fbpx
Wikipedia

Monoclonal antibody

A monoclonal antibody (mAb, more rarely called moAb) is an antibody produced from a cell lineage made by cloning a unique white blood cell. All subsequent antibodies derived this way trace back to a unique parent cell.

A general representation of the method used to produce monoclonal antibodies[1][2]

Monoclonal antibodies can have monovalent affinity, binding only to the same epitope (the part of an antigen that is recognized by the antibody). In contrast, polyclonal antibodies bind to multiple epitopes and are usually made by several different antibody-secreting plasma cell lineages. Bispecific monoclonal antibodies can also be engineered, by increasing the therapeutic targets of one monoclonal antibody to two epitopes.

It is possible to produce monoclonal antibodies that specifically bind to almost any suitable substance; they can then serve to detect or purify it. This capability has become an investigative tool in biochemistry, molecular biology, and medicine. Monoclonal antibodies are used in the diagnosis of illnesses such as cancer and infections[3] and are used therapeutically in the treatment of e.g. cancer and inflammatory diseases.

History edit

In the early 1900s, immunologist Paul Ehrlich proposed the idea of a Zauberkugel – "magic bullet", conceived of as a compound which selectively targeted a disease-causing organism, and could deliver a toxin for that organism. This underpinned the concept of monoclonal antibodies and monoclonal drug conjugates. Ehrlich and Élie Metchnikoff received the 1908 Nobel Prize for Physiology or Medicine for providing the theoretical basis for immunology.

By the 1970s, lymphocytes producing a single antibody were known, in the form of multiple myeloma – a cancer affecting B-cells. These abnormal antibodies or paraproteins were used to study the structure of antibodies, but it was not yet possible to produce identical antibodies specific to a given antigen.[4]: 324  In 1973, Jerrold Schwaber described the production of monoclonal antibodies using human–mouse hybrid cells.[5] This work remains widely cited among those using human-derived hybridomas.[6] In 1975, Georges Köhler and César Milstein succeeded in making fusions of myeloma cell lines with B cells to create hybridomas that could produce antibodies, specific to known antigens and that were immortalized.[7] They and Niels Kaj Jerne shared the Nobel Prize in Physiology or Medicine in 1984 for the discovery.[7]

In 1988, Gregory Winter and his team pioneered the techniques to humanize monoclonal antibodies,[8] eliminating the reactions that many monoclonal antibodies caused in some patients. By the 1990s research was making progress in using monoclonal antibodies therapeutically, and in 2018, James P. Allison and Tasuku Honjo received the Nobel Prize in Physiology or Medicine for their discovery of cancer therapy by inhibition of negative immune regulation, using monoclonal antibodies that prevent inhibitory linkages.[9]

Production edit

 
Looking at slides of cultures of cells that make monoclonal antibodies
 
Monoclonal antibodies can be grown in unlimited quantities in flasks.
 
Hand-filling wells with a liquid for a research test. This test involves preparation of cultures in which hybrids are grown in large quantities to produce desired antibody. This is effected by fusing a myeloma cell and a mouse lymphocyte to form a hybrid cell (hybridoma).
 
Bathing prepared slides in a solution

Hybridoma development edit

Much of the work behind production of monoclonal antibodies is rooted in the production of hybridomas, which involves identifying antigen-specific plasma/plasmablast cells that produce antibodies specific to an antigen of interest and fusing these cells with myeloma cells.[7] Rabbit B-cells can be used to form a rabbit hybridoma.[10][11] Polyethylene glycol is used to fuse adjacent plasma membranes,[12] but the success rate is low, so a selective medium in which only fused cells can grow is used. This is possible because myeloma cells have lost the ability to synthesize hypoxanthine-guanine-phosphoribosyl transferase (HGPRT), an enzyme necessary for the salvage synthesis of nucleic acids. The absence of HGPRT is not a problem for these cells unless the de novo purine synthesis pathway is also disrupted. Exposing cells to aminopterin (a folic acid analogue, which inhibits dihydrofolate reductase, DHFR), makes them unable to use the de novo pathway and become fully auxotrophic for nucleic acids, thus requiring supplementation to survive.

The selective culture medium is called HAT medium because it contains hypoxanthine, aminopterin and thymidine. This medium is selective for fused (hybridoma) cells. Unfused myeloma cells cannot grow because they lack HGPRT and thus cannot replicate their DNA. Unfused spleen cells cannot grow indefinitely because of their limited life span. Only fused hybrid cells referred to as hybridomas, are able to grow indefinitely in the medium because the spleen cell partner supplies HGPRT and the myeloma partner has traits that make it immortal (similar to a cancer cell).

This mixture of cells is then diluted and clones are grown from single parent cells on microtitre wells. The antibodies secreted by the different clones are then assayed for their ability to bind to the antigen (with a test such as ELISA or antigen microarray assay) or immuno-dot blot. The most productive and stable clone is then selected for future use.

The hybridomas can be grown indefinitely in a suitable cell culture medium. They can also be injected into mice (in the peritoneal cavity, surrounding the gut). There, they produce tumors secreting an antibody-rich fluid called ascites fluid.

The medium must be enriched during in vitro selection to further favour hybridoma growth. This can be achieved by the use of a layer of feeder fibrocyte cells or supplement medium such as briclone. Culture-media conditioned by macrophages can be used. Production in cell culture is usually preferred as the ascites technique is painful to the animal. Where alternate techniques exist, ascites is considered unethical.[13]

Novel mAb development technology edit

Several monoclonal antibody technologies have been developed recently,[14] such as phage display,[15] single B cell culture,[16] single cell amplification from various B cell populations[17][18][19][20][21] and single plasma cell interrogation technologies. Different from traditional hybridoma technology, the newer technologies use molecular biology techniques to amplify the heavy and light chains of the antibody genes by PCR and produce in either bacterial or mammalian systems with recombinant technology. One of the advantages of the new technologies is applicable to multiple animals, such as rabbit, llama, chicken and other common experimental animals in the laboratory.

Purification edit

After obtaining either a media sample of cultured hybridomas or a sample of ascites fluid, the desired antibodies must be extracted. Cell culture sample contaminants consist primarily of media components such as growth factors, hormones and transferrins. In contrast, the in vivo sample is likely to have host antibodies, proteases, nucleases, nucleic acids and viruses. In both cases, other secretions by the hybridomas such as cytokines may be present. There may also be bacterial contamination and, as a result, endotoxins that are secreted by the bacteria. Depending on the complexity of the media required in cell culture and thus the contaminants, one or the other method (in vivo or in vitro) may be preferable.

The sample is first conditioned, or prepared for purification. Cells, cell debris, lipids, and clotted material are first removed, typically by centrifugation followed by filtration with a 0.45 µm filter. These large particles can cause a phenomenon called membrane fouling in later purification steps. In addition, the concentration of product in the sample may not be sufficient, especially in cases where the desired antibody is produced by a low-secreting cell line. The sample is therefore concentrated by ultrafiltration or dialysis.

Most of the charged impurities are usually anions such as nucleic acids and endotoxins. These can be separated by ion exchange chromatography.[22] Either cation exchange chromatography is used at a low enough pH that the desired antibody binds to the column while anions flow through, or anion exchange chromatography is used at a high enough pH that the desired antibody flows through the column while anions bind to it. Various proteins can also be separated along with the anions based on their isoelectric point (pI). In proteins, the isoelectric point (pI) is defined as the pH at which a protein has no net charge. When the pH > pI, a protein has a net negative charge, and when the pH < pI, a protein has a net positive charge. For example, albumin has a pI of 4.8, which is significantly lower than that of most monoclonal antibodies, which have a pI of 6.1. Thus, at a pH between 4.8 and 6.1, the average charge of albumin molecules is likely to be more negative, while mAbs molecules are positively charged and hence it is possible to separate them. Transferrin, on the other hand, has a pI of 5.9, so it cannot be easily separated by this method. A difference in pI of at least 1 is necessary for a good separation.

Transferrin can instead be removed by size exclusion chromatography. This method is one of the more reliable chromatography techniques. Since we are dealing with proteins, properties such as charge and affinity are not consistent and vary with pH as molecules are protonated and deprotonated, while size stays relatively constant. Nonetheless, it has drawbacks such as low resolution, low capacity and low elution times.

A much quicker, single-step method of separation is protein A/G affinity chromatography. The antibody selectively binds to protein A/G, so a high level of purity (generally >80%) is obtained. However, this method may be problematic for antibodies that are easily damaged, as harsh conditions are generally used. A low pH can break the bonds to remove the antibody from the column. In addition to possibly affecting the product, low pH can cause protein A/G itself to leak off the column and appear in the eluted sample. Gentle elution buffer systems that employ high salt concentrations are available to avoid exposing sensitive antibodies to low pH. Cost is also an important consideration with this method because immobilized protein A/G is a more expensive resin.

To achieve maximum purity in a single step, affinity purification can be performed, using the antigen to provide specificity for the antibody. In this method, the antigen used to generate the antibody is covalently attached to an agarose support. If the antigen is a peptide, it is commonly synthesized with a terminal cysteine, which allows selective attachment to a carrier protein, such as KLH during development and to support purification. The antibody-containing medium is then incubated with the immobilized antigen, either in batch or as the antibody is passed through a column, where it selectively binds and can be retained while impurities are washed away. An elution with a low pH buffer or a more gentle, high salt elution buffer is then used to recover purified antibody from the support.

Antibody heterogeneity edit

Product heterogeneity is common in monoclonal antibodies and other recombinant biological products and is typically introduced either upstream during expression or downstream during manufacturing.[citation needed]

These variants are typically aggregates, deamidation products, glycosylation variants, oxidized amino acid side chains, as well as amino and carboxyl terminal amino acid additions.[23] These seemingly minute structural changes can affect preclinical stability and process optimization as well as therapeutic product potency, bioavailability and immunogenicity. The generally accepted purification method of process streams for monoclonal antibodies includes capture of the product target with protein A, elution, acidification to inactivate potential mammalian viruses, followed by ion chromatography, first with anion beads and then with cation beads.[citation needed]

Displacement chromatography has been used to identify and characterize these often unseen variants in quantities that are suitable for subsequent preclinical evaluation regimens such as animal pharmacokinetic studies.[24][25] Knowledge gained during the preclinical development phase is critical for enhanced product quality understanding and provides a basis for risk management and increased regulatory flexibility. The recent Food and Drug Administration's Quality by Design initiative attempts to provide guidance on development and to facilitate design of products and processes that maximizes efficacy and safety profile while enhancing product manufacturability.[26]

Recombinant edit

The production of recombinant monoclonal antibodies involves repertoire cloning, CRISPR/Cas9, or phage display/yeast display technologies.[27] Recombinant antibody engineering involves antibody production by the use of viruses or yeast, rather than mice. These techniques rely on rapid cloning of immunoglobulin gene segments to create libraries of antibodies with slightly different amino acid sequences from which antibodies with desired specificities can be selected.[28] The phage antibody libraries are a variant of phage antigen libraries.[29] These techniques can be used to enhance the specificity with which antibodies recognize antigens, their stability in various environmental conditions, their therapeutic efficacy and their detectability in diagnostic applications.[30] Fermentation chambers have been used for large scale antibody production.

Chimeric antibodies edit

While mouse and human antibodies are structurally similar, the differences between them were sufficient to invoke an immune response when murine monoclonal antibodies were injected into humans, resulting in their rapid removal from the blood, as well as systemic inflammatory effects and the production of human anti-mouse antibodies (HAMA).

Recombinant DNA has been explored since the late 1980s to increase residence times. In one approach called "CDR grafting",[31] mouse DNA encoding the binding portion of a monoclonal antibody was merged with human antibody-producing DNA in living cells. The expression of this "chimeric" or "humanised" DNA through cell culture yielded part-mouse, part-human antibodies.[32][33]

Human antibodies edit

 
Approaches have been developed to isolate human monoclonal antibodies.[14]

Ever since the discovery that monoclonal antibodies could be generated, scientists have targeted the creation of fully human products to reduce the side effects of humanised or chimeric antibodies. Several successful approaches have been proposed: transgenic mice,[34] phage display[15] and single B cell cloning.[14]

Cost edit

Monoclonal antibodies are more expensive to manufacture than small molecules due to the complex processes involved and the general size of the molecules, all in addition to the enormous research and development costs involved in bringing a new chemical entity to patients. They are priced to enable manufacturers to recoup the typically large investment costs, and where there are no price controls, such as the United States, prices can be higher if they provide great value. Seven University of Pittsburgh researchers concluded, "The annual price of mAb therapies is about $100,000 higher in oncology and hematology than in other disease states", comparing them on a per patient basis, to those for cardiovascular or metabolic disorders, immunology, infectious diseases, allergy, and ophthalmology.[35]

Applications edit

Diagnostic tests edit

Once monoclonal antibodies for a given substance have been produced, they can be used to detect the presence of this substance. Proteins can be detected using the Western blot and immuno dot blot tests. In immunohistochemistry, monoclonal antibodies can be used to detect antigens in fixed tissue sections, and similarly, immunofluorescence can be used to detect a substance in either frozen tissue section or live cells.

Analytic and chemical uses edit

Antibodies can also be used to purify their target compounds from mixtures, using the method of immunoprecipitation.

Therapeutic uses edit

Therapeutic monoclonal antibodies act through multiple mechanisms, such as blocking of targeted molecule functions, inducing apoptosis in cells which express the target, or by modulating signalling pathways.[36][37]

Cancer treatment edit

One possible treatment for cancer involves monoclonal antibodies that bind only to cancer-cell-specific antigens and induce an immune response against the target cancer cell. Such mAbs can be modified for delivery of a toxin, radioisotope, cytokine or other active conjugate or to design bispecific antibodies that can bind with their Fab regions both to target antigen and to a conjugate or effector cell. Every intact antibody can bind to cell receptors or other proteins with its Fc region.

 
Monoclonal antibodies for cancer. ADEPT, antibody directed enzyme prodrug therapy; ADCC: antibody dependent cell-mediated cytotoxicity; CDC: complement-dependent cytotoxicity; MAb: monoclonal antibody; scFv, single-chain Fv fragment.[38]

MAbs approved by the FDA for cancer include:[39]

Autoimmune diseases edit

Monoclonal antibodies used for autoimmune diseases include infliximab and adalimumab, which are effective in rheumatoid arthritis, Crohn's disease, ulcerative colitis and ankylosing spondylitis by their ability to bind to and inhibit TNF-α.[40] Basiliximab and daclizumab inhibit IL-2 on activated T cells and thereby help prevent acute rejection of kidney transplants.[40] Omalizumab inhibits human immunoglobulin E (IgE) and is useful in treating moderate-to-severe allergic asthma.

Examples of therapeutic monoclonal antibodies edit

Monoclonal antibodies for research applications can be found directly from antibody suppliers, or through use of a specialist search engine like CiteAb. Below are examples of clinically important monoclonal antibodies.

Main category Type Application Mechanism/Target Mode
Anti-
inflammatory
infliximab[40] inhibits TNF-α chimeric
adalimumab inhibits TNF-α human
ustekinumab blocks interleukin IL-12 and IL-23 human
basiliximab[40] inhibits IL-2 on activated T cells chimeric
daclizumab[40] inhibits IL-2 on activated T cells humanized
omalizumab inhibits human immunoglobulin E (IgE) humanized
Anti-cancer gemtuzumab[40] targets myeloid cell surface antigen CD33 on leukemia cells humanized
alemtuzumab[40] targets an antigen CD52 on T- and B-lymphocytes humanized
rituximab[40] targets phosphoprotein CD20 on B lymphocytes chimeric
trastuzumab
  • breast cancer with HER2/neu overexpression
targets the HER2/neu (erbB2) receptor humanized
nimotuzumab EGFR inhibitor humanized
cetuximab EGFR inhibitor chimeric
panitumumab EGFR inhibitor human
bevacizumab & ranibizumab inhibits VEGF humanized
Anti-cancer and anti-viral bavituximab[41] immunotherapy, targets phosphatidylserine[41] chimeric
Anti-viral

casirivimab/imdevimab[42]

immunotherapy, targets spike protein of SARS-CoV-2 human
bamlanivimab/etesevimab[43] immunotherapy, targets spike protein of SARS-CoV-2 human
Sotrovimab[44] immunotherapy, targets spike protein of SARS-CoV-2 human
Other palivizumab[40]
  • RSV infections in children
inhibits an RSV fusion (F) protein humanized
abciximab[40] inhibits the receptor GpIIb/IIIa on platelets chimeric

COVID-19 edit

In 2020, the monoclonal antibody therapies bamlanivimab/etesevimab and casirivimab/imdevimab were given emergency use authorizations by the US Food and Drug Administration to reduce the number of hospitalizations, emergency room visits, and deaths.[42][43] In September 2021, the Biden administration purchased US$2.9 billion worth of Regeneron monoclonal antibodies at $2,100 per dose to curb the shortage.[45]

As of December 2021, in vitro neutralization tests indicate monoclonal antibody therapies (with the exception of sotrovimab and tixagevimab/cilgavimab) were not likely to be active against the Omicron variant.[46]

Over 2021–22, two Cochrane reviews found insufficient evidence for using neutralizing monoclonal antibodies to treat COVID-19 infections.[47][48] The reviews applied only to people who were unvaccinated against COVID‐19, and only to the COVID-19 variants existing during the studies, not to newer variants, such as Omicron.[48]

Side effects edit

Several monoclonal antibodies, such as bevacizumab and cetuximab, can cause different kinds of side effects.[49] These side effects can be categorized into common and serious side effects.[50]

Some common side effects include:

  • Dizziness
  • Headaches
  • Allergies
  • Diarrhea
  • Cough
  • Fever
  • Itching
  • Back pain
  • General weakness
  • Loss of appetite
  • Insomnia
  • Constipation[51]

Among the possible serious side effects are:[51]

See also edit

References edit

  1. ^ "Cytochrome P450 Mediated Drug and Carcinogen Metabolism using Monoclonal Antibodies". home.ccr.cancer.gov. Retrieved 2 April 2018.
  2. ^ Gelboin HV, Krausz KW, Gonzalez FJ, Yang TJ (November 1999). "Inhibitory monoclonal antibodies to human cytochrome P450 enzymes: a new avenue for drug discovery". Trends in Pharmacological Sciences. 20 (11): 432–438. doi:10.1016/S0165-6147(99)01382-6. PMID 10542439.
  3. ^ Waldmann TA (June 1991). "Monoclonal antibodies in diagnosis and therapy". Science. 252 (5013): 1657–1662. Bibcode:1991Sci...252.1657W. doi:10.1126/science.2047874. PMID 2047874. S2CID 19615695.
  4. ^ Tansey EM, Catterall PP (July 1994). "Monoclonal antibodies: a witness seminar in contemporary medical history". Medical History. 38 (3): 322–327. doi:10.1017/s0025727300036632. PMC 1036884. PMID 7934322.
  5. ^ Schwaber J, Cohen EP (August 1973). "Human x mouse somatic cell hybrid clone secreting immunoglobulins of both parental types". Nature. 244 (5416): 444–447. doi:10.1038/244444a0. PMID 4200460. S2CID 4171375.
  6. ^ Cambrosio A, Keating P (1992). "Between fact and technique: the beginnings of hybridoma technology". Journal of the History of Biology. 25 (2): 175–230. doi:10.1007/BF00162840. PMID 11623041. S2CID 45615711.
  7. ^ a b c Marks LV. "The Story of César Milstein and Monoclonal Antibodies". WhatisBiotechnology.org. Retrieved 23 September 2020.
  8. ^ Riechmann L, Clark M, Waldmann H, Winter G (March 1988). "Reshaping human antibodies for therapy". Nature. 332 (6162): 323–327. Bibcode:1988Natur.332..323R. doi:10.1038/332323a0. PMID 3127726. S2CID 4335569.
  9. ^ Altmann DM (November 2018). "A Nobel Prize-worthy pursuit: cancer immunology and harnessing immunity to tumour neoantigens". Immunology. 155 (3): 283–284. doi:10.1111/imm.13008. PMC 6187215. PMID 30320408.
  10. ^ Spieker-Polet H, Sethupathi P, Yam PC, Knight KL (September 1995). "Rabbit monoclonal antibodies: generating a fusion partner to produce rabbit-rabbit hybridomas". Proceedings of the National Academy of Sciences of the United States of America. 92 (20): 9348–9352. Bibcode:1995PNAS...92.9348S. doi:10.1073/pnas.92.20.9348. PMC 40982. PMID 7568130.
  11. ^ Zhang YF, Phung Y, Gao W, Kawa S, Hassan R, Pastan I, Ho M (May 2015). "New high affinity monoclonal antibodies recognize non-overlapping epitopes on mesothelin for monitoring and treating mesothelioma". Scientific Reports. 5: 9928. Bibcode:2015NatSR...5E9928Z. doi:10.1038/srep09928. PMC 4440525. PMID 25996440.
  12. ^ Yang J, Shen MH (2006). "Polyethylene glycol-mediated cell fusion". Nuclear Reprogramming. Methods Mol Biol. Vol. 325. pp. 59–66. doi:10.1385/1-59745-005-7:59. ISBN 1-59745-005-7. PMID 16761719.
  13. ^ National Research Council (US) Committee on Methods of Producing Monoclonal Antibodies. "Recommendation 1: Executive Summary: Monoclonal Antibody Production". Washington (DC): National Academies Press (US); 1999. ISBN 978-0309075114
  14. ^ a b c Ho M (June 2018). "Inaugural Editorial: Searching for Magic Bullets". Antibody Therapeutics. 1 (1): 1–5. doi:10.1093/abt/tby001. PMC 6086361. PMID 30101214.
  15. ^ a b Ho M, Feng M, Fisher RJ, Rader C, Pastan I (May 2011). "A novel high-affinity human monoclonal antibody to mesothelin". International Journal of Cancer. 128 (9): 2020–2030. doi:10.1002/ijc.25557. PMC 2978266. PMID 20635390.
  16. ^ Seeber S, Ros F, Thorey I, Tiefenthaler G, Kaluza K, Lifke V, et al. (2014). "A robust high throughput platform to generate functional recombinant monoclonal antibodies using rabbit B cells from peripheral blood". PLOS ONE. 9 (2): e86184. Bibcode:2014PLoSO...986184S. doi:10.1371/journal.pone.0086184. PMC 3913575. PMID 24503933.
  17. ^ Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC (September 2003). "Predominant autoantibody production by early human B cell precursors". Science. 301 (5638): 1374–1377. Bibcode:2003Sci...301.1374W. doi:10.1126/science.1086907. PMID 12920303. S2CID 43459065.
  18. ^ Koelsch K, Zheng NY, Zhang Q, Duty A, Helms C, Mathias MD, et al. (June 2007). "Mature B cells class switched to IgD are autoreactive in healthy individuals". The Journal of Clinical Investigation. 117 (6): 1558–1565. doi:10.1172/JCI27628. PMC 1866247. PMID 17510706.
  19. ^ Smith K, Garman L, Wrammert J, Zheng NY, Capra JD, Ahmed R, Wilson PC (1 January 2009). "Rapid generation of fully human monoclonal antibodies specific to a vaccinating antigen". Nature Protocols. 4 (3): 372–384. doi:10.1038/nprot.2009.3. PMC 2750034. PMID 19247287.
  20. ^ Duty JA, Szodoray P, Zheng NY, Koelsch KA, Zhang Q, Swiatkowski M, et al. (January 2009). "Functional anergy in a subpopulation of naive B cells from healthy humans that express autoreactive immunoglobulin receptors". The Journal of Experimental Medicine. 206 (1): 139–151. doi:10.1084/jem.20080611. PMC 2626668. PMID 19103878.
  21. ^ Huang J, Doria-Rose NA, Longo NS, Laub L, Lin CL, Turk E, et al. (October 2013). "Isolation of human monoclonal antibodies from peripheral blood B cells". Nature Protocols. 8 (10): 1907–1915. doi:10.1038/nprot.2013.117. PMC 4844175. PMID 24030440.
  22. ^ Vlasak J, Ionescu R (December 2008). "Heterogeneity of monoclonal antibodies revealed by charge-sensitive methods". Current Pharmaceutical Biotechnology. 9 (6): 468–481. doi:10.2174/138920108786786402. PMID 19075686.
  23. ^ Beck A, Wurch T, Bailly C, Corvaia N (May 2010). "Strategies and challenges for the next generation of therapeutic antibodies". Nature Reviews. Immunology. 10 (5): 345–352. doi:10.1038/nri2747. PMID 20414207. S2CID 29689097.
  24. ^ Khawli LA, Goswami S, Hutchinson R, Kwong ZW, Yang J, Wang X, et al. (2010). "Charge variants in IgG1: Isolation, characterization, in vitro binding properties and pharmacokinetics in rats". mAbs. 2 (6): 613–624. doi:10.4161/mabs.2.6.13333. PMC 3011216. PMID 20818176.
  25. ^ Zhang T, Bourret J, Cano T (August 2011). "Isolation and characterization of therapeutic antibody charge variants using cation exchange displacement chromatography". Journal of Chromatography A. 1218 (31): 5079–5086. doi:10.1016/j.chroma.2011.05.061. PMID 21700290.
  26. ^ Rathore AS, Winkle H (January 2009). "Quality by design for biopharmaceuticals". Nature Biotechnology. 27 (1): 26–34. doi:10.1038/nbt0109-26. PMID 19131992. S2CID 5523554.
  27. ^ van der Schoot JM, Fennemann FL, Valente M, Dolen Y, Hagemans IM, Becker AM, et al. (August 2019). "Functional diversification of hybridoma-produced antibodies by CRISPR/HDR genomic engineering". Science Advances. 5 (8): eaaw1822. Bibcode:2019SciA....5.1822V. doi:10.1126/sciadv.aaw1822. PMC 6713500. PMID 31489367.
  28. ^ Siegel DL (January 2002). "Recombinant monoclonal antibody technology". Transfusion Clinique et Biologique. 9 (1): 15–22. doi:10.1016/S1246-7820(01)00210-5. PMID 11889896.
  29. ^ "Dr. George Pieczenik". LMB Alumni. MRC Laboratory of Molecular Biology (LMB). 17 September 2009. Archived from the original on 23 December 2012. Retrieved 17 November 2012.
  30. ^ Schmitz U, Versmold A, Kaufmann P, Frank HG (2000). "Phage display: a molecular tool for the generation of antibodies – a review". Placenta. 21 Suppl A (Suppl A): S106–S112. doi:10.1053/plac.1999.0511. PMID 10831134.
  31. ^ Zhang YF, Ho M (September 2016). "Humanization of high-affinity antibodies targeting glypican-3 in hepatocellular carcinoma". Scientific Reports. 6: 33878. Bibcode:2016NatSR...633878Z. doi:10.1038/srep33878. PMC 5036187. PMID 27667400.
  32. ^ Boulianne GL, Hozumi N, Shulman MJ (1984). "Production of functional chimaeric mouse/human antibody". Nature. 312 (5995): 643–646. Bibcode:1984Natur.312..643B. doi:10.1038/312643a0. PMID 6095115. S2CID 4311503.
  33. ^ Chadd HE, Chamow SM (April 2001). "Therapeutic antibody expression technology". Current Opinion in Biotechnology. 12 (2): 188–194. doi:10.1016/S0958-1669(00)00198-1. PMID 11287236.
  34. ^ Lonberg N, Huszar D (1995). "Human antibodies from transgenic mice". International Reviews of Immunology. 13 (1): 65–93. doi:10.3109/08830189509061738. PMID 7494109.
  35. ^ Hernandez I, Bott SW, Patel AS, Wolf CG, Hospodar AR, Sampathkumar S, Shrank WH (February 2018). "Pricing of monoclonal antibody therapies: higher if used for cancer?". The American Journal of Managed Care. 24 (2): 109–112. PMID 29461857.
  36. ^ Breedveld FC (February 2000). "Therapeutic monoclonal antibodies". Lancet. 355 (9205): 735–740. doi:10.1016/S0140-6736(00)01034-5. PMID 10703815. S2CID 43781004.
  37. ^ Australian Prescriber (2006). "Monoclonal antibody therapy for non-malignant disease". Australian Prescriber. 29 (5): 130–133. doi:10.18773/austprescr.2006.079.
  38. ^ Modified from Carter P (November 2001). "Improving the efficacy of antibody-based cancer therapies". Nature Reviews. Cancer. 1 (2): 118–129. doi:10.1038/35101072. PMID 11905803. S2CID 10169378.
  39. ^ Takimoto CH, Calvo E. (1 January 2005) "Principles of Oncologic Pharmacotherapy" in Pazdur R, Wagman LD, Camphausen KA, Hoskins WJ (Eds) Cancer Management 4 October 2013 at the Wayback Machine
  40. ^ a b c d e f g h i j Rang HP (2003). Pharmacology. Edinburgh: Churchill Livingstone. pp. 241, for the examples infliximab, basiliximab, abciximab, daclizumab, palivusamab, gemtuzumab, alemtuzumab and rituximab, and mechanism and mode. ISBN 978-0443071454.
  41. ^ a b Staff, Adis Insight. Bavituximab profile Last updated 27 January 2016
  42. ^ a b "Coronavirus (COVID-19) Update: FDA Authorizes Monoclonal Antibodies for Treatment of COVID-19". U.S. Food and Drug Administration (FDA) (Press release). 21 November 2020. Retrieved 21 November 2020.   This article incorporates text from this source, which is in the public domain.
  43. ^ a b "FDA Authorizes Monoclonal Antibodies for Treatment of COVID-19". U.S. Food and Drug Administration (FDA) (Press release). 9 February 2021. Retrieved 10 February 2021.   This article incorporates text from this source, which is in the public domain.
  44. ^ "Emergency Use Authorization letter" (PDF). U.S. Food and Drug Administration (FDA). 16 December 2021. Retrieved 6 January 2022.   This article incorporates text from this source, which is in the public domain.
  45. ^ Bernstein L (14 September 2021). "Biden administration moves to stave off shortages of monoclonal antibodies". The Washington Post. ISSN 0190-8286. Retrieved 21 December 2021.
  46. ^ Kozlov M (December 2021). "Omicron overpowers key COVID antibody treatments in early tests". Nature. doi:10.1038/d41586-021-03829-0. PMID 34937889.
  47. ^ Kreuzberger N, Hirsch C, Chai KL, Tomlinson E, Khosravi Z, Popp M, et al. (September 2021). "SARS-CoV-2-neutralising monoclonal antibodies for treatment of COVID-19". The Cochrane Database of Systematic Reviews. 2021 (9): CD013825. doi:10.1002/14651858.cd013825.pub2. PMC 8411904. PMID 34473343.
  48. ^ a b Hirsch C, Park YS, Piechotta V, Chai KL, Estcourt LJ, Monsef I, et al. (June 2022). "SARS-CoV-2-neutralising monoclonal antibodies to prevent COVID-19". The Cochrane Database of Systematic Reviews. 2022 (6): CD014945. doi:10.1002/14651858.cd014945.pub2. PMC 9205158. PMID 35713300.
  49. ^ "Monoclonal antibodies to treat cancer | American Cancer Society". www.cancer.org. Retrieved 19 April 2018.
  50. ^ "Monoclonal antibody drugs for cancer: How they work". Mayo Clinic. Retrieved 19 April 2018.
  51. ^ a b "Monoclonal Antibodies: List, Types, Side Effects & FDA Uses (Cancer)". MedicineNet. Retrieved 19 April 2018.

Further reading edit

  • 2019 Historical overview of monoclonal antibodies in the journal Nature
  • , from John W. Kimball's online biology textbook

External links edit

  • Monoclonal+antibodies at the U.S. National Library of Medicine Medical Subject Headings (MeSH)
  • Antibodypedia, open-access virtual repository publishing data and commentary on any antibodies available to the scientific community.
  • Antibody Purification Handbook 5 December 2008 at the Wayback Machine

monoclonal, antibody, monoclonal, antibody, more, rarely, called, moab, antibody, produced, from, cell, lineage, made, cloning, unique, white, blood, cell, subsequent, antibodies, derived, this, trace, back, unique, parent, cell, general, representation, metho. A monoclonal antibody mAb more rarely called moAb is an antibody produced from a cell lineage made by cloning a unique white blood cell All subsequent antibodies derived this way trace back to a unique parent cell A general representation of the method used to produce monoclonal antibodies 1 2 Monoclonal antibodies can have monovalent affinity binding only to the same epitope the part of an antigen that is recognized by the antibody In contrast polyclonal antibodies bind to multiple epitopes and are usually made by several different antibody secreting plasma cell lineages Bispecific monoclonal antibodies can also be engineered by increasing the therapeutic targets of one monoclonal antibody to two epitopes It is possible to produce monoclonal antibodies that specifically bind to almost any suitable substance they can then serve to detect or purify it This capability has become an investigative tool in biochemistry molecular biology and medicine Monoclonal antibodies are used in the diagnosis of illnesses such as cancer and infections 3 and are used therapeutically in the treatment of e g cancer and inflammatory diseases Contents 1 History 2 Production 2 1 Hybridoma development 2 2 Novel mAb development technology 2 3 Purification 2 4 Antibody heterogeneity 2 5 Recombinant 2 6 Chimeric antibodies 2 7 Human antibodies 3 Cost 4 Applications 4 1 Diagnostic tests 4 2 Analytic and chemical uses 4 3 Therapeutic uses 4 3 1 Cancer treatment 4 3 2 Autoimmune diseases 4 3 3 Examples of therapeutic monoclonal antibodies 4 4 COVID 19 5 Side effects 6 See also 7 References 8 Further reading 9 External linksHistory editIn the early 1900s immunologist Paul Ehrlich proposed the idea of a Zauberkugel magic bullet conceived of as a compound which selectively targeted a disease causing organism and could deliver a toxin for that organism This underpinned the concept of monoclonal antibodies and monoclonal drug conjugates Ehrlich and Elie Metchnikoff received the 1908 Nobel Prize for Physiology or Medicine for providing the theoretical basis for immunology By the 1970s lymphocytes producing a single antibody were known in the form of multiple myeloma a cancer affecting B cells These abnormal antibodies or paraproteins were used to study the structure of antibodies but it was not yet possible to produce identical antibodies specific to a given antigen 4 324 In 1973 Jerrold Schwaber described the production of monoclonal antibodies using human mouse hybrid cells 5 This work remains widely cited among those using human derived hybridomas 6 In 1975 Georges Kohler and Cesar Milstein succeeded in making fusions of myeloma cell lines with B cells to create hybridomas that could produce antibodies specific to known antigens and that were immortalized 7 They and Niels Kaj Jerne shared the Nobel Prize in Physiology or Medicine in 1984 for the discovery 7 In 1988 Gregory Winter and his team pioneered the techniques to humanize monoclonal antibodies 8 eliminating the reactions that many monoclonal antibodies caused in some patients By the 1990s research was making progress in using monoclonal antibodies therapeutically and in 2018 James P Allison and Tasuku Honjo received the Nobel Prize in Physiology or Medicine for their discovery of cancer therapy by inhibition of negative immune regulation using monoclonal antibodies that prevent inhibitory linkages 9 Production edit nbsp Looking at slides of cultures of cells that make monoclonal antibodies nbsp Monoclonal antibodies can be grown in unlimited quantities in flasks nbsp Hand filling wells with a liquid for a research test This test involves preparation of cultures in which hybrids are grown in large quantities to produce desired antibody This is effected by fusing a myeloma cell and a mouse lymphocyte to form a hybrid cell hybridoma nbsp Bathing prepared slides in a solutionHybridoma development edit Further information Hybridoma technology Much of the work behind production of monoclonal antibodies is rooted in the production of hybridomas which involves identifying antigen specific plasma plasmablast cells that produce antibodies specific to an antigen of interest and fusing these cells with myeloma cells 7 Rabbit B cells can be used to form a rabbit hybridoma 10 11 Polyethylene glycol is used to fuse adjacent plasma membranes 12 but the success rate is low so a selective medium in which only fused cells can grow is used This is possible because myeloma cells have lost the ability to synthesize hypoxanthine guanine phosphoribosyl transferase HGPRT an enzyme necessary for the salvage synthesis of nucleic acids The absence of HGPRT is not a problem for these cells unless the de novo purine synthesis pathway is also disrupted Exposing cells to aminopterin a folic acid analogue which inhibits dihydrofolate reductase DHFR makes them unable to use the de novo pathway and become fully auxotrophic for nucleic acids thus requiring supplementation to survive The selective culture medium is called HAT medium because it contains hypoxanthine aminopterin and thymidine This medium is selective for fused hybridoma cells Unfused myeloma cells cannot grow because they lack HGPRT and thus cannot replicate their DNA Unfused spleen cells cannot grow indefinitely because of their limited life span Only fused hybrid cells referred to as hybridomas are able to grow indefinitely in the medium because the spleen cell partner supplies HGPRT and the myeloma partner has traits that make it immortal similar to a cancer cell This mixture of cells is then diluted and clones are grown from single parent cells on microtitre wells The antibodies secreted by the different clones are then assayed for their ability to bind to the antigen with a test such as ELISA or antigen microarray assay or immuno dot blot The most productive and stable clone is then selected for future use The hybridomas can be grown indefinitely in a suitable cell culture medium They can also be injected into mice in the peritoneal cavity surrounding the gut There they produce tumors secreting an antibody rich fluid called ascites fluid The medium must be enriched during in vitro selection to further favour hybridoma growth This can be achieved by the use of a layer of feeder fibrocyte cells or supplement medium such as briclone Culture media conditioned by macrophages can be used Production in cell culture is usually preferred as the ascites technique is painful to the animal Where alternate techniques exist ascites is considered unethical 13 Novel mAb development technology edit Several monoclonal antibody technologies have been developed recently 14 such as phage display 15 single B cell culture 16 single cell amplification from various B cell populations 17 18 19 20 21 and single plasma cell interrogation technologies Different from traditional hybridoma technology the newer technologies use molecular biology techniques to amplify the heavy and light chains of the antibody genes by PCR and produce in either bacterial or mammalian systems with recombinant technology One of the advantages of the new technologies is applicable to multiple animals such as rabbit llama chicken and other common experimental animals in the laboratory Purification edit After obtaining either a media sample of cultured hybridomas or a sample of ascites fluid the desired antibodies must be extracted Cell culture sample contaminants consist primarily of media components such as growth factors hormones and transferrins In contrast the in vivo sample is likely to have host antibodies proteases nucleases nucleic acids and viruses In both cases other secretions by the hybridomas such as cytokines may be present There may also be bacterial contamination and as a result endotoxins that are secreted by the bacteria Depending on the complexity of the media required in cell culture and thus the contaminants one or the other method in vivo or in vitro may be preferable The sample is first conditioned or prepared for purification Cells cell debris lipids and clotted material are first removed typically by centrifugation followed by filtration with a 0 45 µm filter These large particles can cause a phenomenon called membrane fouling in later purification steps In addition the concentration of product in the sample may not be sufficient especially in cases where the desired antibody is produced by a low secreting cell line The sample is therefore concentrated by ultrafiltration or dialysis Most of the charged impurities are usually anions such as nucleic acids and endotoxins These can be separated by ion exchange chromatography 22 Either cation exchange chromatography is used at a low enough pH that the desired antibody binds to the column while anions flow through or anion exchange chromatography is used at a high enough pH that the desired antibody flows through the column while anions bind to it Various proteins can also be separated along with the anions based on their isoelectric point pI In proteins the isoelectric point pI is defined as the pH at which a protein has no net charge When the pH gt pI a protein has a net negative charge and when the pH lt pI a protein has a net positive charge For example albumin has a pI of 4 8 which is significantly lower than that of most monoclonal antibodies which have a pI of 6 1 Thus at a pH between 4 8 and 6 1 the average charge of albumin molecules is likely to be more negative while mAbs molecules are positively charged and hence it is possible to separate them Transferrin on the other hand has a pI of 5 9 so it cannot be easily separated by this method A difference in pI of at least 1 is necessary for a good separation Transferrin can instead be removed by size exclusion chromatography This method is one of the more reliable chromatography techniques Since we are dealing with proteins properties such as charge and affinity are not consistent and vary with pH as molecules are protonated and deprotonated while size stays relatively constant Nonetheless it has drawbacks such as low resolution low capacity and low elution times A much quicker single step method of separation is protein A G affinity chromatography The antibody selectively binds to protein A G so a high level of purity generally gt 80 is obtained However this method may be problematic for antibodies that are easily damaged as harsh conditions are generally used A low pH can break the bonds to remove the antibody from the column In addition to possibly affecting the product low pH can cause protein A G itself to leak off the column and appear in the eluted sample Gentle elution buffer systems that employ high salt concentrations are available to avoid exposing sensitive antibodies to low pH Cost is also an important consideration with this method because immobilized protein A G is a more expensive resin To achieve maximum purity in a single step affinity purification can be performed using the antigen to provide specificity for the antibody In this method the antigen used to generate the antibody is covalently attached to an agarose support If the antigen is a peptide it is commonly synthesized with a terminal cysteine which allows selective attachment to a carrier protein such as KLH during development and to support purification The antibody containing medium is then incubated with the immobilized antigen either in batch or as the antibody is passed through a column where it selectively binds and can be retained while impurities are washed away An elution with a low pH buffer or a more gentle high salt elution buffer is then used to recover purified antibody from the support Antibody heterogeneity edit Product heterogeneity is common in monoclonal antibodies and other recombinant biological products and is typically introduced either upstream during expression or downstream during manufacturing citation needed These variants are typically aggregates deamidation products glycosylation variants oxidized amino acid side chains as well as amino and carboxyl terminal amino acid additions 23 These seemingly minute structural changes can affect preclinical stability and process optimization as well as therapeutic product potency bioavailability and immunogenicity The generally accepted purification method of process streams for monoclonal antibodies includes capture of the product target with protein A elution acidification to inactivate potential mammalian viruses followed by ion chromatography first with anion beads and then with cation beads citation needed Displacement chromatography has been used to identify and characterize these often unseen variants in quantities that are suitable for subsequent preclinical evaluation regimens such as animal pharmacokinetic studies 24 25 Knowledge gained during the preclinical development phase is critical for enhanced product quality understanding and provides a basis for risk management and increased regulatory flexibility The recent Food and Drug Administration s Quality by Design initiative attempts to provide guidance on development and to facilitate design of products and processes that maximizes efficacy and safety profile while enhancing product manufacturability 26 Recombinant edit The production of recombinant monoclonal antibodies involves repertoire cloning CRISPR Cas9 or phage display yeast display technologies 27 Recombinant antibody engineering involves antibody production by the use of viruses or yeast rather than mice These techniques rely on rapid cloning of immunoglobulin gene segments to create libraries of antibodies with slightly different amino acid sequences from which antibodies with desired specificities can be selected 28 The phage antibody libraries are a variant of phage antigen libraries 29 These techniques can be used to enhance the specificity with which antibodies recognize antigens their stability in various environmental conditions their therapeutic efficacy and their detectability in diagnostic applications 30 Fermentation chambers have been used for large scale antibody production Chimeric antibodies edit Main article Chimeric antibodies While mouse and human antibodies are structurally similar the differences between them were sufficient to invoke an immune response when murine monoclonal antibodies were injected into humans resulting in their rapid removal from the blood as well as systemic inflammatory effects and the production of human anti mouse antibodies HAMA Recombinant DNA has been explored since the late 1980s to increase residence times In one approach called CDR grafting 31 mouse DNA encoding the binding portion of a monoclonal antibody was merged with human antibody producing DNA in living cells The expression of this chimeric or humanised DNA through cell culture yielded part mouse part human antibodies 32 33 Human antibodies edit nbsp Approaches have been developed to isolate human monoclonal antibodies 14 Ever since the discovery that monoclonal antibodies could be generated scientists have targeted the creation of fully human products to reduce the side effects of humanised or chimeric antibodies Several successful approaches have been proposed transgenic mice 34 phage display 15 and single B cell cloning 14 Cost editMonoclonal antibodies are more expensive to manufacture than small molecules due to the complex processes involved and the general size of the molecules all in addition to the enormous research and development costs involved in bringing a new chemical entity to patients They are priced to enable manufacturers to recoup the typically large investment costs and where there are no price controls such as the United States prices can be higher if they provide great value Seven University of Pittsburgh researchers concluded The annual price of mAb therapies is about 100 000 higher in oncology and hematology than in other disease states comparing them on a per patient basis to those for cardiovascular or metabolic disorders immunology infectious diseases allergy and ophthalmology 35 Applications editDiagnostic tests edit Once monoclonal antibodies for a given substance have been produced they can be used to detect the presence of this substance Proteins can be detected using the Western blot and immuno dot blot tests In immunohistochemistry monoclonal antibodies can be used to detect antigens in fixed tissue sections and similarly immunofluorescence can be used to detect a substance in either frozen tissue section or live cells Analytic and chemical uses edit Antibodies can also be used to purify their target compounds from mixtures using the method of immunoprecipitation Therapeutic uses edit Main article Monoclonal antibody therapy Therapeutic monoclonal antibodies act through multiple mechanisms such as blocking of targeted molecule functions inducing apoptosis in cells which express the target or by modulating signalling pathways 36 37 Cancer treatment edit One possible treatment for cancer involves monoclonal antibodies that bind only to cancer cell specific antigens and induce an immune response against the target cancer cell Such mAbs can be modified for delivery of a toxin radioisotope cytokine or other active conjugate or to design bispecific antibodies that can bind with their Fab regions both to target antigen and to a conjugate or effector cell Every intact antibody can bind to cell receptors or other proteins with its Fc region nbsp Monoclonal antibodies for cancer ADEPT antibody directed enzyme prodrug therapy ADCC antibody dependent cell mediated cytotoxicity CDC complement dependent cytotoxicity MAb monoclonal antibody scFv single chain Fv fragment 38 MAbs approved by the FDA for cancer include 39 Alemtuzumab Bevacizumab Cetuximab Dostarlimab Gemtuzumab ozogamicin Ipilimumab Nivolumab Ofatumumab Panitumumab Pembrolizumab Ranibizumab Rituximab Trastuzumab Autoimmune diseases edit Monoclonal antibodies used for autoimmune diseases include infliximab and adalimumab which are effective in rheumatoid arthritis Crohn s disease ulcerative colitis and ankylosing spondylitis by their ability to bind to and inhibit TNF a 40 Basiliximab and daclizumab inhibit IL 2 on activated T cells and thereby help prevent acute rejection of kidney transplants 40 Omalizumab inhibits human immunoglobulin E IgE and is useful in treating moderate to severe allergic asthma Examples of therapeutic monoclonal antibodies edit For a more comprehensive list see List of monoclonal antibodies See also Monoclonal antibody therapy FDA approved therapeutic antibodies Monoclonal antibodies for research applications can be found directly from antibody suppliers or through use of a specialist search engine like CiteAb Below are examples of clinically important monoclonal antibodies Main category Type Application Mechanism Target ModeAnti inflammatory infliximab 40 rheumatoid arthritis Crohn s disease ulcerative colitis ankylosing spondylitis inhibits TNF a chimericadalimumab rheumatoid arthritis Crohn s disease ulcerative colitis ankylosing spondylitis inhibits TNF a humanustekinumab Crohn s disease ulcerative colitis plaque psoriasis psoriatic arthritis blocks interleukin IL 12 and IL 23 humanbasiliximab 40 acute rejection of kidney transplants inhibits IL 2 on activated T cells chimericdaclizumab 40 acute rejection of kidney transplants inhibits IL 2 on activated T cells humanizedomalizumab moderate to severe allergic asthma chronic ideopathic urticaria inhibits human immunoglobulin E IgE humanizedAnti cancer gemtuzumab 40 relapsed acute myeloid leukemia targets myeloid cell surface antigen CD33 on leukemia cells humanizedalemtuzumab 40 B cell leukemia targets an antigen CD52 on T and B lymphocytes humanizedrituximab 40 non Hodgkin s lymphoma rheumatoid arthritis targets phosphoprotein CD20 on B lymphocytes chimerictrastuzumab breast cancer with HER2 neu overexpression targets the HER2 neu erbB2 receptor humanizednimotuzumab approved in squamous cell carcinomas Glioma clinical trials for other indications underway EGFR inhibitor humanizedcetuximab approved in squamous cell carcinomas colorectal carcinoma EGFR inhibitor chimericpanitumumab approved in colorectal carcinoma EGFR inhibitor humanbevacizumab amp ranibizumab Anti angiogenic cancer therapy inhibits VEGF humanizedAnti cancer and anti viral bavituximab 41 cancer hepatitis C infection immunotherapy targets phosphatidylserine 41 chimericAnti viral casirivimab imdevimab 42 SARS CoV 2 coronavirus causing the COVID 19 pandemic immunotherapy targets spike protein of SARS CoV 2 humanbamlanivimab etesevimab 43 SARS CoV 2 coronavirus causing the COVID 19 pandemic immunotherapy targets spike protein of SARS CoV 2 humanSotrovimab 44 SARS CoV 2 coronavirus causing the COVID 19 pandemic immunotherapy targets spike protein of SARS CoV 2 humanOther palivizumab 40 RSV infections in children inhibits an RSV fusion F protein humanizedabciximab 40 prevent coagulation in coronary angioplasty inhibits the receptor GpIIb IIIa on platelets chimericCOVID 19 edit In 2020 the monoclonal antibody therapies bamlanivimab etesevimab and casirivimab imdevimab were given emergency use authorizations by the US Food and Drug Administration to reduce the number of hospitalizations emergency room visits and deaths 42 43 In September 2021 the Biden administration purchased US 2 9 billion worth of Regeneron monoclonal antibodies at 2 100 per dose to curb the shortage 45 As of December 2021 in vitro neutralization tests indicate monoclonal antibody therapies with the exception of sotrovimab and tixagevimab cilgavimab were not likely to be active against the Omicron variant 46 Over 2021 22 two Cochrane reviews found insufficient evidence for using neutralizing monoclonal antibodies to treat COVID 19 infections 47 48 The reviews applied only to people who were unvaccinated against COVID 19 and only to the COVID 19 variants existing during the studies not to newer variants such as Omicron 48 Side effects editSeveral monoclonal antibodies such as bevacizumab and cetuximab can cause different kinds of side effects 49 These side effects can be categorized into common and serious side effects 50 Some common side effects include Dizziness Headaches Allergies Diarrhea Cough Fever Itching Back pain General weakness Loss of appetite Insomnia Constipation 51 Among the possible serious side effects are 51 Anaphylaxis Bleeding Arterial and venous blood clots Autoimmune thyroiditis Hypothyroidism Hepatitis Heart failure Cancer Anemia Decrease in white blood cells Stomatitis Enterocolitis Gastrointestinal perforation MucositisSee also editList of monoclonal antibodiesReferences edit Cytochrome P450 Mediated Drug and Carcinogen Metabolism using Monoclonal Antibodies home ccr cancer gov Retrieved 2 April 2018 Gelboin HV Krausz KW Gonzalez FJ Yang TJ November 1999 Inhibitory monoclonal antibodies to human cytochrome P450 enzymes a new avenue for drug discovery Trends in Pharmacological Sciences 20 11 432 438 doi 10 1016 S0165 6147 99 01382 6 PMID 10542439 Waldmann TA June 1991 Monoclonal antibodies in diagnosis and therapy Science 252 5013 1657 1662 Bibcode 1991Sci 252 1657W doi 10 1126 science 2047874 PMID 2047874 S2CID 19615695 Tansey EM Catterall PP July 1994 Monoclonal antibodies a witness seminar in contemporary medical history Medical History 38 3 322 327 doi 10 1017 s0025727300036632 PMC 1036884 PMID 7934322 Schwaber J Cohen EP August 1973 Human x mouse somatic cell hybrid clone secreting immunoglobulins of both parental types Nature 244 5416 444 447 doi 10 1038 244444a0 PMID 4200460 S2CID 4171375 Cambrosio A Keating P 1992 Between fact and technique the beginnings of hybridoma technology Journal of the History of Biology 25 2 175 230 doi 10 1007 BF00162840 PMID 11623041 S2CID 45615711 a b c Marks LV The Story of Cesar Milstein and Monoclonal Antibodies WhatisBiotechnology org Retrieved 23 September 2020 Riechmann L Clark M Waldmann H Winter G March 1988 Reshaping human antibodies for therapy Nature 332 6162 323 327 Bibcode 1988Natur 332 323R doi 10 1038 332323a0 PMID 3127726 S2CID 4335569 Altmann DM November 2018 A Nobel Prize worthy pursuit cancer immunology and harnessing immunity to tumour neoantigens Immunology 155 3 283 284 doi 10 1111 imm 13008 PMC 6187215 PMID 30320408 Spieker Polet H Sethupathi P Yam PC Knight KL September 1995 Rabbit monoclonal antibodies generating a fusion partner to produce rabbit rabbit hybridomas Proceedings of the National Academy of Sciences of the United States of America 92 20 9348 9352 Bibcode 1995PNAS 92 9348S doi 10 1073 pnas 92 20 9348 PMC 40982 PMID 7568130 Zhang YF Phung Y Gao W Kawa S Hassan R Pastan I Ho M May 2015 New high affinity monoclonal antibodies recognize non overlapping epitopes on mesothelin for monitoring and treating mesothelioma Scientific Reports 5 9928 Bibcode 2015NatSR 5E9928Z doi 10 1038 srep09928 PMC 4440525 PMID 25996440 Yang J Shen MH 2006 Polyethylene glycol mediated cell fusion Nuclear Reprogramming Methods Mol Biol Vol 325 pp 59 66 doi 10 1385 1 59745 005 7 59 ISBN 1 59745 005 7 PMID 16761719 National Research Council US Committee on Methods of Producing Monoclonal Antibodies Recommendation 1 Executive Summary Monoclonal Antibody Production Washington DC National Academies Press US 1999 ISBN 978 0309075114 a b c Ho M June 2018 Inaugural Editorial Searching for Magic Bullets Antibody Therapeutics 1 1 1 5 doi 10 1093 abt tby001 PMC 6086361 PMID 30101214 a b Ho M Feng M Fisher RJ Rader C Pastan I May 2011 A novel high affinity human monoclonal antibody to mesothelin International Journal of Cancer 128 9 2020 2030 doi 10 1002 ijc 25557 PMC 2978266 PMID 20635390 Seeber S Ros F Thorey I Tiefenthaler G Kaluza K Lifke V et al 2014 A robust high throughput platform to generate functional recombinant monoclonal antibodies using rabbit B cells from peripheral blood PLOS ONE 9 2 e86184 Bibcode 2014PLoSO 986184S doi 10 1371 journal pone 0086184 PMC 3913575 PMID 24503933 Wardemann H Yurasov S Schaefer A Young JW Meffre E Nussenzweig MC September 2003 Predominant autoantibody production by early human B cell precursors Science 301 5638 1374 1377 Bibcode 2003Sci 301 1374W doi 10 1126 science 1086907 PMID 12920303 S2CID 43459065 Koelsch K Zheng NY Zhang Q Duty A Helms C Mathias MD et al June 2007 Mature B cells class switched to IgD are autoreactive in healthy individuals The Journal of Clinical Investigation 117 6 1558 1565 doi 10 1172 JCI27628 PMC 1866247 PMID 17510706 Smith K Garman L Wrammert J Zheng NY Capra JD Ahmed R Wilson PC 1 January 2009 Rapid generation of fully human monoclonal antibodies specific to a vaccinating antigen Nature Protocols 4 3 372 384 doi 10 1038 nprot 2009 3 PMC 2750034 PMID 19247287 Duty JA Szodoray P Zheng NY Koelsch KA Zhang Q Swiatkowski M et al January 2009 Functional anergy in a subpopulation of naive B cells from healthy humans that express autoreactive immunoglobulin receptors The Journal of Experimental Medicine 206 1 139 151 doi 10 1084 jem 20080611 PMC 2626668 PMID 19103878 Huang J Doria Rose NA Longo NS Laub L Lin CL Turk E et al October 2013 Isolation of human monoclonal antibodies from peripheral blood B cells Nature Protocols 8 10 1907 1915 doi 10 1038 nprot 2013 117 PMC 4844175 PMID 24030440 Vlasak J Ionescu R December 2008 Heterogeneity of monoclonal antibodies revealed by charge sensitive methods Current Pharmaceutical Biotechnology 9 6 468 481 doi 10 2174 138920108786786402 PMID 19075686 Beck A Wurch T Bailly C Corvaia N May 2010 Strategies and challenges for the next generation of therapeutic antibodies Nature Reviews Immunology 10 5 345 352 doi 10 1038 nri2747 PMID 20414207 S2CID 29689097 Khawli LA Goswami S Hutchinson R Kwong ZW Yang J Wang X et al 2010 Charge variants in IgG1 Isolation characterization in vitro binding properties and pharmacokinetics in rats mAbs 2 6 613 624 doi 10 4161 mabs 2 6 13333 PMC 3011216 PMID 20818176 Zhang T Bourret J Cano T August 2011 Isolation and characterization of therapeutic antibody charge variants using cation exchange displacement chromatography Journal of Chromatography A 1218 31 5079 5086 doi 10 1016 j chroma 2011 05 061 PMID 21700290 Rathore AS Winkle H January 2009 Quality by design for biopharmaceuticals Nature Biotechnology 27 1 26 34 doi 10 1038 nbt0109 26 PMID 19131992 S2CID 5523554 van der Schoot JM Fennemann FL Valente M Dolen Y Hagemans IM Becker AM et al August 2019 Functional diversification of hybridoma produced antibodies by CRISPR HDR genomic engineering Science Advances 5 8 eaaw1822 Bibcode 2019SciA 5 1822V doi 10 1126 sciadv aaw1822 PMC 6713500 PMID 31489367 Siegel DL January 2002 Recombinant monoclonal antibody technology Transfusion Clinique et Biologique 9 1 15 22 doi 10 1016 S1246 7820 01 00210 5 PMID 11889896 Dr George Pieczenik LMB Alumni MRC Laboratory of Molecular Biology LMB 17 September 2009 Archived from the original on 23 December 2012 Retrieved 17 November 2012 Schmitz U Versmold A Kaufmann P Frank HG 2000 Phage display a molecular tool for the generation of antibodies a review Placenta 21 Suppl A Suppl A S106 S112 doi 10 1053 plac 1999 0511 PMID 10831134 Zhang YF Ho M September 2016 Humanization of high affinity antibodies targeting glypican 3 in hepatocellular carcinoma Scientific Reports 6 33878 Bibcode 2016NatSR 633878Z doi 10 1038 srep33878 PMC 5036187 PMID 27667400 Boulianne GL Hozumi N Shulman MJ 1984 Production of functional chimaeric mouse human antibody Nature 312 5995 643 646 Bibcode 1984Natur 312 643B doi 10 1038 312643a0 PMID 6095115 S2CID 4311503 Chadd HE Chamow SM April 2001 Therapeutic antibody expression technology Current Opinion in Biotechnology 12 2 188 194 doi 10 1016 S0958 1669 00 00198 1 PMID 11287236 Lonberg N Huszar D 1995 Human antibodies from transgenic mice International Reviews of Immunology 13 1 65 93 doi 10 3109 08830189509061738 PMID 7494109 Hernandez I Bott SW Patel AS Wolf CG Hospodar AR Sampathkumar S Shrank WH February 2018 Pricing of monoclonal antibody therapies higher if used for cancer The American Journal of Managed Care 24 2 109 112 PMID 29461857 Breedveld FC February 2000 Therapeutic monoclonal antibodies Lancet 355 9205 735 740 doi 10 1016 S0140 6736 00 01034 5 PMID 10703815 S2CID 43781004 Australian Prescriber 2006 Monoclonal antibody therapy for non malignant disease Australian Prescriber 29 5 130 133 doi 10 18773 austprescr 2006 079 Modified from Carter P November 2001 Improving the efficacy of antibody based cancer therapies Nature Reviews Cancer 1 2 118 129 doi 10 1038 35101072 PMID 11905803 S2CID 10169378 Takimoto CH Calvo E 1 January 2005 Principles of Oncologic Pharmacotherapy in Pazdur R Wagman LD Camphausen KA Hoskins WJ Eds Cancer Management Archived 4 October 2013 at the Wayback Machine a b c d e f g h i j Rang HP 2003 Pharmacology Edinburgh Churchill Livingstone pp 241 for the examples infliximab basiliximab abciximab daclizumab palivusamab gemtuzumab alemtuzumab and rituximab and mechanism and mode ISBN 978 0443071454 a b Staff Adis Insight Bavituximab profile Last updated 27 January 2016 a b Coronavirus COVID 19 Update FDA Authorizes Monoclonal Antibodies for Treatment of COVID 19 U S Food and Drug Administration FDA Press release 21 November 2020 Retrieved 21 November 2020 nbsp This article incorporates text from this source which is in the public domain a b FDA Authorizes Monoclonal Antibodies for Treatment of COVID 19 U S Food and Drug Administration FDA Press release 9 February 2021 Retrieved 10 February 2021 nbsp This article incorporates text from this source which is in the public domain Emergency Use Authorization letter PDF U S Food and Drug Administration FDA 16 December 2021 Retrieved 6 January 2022 nbsp This article incorporates text from this source which is in the public domain Bernstein L 14 September 2021 Biden administration moves to stave off shortages of monoclonal antibodies The Washington Post ISSN 0190 8286 Retrieved 21 December 2021 Kozlov M December 2021 Omicron overpowers key COVID antibody treatments in early tests Nature doi 10 1038 d41586 021 03829 0 PMID 34937889 Kreuzberger N Hirsch C Chai KL Tomlinson E Khosravi Z Popp M et al September 2021 SARS CoV 2 neutralising monoclonal antibodies for treatment of COVID 19 The Cochrane Database of Systematic Reviews 2021 9 CD013825 doi 10 1002 14651858 cd013825 pub2 PMC 8411904 PMID 34473343 a b Hirsch C Park YS Piechotta V Chai KL Estcourt LJ Monsef I et al June 2022 SARS CoV 2 neutralising monoclonal antibodies to prevent COVID 19 The Cochrane Database of Systematic Reviews 2022 6 CD014945 doi 10 1002 14651858 cd014945 pub2 PMC 9205158 PMID 35713300 Monoclonal antibodies to treat cancer American Cancer Society www cancer org Retrieved 19 April 2018 Monoclonal antibody drugs for cancer How they work Mayo Clinic Retrieved 19 April 2018 a b Monoclonal Antibodies List Types Side Effects amp FDA Uses Cancer MedicineNet Retrieved 19 April 2018 Further reading edit2019 Historical overview of monoclonal antibodies in the journal Nature Monoclonal Antibodies from John W Kimball s online biology textbookExternal links editMonoclonal antibodies at the U S National Library of Medicine Medical Subject Headings MeSH Antibodypedia open access virtual repository publishing data and commentary on any antibodies available to the scientific community Antibody Purification Handbook Archived 5 December 2008 at the Wayback Machine Portals nbsp Medicine nbsp COVID 19 Retrieved from https en wikipedia org w index php title Monoclonal antibody amp oldid 1194559543, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.