, Alessandro; Orombelli, Giuseppe (2004). "Antarctic geomorphological and glaciological 1 : 250 000 map series: Mount Murchison quadrangle, northern Victoria Land. Explanatory notes". Annals of Glaciology. 39: 258. doi:10.3189/172756404781814131. ISSN 0260-3055.
  38. ^ a b c Di Roberto et al. 2020, p. 16.
  39. ^ Narcisi et al. 2016, p. 69.
  40. ^ Del Carlo, P.; Di Roberto, A.; Di Vincenzo, G.; Bertagnini, A.; Landi, P.; Pompilio, M.; Colizza, E.; Giordano, G. (14 April 2015). "Late Pleistocene-Holocene volcanic activity in northern Victoria Land recorded in Ross Sea (Antarctica) marine sediments". Bulletin of Volcanology. 77 (5): 13. Bibcode:2015BVol...77...36D. doi:10.1007/s00445-015-0924-0. hdl:11368/2857700. ISSN 1432-0819. S2CID 129707264.
  41. ^ a b Di Roberto et al. 2020, p. 18.
  42. ^ a b c Di Roberto et al. 2019, p. 6.
  43. ^ a b Di Roberto et al. 2019, p. 5.
  44. ^ a b c Lee et al. 2019, p. 170.
  45. ^ Contrafatto, Danilo; Fasone, Rosario; Ferro, Angelo; Larocca, Graziano; Laudani, Giuseppe; Rapisarda, Salvatore; Scuderi, Luciano; Zuccarello, Luciano; Privitera, Eugenio; Cannata, Andrea (1 April 2018). "Design of a seismo-acoustic station for Antarctica". Review of Scientific Instruments. 89 (4): 3. Bibcode:2018RScI...89d4502C. doi:10.1063/1.5023481. ISSN 0034-6748. PMID 29716353. S2CID 19216985.
  46. ^ Gambino et al. 2021, p. 755.
  47. ^ Patrick, Matthew R.; Smellie, John L. (August 2013). "Synthesis A spaceborne inventory of volcanic activity in Antarctica and southern oceans, 2000–10". Antarctic Science. 25 (4): 4781. Bibcode:2013AntSc..25..475P. doi:10.1017/S0954102013000436. ISSN 0954-1020. S2CID 128905897.
  48. ^ Di Roberto et al. 2019, p. 7.
Sources
  • Armienti, P.; Tripodo, A. (1991). "Petrography and geochemistry of lavas and comagmatic xenoliths of Mt. Rittmann, a volcano discovered during the IV Italian Expedition in Northern Victoria Land (Antarctica)". Memorie della Società Geologica Italiana. 46: 427–451 – via ResearchGate.
  • Bargagli, R.; Broady, P.A.; Walton, D.W.H. (12 May 2004). "Preliminary investigation of the thermal biosystem of Mount Rittmann fumaroles (northern Victoria Land, Antarctica)". Antarctic Science. 8 (2): 121–126. doi:10.1017/S0954102096000181. S2CID 131300952 – via Academia.edu.
  • Bonaccorso, A; Maione, M; Pertusati, PC; Privitera, E (1991). "Fumarolic activity at Mt. Rittmann volcano (northern Victoria Land, Antarctica)". Memorie della Societa Geologica Italiana. 46: 453–456.
  • Di Roberto, Alessio; Colizza, Ester; Del Carlo, Paola; Petrelli, Maurizio; Finocchiaro, Furio; Kuhn, Gerhard (23 July 2019). "First marine cryptotephra in Antarctica found in sediments of the western Ross Sea correlates with englacial tephras and climate records". Scientific Reports. 9 (1): 10628. Bibcode:2019NatSR...910628D. doi:10.1038/s41598-019-47188-3. ISSN 2045-2322. PMC 6650406. PMID 31337844.
  • Di Roberto, A.; Albert, P. G.; Colizza, E.; Del Carlo, P.; Di Vincenzo, G.; Gallerani, A.; Giglio, F.; Kuhn, G.; Macrì, P.; Manning, C. J.; Melis, R.; Miserocchi, S.; Scateni, B.; Smith, V. C.; Torricella, F.; Winkler, A. (15 December 2020). "Evidence for a large-magnitude Holocene eruption of Mount Rittmann (Antarctica): A volcanological reconstruction using the marine tephra record". Quaternary Science Reviews. 250: 106629. Bibcode:2020QSRv..25006629D. doi:10.1016/j.quascirev.2020.106629. ISSN 0277-3791.
  • Gambino, Salvatore; Armienti, Pietro; Cannata, Andrea; Del Carlo, Paola; Giudice, Gaetano; Giuffrida, Giovanni; Liuzzo, Marco; Pompilio, Massimo (2021). "Chapter 7.3 Mount Melbourne and Mount Rittmann". Geological Society, London, Memoirs. 55 (1): 741–758. doi:10.1144/M55-2018-43. ISSN 0435-4052. S2CID 233644429.
  • Herbold, Craig W.; McDonald, Ian R.; Cary, S. Craig (2014), Cowan, Don A. (ed.), "Microbial Ecology of Geothermal Habitats in Antarctica", Antarctic Terrestrial Microbiology: Physical and Biological Properties of Antarctic Soils, Springer, pp. 181–215, doi:10.1007/978-3-642-45213-0_10, ISBN 978-3-642-45213-0
  • Lee, Mi Jung; Kyle, Philip R.; Iverson, Nels A.; Lee, Jong Ik; Han, Yeongcheol (1 September 2019). "Rittmann volcano, Antarctica as the source of a widespread 1252 ± 2 CE tephra layer in Antarctica ice". Earth and Planetary Science Letters. 521: 169–176. Bibcode:2019E&PSL.521..169L. doi:10.1016/j.epsl.2019.06.002. ISSN 0012-821X. S2CID 198411649.
  • Narcisi, Biancamaria; Petit, Jean Robert; Langone, Antonio; Stenni, Barbara (1 February 2016). "A new Eemian record of Antarctic tephra layers retrieved from the Talos Dome ice core (Northern Victoria Land)" (PDF). Global and Planetary Change. 137: 69–78. Bibcode:2016GPC...137...69N. doi:10.1016/j.gloplacha.2015.12.016. hdl:2027.42/148354. ISSN 0921-8181.
  • Nicolaus, Barbara; Improta, Roberta; Manca, Maria C.; Lama, Licia; Esposito, Enrico; Gambacorta, Agata (21 January 1998). "Alicyclobacilli from an unexplored geothermal soil in Antarctica: Mount Rittmann". Polar Biology. 19 (2): 133–141. doi:10.1007/s003000050224. ISSN 0722-4060. S2CID 22521845.
  • Skotnicki, M.; Bargagli, R.; Ninham, J. (1 October 2002). "Genetic diversity in the moss Pohlia nutans on geothermal ground of Mount Rittmann, Victoria Land, Antarctica". Polar Biology. 25 (10): 771–777. doi:10.1007/s00300-002-0418-3. ISSN 1432-2056. S2CID 1479671.

mount, rittmann, volcano, antarctica, discovered, 1988, 1989, italian, expedition, named, after, volcanologist, alfred, rittmann, 1893, 1980, features, kilometres, kilometres, wide, caldera, which, crops, from, underneath, aviator, glacier, volcano, active, du. Mount Rittmann is a volcano in Antarctica Discovered in 1988 1989 by an Italian expedition it was named after the volcanologist Alfred Rittmann 1893 1980 It features a 2 kilometres 1 2 mi or 8 by 5 kilometres 5 0 mi 3 1 mi wide caldera which crops out from underneath the Aviator Glacier The volcano was active during the Pliocene and into the Holocene including large explosive eruptions a major eruption occurred in 1254 CE and deposited tephra over much of Antarctica Currently the volcano is classified as dormant Mount RittmannHighest pointElevation2 600 m 8 500 ft 1 Coordinates73 27 S 165 30 E 73 45 S 165 5 E 73 45 165 5 1 NamingEtymologyVolcanologist Alfred RittmannGeographyParent rangeMountaineer RangeGeologyAge of rockPlioceneMountain typeVolcanoVolcanic beltMcMurdo Volcanic GroupLast eruption gt 1254 CE The volcano is fumarolically active The geothermal activity keeps part of the caldera ice free mosses and various microorganisms grow on this ice free terrain Such an occurrence of mosses on fumarolically active volcanoes of Antarctica is limited to Mount Rittmann Mount Melbourne and Mount Erebus and has led to efforts to establish a protected area on the volcano Contents 1 Geography and geomorphology 1 1 Fumaroles and their ecosystems 2 Geology 3 Eruption history 4 ReferencesGeography and geomorphology editIt lies in Victoria Land on the Ross Sea 2 100 kilometres 62 mi from Terranova Bay 3 and 150 kilometres 93 mi from the Italian Mario Zucchelli Station 4 It was discovered by an Italian expedition in 1988 1989 5 and named in honour of the volcanologist Alfred Rittmann 6 Owing to having only been recently discovered and being remote the volcano is poorly studied 7 Mount Rittmann is 2 600 metres 8 500 ft high 1 and lies in the Mountaineer Range 5 A 2 kilometres 1 2 mi 8 or 8 by 5 kilometres 5 0 mi 3 1 mi wide caldera is located underneath the Aviator Glacier 1 it is outlined by a ring of volcanic hills and outcrops 5 that emerge slightly 9 from an almost flat surrounding terrain 10 The name Mt Rittmann is sometimes applied to a fumarolically active nunatak on the caldera rim 11 The base of the volcano crops out from the Pilot Glacier 5 which together with the caldera is one of the few parts of the 6 otherwise snow and ice covered volcano 2 that aren t encased in ice 6 Outcrops consist of hyaloclastites lava flows and pillow lavas 10 Fumaroles and their ecosystems edit An Italian expedition in 1990 1991 discovered heated ground and fumaroles at the caldera implying that molten magma exists underneath the volcano 5 The fumarolic activity occurs at a 200 metres 660 ft wide and 80 metres 260 ft high face 12 with sandy gravelly soil 13 another warm area is reported from the lower slopes 2 The vents of the fumaroles are centimetres wide and surrounded by efflorescences formed by hydrothermally altered rocks 5 Fumarolic gases contain carbon dioxide and methane and lack hydrogen sulfide and sulfur dioxide 14 The fumaroles keep an area of the caldera at 2 250 metres 7 380 ft elevation ice free 2 at 2 100 metres 6 900 ft elevation mean temperatures are 20 C 4 F but fumarolic activity heats the surrounding rocks up to 60 C 140 F 3 Surface temperatures reach 43 4 C 110 1 F 12 Patches of 2 moss grow in rosette form 15 on sandy soil in the fumarolic areas 2 at temperatures of 17 35 C 63 95 F 16 A steady supply of water the fumarolic warmth and shelter allow the growth of this vegetation 2 such volcanic vegetation is also found at volcanoes Mount Erebus and Mount Melbourne 5 The mosses may have arrived there by wind 17 Pohlia nutans the moss found at Mount Rittmann is a cosmopolitan species which is also encountered elsewhere in Victoria Land 18 Genetic analysis indicates that the mosses growing at Mount Rittmann arrived there in one event and are not diverse 19 Research on microbial communities at Mount Rittmann fumaroles has found bacteria including cyanobacteria 20 fungi including yeast 21 and cyanobacterial microbial mats 22 Algae and protozoa have been identified at Mount Rittmann fumaroles 18 The bacterial species Anoxybacillus amylolyticus 23 and the subspecies Alicyclobacillus acidocaldarius subsp rittmannii were discovered at fumaroles of Mount Rittmann 24 and the bacterium Bacillus fumarioli was cultured from Mount Rittmann and Mount Melbourne 25 Alicyclobacillus acidocaldarius subsp rittmannii is used in studied of thermophilic enzymes 26 Another thermophilic bacteria reported from Mount Rittmann is Aneurinibacillus terranovensis 27 Together with Deception Island Mount Erebus and Mount Melbourne Mount Rittmann is one of the four volcanoes in Antarctica with known geothermal habitats 28 and the least studied of these 4 Three other volcanoes show evidence of past or present fumarolic activity 28 There are efforts by Antarctica New Zealand to establish an Antarctic Specially Protected Area ASPA on Mount Rittmann 13 and in 2014 Mount Rittmann was reportedly part of ASPA 175 29 Geology editThe volcano is part of the McMurdo Volcanic Group one of the largest provinces of alkaline volcanism in the world It has been subdivided into four subprovinces Mount Rittmann is considered part of the Melbourne subprovince 5 or of the Mount Overlord volcanic field 30 The volcanic province is related to the tectonic events that occurred during the rifting of the Ross Sea Activity commenced during the Eocene Oligocene and continued into the Holocene 10 The outcrops around the caldera rim are formed by breccia which contains juvenile pumice and xenoliths 5 The volcanic rocks define a basanitic hawaiitic mugearitic 31 phonolithic and trachytic suite 10 that is alkaline and sodic 32 and features olivine and plagioclase phenocrysts 31 Xenoliths include both granite and metamorphic rocks from the basement and volcanic rocks 10 Hydrothermal alteration has occurred close to the fumaroles 33 Eruption history editThe volcano is of Pliocene age 34 and was active between 4 million years ago and 70 000 years ago 1 although the oldest rocks may actually be from a separate volcano 35 Radiometric dating has yielded ages of 3 97 million years for rocks at the base of Mount Rittmann and 240 000 200 000 170 000 20 000 and 70 000 20 000 years ago for lava flows 30 The caldera appears to be younger than the volcanic rocks at Pilot Glacier 5 although its unimpressive topographical expression might indicate an old age 35 It was possibly formed by a Plinian eruption 36 Tephra deposits at Outback Nunataks 37 various marine and ice core tephras 38 Eemian age tephras at Talos Dome in East Antarctica 39 and dust bands found in blue ice areas of Frontier Mountain and Lichen Hill in Victoria Land may originate from Mount Rittmann 30 and at least four large eruptions took place in the last 74 000 years 38 The eruption history of the volcano is poorly known due to the scarcity of outcrops 40 About 11 000 years ago Mount Rittmann had a large explosive eruption which deposited the Aviator Tephra in the Aviator Basin of the Ross Sea Reconstructions imply that the eruption commenced as a hydromagmatic event which then transitioned into a Plinian eruption which yielded lapilli and volcanic ash 41 Presumably the volcano was ice clad when the eruption commenced and meltwater from the ice interacted with the magma to trigger hydromagmatic activity 38 At the end a caldera collapse may have occurred and the volcano produced ignimbrites 41 Tephrochronology has found evidence that Mount Rittmann erupted in 1254 42 and deposited a tephra layer across Antarctica 43 This Rittmann tephra 44 or 1254 C E tephra has been identified in ice cores of East and West Antarctica 43 its discovery at Edisto Inlet expands its occurrence to an area of over 950 000 square kilometres 370 000 sq mi all around the volcano and to distances of over 2 000 kilometres 1 200 mi Magma was efficiently fragmented during the eruption 42 which may 44 or may not have been intense 42 It probably was one of the largest Holocene eruptions of Antarctica 44 before its source at Mount Rittmann was discovered it was attributed to The Pleiades volcanoes 8 Additional eruptions may have occurred after 1254 8 Presently the volcano is considered quiescent 34 and is not monitored 11 although a seismo tectonic station was installed in its vicinity 45 and has recorded seismic activity some of which may be due to ice movements and the other of volcanic origin 46 Small thermal anomalies have been observed from Landsat satellite images and may correspond to fumarolic activity 47 A repeat of the 1254 eruption could form a long lasting ash cloud ashfall on nearby research stations 48 and disruption of air traffic to and from McMurdo Station 11 References edit a b c d e Mount Rittmann Global Volcanism Program Smithsonian Institution a b c d e f g Skotnicki Bargagli amp Ninham 2002 p 771 a b Nicolaus et al 1998 p 134 a b Herbold McDonald amp Cary 2014 p 185 a b c d e f g h i j Bargagli Broady amp Walton 2004 p 121 a b c Armienti amp Tripodo 1991 p 427 Gambino et al 2021 p 751 a b c Lee et al 2019 p 174 Gambino et al 2021 p 748 a b c d e Armienti amp Tripodo 1991 p 430 a b c Lee et al 2019 p 175 a b Herbold McDonald amp Cary 2014 p 189 a b Herbold McDonald amp Cary 2014 p 190 Gambino et al 2021 p 754 Smith R I Lewis March 2005 The thermophilic bryoflora of Deception Island unique plant communities as a criterion for designating an Antarctic Specially Protected Area Antarctic Science 17 1 25 Bibcode 2005AntSc 17 17S doi 10 1017 S0954102005002385 ISSN 1365 2079 S2CID 129016393 Herbold McDonald amp Cary 2014 p 201 Skotnicki Bargagli amp Ninham 2002 p 776 a b Bargagli Broady amp Walton 2004 p 125 Bergstrom D M Convey P Huiskes A H L eds 2006 Trends in Antarctic Terrestrial and Limnetic Ecosystems Antarctica as a Global Indicator Dordrecht Springer Netherlands p 164 doi 10 1007 1 4020 5277 4 ISBN 978 1 4020 5276 7 Herbold McDonald amp Cary 2014 pp 194 195 Herbold McDonald amp Cary 2014 p 196 Herbold McDonald amp Cary 2014 p 204 Poli Annarita Esposito Enrico Lama Licia Orlando Pierangelo Nicolaus Giancarlo de Appolonia Francesca Gambacorta Agata Nicolaus Barbara June 2006 Anoxybacillus amylolyticus sp nov a thermophilic amylase producing bacterium isolated from Mount Rittmann Antarctica Systematic and Applied Microbiology 29 4 300 307 doi 10 1016 j syapm 2005 10 003 PMID 16682297 Nicolaus et al 1998 p 140 Flores Patricio A Amenabar Maximiliano J Blamey Jenny M 2013 Satyanarayana Tulasi Littlechild Jennifer Kawarabayasi Yutaka eds Hot Environments from Antarctica Source of Thermophiles and Hyperthermophiles with Potential Biotechnological Applications Thermophilic Microbes in Environmental and Industrial Biotechnology Biotechnology of Thermophiles Springer Netherlands p 101 doi 10 1007 978 94 007 5899 5 3 ISBN 978 94 007 5899 5 Herbold McDonald amp Cary 2014 p 206 Kirby Bronwyn M Easton Samantha Tuffin I Marla Cowan Don A 2012 01 01 Bacterial Diversity in Polar Habitats Polar Microbiology Life in a Deep Freeze 12 doi 10 1128 9781555817183 ch1 ISBN 9781555816049 a b Herbold McDonald amp Cary 2014 p 184 Management Plan For Antarctic Specially Protected Area No 175 HIGH ALTITUDE GEOTHERMAL SITES OF THE ROSS SEA REGION including parts of the summits of Mount Erebus Ross Island and Mount Melbourne and Mount Rittmann northern Victoria Land PDF Antarctic Treaty Secretariat ATS 2014 Retrieved 27 January 2020 a b c Perchiazzi Natale Folco Luigi Mellini Marcello 6 May 2004 Volcanic ash bands in the Frontier Mountain and Lichen Hills blue ice fields northern Victoria Land Antarctic Science 11 3 360 doi 10 1017 S0954102099000449 S2CID 131337143 via ResearchGate a b Armienti amp Tripodo 1991 p 432 Armienti amp Tripodo 1991 p 431 Bonaccorso et al 1991 p 455 a b Narcisi et al 2016 p 71 a b Smellie John L Rocchi Sergio 2021 Chapter 5 1a Northern Victoria Land volcanology Geological Society London Memoirs 55 1 371 doi 10 1144 M55 2018 60 ISSN 0435 4052 S2CID 233887403 Armienti amp Tripodo 1991 p 442 Baroni Carlo Frezzotti Massimo Salvatore Maria Cristina Meneghel Mirco Tabacco Ignazio E Vittuari Luca Bondesan Aldino Biasini Alessandro Cimbelli Alessandro Orombelli Giuseppe 2004 Antarctic geomorphological and glaciological 1 250 000 map series Mount Murchison quadrangle northern Victoria Land Explanatory notes Annals of Glaciology 39 258 doi 10 3189 172756404781814131 ISSN 0260 3055 a b c Di Roberto et al 2020 p 16 Narcisi et al 2016 p 69 Del Carlo P Di Roberto A Di Vincenzo G Bertagnini A Landi P Pompilio M Colizza E Giordano G 14 April 2015 Late Pleistocene Holocene volcanic activity in northern Victoria Land recorded in Ross Sea Antarctica marine sediments Bulletin of Volcanology 77 5 13 Bibcode 2015BVol 77 36D doi 10 1007 s00445 015 0924 0 hdl 11368 2857700 ISSN 1432 0819 S2CID 129707264 a b Di Roberto et al 2020 p 18 a b c Di Roberto et al 2019 p 6 a b Di Roberto et al 2019 p 5 a b c Lee et al 2019 p 170 Contrafatto Danilo Fasone Rosario Ferro Angelo Larocca Graziano Laudani Giuseppe Rapisarda Salvatore Scuderi Luciano Zuccarello Luciano Privitera Eugenio Cannata Andrea 1 April 2018 Design of a seismo acoustic station for Antarctica Review of Scientific Instruments 89 4 3 Bibcode 2018RScI 89d4502C doi 10 1063 1 5023481 ISSN 0034 6748 PMID 29716353 S2CID 19216985 Gambino et al 2021 p 755 Patrick Matthew R Smellie John L August 2013 Synthesis A spaceborne inventory of volcanic activity in Antarctica and southern oceans 2000 10 Antarctic Science 25 4 4781 Bibcode 2013AntSc 25 475P doi 10 1017 S0954102013000436 ISSN 0954 1020 S2CID 128905897 Di Roberto et al 2019 p 7 Sources Armienti P Tripodo A 1991 Petrography and geochemistry of lavas and comagmatic xenoliths of Mt Rittmann a volcano discovered during the IV Italian Expedition in Northern Victoria Land Antarctica Memorie della Societa Geologica Italiana 46 427 451 via ResearchGate Bargagli R Broady P A Walton D W H 12 May 2004 Preliminary investigation of the thermal biosystem of Mount Rittmann fumaroles northern Victoria Land Antarctica Antarctic Science 8 2 121 126 doi 10 1017 S0954102096000181 S2CID 131300952 via Academia edu Bonaccorso A Maione M Pertusati PC Privitera E 1991 Fumarolic activity at Mt Rittmann volcano northern Victoria Land Antarctica Memorie della Societa Geologica Italiana 46 453 456 Di Roberto Alessio Colizza Ester Del Carlo Paola Petrelli Maurizio Finocchiaro Furio Kuhn Gerhard 23 July 2019 First marine cryptotephra in Antarctica found in sediments of the western Ross Sea correlates with englacial tephras and climate records Scientific Reports 9 1 10628 Bibcode 2019NatSR 910628D doi 10 1038 s41598 019 47188 3 ISSN 2045 2322 PMC 6650406 PMID 31337844 Di Roberto A Albert P G Colizza E Del Carlo P Di Vincenzo G Gallerani A Giglio F Kuhn G Macri P Manning C J Melis R Miserocchi S Scateni B Smith V C Torricella F Winkler A 15 December 2020 Evidence for a large magnitude Holocene eruption of Mount Rittmann Antarctica A volcanological reconstruction using the marine tephra record Quaternary Science Reviews 250 106629 Bibcode 2020QSRv 25006629D doi 10 1016 j quascirev 2020 106629 ISSN 0277 3791 Gambino Salvatore Armienti Pietro Cannata Andrea Del Carlo Paola Giudice Gaetano Giuffrida Giovanni Liuzzo Marco Pompilio Massimo 2021 Chapter 7 3 Mount Melbourne and Mount Rittmann Geological Society London Memoirs 55 1 741 758 doi 10 1144 M55 2018 43 ISSN 0435 4052 S2CID 233644429 Herbold Craig W McDonald Ian R Cary S Craig 2014 Cowan Don A ed Microbial Ecology of Geothermal Habitats in Antarctica Antarctic Terrestrial Microbiology Physical and Biological Properties of Antarctic Soils Springer pp 181 215 doi 10 1007 978 3 642 45213 0 10 ISBN 978 3 642 45213 0 Lee Mi Jung Kyle Philip R Iverson Nels A Lee Jong Ik Han Yeongcheol 1 September 2019 Rittmann volcano Antarctica as the source of a widespread 1252 2 CE tephra layer in Antarctica ice Earth and Planetary Science Letters 521 169 176 Bibcode 2019E amp PSL 521 169L doi 10 1016 j epsl 2019 06 002 ISSN 0012 821X S2CID 198411649 Narcisi Biancamaria Petit Jean Robert Langone Antonio Stenni Barbara 1 February 2016 A new Eemian record of Antarctic tephra layers retrieved from the Talos Dome ice core Northern Victoria Land PDF Global and Planetary Change 137 69 78 Bibcode 2016GPC 137 69N doi 10 1016 j gloplacha 2015 12 016 hdl 2027 42 148354 ISSN 0921 8181 Nicolaus Barbara Improta Roberta Manca Maria C Lama Licia Esposito Enrico Gambacorta Agata 21 January 1998 Alicyclobacilli from an unexplored geothermal soil in Antarctica Mount Rittmann Polar Biology 19 2 133 141 doi 10 1007 s003000050224 ISSN 0722 4060 S2CID 22521845 Skotnicki M Bargagli R Ninham J 1 October 2002 Genetic diversity in the moss Pohlia nutans on geothermal ground of Mount Rittmann Victoria Land Antarctica Polar Biology 25 10 771 777 doi 10 1007 s00300 002 0418 3 ISSN 1432 2056 S2CID 1479671 Retrieved from https en wikipedia org w index php title Mount Rittmann amp oldid 1215614349, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.