fbpx
Wikipedia

Flywheel

A flywheel is a mechanical device which uses the conservation of angular momentum to store rotational energy; a form of kinetic energy proportional to the product of its moment of inertia and the square of its rotational speed. In particular, assuming the flywheel's moment of inertia is constant (i.e., a flywheel with fixed mass and second moment of area revolving about some fixed axis) then the stored (rotational) energy is directly associated with the square of its rotational speed.

Trevithick's 1802 steam locomotive, which used a flywheel to evenly distribute the power of its single cylinder

Since a flywheel serves to store mechanical energy for later use, it is natural to consider it as a kinetic energy analogue of an electrical inductor. Once suitably abstracted, this shared principle of energy storage is described in the generalized concept of an accumulator. As with other types of accumulators, a flywheel inherently smooths sufficiently small deviations in the power output of a system, thereby effectively playing the role of a low-pass filter with respect to the mechanical velocity (angular, or otherwise) of the system. More precisely, a flywheel's stored energy will donate a surge in power output upon a drop in power input and will conversely absorb any excess power input (system-generated power) in the form of rotational energy.

Common uses of a flywheel include smoothing a power output in reciprocating engines, energy storage, delivering energy at higher rates than the source, controlling the orientation of a mechanical system using gyroscope and reaction wheel, etc. Flywheels are typically made of steel and rotate on conventional bearings; these are generally limited to a maximum revolution rate of a few thousand RPM.[1] High energy density flywheels can be made of carbon fiber composites and employ magnetic bearings, enabling them to revolve at speeds up to 60,000 RPM (1 kHz).[2]

History edit

A flywheel with variable inertia, conceived by Leonardo da Vinci

The principle of the flywheel is found in the Neolithic spindle and the potter's wheel, as well as circular sharpening stones in antiquity.[3] In the early 11th century, Ibn Bassal pioneered the use of flywheel in noria and saqiyah.[4] The use of the flywheel as a general mechanical device to equalize the speed of rotation is, according to the American medievalist Lynn White, recorded in the De diversibus artibus (On various arts) of the German artisan Theophilus Presbyter (ca. 1070–1125) who records applying the device in several of his machines.[3][5]

In the Industrial Revolution, James Watt contributed to the development of the flywheel in the steam engine, and his contemporary James Pickard used a flywheel combined with a crank to transform reciprocating motion into rotary motion.[6]

Physics edit

 
A mass-produced flywheel

The kinetic energy (or more specifically rotational energy) stored by the flywheel's rotor can be calculated by  . ω is the angular velocity, and   is the moment of inertia of the flywheel about its axis of symmetry. The moment of inertia is a measure of resistance to torque applied on a spinning object (i.e. the higher the moment of inertia, the slower it will accelerate when a given torque is applied). The moment of inertia can be known by mass ( ) and radius ( ). For a solid cylinder it is  , for a thin-walled empty cylinder it is approximately  , and for a thick-walled empty cylinder with constant density it is  .[7]

For a given flywheel design, the kinetic energy is proportional to the ratio of the hoop stress to the material density and to the mass. The specific tensile strength of a flywheel can be defined as  . The flywheel material with the highest specific tensile strength will yield the highest energy storage per unit mass. This is one reason why carbon fiber is a material of interest. For a given design the stored energy is proportional to the hoop stress and the volume.[citation needed]

An electric motor-powered flywheel is common in practice. The output power of the electric motor is approximately equal to the output power of the flywheel. It can be calculated by  , where   is the voltage of rotor winding,   is stator voltage, and   is the angle between two voltages. Increasing amounts of rotation energy can be stored in the flywheel until the rotor shatters. This happens when the hoop stress within the rotor exceeds the ultimate tensile strength of the rotor material. Tensile stress can be calculated by  , where   is the density of the cylinder,   is the radius of the cylinder, and   is the angular velocity of the cylinder.

Design edit

A rimmed flywheel has a rim, a hub, and spokes.[8] Calculation of the flywheel's moment of inertia can be more easily analysed by applying various simplifications. One method is to assume the spokes, shaft and hub have zero moments of inertia, and the flywheel's moment of inertia is from the rim alone. Another is to lump moments of inertia of spokes, hub and shaft may be estimated as a percentage of the flywheel's moment of inertia, with the majority from the rim, so that  . For example, if the moments of inertia of hub, spokes and shaft are deemed negligible, and the rim's thickness is very small compared to its mean radius ( ), the radius of rotation of the rim is equal to its mean radius and thus  .[citation needed]

A shaftless flywheel eliminates the annulus holes, shaft or hub. It has higher energy density than conventional design[9] but requires a specialized magnetic bearing and control system.[10] The specific energy of a flywheel is determined by , in which   is the shape factor,   the material's tensile strength and   the density.[citation needed] While a typical flywheel has a shape factor of 0.3, the shaftless flywheel has a shape factor close to 0.6, out of a theoretical limit of about 1.[11]

A superflywheel consists of a solid core (hub) and multiple thin layers of high-strength flexible materials (such as special steels, carbon fiber composites, glass fiber, or graphene) wound around it.[12] Compared to conventional flywheels, superflywheels can store more energy and are safer to operate.[13] In case of failure, a superflywheel does not explode or burst into large shards like a regular flywheel, but instead splits into layers. The separated layers then slow a superflywheel down by sliding against the inner walls of the enclosure, thus preventing any further destruction. Although the exact value of energy density of a superflywheel would depend on the material used, it could theoretically be as high as 1200 Wh (4.4 MJ) per kg of mass for graphene superflywheels.[citation needed] The first superflywheel was patented in 1964 by the Soviet-Russian scientist Nurbei Guilia.[14][15]

Materials edit

Flywheels are made from many different materials; the application determines the choice of material. Small flywheels made of lead are found in children's toys.[citation needed] Cast iron flywheels are used in old steam engines. Flywheels used in car engines are made of cast or nodular iron, steel or aluminum.[16] Flywheels made from high-strength steel or composites have been proposed for use in vehicle energy storage and braking systems.

The efficiency of a flywheel is determined by the maximum amount of energy it can store per unit weight. As the flywheel's rotational speed or angular velocity is increased, the stored energy increases; however, the stresses also increase. If the hoop stress surpass the tensile strength of the material, the flywheel will break apart. Thus, the tensile strength limits the amount of energy that a flywheel can store.

In this context, using lead for a flywheel in a child's toy is not efficient; however, the flywheel velocity never approaches its burst velocity because the limit in this case is the pulling-power of the child. In other applications, such as an automobile, the flywheel operates at a specified angular velocity and is constrained by the space it must fit in, so the goal is to maximize the stored energy per unit volume. The material selection therefore depends on the application.[17]

Applications edit

 
A Landini tractor with exposed flywheel

Flywheels are often used to provide continuous power output in systems where the energy source is not continuous. For example, a flywheel is used to smooth the fast angular velocity fluctuations of the crankshaft in a reciprocating engine. In this case, a crankshaft flywheel stores energy when torque is exerted on it by a firing piston and then returns that energy to the piston to compress a fresh charge of air and fuel. Another example is the friction motor which powers devices such as toy cars. In unstressed and inexpensive cases, to save on cost, the bulk of the mass of the flywheel is toward the rim of the wheel. Pushing the mass away from the axis of rotation heightens rotational inertia for a given total mass.

A flywheel may also be used to supply intermittent pulses of energy at power levels that exceed the abilities of its energy source. This is achieved by accumulating energy in the flywheel over a period of time, at a rate that is compatible with the energy source, and then releasing energy at a much higher rate over a relatively short time when it is needed. For example, flywheels are used in power hammers and riveting machines.

Flywheels can be used to control direction and oppose unwanted motions. Flywheels in this context have a wide range of applications: gyroscopes for instrumentation, ship stability, satellite stabilization (reaction wheel), keeping a toy spin spinning (friction motor), stabilizing magnetically-levitated objects (Spin-stabilized magnetic levitation).

Flywheels may also be used as an electric compensator, like a synchronous compensator, that can either produce or sink reactive power but would not affect the real power. The purposes for that application are to improve the power factor of the system or adjust the grid voltage. Typically, the flywheels used in this field are similar in structure and installation as the synchronous motor (but it is called synchronous compensator or synchronous condenser in this context). There are also some other kinds of compensator using flywheels, like the single phase induction machine. But the basic ideas here are the same, the flywheels are controlled to spin exactly at the frequency which you want to compensate. For a synchronous compensator, you also need to keep the voltage of rotor and stator in phase, which is the same as keeping the magnetic field of rotor and the total magnetic field in phase (in the rotating frame reference).

See also edit

References edit

  1. ^ "Flywheels move from steam age technology to Formula 1". from the original on 2012-07-03. Retrieved 2012-07-03.; "Flywheels move from steam age technology to Formula 1"; Jon Stewart | 1 July 2012, retrieved 2012-07-03
  2. ^ "Breakthrough in Ricardo Kinergy 'second generation' high-speed flywheel technology". 2011-08-21. from the original on 2012-07-05. Retrieved 2012-07-03., "Breakthrough in Ricardo Kinergy ‘second generation’ high-speed flywheel technology"; Press release date: 22 August 2011. retrieved 2012-07-03
  3. ^ a b Lynn White, Jr., "Theophilus Redivivus", Technology and Culture, Vol. 5, No. 2. (Spring, 1964), Review, pp. 224–233 (233)
  4. ^ Letcher, Trevor M. (2017). Wind energy engineering: a handbook for onshore and offshore wind turbines. Academic Press. pp. 127–143. ISBN 978-0128094518. Ibn Bassal (AD 1038–75) of Al Andalus (Andalusia) pioneered the use of a flywheel mechanism in the noria and saqiya to smooth out the delivery of power from the driving device to the driven machine
  5. ^ Lynn White, Jr., "Medieval Engineering and the Sociology of Knowledge", The Pacific Historical Review, Vol. 44, No. 1. (Feb., 1975), pp. 1–21 (6)
  6. ^ Osbourne, Roger (2013). Iron, Steam & Money: The Making of the Industrial Revolution. Random House. p. 131. ISBN 9781446483282.
  7. ^ Dunn, D.J. "Tutorial – Moment of Inertia" (PDF). FreeStudy.co.uk. p. 10. (PDF) from the original on 2012-01-05. Retrieved 2011-12-01.
  8. ^ Flywheel Rotor And Containment Technology Development, FY83. Livermore, Calif: Lawrence Livermore National Laboratory, 1983. pp. 1–2
  9. ^ Li, Xiaojun; Anvari, Bahar; Palazzolo, Alan; Wang, Zhiyang; Toliyat, Hamid (2018-08-14). "A Utility Scale Flywheel Energy Storage System with a Shaftless, Hubless, High Strength Steel Rotor". IEEE Transactions on Industrial Electronics. 65 (8): 6667–6675. doi:10.1109/TIE.2017.2772205. S2CID 4557504.
  10. ^ Li, Xiaojun; Palazzolo, Alan (2018-05-07). "Multi-Input–Multi-Output Control of a Utility-Scale, Shaftless Energy Storage Flywheel With a Five-Degrees-of-Freedom Combination Magnetic Bearing". Journal of Dynamic Systems, Measurement, and Control. 140 (10): 101008. doi:10.1115/1.4039857. ISSN 0022-0434.
  11. ^ Genta, G. (1985), "Application of flywheel energy storage systems", Kinetic Energy Storage, Elsevier, pp. 27–46, doi:10.1016/b978-0-408-01396-3.50007-2, ISBN 9780408013963
  12. ^ "Technology | KEST | Kinetic Energy Storage". KEST Energy. Retrieved 2020-07-29.
  13. ^ Genta, G. (2014-04-24). Kinetic Energy Storage: Theory and Practice of Advanced Flywheel Systems. Butterworth-Heinemann. ISBN 978-1-4831-0159-0.
  14. ^ Egorova, Olga; Barbashov, Nikolay (2020-04-20). Proceedings of the 2020 USCToMM Symposium on Mechanical Systems and Robotics. Springer Nature. pp. 117–118. ISBN 978-3-030-43929-3.
  15. ^ [1], "Маховик", issued 1964-05-15 
  16. ^ "Flywheels: Iron vs. Steel vs. Aluminum". Fidanza Performance. from the original on 10 October 2016. Retrieved 6 October 2016.
  17. ^ Ashby, Michael (2011). Materials Selection in Mechanical Design (4th ed.). Burlington, MA: Butterworth-Heinemann. pp. 142–146. ISBN 978-0-08-095223-9.

Further reading edit

External links edit

  •   Media related to Flywheels at Wikimedia Commons
  • Flywheel batteries on Interesting Thing of the Day.
  • Flywheel-based microgrid stabilisation technology., ABB

flywheel, other, uses, disambiguation, flywheel, mechanical, device, which, uses, conservation, angular, momentum, store, rotational, energy, form, kinetic, energy, proportional, product, moment, inertia, square, rotational, speed, particular, assuming, flywhe. For other uses see Flywheel disambiguation A flywheel is a mechanical device which uses the conservation of angular momentum to store rotational energy a form of kinetic energy proportional to the product of its moment of inertia and the square of its rotational speed In particular assuming the flywheel s moment of inertia is constant i e a flywheel with fixed mass and second moment of area revolving about some fixed axis then the stored rotational energy is directly associated with the square of its rotational speed Trevithick s 1802 steam locomotive which used a flywheel to evenly distribute the power of its single cylinderSince a flywheel serves to store mechanical energy for later use it is natural to consider it as a kinetic energy analogue of an electrical inductor Once suitably abstracted this shared principle of energy storage is described in the generalized concept of an accumulator As with other types of accumulators a flywheel inherently smooths sufficiently small deviations in the power output of a system thereby effectively playing the role of a low pass filter with respect to the mechanical velocity angular or otherwise of the system More precisely a flywheel s stored energy will donate a surge in power output upon a drop in power input and will conversely absorb any excess power input system generated power in the form of rotational energy Common uses of a flywheel include smoothing a power output in reciprocating engines energy storage delivering energy at higher rates than the source controlling the orientation of a mechanical system using gyroscope and reaction wheel etc Flywheels are typically made of steel and rotate on conventional bearings these are generally limited to a maximum revolution rate of a few thousand RPM 1 High energy density flywheels can be made of carbon fiber composites and employ magnetic bearings enabling them to revolve at speeds up to 60 000 RPM 1 kHz 2 Contents 1 History 2 Physics 3 Design 4 Materials 5 Applications 6 See also 7 References 8 Further reading 9 External linksHistory edit source source source source source source A flywheel with variable inertia conceived by Leonardo da VinciThe principle of the flywheel is found in the Neolithic spindle and the potter s wheel as well as circular sharpening stones in antiquity 3 In the early 11th century Ibn Bassal pioneered the use of flywheel in noria and saqiyah 4 The use of the flywheel as a general mechanical device to equalize the speed of rotation is according to the American medievalist Lynn White recorded in the De diversibus artibus On various arts of the German artisan Theophilus Presbyter ca 1070 1125 who records applying the device in several of his machines 3 5 In the Industrial Revolution James Watt contributed to the development of the flywheel in the steam engine and his contemporary James Pickard used a flywheel combined with a crank to transform reciprocating motion into rotary motion 6 Physics edit nbsp A mass produced flywheelThe kinetic energy or more specifically rotational energy stored by the flywheel s rotor can be calculated by 1 2 I w 2 textstyle frac 1 2 I omega 2 nbsp w is the angular velocity and I displaystyle I nbsp is the moment of inertia of the flywheel about its axis of symmetry The moment of inertia is a measure of resistance to torque applied on a spinning object i e the higher the moment of inertia the slower it will accelerate when a given torque is applied The moment of inertia can be known by mass m textstyle m nbsp and radius r displaystyle r nbsp For a solid cylinder it is 1 2 m r 2 textstyle frac 1 2 mr 2 nbsp for a thin walled empty cylinder it is approximately m r 2 textstyle mr 2 nbsp and for a thick walled empty cylinder with constant density it is 1 2 m r e x t e r n a l 2 r i n t e r n a l 2 textstyle frac 1 2 m r mathrm external 2 r mathrm internal 2 nbsp 7 For a given flywheel design the kinetic energy is proportional to the ratio of the hoop stress to the material density and to the mass The specific tensile strength of a flywheel can be defined as s t r textstyle frac sigma t rho nbsp The flywheel material with the highest specific tensile strength will yield the highest energy storage per unit mass This is one reason why carbon fiber is a material of interest For a given design the stored energy is proportional to the hoop stress and the volume citation needed An electric motor powered flywheel is common in practice The output power of the electric motor is approximately equal to the output power of the flywheel It can be calculated by V i V t sin d X S textstyle V i V t left frac sin delta X S right nbsp where V i displaystyle V i nbsp is the voltage of rotor winding V t displaystyle V t nbsp is stator voltage and d displaystyle delta nbsp is the angle between two voltages Increasing amounts of rotation energy can be stored in the flywheel until the rotor shatters This happens when the hoop stress within the rotor exceeds the ultimate tensile strength of the rotor material Tensile stress can be calculated by r r 2 w 2 displaystyle rho r 2 omega 2 nbsp where r displaystyle rho nbsp is the density of the cylinder r displaystyle r nbsp is the radius of the cylinder and w displaystyle omega nbsp is the angular velocity of the cylinder Design editA rimmed flywheel has a rim a hub and spokes 8 Calculation of the flywheel s moment of inertia can be more easily analysed by applying various simplifications One method is to assume the spokes shaft and hub have zero moments of inertia and the flywheel s moment of inertia is from the rim alone Another is to lump moments of inertia of spokes hub and shaft may be estimated as a percentage of the flywheel s moment of inertia with the majority from the rim so that I r i m K I f l y w h e e l displaystyle I mathrm rim KI mathrm flywheel nbsp For example if the moments of inertia of hub spokes and shaft are deemed negligible and the rim s thickness is very small compared to its mean radius R displaystyle R nbsp the radius of rotation of the rim is equal to its mean radius and thus I r i m M r i m R 2 textstyle I mathrm rim M mathrm rim R 2 nbsp citation needed A shaftless flywheel eliminates the annulus holes shaft or hub It has higher energy density than conventional design 9 but requires a specialized magnetic bearing and control system 10 The specific energy of a flywheel is determined byE M K s r textstyle frac E M K frac sigma rho nbsp in which K displaystyle K nbsp is the shape factor s displaystyle sigma nbsp the material s tensile strength and r displaystyle rho nbsp the density citation needed While a typical flywheel has a shape factor of 0 3 the shaftless flywheel has a shape factor close to 0 6 out of a theoretical limit of about 1 11 A superflywheel consists of a solid core hub and multiple thin layers of high strength flexible materials such as special steels carbon fiber composites glass fiber or graphene wound around it 12 Compared to conventional flywheels superflywheels can store more energy and are safer to operate 13 In case of failure a superflywheel does not explode or burst into large shards like a regular flywheel but instead splits into layers The separated layers then slow a superflywheel down by sliding against the inner walls of the enclosure thus preventing any further destruction Although the exact value of energy density of a superflywheel would depend on the material used it could theoretically be as high as 1200 Wh 4 4 MJ per kg of mass for graphene superflywheels citation needed The first superflywheel was patented in 1964 by the Soviet Russian scientist Nurbei Guilia 14 15 Materials editFlywheels are made from many different materials the application determines the choice of material Small flywheels made of lead are found in children s toys citation needed Cast iron flywheels are used in old steam engines Flywheels used in car engines are made of cast or nodular iron steel or aluminum 16 Flywheels made from high strength steel or composites have been proposed for use in vehicle energy storage and braking systems The efficiency of a flywheel is determined by the maximum amount of energy it can store per unit weight As the flywheel s rotational speed or angular velocity is increased the stored energy increases however the stresses also increase If the hoop stress surpass the tensile strength of the material the flywheel will break apart Thus the tensile strength limits the amount of energy that a flywheel can store In this context using lead for a flywheel in a child s toy is not efficient however the flywheel velocity never approaches its burst velocity because the limit in this case is the pulling power of the child In other applications such as an automobile the flywheel operates at a specified angular velocity and is constrained by the space it must fit in so the goal is to maximize the stored energy per unit volume The material selection therefore depends on the application 17 Applications edit nbsp A Landini tractor with exposed flywheelFlywheels are often used to provide continuous power output in systems where the energy source is not continuous For example a flywheel is used to smooth the fast angular velocity fluctuations of the crankshaft in a reciprocating engine In this case a crankshaft flywheel stores energy when torque is exerted on it by a firing piston and then returns that energy to the piston to compress a fresh charge of air and fuel Another example is the friction motor which powers devices such as toy cars In unstressed and inexpensive cases to save on cost the bulk of the mass of the flywheel is toward the rim of the wheel Pushing the mass away from the axis of rotation heightens rotational inertia for a given total mass A flywheel may also be used to supply intermittent pulses of energy at power levels that exceed the abilities of its energy source This is achieved by accumulating energy in the flywheel over a period of time at a rate that is compatible with the energy source and then releasing energy at a much higher rate over a relatively short time when it is needed For example flywheels are used in power hammers and riveting machines Flywheels can be used to control direction and oppose unwanted motions Flywheels in this context have a wide range of applications gyroscopes for instrumentation ship stability satellite stabilization reaction wheel keeping a toy spin spinning friction motor stabilizing magnetically levitated objects Spin stabilized magnetic levitation Flywheels may also be used as an electric compensator like a synchronous compensator that can either produce or sink reactive power but would not affect the real power The purposes for that application are to improve the power factor of the system or adjust the grid voltage Typically the flywheels used in this field are similar in structure and installation as the synchronous motor but it is called synchronous compensator or synchronous condenser in this context There are also some other kinds of compensator using flywheels like the single phase induction machine But the basic ideas here are the same the flywheels are controlled to spin exactly at the frequency which you want to compensate For a synchronous compensator you also need to keep the voltage of rotor and stator in phase which is the same as keeping the magnetic field of rotor and the total magnetic field in phase in the rotating frame reference See also editAccumulator energy Clutch Diesel rotary uninterruptible power supply Dual mass flywheel Fidget spinner Flywheel training List of moments of inertiaReferences edit Flywheels move from steam age technology to Formula 1 Archived from the original on 2012 07 03 Retrieved 2012 07 03 Flywheels move from steam age technology to Formula 1 Jon Stewart 1 July 2012 retrieved 2012 07 03 Breakthrough in Ricardo Kinergy second generation high speed flywheel technology 2011 08 21 Archived from the original on 2012 07 05 Retrieved 2012 07 03 Breakthrough in Ricardo Kinergy second generation high speed flywheel technology Press release date 22 August 2011 retrieved 2012 07 03 a b Lynn White Jr Theophilus Redivivus Technology and Culture Vol 5 No 2 Spring 1964 Review pp 224 233 233 Letcher Trevor M 2017 Wind energy engineering a handbook for onshore and offshore wind turbines Academic Press pp 127 143 ISBN 978 0128094518 Ibn Bassal AD 1038 75 of Al Andalus Andalusia pioneered the use of a flywheel mechanism in the noria and saqiya to smooth out the delivery of power from the driving device to the driven machine Lynn White Jr Medieval Engineering and the Sociology of Knowledge The Pacific Historical Review Vol 44 No 1 Feb 1975 pp 1 21 6 Osbourne Roger 2013 Iron Steam amp Money The Making of the Industrial Revolution Random House p 131 ISBN 9781446483282 Dunn D J Tutorial Moment of Inertia PDF FreeStudy co uk p 10 Archived PDF from the original on 2012 01 05 Retrieved 2011 12 01 Flywheel Rotor And Containment Technology Development FY83 Livermore Calif Lawrence Livermore National Laboratory 1983 pp 1 2 Li Xiaojun Anvari Bahar Palazzolo Alan Wang Zhiyang Toliyat Hamid 2018 08 14 A Utility Scale Flywheel Energy Storage System with a Shaftless Hubless High Strength Steel Rotor IEEE Transactions on Industrial Electronics 65 8 6667 6675 doi 10 1109 TIE 2017 2772205 S2CID 4557504 Li Xiaojun Palazzolo Alan 2018 05 07 Multi Input Multi Output Control of a Utility Scale Shaftless Energy Storage Flywheel With a Five Degrees of Freedom Combination Magnetic Bearing Journal of Dynamic Systems Measurement and Control 140 10 101008 doi 10 1115 1 4039857 ISSN 0022 0434 Genta G 1985 Application of flywheel energy storage systems Kinetic Energy Storage Elsevier pp 27 46 doi 10 1016 b978 0 408 01396 3 50007 2 ISBN 9780408013963 Technology KEST Kinetic Energy Storage KEST Energy Retrieved 2020 07 29 Genta G 2014 04 24 Kinetic Energy Storage Theory and Practice of Advanced Flywheel Systems Butterworth Heinemann ISBN 978 1 4831 0159 0 Egorova Olga Barbashov Nikolay 2020 04 20 Proceedings of the 2020 USCToMM Symposium on Mechanical Systems and Robotics Springer Nature pp 117 118 ISBN 978 3 030 43929 3 1 Mahovik issued 1964 05 15 Flywheels Iron vs Steel vs Aluminum Fidanza Performance Archived from the original on 10 October 2016 Retrieved 6 October 2016 Ashby Michael 2011 Materials Selection in Mechanical Design 4th ed Burlington MA Butterworth Heinemann pp 142 146 ISBN 978 0 08 095223 9 Further reading editWeissbach R S Karady G G Farmer R G April 2001 A combined uninterruptible power supply and dynamic voltage compensator using a flywheel energy storage system IEEE Transactions on Power Delivery 16 2 265 270 doi 10 1109 61 915493 ISSN 0885 8977 Synchronous Generators I PDF Archived PDF from the original on 2022 10 09 https pserc wisc edu documents general information presentations presentations by pserc university members heydt synchronous mach sep03 pdf Archived 2017 08 30 at the Wayback MachineExternal links edit nbsp Look up flywheel in Wiktionary the free dictionary nbsp Media related to Flywheels at Wikimedia Commons Flywheel batteries on Interesting Thing of the Day Flywheel based microgrid stabilisation technology ABB Retrieved from https en wikipedia org w index php title Flywheel amp oldid 1188171870, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.