fbpx
Wikipedia

Manual transmission

A manual transmission (MT), also known as manual gearbox, standard transmission (in Canada, the United Kingdom, and the United States), or stick shift (in the United States), is a multi-speed motor vehicle transmission system, where gear changes require the driver to manually select the gears by operating a gear stick and clutch (which is usually a foot pedal for cars or a hand lever for motorcycles).

Mazda M5OD manual transmission for a four-wheel-drive vehicle (Ford Ranger)- viewed from the engine side
Internals of a Getrag 282 manual transmission for a front-wheel-drive vehicle (Oldsmobile Cutlass)

Early automobiles used sliding-mesh manual transmissions with up to three forward gear ratios. Since the 1950s, constant-mesh manual transmissions have become increasingly commonplace and the number of forward ratios has increased to 5-speed and 6-speed manual transmissions for current vehicles.

The alternative to a manual transmission is an automatic transmission; common types of automatic transmissions are the hydraulic automatic transmission (AT), and the continuously variable transmission (CVT), whereas the automated manual transmission (AMT) and dual-clutch transmission (DCT) are internally similar to a conventional manual transmission, but are shifted automatically.

Alternately, there are transmissions which facilitate automatic clutch operation, but the driver's input is still required to manually change gears; namely semi-automatic transmissions. These systems are based on the design of a conventional manual transmission, with a gear shifter, and are mechanically similar to a conventional manual transmission, with the driver's control and input still required for manually changing gears (like with a standard manual transmission), but the clutch system is completely automated, and the mechanical linkage for the clutch pedal is completely replaced by an actuator, servo, or solenoid and sensors, which operate the clutch system automatically, when the driver touches or moves the gearshift. This removes the need for a physical clutch pedal.

Overview

A manual transmission requires the driver to operate the gear stick and clutch in order to change gears (unlike an automatic transmission or semi-automatic transmission, where one (typically the clutch) or both of these functions are automated). Most manual transmissions for cars allow the driver to select any gear ratio at any time, for example shifting from second to fourth gear, or fifth to third gear. However, sequential manual transmissions, which are commonly used in motorcycles and racing cars, only allow the driver to select the next-higher or next-lower gear.

In a vehicle with a manual transmission, the flywheel is attached to the engine's crankshaft, therefore rotating at engine speed. A clutch sits between the flywheel and the transmission input shaft, controlling whether the transmission is connected to the engine (clutch engaged- the clutch pedal is not being pressed) or not connected to the engine (clutch disengaged- the clutch pedal is being pressed down). When the engine is running and the clutch is engaged (i.e., clutch pedal up), the flywheel spins the clutch plate and hence the transmission.

The design of most manual transmissions for cars is that gear ratios are selected by locking selected gear pairs to the output shaft inside the transmission. This is a fundamental difference compared with a typical hydraulic automatic transmission, which uses an epicyclic (planetary) design, and a hydraulic torque converter. An automatic transmission that allows the driver to control the gear selection (such as shift paddles or "+/-" positions on the gear selector) is called a manumatic transmission, and is not considered a manual transmission. Some automatic transmissions are based on the mechanical build and internal design of a manual transmission but have added components (such as computer-controlled actuators and sensors) which automatically control the timing and speed of the gear shifts and clutch; this design is typically called an automated manual transmission (or sometimes a clutchless manual transmission).

Contemporary manual transmissions for cars typically use five or six forward gears ratios and one reverse gear, however, transmissions with between two and seven gears have been produced at times. Transmissions for trucks and other heavy equipment often have between eight and twenty-five gears,[citation needed] in order to keep the engine speed within the optimal power band for all typical road speeds. Operating such transmissions often uses the same pattern of shifter movement with a single or multiple switches to engage the next sequence of gears.

History

1890s to 1940s

 
Cherrier two speed gear, circa 1900[1]

Many of the first automobiles were rear-engined, with a simple belt-drive functioning as a single-speed transmission. The 1891 Panhard et Levassor is considered a significant advance in automotive transmissions since it used a three-speed manual transmission.[2][3] This transmission, along with many similar designs that it inspired, was a non-synchronous (also called sliding-mesh) design where gear changes involved sliding the gears along their shafts so that the desired cogs became meshed. The driver was therefore required to use careful timing and throttle manipulation when shifting, so the gears would be spinning at roughly the same speed when engaged; otherwise, the teeth would refuse to mesh. This was difficult to achieve, so gear changes were often accompanied by grinding or crunching sounds, resulting in the gearboxes being nicknamed "crash boxes".[4] Even after passenger cars had switched to synchronous transmissions (i.e. with synchronizers), many transmissions for heavy trucks, motorcycles and racing cars remained non-synchronous, in order to withstand the forces required or provide a faster shift time.

1950s to 1980s

 
Top and side view of a typical manual transmission, in this case, a Ford Toploader, used in vehicles with external floor shifters.

The first car to use a manual transmission with synchromesh was the 1929 Cadillac,[5] however most cars continued to use non-synchronous transmissions until at least the 1950s. In 1947, Porsche patented the split ring synchromesh system, which went on the become the most common design for passenger cars.[6] The 1952 Porsche 356 was the first car to use a transmission with synchromesh on all forward gears.[7][8] In the early 1950s, most cars only had synchromesh for the shift from third gear to second gear (drivers' manuals in vehicles suggested that if the driver needed to shift from second to first, it was best to come to a complete stop beforehand).

Up until the late 1970s, most transmissions had three or four forward gear ratios, although five-speed manual transmissions were occasionally used in sports cars such as the 1948 Ferrari 166 Inter and the 1953 Alfa Romeo 1900 Super Sprint. Five-speed transmissions became widespread during the 1980s, as did the use of synchromesh on all forward gears.

1990s to present

Six-speed manual transmissions started to emerge in high-performance vehicles in the early 1990s, such as the 1990 BMW 850i and the 1992 Ferrari 456. The first 6-speed manual transmission was introduced in the 1967 Alfa Romeo 33 Stradale. The first 7-speed manual transmission was introduced in the 2012 Porsche 911 (991).[9]

In 2008, 75.2% of vehicles produced in Western Europe were equipped with manual transmission, versus 16.1% with automatic and 8.7% with other.[10]

Internals

 
16-speed (2×4×2) ZF 16S181 – opened transmission housing (2x4×2)
 
16S181 — opened planetary range housing (2×4×2)

Shafts

A manual transmission has several shafts with various gears and other components attached to them. Most modern passenger cars use 'constant-mesh' transmissions consisting of three shafts: an input shaft, a countershaft (also called a layshaft) and an output shaft.[11]

The input shaft is connected to the engine and spins at engine speed whenever the clutch is engaged.[12] The countershaft has gears of various sizes, which are permanently meshed with the corresponding gear on the input shaft.[13] The gears on the output shaft are also permanently meshed with a corresponding gear on the countershaft, however, the output shaft gears are able to rotate independently of the output shaft itself (through the use of bearings located between the gears and the shaft).[14] Through the use of collars (operated using the shift rods), the speed of the output shaft becomes temporarily locked to the speed of the selected gear.[15] Some transmission designs—such as in the Volvo 850 and S70—have two countershafts, both driving an output pinion meshing with the front-wheel-drive transaxle's ring gear. This allows for a narrower transmission since the length of each countershaft is halved compared with one that contains four gears and two shifters.

The fixed and free gears can be mounted on either the input or output shaft or both. For example, a five-speed transmission might have the first-to-second selectors on the countershaft, but the third-to-fourth selector and the fifth selector on the main shaft. This means that when the vehicle is stopped and idling in neutral with the clutch engaged and the input shaft spinning, the third-, fourth-, and fifth-gear pairs do not rotate.

When neutral is selected, none of the gears on the output shaft are locked to the shaft, allowing the input and output shafts to rotate independently. For reverse gear, an idler gear is used to reverse the direction in which the output shaft rotates. In many transmissions, the input and output shafts can be directly locked together (bypassing the countershaft) to create a 1:1 gear ratio which is referred to as direct-drive.

In a transmission for longitudinal engined vehicles (e.g. most rear-wheel-drive cars), it is common for the input shaft and output shaft to be located on the same axis, since this reduces the torsional forces to which the transmission casing must withstand. The assembly consisting of both the input and output shafts is referred to as the main shaft (although sometimes this term refers to just the input shaft or output shaft). Independent rotation of the input and output shafts is made possibly by one shaft being located inside the hollow bore of the other shaft, with a bearing located between the two shafts.

In a transmission for transverse engined vehicles (e.g., front-wheel-drive cars), there are usually only two shafts: input and countershaft (sometimes called input and output). The input shaft runs the whole length of the gearbox, and there is no separate input pinion. These transmissions also have an integral differential unit, which is connected via a pinion gear at the end of the counter/output shaft.

Dog clutch

In a modern constant-mesh manual transmission, the gear teeth are permanently in contact with each other, and dog clutches (sometimes called dog teeth) are used to select the gear ratio for the transmission. When the dog clutches for all gears are disengaged (i.e. when the transmission is in neutral), all of the gears are able to spin freely around the output shaft. When the driver selects a gear, the dog clutch for that gear is engaged (via the gear selector rods), locking the transmission's output shaft to a particular gear set. This means the output shaft rotates at the same speed as the selected gear, thus determining the gear ratio of the transmission.[16]

The dog clutch is a sliding selector mechanism that sits around the output shaft. It has teeth to fit into the splines on the shaft, forcing that shaft to rotate at the same speed as the gear hub. However, the clutch can move back and forth on the shaft, to either engage or disengage the splines. This movement is controlled by a selector fork that is linked to the gear lever. The fork does not rotate, so it is attached to a collar bearing on the selector. The selector is typically symmetric: it slides between two gears and has a synchromesh and teeth on each side in order to lock either gear to the shaft. Unlike some other types of clutches (such as the foot-operated clutch of a manual-transmission car), a dog clutch provides non-slip coupling and is not suited to intentional slipping.

Synchromesh

 
Synchronizer rings

In order to provide smooth gearshifts without requiring the driver to manually match the engine revs for each gearshift, most modern passenger car transmissions use 'synchromesh' (also called 'synchronizer rings') on the forward gears. These devices automatically match the speed of the input shaft with that of the gear being selected, thus removing the need for the driver to use techniques such as double-clutching. The synchromesh transmission was invented in 1919 by Earl Avery Thompson and first used on production cars by Cadillac in 1928.[17]

The need for synchromesh in a constant-mesh transmission is that the dog clutches require the input shaft speed to match that of the gear being selected; otherwise, the dog teeth will fail to engage and a loud grinding sound will be heard as they clatter together. Therefore, to speed up or slow down the input shaft as required, cone-shaped brass synchronizer rings are attached to each gear. When the driver moves the gearshift lever towards the next gear, these synchronizer rings press on the cone-shaped sleeve on the dog collar so that the friction forces can reduce the difference in rotational speeds.[18] Once these speeds are equalized, the dog clutch can engage, and thus the new gear is now in use. In a modern gearbox, the action of all of these components is so smooth and fast it is hardly noticed. Many transmissions do not include synchromesh on the reverse gear (see Reverse gear section below).

The synchromesh system must also prevent the collar from bridging the locking rings while the speeds are still being synchronized. This is achieved through 'blocker rings' (also called 'baulk rings'). The synchro ring rotates slightly because of the frictional torque from the cone clutch. In this position, the dog clutch is prevented from engaging. Once the speeds are synchronized, friction on the blocker ring is relieved and the blocker ring twists slightly, bringing into alignment certain grooves or notches that allow the dog clutch to fall into the engagement.

Common metals for synchronizer rings are brass and steel, and are produced either by forging or sheet metal shaping. The latter involves stamping the piece out of a sheet metal strip and then machining to obtain the exact shape required. The rings are sometimes coated with anti-wear linings (also called 'friction linings') made from molybdenum, iron, bronze or carbon (with the latter usually reserved for high-performance transmissions due to their high cost).[19]

Mechanical wear of the synchronizer rings and sleeves can cause the synchromesh system to become ineffective over time. These rings and sleeves have to overcome the momentum of the entire input shaft and clutch disk during each gearshift (and also the momentum and power of the engine, if the driver attempts a gearshift without fully disengaging the clutch). Larger differences in speed between the input shaft and the gear require higher friction forces from the synchromesh components, potentially increasing their wear rate.

Reverse gear

Even in modern transmissions where all of the forward gears are in a constant-mesh configuration, often the reverse gear uses the older sliding-mesh ("crash box") configuration. This means that moving the gearshift lever into reverse results in gears moving to mesh together. Another unique aspect of the reverse gear is that it consists of two gears—an idler gear on the countershaft and another gear on the output shaft—and both of these are directly fixed to the shaft (i.e. they are always rotating at the same speed as the shaft). These gears are usually spur gears with straight-cut teeth which—unlike the helical teeth used for forward gear—results in a whining sound as the vehicle moves in reverse.

When reverse gear is selected, the idler gear is physically moved to mesh with the corresponding gears on the input and output shafts. To avoid grinding as the gears begin to the mesh, they need to be stationary. Since the input shaft is often still spinning due to momentum (even after the car has stopped), a mechanism is needed to stop the input shaft, such as using the synchronizer rings for fifth gear. However, some vehicles do employ a synchromesh system for the reverse gear, thus preventing possible crunching if reverse gear is selected while the input shaft is still spinning.[20]

Most transmissions include a lockout mechanism to prevent reverse gear from being accidentally selected while the car is moving forwards. This can take the form of a collar underneath the gear knob which needs to be lifted or requiring extra force to push the gearshift lever into the plane of reverse gear.

Non-synchronous transmission

 
3-speed non-synchronous "crash" gearbox; used in automobiles pre-1950s and semi-trailer trucks

Another design of transmission that is used in older cars, trucks, and tractors, is a non-synchronous transmission (also known as a crash gearbox). Non-synchronous transmissions use a sliding-mesh (or constant-mesh, in later years) design and have the nickname "crash" because the difficulty in changing gears can lead to gear shifts accompanied by crashing/crunching noises.

Clutch

 
Exploded view of a flywheel, friction disk, and clutch kit

Vehicles with manual transmissions use a clutch to manage the linkage between the engine and the transmission, and decouple the transmission from the engine during gearshifts and when the vehicle is stationary. Without a clutch, the engine would stall any time the vehicle stopped, and changing gears would be difficult (deselecting a gear while the transmission requires the driver to adjust the throttle so that the transmission is not under load, and selecting a gear requires the engine RPM to be at the exact speed that matches the road speed for the gear being selected).

Most motor vehicles use a pedal to operate the clutch; except for motorcycles, which usually have a clutch lever on the left handlebar.

Gear stick

 
Floor-mounted gear stick in a Mazda Protege passenger car
 
Common shift pattern for a 5-speed transmission

In most vehicles with a manual transmission, the driver selects gears by manipulating a lever called a gear stick (also called a gearshift, gear lever or shifter). In most automobiles, the gear stick is located on the floor between the driver and front passenger, but some cars have a gear stick that is mounted to the steering column or center console.

The movement of the gear stick is transferred (via solid linkages or cables) to the selector forks within the transmission.

Motorcycles typically employ sequential manual transmissions, although the shift pattern is modified slightly for safety reasons. Gear selection is usually via the left-foot (or, on older motorcycles; right-foot) shift lever with a layout of 1–N–2–3–4–5–6.

External overdrive

In the 1950s, 1960s, and 1970s, fuel-efficient highway cruising with low engine speed was in some cases enabled on vehicles equipped with 3- or 4-speed transmissions by means of a separate overdrive unit in or behind the rear housing of the transmission. This was actuated either manually while in high gear by throwing a switch or pressing a button on the gearshift knob or on the steering column, or automatically by momentarily lifting the foot from the accelerator with the vehicle traveling above a certain road speed. Automatic overdrives were disengaged by flooring the accelerator, and a lockout control was provided to enable the driver to disable overdrive and operate the transmission as a normal (non-overdrive) transmission.[21]

The term 'overdrive' is also used to describe a gear with a ratio of less than one (e.g., if the top gear of the transmission has a ratio of 0.8:1).

Push starting

Vehicles with a manual transmission can often be push started when the starter motor is not operational, such as when the car has a dead battery.

When push-starting, the energy generated by the wheels moving on the road is transferred to the driveshaft, then the transmission, and eventually the crankshaft. When the crankshaft spins as a result of the energy generated by the rolling of the vehicle, the motor is cranked over. This simulates what the starter is intended for and operates in a similar way to crank handles on very old cars from the early 20th century, with the cranking motion being replaced by the pushing of the car.

Driving techniques

Recently, many automatic transmissions have included more gear ratios than their manual counterparts.[22][23]

In some countries, a driving license issued for vehicles with an automatic transmission is not valid for driving vehicles with a manual transmission, but a license for manual transmissions covers both.[24]

Hill starts

Starting from a stationary position in a manual transmission vehicle requires extra torque to accelerate the vehicle up the hill, with the potential for the vehicle to roll backward in the time it takes to move the driver's foot from the brake pedal to the accelerator pedal (to increase the engine RPM before letting out the clutch). The traditional method of hill starts in a manual transmission car is to use the parking brake (also called "handbrake", "emergency brake", or "e-brake") to hold the vehicle stationary. This means that the driver's right foot is not needed to operate the brake pedal, freeing it up to be used on the accelerator pedal instead. Once the required engine RPM is obtained, the driver can release the clutch, also releasing the parking brake as the clutch engages.

A device called the hill-holder was introduced on the 1936 Studebaker. Many modern vehicles use an electronically actuated parking brake, which often includes a hill-holder feature whereby the parking brake is automatically released as the driven wheels start to receive power from the engine.[25]

Other driving techniques

  • Rev-matching is where the driver uses the throttle to match the revs to the road speed so that gear changes are not jerky. This is commonly used by drivers with non-synchromesh gearboxes, or those driving racing vehicles[26]
  • Double-clutching is required on non-synchro gearboxes. To double-clutch while downshifting: depress the clutch pedal and move the gear lever to neutral, release the clutch pedal, “blip” the throttle to speed up the layshaft to increase the rotational speed of the lower gear, depress the clutch pedal again, move the gear lever to the lower gear, then release the clutch pedal.
  • Heel-and-toe shifting is where the driver uses one foot to modulate the brake and accelerator pedal simultaneously to allow for rev matching under braking.
  • Rowing, block shifting or skip shifting[27] is the technique of downshifting more than one gear in order to reduce wear and tear on the gearbox. Rev-matching may need to be used to create a smooth shift. Combining this with Heel-and Toe downshifting provides for maximum braking when going from top gear to a much lower gear, and optimal engine RPM for exiting the corner.

Synchronized downshift rev-matching system

The synchronized down shift rev-matching system is a computer-controlled technology that mimics the manual rev-matching technique.

Truck transmissions

Some trucks have transmissions that look and behave like ordinary consumer vehicle transmissions—these transmissions are used on lighter trucks, typically have up to 6 gears, and usually have synchromesh.

For trucks needing more gears, the standard "H" pattern can be complicated for some truck drivers, so additional controls are used to select additional gears. The "H" pattern is retained, then an additional control selects among alternatives. In older trucks, the control is often a separate lever mounted on the floor or more recently a pneumatic switch mounted on the "H" lever; in newer trucks, the control is often an electrical switch mounted on the "H" lever. Multi-control transmissions are built in much higher power ratings but rarely use synchromesh.

There are several common alternatives for the shifting pattern. The standard types are:

  • Range transmissions use an "H" pattern through a narrow range of gears, then a "range" control shifts the "H" pattern between high and low ranges. For example, an 8-speed range transmission has an H shift pattern with four gears. The first through fourth gears are accessed when a low range is selected. To access the fifth through eighth gears, the range selector is moved to high range, and the gear lever again shifted through the first through fourth gear positions. In high range, the first gear position becomes fifth, the second gear position becomes sixth, and so on.
  • Splitter transmissions use an "H" pattern with a wide range of gears, and the other selector splits each sequential gear position in two: First gear is in the first position/low split, second gear is in the first position/high split, third gear is in second position/low split, fourth gear is in second position/high split, and so on.
  • Range-splitter transmissions combine range-splitting and gear-splitting. This allows even more gear ratios. Both a range selector and a splitter selector are provided.

Although there are many gear positions, shifting through gears usually follows a regular pattern. For example, a series of up shifts might use "move to splitter direct; move to splitter overdrive; move the shift lever to No. 2 and move splitter to underdrive; move splitter to direct; move splitter to overdrive; move the shifter to No. 3 and move splitter to underdrive"; and so on. In older trucks using floor-mounted levers, a bigger problem is common gear shifts require the drivers to move their hands between shift levers in a single shift, and without synchromesh, shifts must be carefully timed or the transmission will not engage. For this reason, some splitter transmissions have an additional "under under" range, so when the splitter is already in "under" it can be quickly downshifted again, without the delay of a double shift.

Modern truck transmissions are most commonly "range-splitter". The most common 13-speed has a standard H pattern, and the pattern from the left upper corner is as follows: R, down to L, over and up to 1, down to 2, up and over to 3, down to 4. The "butterfly" range lever in the center front of the knob is flipped up to high range while in 4th, then shifted back to 1. The 1 through 4 positions of the knob is repeated. Also, each can be split using the thumb-actuated under-overdrive lever on the left side of the knob while in high range. The "thumb" lever is not available in low range, except in 18 speeds; 1 through 4 in the low range can be split using the thumb lever and L can be split with the "Butterfly" lever. L cannot be split using the thumb lever in either the 13- or 18-speed. The 9-speed transmission is like a 13-speed without the under-overdrive thumb lever.

Truck transmissions use many physical layouts. For example, the output of an N-speed transmission may drive an M-speed secondary transmission, giving a total of N*M gear combinations. Transmissions may be in separate cases with a shaft in between; in separate cases bolted together; or all in one case, using the same lubricating oil. The second transmission is often called a "Brownie" or "Brownie box" after a popular brand. With a third transmission, gears are multiplied yet again, giving greater range or closer spacing. Some trucks thus have dozens of gear positions, although most are duplicates. Sometimes a secondary transmission is integrated with the differential in the rear axle, called a "two-speed rear end". Two-speed differentials are always splitters. In newer transmissions, there may be two counter shafts, so each main shaft gear can be driven from one or the other countershaft; this allows construction with short and robust countershafts, while still allowing many gear combinations inside a single gear case.

Heavy-duty transmissions are mostly non-synchromesh. Sometimes synchromesh adds weight that could be payload, and is one more thing to fail, and drivers spend thousands of hours driving so can take the time to learn to drive efficiently with a non-synchromesh transmission. Float shifting (also called "floating gears") is changing gears without disengaging the clutch, usually on a non-synchronized transmission used by large trucks. Since the clutch is not used, it is easy to mismatch speeds of gears, and the driver can quickly cause major (and expensive) damage to the gears and the transmission.

Heavy trucks are usually powered with diesel engines. Diesel truck engines from the 1970s and earlier tend to have a narrow power band, so they need many close-spaced gears. Starting with the 1968 Maxidyne, diesel truck engines have increasingly used turbochargers and electronic controls that widen the power band, allowing fewer and fewer gear ratios. As of 2021, fleet operators often use 9, 10, 13, or 18-speed transmissions, but automated manual transmissions are becoming more common on heavy vehicles, as they can improve efficiency and drivability, reduce the barrier to entry for new drivers, and may improve safety by allowing the driver to concentrate on road conditions.[citation needed]

Lubrication

Manual transmissions are lubricated with gear oil (or engine oil in some vehicles) which must be changed periodically in some vehicles, although not as frequently as the fluid in an automatic transmission. Gear oil has a characteristic aroma because it contains added sulfur-bearing anti-wear compounds. These compounds are used to reduce the high sliding friction by the helical gear cut of the teeth (this cut eliminates the characteristic whine of straight-cut spur gears). On motorcycles with "wet" clutches (clutch is bathed in engine oil), there is usually nothing separating the lower part of the engine from the transmission, so the same oil lubricates both the engine and transmission.

See also

References

  1. ^ Wikisource:Popular Science Monthly/Volume 57/August 1900/The Evolution and Present Status of the Automobile
  2. ^ "The 1891 Panhard et Levassor". www.themotormuseuminminiature.co.uk. Retrieved 2 July 2020.
  3. ^ "Sliding Gearbox - 1891 Panhard et Levassor". www.youtube.com. Archived from the original on 30 October 2021. Retrieved 2 July 2020.
  4. ^ . www.howstuffworks.com. 7 December 2007. Archived from the original on 4 July 2020. Retrieved 2 July 2020.
  5. ^ "Synchromesh Gearbox". www.hemmings.com. Retrieved 5 July 2020.
  6. ^ "Synchromesh - How It Works". www.uniquecarsandparts.com.au. Retrieved 5 July 2020.
  7. ^ "Model Guide: 356 — The Simple Porsche". www.pca.org. Retrieved 5 July 2020.
  8. ^ "History of the 356". www.356.dk. Retrieved 5 July 2020.
  9. ^ "In Your Car, How Many Gears is Too Many?". www.popularmechanics.com. 29 September 2011. Retrieved 5 July 2020.
  10. ^ "Why Dual Clutch Technology Will Be Big Business". Dctfacts.com. Retrieved 7 February 2010.
  11. ^ Bosch, Robert (2004). Automotive Handbook (6th ed.). Bentley Publishers. p. 741. ISBN 978-0-8376-0333-9. Retrieved 10 March 2020.
  12. ^ "How Manual Transmissions Work". www.howstuffworks.com. 1 April 2000. Retrieved 13 March 2020.
  13. ^ "Basic Anatomy – How The Manual Transmission Works". www.gotodobbs.com. 29 April 2017. Retrieved 13 March 2020.
  14. ^ "How It Works: Manual transmissions". www.driving.ca. 12 September 2018. Retrieved 13 March 2020.
  15. ^ "Manual Transmission Basics". www.edmunds.com. 25 April 2001. Retrieved 13 March 2020.
  16. ^ "How Manual Transmissions Work". www.howstuffworks.com. 1 April 2000. Retrieved 7 June 2020.
  17. ^ "Synchromesh Gear Box- How's That Work?". hooniverse.com. 29 April 2014. Retrieved 23 September 2019.
  18. ^ "Synchronizers; graphic illustration of how they work". Howstuffworks.com. April 2000. Retrieved 18 July 2007.
  19. ^ Diehl Metall Stiftung & Co. KG. . Diehl.com. Archived from the original on 7 March 2017. Retrieved 6 March 2017.
  20. ^ "Buyers Guide Alfa Romeo Spider & GTV 916". Alfisti.net. Retrieved 16 October 2010.
  21. ^ "The Borg-Warner Overdrive Transmission Explained". FORDification.com. Retrieved 22 April 2012.
  22. ^ "Here's what's really killing the manual transmission". roadandtrack.com. 10 March 2014. Retrieved 17 June 2020.
  23. ^ "Why the 2018 Ford Mustang GT Automatic is So Much Quicker Than the Manual". motortrend.com. 22 June 2018. Retrieved 17 June 2020.
  24. ^ "Driving licence categories - GOV.UK". Gov.uk. Retrieved 6 March 2017.
  25. ^ Lampton, Christopher (5 October 2009). "How Hill-Start Control Works | HowStuffWorks". Auto.howstuffworks.com. Retrieved 6 March 2017.
  26. ^ "The 5 Steps To Perfect Rev Matching – The Ultimate Guide". FlowRacers.com. 29 May 2020. Retrieved 1 October 2020.
  27. ^ "Why do trucks have a lot of gears".

External links

  • As Stick Shifts Fade Into Obscurity, Collectors See Opportunity 24 June 2021 New York Times article by Rob Sass

manual, transmission, manual, transmission, also, known, manual, gearbox, standard, transmission, canada, united, kingdom, united, states, stick, shift, united, states, multi, speed, motor, vehicle, transmission, system, where, gear, changes, require, driver, . A manual transmission MT also known as manual gearbox standard transmission in Canada the United Kingdom and the United States or stick shift in the United States is a multi speed motor vehicle transmission system where gear changes require the driver to manually select the gears by operating a gear stick and clutch which is usually a foot pedal for cars or a hand lever for motorcycles Mazda M5OD manual transmission for a four wheel drive vehicle Ford Ranger viewed from the engine side Internals of a Getrag 282 manual transmission for a front wheel drive vehicle Oldsmobile Cutlass Early automobiles used sliding mesh manual transmissions with up to three forward gear ratios Since the 1950s constant mesh manual transmissions have become increasingly commonplace and the number of forward ratios has increased to 5 speed and 6 speed manual transmissions for current vehicles The alternative to a manual transmission is an automatic transmission common types of automatic transmissions are the hydraulic automatic transmission AT and the continuously variable transmission CVT whereas the automated manual transmission AMT and dual clutch transmission DCT are internally similar to a conventional manual transmission but are shifted automatically Alternately there are transmissions which facilitate automatic clutch operation but the driver s input is still required to manually change gears namely semi automatic transmissions These systems are based on the design of a conventional manual transmission with a gear shifter and are mechanically similar to a conventional manual transmission with the driver s control and input still required for manually changing gears like with a standard manual transmission but the clutch system is completely automated and the mechanical linkage for the clutch pedal is completely replaced by an actuator servo or solenoid and sensors which operate the clutch system automatically when the driver touches or moves the gearshift This removes the need for a physical clutch pedal Contents 1 Overview 2 History 2 1 1890s to 1940s 2 2 1950s to 1980s 2 3 1990s to present 3 Internals 3 1 Shafts 3 2 Dog clutch 3 3 Synchromesh 3 4 Reverse gear 3 5 Non synchronous transmission 4 Clutch 5 Gear stick 6 External overdrive 7 Push starting 8 Driving techniques 8 1 Hill starts 8 2 Other driving techniques 9 Synchronized downshift rev matching system 10 Truck transmissions 11 Lubrication 12 See also 13 References 14 External linksOverview EditA manual transmission requires the driver to operate the gear stick and clutch in order to change gears unlike an automatic transmission or semi automatic transmission where one typically the clutch or both of these functions are automated Most manual transmissions for cars allow the driver to select any gear ratio at any time for example shifting from second to fourth gear or fifth to third gear However sequential manual transmissions which are commonly used in motorcycles and racing cars only allow the driver to select the next higher or next lower gear In a vehicle with a manual transmission the flywheel is attached to the engine s crankshaft therefore rotating at engine speed A clutch sits between the flywheel and the transmission input shaft controlling whether the transmission is connected to the engine clutch engaged the clutch pedal is not being pressed or not connected to the engine clutch disengaged the clutch pedal is being pressed down When the engine is running and the clutch is engaged i e clutch pedal up the flywheel spins the clutch plate and hence the transmission The design of most manual transmissions for cars is that gear ratios are selected by locking selected gear pairs to the output shaft inside the transmission This is a fundamental difference compared with a typical hydraulic automatic transmission which uses an epicyclic planetary design and a hydraulic torque converter An automatic transmission that allows the driver to control the gear selection such as shift paddles or positions on the gear selector is called a manumatic transmission and is not considered a manual transmission Some automatic transmissions are based on the mechanical build and internal design of a manual transmission but have added components such as computer controlled actuators and sensors which automatically control the timing and speed of the gear shifts and clutch this design is typically called an automated manual transmission or sometimes a clutchless manual transmission Contemporary manual transmissions for cars typically use five or six forward gears ratios and one reverse gear however transmissions with between two and seven gears have been produced at times Transmissions for trucks and other heavy equipment often have between eight and twenty five gears citation needed in order to keep the engine speed within the optimal power band for all typical road speeds Operating such transmissions often uses the same pattern of shifter movement with a single or multiple switches to engage the next sequence of gears Manual transmissions in operation Operation of a constant mesh 4 speed manual transmission Non synchronous crash gearbox with sliding mesh design Used in older vehicles Operation of a constant mesh 4 speed sequential manual transmission commonly used in motorcycles and race cars source source source source source source source source source source track 1936 film of automobile gearboxHistory Edit1890s to 1940s Edit Cherrier two speed gear circa 1900 1 Many of the first automobiles were rear engined with a simple belt drive functioning as a single speed transmission The 1891 Panhard et Levassor is considered a significant advance in automotive transmissions since it used a three speed manual transmission 2 3 This transmission along with many similar designs that it inspired was a non synchronous also called sliding mesh design where gear changes involved sliding the gears along their shafts so that the desired cogs became meshed The driver was therefore required to use careful timing and throttle manipulation when shifting so the gears would be spinning at roughly the same speed when engaged otherwise the teeth would refuse to mesh This was difficult to achieve so gear changes were often accompanied by grinding or crunching sounds resulting in the gearboxes being nicknamed crash boxes 4 Even after passenger cars had switched to synchronous transmissions i e with synchronizers many transmissions for heavy trucks motorcycles and racing cars remained non synchronous in order to withstand the forces required or provide a faster shift time 1950s to 1980s Edit Top and side view of a typical manual transmission in this case a Ford Toploader used in vehicles with external floor shifters The first car to use a manual transmission with synchromesh was the 1929 Cadillac 5 however most cars continued to use non synchronous transmissions until at least the 1950s In 1947 Porsche patented the split ring synchromesh system which went on the become the most common design for passenger cars 6 The 1952 Porsche 356 was the first car to use a transmission with synchromesh on all forward gears 7 8 In the early 1950s most cars only had synchromesh for the shift from third gear to second gear drivers manuals in vehicles suggested that if the driver needed to shift from second to first it was best to come to a complete stop beforehand Up until the late 1970s most transmissions had three or four forward gear ratios although five speed manual transmissions were occasionally used in sports cars such as the 1948 Ferrari 166 Inter and the 1953 Alfa Romeo 1900 Super Sprint Five speed transmissions became widespread during the 1980s as did the use of synchromesh on all forward gears 1990s to present Edit Six speed manual transmissions started to emerge in high performance vehicles in the early 1990s such as the 1990 BMW 850i and the 1992 Ferrari 456 The first 6 speed manual transmission was introduced in the 1967 Alfa Romeo 33 Stradale The first 7 speed manual transmission was introduced in the 2012 Porsche 911 991 9 In 2008 75 2 of vehicles produced in Western Europe were equipped with manual transmission versus 16 1 with automatic and 8 7 with other 10 Internals Edit 16 speed 2 4 2 ZF 16S181 opened transmission housing 2x4 2 16S181 opened planetary range housing 2 4 2 Shafts Edit A manual transmission has several shafts with various gears and other components attached to them Most modern passenger cars use constant mesh transmissions consisting of three shafts an input shaft a countershaft also called a layshaft and an output shaft 11 The input shaft is connected to the engine and spins at engine speed whenever the clutch is engaged 12 The countershaft has gears of various sizes which are permanently meshed with the corresponding gear on the input shaft 13 The gears on the output shaft are also permanently meshed with a corresponding gear on the countershaft however the output shaft gears are able to rotate independently of the output shaft itself through the use of bearings located between the gears and the shaft 14 Through the use of collars operated using the shift rods the speed of the output shaft becomes temporarily locked to the speed of the selected gear 15 Some transmission designs such as in the Volvo 850 and S70 have two countershafts both driving an output pinion meshing with the front wheel drive transaxle s ring gear This allows for a narrower transmission since the length of each countershaft is halved compared with one that contains four gears and two shifters The fixed and free gears can be mounted on either the input or output shaft or both For example a five speed transmission might have the first to second selectors on the countershaft but the third to fourth selector and the fifth selector on the main shaft This means that when the vehicle is stopped and idling in neutral with the clutch engaged and the input shaft spinning the third fourth and fifth gear pairs do not rotate When neutral is selected none of the gears on the output shaft are locked to the shaft allowing the input and output shafts to rotate independently For reverse gear an idler gear is used to reverse the direction in which the output shaft rotates In many transmissions the input and output shafts can be directly locked together bypassing the countershaft to create a 1 1 gear ratio which is referred to as direct drive In a transmission for longitudinal engined vehicles e g most rear wheel drive cars it is common for the input shaft and output shaft to be located on the same axis since this reduces the torsional forces to which the transmission casing must withstand The assembly consisting of both the input and output shafts is referred to as the main shaft although sometimes this term refers to just the input shaft or output shaft Independent rotation of the input and output shafts is made possibly by one shaft being located inside the hollow bore of the other shaft with a bearing located between the two shafts In a transmission for transverse engined vehicles e g front wheel drive cars there are usually only two shafts input and countershaft sometimes called input and output The input shaft runs the whole length of the gearbox and there is no separate input pinion These transmissions also have an integral differential unit which is connected via a pinion gear at the end of the counter output shaft Gear selection in a constant mesh transmission First gear blue to back Second gear blue to front Third gear purple to back Fourth gear purple to front Reverse green engaged Neutral all disengaged Dog clutch Edit In a modern constant mesh manual transmission the gear teeth are permanently in contact with each other and dog clutches sometimes called dog teeth are used to select the gear ratio for the transmission When the dog clutches for all gears are disengaged i e when the transmission is in neutral all of the gears are able to spin freely around the output shaft When the driver selects a gear the dog clutch for that gear is engaged via the gear selector rods locking the transmission s output shaft to a particular gear set This means the output shaft rotates at the same speed as the selected gear thus determining the gear ratio of the transmission 16 The dog clutch is a sliding selector mechanism that sits around the output shaft It has teeth to fit into the splines on the shaft forcing that shaft to rotate at the same speed as the gear hub However the clutch can move back and forth on the shaft to either engage or disengage the splines This movement is controlled by a selector fork that is linked to the gear lever The fork does not rotate so it is attached to a collar bearing on the selector The selector is typically symmetric it slides between two gears and has a synchromesh and teeth on each side in order to lock either gear to the shaft Unlike some other types of clutches such as the foot operated clutch of a manual transmission car a dog clutch provides non slip coupling and is not suited to intentional slipping Synchromesh Edit Synchronizer rings In order to provide smooth gearshifts without requiring the driver to manually match the engine revs for each gearshift most modern passenger car transmissions use synchromesh also called synchronizer rings on the forward gears These devices automatically match the speed of the input shaft with that of the gear being selected thus removing the need for the driver to use techniques such as double clutching The synchromesh transmission was invented in 1919 by Earl Avery Thompson and first used on production cars by Cadillac in 1928 17 The need for synchromesh in a constant mesh transmission is that the dog clutches require the input shaft speed to match that of the gear being selected otherwise the dog teeth will fail to engage and a loud grinding sound will be heard as they clatter together Therefore to speed up or slow down the input shaft as required cone shaped brass synchronizer rings are attached to each gear When the driver moves the gearshift lever towards the next gear these synchronizer rings press on the cone shaped sleeve on the dog collar so that the friction forces can reduce the difference in rotational speeds 18 Once these speeds are equalized the dog clutch can engage and thus the new gear is now in use In a modern gearbox the action of all of these components is so smooth and fast it is hardly noticed Many transmissions do not include synchromesh on the reverse gear see Reverse gear section below The synchromesh system must also prevent the collar from bridging the locking rings while the speeds are still being synchronized This is achieved through blocker rings also called baulk rings The synchro ring rotates slightly because of the frictional torque from the cone clutch In this position the dog clutch is prevented from engaging Once the speeds are synchronized friction on the blocker ring is relieved and the blocker ring twists slightly bringing into alignment certain grooves or notches that allow the dog clutch to fall into the engagement Common metals for synchronizer rings are brass and steel and are produced either by forging or sheet metal shaping The latter involves stamping the piece out of a sheet metal strip and then machining to obtain the exact shape required The rings are sometimes coated with anti wear linings also called friction linings made from molybdenum iron bronze or carbon with the latter usually reserved for high performance transmissions due to their high cost 19 Mechanical wear of the synchronizer rings and sleeves can cause the synchromesh system to become ineffective over time These rings and sleeves have to overcome the momentum of the entire input shaft and clutch disk during each gearshift and also the momentum and power of the engine if the driver attempts a gearshift without fully disengaging the clutch Larger differences in speed between the input shaft and the gear require higher friction forces from the synchromesh components potentially increasing their wear rate Reverse gear Edit Even in modern transmissions where all of the forward gears are in a constant mesh configuration often the reverse gear uses the older sliding mesh crash box configuration This means that moving the gearshift lever into reverse results in gears moving to mesh together Another unique aspect of the reverse gear is that it consists of two gears an idler gear on the countershaft and another gear on the output shaft and both of these are directly fixed to the shaft i e they are always rotating at the same speed as the shaft These gears are usually spur gears with straight cut teeth which unlike the helical teeth used for forward gear results in a whining sound as the vehicle moves in reverse When reverse gear is selected the idler gear is physically moved to mesh with the corresponding gears on the input and output shafts To avoid grinding as the gears begin to the mesh they need to be stationary Since the input shaft is often still spinning due to momentum even after the car has stopped a mechanism is needed to stop the input shaft such as using the synchronizer rings for fifth gear However some vehicles do employ a synchromesh system for the reverse gear thus preventing possible crunching if reverse gear is selected while the input shaft is still spinning 20 Most transmissions include a lockout mechanism to prevent reverse gear from being accidentally selected while the car is moving forwards This can take the form of a collar underneath the gear knob which needs to be lifted or requiring extra force to push the gearshift lever into the plane of reverse gear Non synchronous transmission Edit Main article Non synchronous transmission 3 speed non synchronous crash gearbox used in automobiles pre 1950s and semi trailer trucks Another design of transmission that is used in older cars trucks and tractors is a non synchronous transmission also known as a crash gearbox Non synchronous transmissions use a sliding mesh or constant mesh in later years design and have the nickname crash because the difficulty in changing gears can lead to gear shifts accompanied by crashing crunching noises Clutch EditMain article Clutch Exploded view of a flywheel friction disk and clutch kit Vehicles with manual transmissions use a clutch to manage the linkage between the engine and the transmission and decouple the transmission from the engine during gearshifts and when the vehicle is stationary Without a clutch the engine would stall any time the vehicle stopped and changing gears would be difficult deselecting a gear while the transmission requires the driver to adjust the throttle so that the transmission is not under load and selecting a gear requires the engine RPM to be at the exact speed that matches the road speed for the gear being selected Most motor vehicles use a pedal to operate the clutch except for motorcycles which usually have a clutch lever on the left handlebar Gear stick EditMain article Gear stick Floor mounted gear stick in a Mazda Protege passenger car Common shift pattern for a 5 speed transmission In most vehicles with a manual transmission the driver selects gears by manipulating a lever called a gear stick also called a gearshift gear lever or shifter In most automobiles the gear stick is located on the floor between the driver and front passenger but some cars have a gear stick that is mounted to the steering column or center console The movement of the gear stick is transferred via solid linkages or cables to the selector forks within the transmission Motorcycles typically employ sequential manual transmissions although the shift pattern is modified slightly for safety reasons Gear selection is usually via the left foot or on older motorcycles right foot shift lever with a layout of 1 N 2 3 4 5 6 External overdrive EditMain article Overdrive In the 1950s 1960s and 1970s fuel efficient highway cruising with low engine speed was in some cases enabled on vehicles equipped with 3 or 4 speed transmissions by means of a separate overdrive unit in or behind the rear housing of the transmission This was actuated either manually while in high gear by throwing a switch or pressing a button on the gearshift knob or on the steering column or automatically by momentarily lifting the foot from the accelerator with the vehicle traveling above a certain road speed Automatic overdrives were disengaged by flooring the accelerator and a lockout control was provided to enable the driver to disable overdrive and operate the transmission as a normal non overdrive transmission 21 The term overdrive is also used to describe a gear with a ratio of less than one e g if the top gear of the transmission has a ratio of 0 8 1 Push starting EditVehicles with a manual transmission can often be push started when the starter motor is not operational such as when the car has a dead battery When push starting the energy generated by the wheels moving on the road is transferred to the driveshaft then the transmission and eventually the crankshaft When the crankshaft spins as a result of the energy generated by the rolling of the vehicle the motor is cranked over This simulates what the starter is intended for and operates in a similar way to crank handles on very old cars from the early 20th century with the cranking motion being replaced by the pushing of the car Driving techniques EditRecently many automatic transmissions have included more gear ratios than their manual counterparts 22 23 In some countries a driving license issued for vehicles with an automatic transmission is not valid for driving vehicles with a manual transmission but a license for manual transmissions covers both 24 Hill starts Edit Starting from a stationary position in a manual transmission vehicle requires extra torque to accelerate the vehicle up the hill with the potential for the vehicle to roll backward in the time it takes to move the driver s foot from the brake pedal to the accelerator pedal to increase the engine RPM before letting out the clutch The traditional method of hill starts in a manual transmission car is to use the parking brake also called handbrake emergency brake or e brake to hold the vehicle stationary This means that the driver s right foot is not needed to operate the brake pedal freeing it up to be used on the accelerator pedal instead Once the required engine RPM is obtained the driver can release the clutch also releasing the parking brake as the clutch engages A device called the hill holder was introduced on the 1936 Studebaker Many modern vehicles use an electronically actuated parking brake which often includes a hill holder feature whereby the parking brake is automatically released as the driven wheels start to receive power from the engine 25 Other driving techniques Edit Rev matching is where the driver uses the throttle to match the revs to the road speed so that gear changes are not jerky This is commonly used by drivers with non synchromesh gearboxes or those driving racing vehicles 26 Double clutching is required on non synchro gearboxes To double clutch while downshifting depress the clutch pedal and move the gear lever to neutral release the clutch pedal blip the throttle to speed up the layshaft to increase the rotational speed of the lower gear depress the clutch pedal again move the gear lever to the lower gear then release the clutch pedal Heel and toe shifting is where the driver uses one foot to modulate the brake and accelerator pedal simultaneously to allow for rev matching under braking Rowing block shifting or skip shifting 27 is the technique of downshifting more than one gear in order to reduce wear and tear on the gearbox Rev matching may need to be used to create a smooth shift Combining this with Heel and Toe downshifting provides for maximum braking when going from top gear to a much lower gear and optimal engine RPM for exiting the corner Synchronized downshift rev matching system EditThe synchronized down shift rev matching system is a computer controlled technology that mimics the manual rev matching technique Truck transmissions EditThis section is written like a personal reflection personal essay or argumentative essay that states a Wikipedia editor s personal feelings or presents an original argument about a topic Please help improve it by rewriting it in an encyclopedic style June 2020 Learn how and when to remove this template message Some trucks have transmissions that look and behave like ordinary consumer vehicle transmissions these transmissions are used on lighter trucks typically have up to 6 gears and usually have synchromesh For trucks needing more gears the standard H pattern can be complicated for some truck drivers so additional controls are used to select additional gears The H pattern is retained then an additional control selects among alternatives In older trucks the control is often a separate lever mounted on the floor or more recently a pneumatic switch mounted on the H lever in newer trucks the control is often an electrical switch mounted on the H lever Multi control transmissions are built in much higher power ratings but rarely use synchromesh There are several common alternatives for the shifting pattern The standard types are Range transmissions use an H pattern through a narrow range of gears then a range control shifts the H pattern between high and low ranges For example an 8 speed range transmission has an H shift pattern with four gears The first through fourth gears are accessed when a low range is selected To access the fifth through eighth gears the range selector is moved to high range and the gear lever again shifted through the first through fourth gear positions In high range the first gear position becomes fifth the second gear position becomes sixth and so on Splitter transmissions use an H pattern with a wide range of gears and the other selector splits each sequential gear position in two First gear is in the first position low split second gear is in the first position high split third gear is in second position low split fourth gear is in second position high split and so on Range splitter transmissions combine range splitting and gear splitting This allows even more gear ratios Both a range selector and a splitter selector are provided Although there are many gear positions shifting through gears usually follows a regular pattern For example a series of up shifts might use move to splitter direct move to splitter overdrive move the shift lever to No 2 and move splitter to underdrive move splitter to direct move splitter to overdrive move the shifter to No 3 and move splitter to underdrive and so on In older trucks using floor mounted levers a bigger problem is common gear shifts require the drivers to move their hands between shift levers in a single shift and without synchromesh shifts must be carefully timed or the transmission will not engage For this reason some splitter transmissions have an additional under under range so when the splitter is already in under it can be quickly downshifted again without the delay of a double shift Modern truck transmissions are most commonly range splitter The most common 13 speed has a standard H pattern and the pattern from the left upper corner is as follows R down to L over and up to 1 down to 2 up and over to 3 down to 4 The butterfly range lever in the center front of the knob is flipped up to high range while in 4th then shifted back to 1 The 1 through 4 positions of the knob is repeated Also each can be split using the thumb actuated under overdrive lever on the left side of the knob while in high range The thumb lever is not available in low range except in 18 speeds 1 through 4 in the low range can be split using the thumb lever and L can be split with the Butterfly lever L cannot be split using the thumb lever in either the 13 or 18 speed The 9 speed transmission is like a 13 speed without the under overdrive thumb lever Truck transmissions use many physical layouts For example the output of an N speed transmission may drive an M speed secondary transmission giving a total of N M gear combinations Transmissions may be in separate cases with a shaft in between in separate cases bolted together or all in one case using the same lubricating oil The second transmission is often called a Brownie or Brownie box after a popular brand With a third transmission gears are multiplied yet again giving greater range or closer spacing Some trucks thus have dozens of gear positions although most are duplicates Sometimes a secondary transmission is integrated with the differential in the rear axle called a two speed rear end Two speed differentials are always splitters In newer transmissions there may be two counter shafts so each main shaft gear can be driven from one or the other countershaft this allows construction with short and robust countershafts while still allowing many gear combinations inside a single gear case Heavy duty transmissions are mostly non synchromesh Sometimes synchromesh adds weight that could be payload and is one more thing to fail and drivers spend thousands of hours driving so can take the time to learn to drive efficiently with a non synchromesh transmission Float shifting also called floating gears is changing gears without disengaging the clutch usually on a non synchronized transmission used by large trucks Since the clutch is not used it is easy to mismatch speeds of gears and the driver can quickly cause major and expensive damage to the gears and the transmission Heavy trucks are usually powered with diesel engines Diesel truck engines from the 1970s and earlier tend to have a narrow power band so they need many close spaced gears Starting with the 1968 Maxidyne diesel truck engines have increasingly used turbochargers and electronic controls that widen the power band allowing fewer and fewer gear ratios As of 2021 fleet operators often use 9 10 13 or 18 speed transmissions but automated manual transmissions are becoming more common on heavy vehicles as they can improve efficiency and drivability reduce the barrier to entry for new drivers and may improve safety by allowing the driver to concentrate on road conditions citation needed Lubrication EditThis section needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed June 2020 Learn how and when to remove this template message Manual transmissions are lubricated with gear oil or engine oil in some vehicles which must be changed periodically in some vehicles although not as frequently as the fluid in an automatic transmission Gear oil has a characteristic aroma because it contains added sulfur bearing anti wear compounds These compounds are used to reduce the high sliding friction by the helical gear cut of the teeth this cut eliminates the characteristic whine of straight cut spur gears On motorcycles with wet clutches clutch is bathed in engine oil there is usually nothing separating the lower part of the engine from the transmission so the same oil lubricates both the engine and transmission See also EditAutomatic transmission Diesel electric transmission Freewheel Gear train Non synchronous transmission Overdrive mechanics Preselector gearbox Torque converter Transmission mechanics References Edit Wikisource Popular Science Monthly Volume 57 August 1900 The Evolution and Present Status of the Automobile The 1891 Panhard et Levassor www themotormuseuminminiature co uk Retrieved 2 July 2020 Sliding Gearbox 1891 Panhard et Levassor www youtube com Archived from the original on 30 October 2021 Retrieved 2 July 2020 1902 Panhard and Levassor www howstuffworks com 7 December 2007 Archived from the original on 4 July 2020 Retrieved 2 July 2020 Synchromesh Gearbox www hemmings com Retrieved 5 July 2020 Synchromesh How It Works www uniquecarsandparts com au Retrieved 5 July 2020 Model Guide 356 The Simple Porsche www pca org Retrieved 5 July 2020 History of the 356 www 356 dk Retrieved 5 July 2020 In Your Car How Many Gears is Too Many www popularmechanics com 29 September 2011 Retrieved 5 July 2020 Why Dual Clutch Technology Will Be Big Business Dctfacts com Retrieved 7 February 2010 Bosch Robert 2004 Automotive Handbook 6th ed Bentley Publishers p 741 ISBN 978 0 8376 0333 9 Retrieved 10 March 2020 How Manual Transmissions Work www howstuffworks com 1 April 2000 Retrieved 13 March 2020 Basic Anatomy How The Manual Transmission Works www gotodobbs com 29 April 2017 Retrieved 13 March 2020 How It Works Manual transmissions www driving ca 12 September 2018 Retrieved 13 March 2020 Manual Transmission Basics www edmunds com 25 April 2001 Retrieved 13 March 2020 How Manual Transmissions Work www howstuffworks com 1 April 2000 Retrieved 7 June 2020 Synchromesh Gear Box How s That Work hooniverse com 29 April 2014 Retrieved 23 September 2019 Synchronizers graphic illustration of how they work Howstuffworks com April 2000 Retrieved 18 July 2007 Diehl Metall Stiftung amp Co KG Synchronizer Rings Diehl Metall Diehl com Archived from the original on 7 March 2017 Retrieved 6 March 2017 Buyers Guide Alfa Romeo Spider amp GTV 916 Alfisti net Retrieved 16 October 2010 The Borg Warner Overdrive Transmission Explained FORDification com Retrieved 22 April 2012 Here s what s really killing the manual transmission roadandtrack com 10 March 2014 Retrieved 17 June 2020 Why the 2018 Ford Mustang GT Automatic is So Much Quicker Than the Manual motortrend com 22 June 2018 Retrieved 17 June 2020 Driving licence categories GOV UK Gov uk Retrieved 6 March 2017 Lampton Christopher 5 October 2009 How Hill Start Control Works HowStuffWorks Auto howstuffworks com Retrieved 6 March 2017 The 5 Steps To Perfect Rev Matching The Ultimate Guide FlowRacers com 29 May 2020 Retrieved 1 October 2020 Why do trucks have a lot of gears External links Edit Wikimedia Commons has media related to Automotive manual transmissions As Stick Shifts Fade Into Obscurity Collectors See Opportunity 24 June 2021 New York Times article by Rob Sass Retrieved from https en wikipedia org w index php title Manual transmission amp oldid 1129550964, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.