fbpx
Wikipedia

Genetic pollution

Genetic pollution is a term for uncontrolled[1][2] gene flow into wild populations. It is defined as "the dispersal of contaminated altered genes from genetically engineered organisms to natural organisms, esp. by cross-pollination",[3] but has come to be used in some broader ways. It is related to the population genetics concept of gene flow, and genetic rescue, which is genetic material intentionally introduced to increase the fitness of a population.[4] It is called genetic pollution when it negatively impacts the fitness of a population, such as through outbreeding depression and the introduction of unwanted phenotypes which can lead to extinction.

Conservation biologists and conservationists have used the term to describe gene flow from domestic, feral, and non-native species into wild indigenous species, which they consider undesirable. They promote awareness of the effects of introduced invasive species that may "hybridize with native species, causing genetic pollution". In the fields of agriculture, agroforestry and animal husbandry, genetic pollution is used to describe gene flows between genetically engineered species and wild relatives. The use of the word "pollution" is meant to convey the idea that mixing genetic information is bad for the environment, but because the mixing of genetic information can lead to a variety of outcomes, "pollution" may not always be the most accurate descriptor.

Gene flow to wild population edit

Some conservation biologists and conservationists have used genetic pollution for a number of years as a term to describe gene flow from a non-native, invasive subspecies, domestic, or genetically-engineered population to a wild indigenous population.[1][5][6]

Importance edit

The introduction of genetic material into the gene pool of a population by human intervention can have both positive and negative effects on populations. When genetic material is intentionally introduced to increase the fitness of a population, this is called genetic rescue. When genetic material is unintentionally introduced to a population, this is called genetic pollution and can negatively affect the fitness of a population (primarily through outbreeding depression), introduce other unwanted phenotypes, or theoretically lead to extinction.

Introduced species edit

An introduced species is one that is not native to a given population that is either intentionally or accidentally brought into a given ecosystem. Effects of introduction are highly variable, but if an introduced species has a major negative impact on its new environment, it can be considered an invasive species. One such example is the introduction of the Asian Longhorned beetle in North America, which was first detected in 1996 in Brooklyn, New York. It is believed that these beetles were introduced through cargo at trade ports. The beetles are highly damaging to the environment, and are estimated to cause risk to 35% of urban trees, excluding natural forests.[7] These beetles cause severe damage to the wood of trees by larval funneling. Their presence in the ecosystem destabilizes community structure, having a negative influence on many species in the system.

Introduced species are not always disruptive to an environment, however. Tomás Carlo and Jason Gleditch of Penn State University found that the number of "invasive" honeysuckle plants in the area correlated with the number and diversity of the birds in the Happy Valley Region of Pennsylvania, suggesting introduced honeysuckle plants and birds formed a mutually beneficial relationship.[8] Presence of introduced honeysuckle was associated with higher diversity of the bird populations in that area, demonstrating that introduced species are not always detrimental to a given environment and it is completely context dependent.

Invasive species edit

Conservation biologists and conservationists have, for a number of years, used the term to describe gene flow from domestic, feral, and non-native species into wild indigenous species, which they consider undesirable.[1][5][6] For example, TRAFFIC is the international wildlife trade monitoring network that works to limit trade in wild plants and animals so that it is not a threat to conservationist goals. They promote awareness of the effects of introduced invasive species that may "hybridize with native species, causing genetic pollution".[9] Furthermore, the Joint Nature Conservation Committee, the statutory adviser to the UK government, has stated that invasive species "will alter the genetic pool (a process called genetic pollution), which is an irreversible change."[10]

Invasive species can invade both large and small native populations and have a profound effect. Upon invasion, invasive species interbreed with native species to form sterile or more evolutionarily fit hybrids that can outcompete the native populations. Invasive species can cause extinctions of small populations on islands that are particularly vulnerable due to their smaller amounts of genetic diversity. In these populations, local adaptations can be disrupted by the introduction of new genes that may not be as suitable for the small island environments. For example, the Cercocarpus traskiae of the Catalina Island off the coast of California has faced near extinction with only a single population remaining due to the hybridization of its offspring with Cercocarpus betuloides.[11]

Domestic populations edit

Increased contact between wild and domesticated populations of organisms can lead to reproductive interactions that are detrimental to the wild population's ability to survive. A wild population is one that lives in natural areas and is not regularly looked after by humans. This contrasts with domesticated populations that live in human controlled areas and are regularly, and historically, in contact with humans. Genes from domesticated populations are added to wild populations as a result of reproduction. In many crop populations this can be the result of pollen traveling from farmed crops to neighboring wild plants of the same species. For farmed animals, this reproduction may happen as the result of escaped or released animals.

A popular example of this phenomenon is the gene flow between wolves and domesticated dogs. The New York Times cites, from the words of biologist Dr. Luigi Boitani, "Although wolves and dogs have always lived in close contact in Italy and have presumably mated in the past, the newly worrisome element, in Dr. Boitani's opinion, is the increasing disparity in numbers, which suggests that interbreeding will become fairly common. As a result, 'genetic pollution of the wolf gene pool might reach irreversible levels', he warned. 'By hybridization, dogs can easily absorb the wolf genes and destroy the wolf, as it is,' he said. The wolf might survive as a more doglike animal, better adapted to living close to people, he said, but it would not be 'what we today call a wolf.'"[1]

Aquaculture edit

Aquaculture is the practice of farming aquatic animals or plants for the purpose of consumption. This practice is becoming increasingly common for the production of salmon. This is specifically termed aquaculture of salmonoids. One of the dangers of this practice is the possibility of domesticated salmon breaking free from their containment. The occurrence of escaping incidents is becoming increasingly common as aquaculture gains popularity.[12][13][14] Farming structures may be ineffective at holding the vast number of fast growing animals they house.[15] Natural disasters, high tides, and other environmental occurrences can also trigger aquatic animal escapes.[16][17] The reason these escapes are considered dangers is the impact they pose for the wild population they reproduce with after escaping. In many instances the wild population experiences a decreased likelihood of survival after reproducing with domesticated populations of salmon.[18][19]

The Washington Department of Fish and Wildlife cites that "commonly expressed concerns surrounding escaped Atlantic salmon include competition with native salmon, predation, disease transfer, hybridization, and colonization."[20] A report done by that organization in 1999 did not find that escaped salmon posed a significant risk to wild populations.[21]

Crops edit

Crops refer to groups of plants grown for consumption. Despite domestication over many years, these plants are not so far removed from their wild relatives that they could reproduce if brought together. Many crops are still grown in the areas they originated and gene flow between crops and wild relatives impacts the evolution of wild populations.[22] Farmers can avoid reproduction between the different populations by timing their planting of crops so that crops are not flowering when wild relatives would be. Domesticated crops have been changed through artificial selection and genetic engineering. The genetic make-ups of many crops is different from those of their wild relatives,[23] but the closer they grow to one another the more likely they are to share genes through pollen. Gene flow persists between crops and wild counterparts.

Genetically engineered organisms edit

Genetically engineered organisms are genetically modified in a laboratory, and therefore distinct from those that were bred through artificial selection. In the fields of agriculture, agroforestry and animal husbandry, genetic pollution is being used to describe gene flows between GE species and wild relatives.[24] An early use of the term "genetic pollution" in this later sense appears in a wide-ranging review of the potential ecological effects of genetic engineering in . It was also popularized by environmentalist Jeremy Rifkin in his 1998 book The Biotech Century.[25] While intentional crossbreeding between two genetically distinct varieties is described as hybridization with the subsequent introgression of genes, Rifkin, who had played a leading role in the ethical debate for over a decade before, used genetic pollution to describe what he considered to be problems that might occur due to the unintentional process of (modernly) genetically modified organisms (GMOs) dispersing their genes into the natural environment by breeding with wild plants or animals.[24][26][27]

Concerns about negative consequences from gene flow between genetically engineered organisms and wild populations are valid. Most corn and soybean crops grown in the midwestern USA are genetically modified. There are corn and soybean varieties that are resistant to herbicides like glyphosate[28] and corn that produces neonicotinoid pesticide within all of its tissues.[29] These genetic modifications are meant to increase yields of crops but there is little evidence that yields actually increase.[29] While scientists are concerned genetically engineered organisms can have negative effects on surrounding plant and animal communities, the risk of gene flow between genetically engineered organisms and wild populations is yet another concern. Many farmed crops may be weed resistant and reproduce with wild relatives.[30] More research is necessary to understand how much gene flow between genetically engineered crops and wild populations occurs, and the impacts of genetic mixing.

Mutated organisms edit

Mutations within organisms can be executed through the process of exposing the organism to chemicals or radiation in order to generate mutations. This has been done in plants in order to create mutants that have a desired trait. These mutants can then be bred with other mutants or individuals that are not mutated in order to maintain the mutant trait. However, similar to the risks associated with introducing individuals to a certain environment, the variation created by mutated individuals could have a negative impact on native populations as well.

Preventive measures edit

Since 2005 there has existed a GM Contamination Register, launched for GeneWatch UK and Greenpeace International that records all incidents of intentional or accidental[31][32] release of organisms genetically modified using modern techniques.[33]

Genetic use restriction technologies (GURTs) were developed for the purpose of property protection, but could be beneficial in preventing the dispersal of transgenes. GeneSafe technologies introduced a method that became known as "Terminator." This method is based on seeds that produce sterile plants. This would prevent movement of transgenes into wild populations as hybridization would not be possible.[34] However, this technology has never been deployed as it disproportionately negatively affects farmers in developing countries, who save seeds to use each year (whereas in developed countries, farmers generally buy seeds from seed production companies).[34]

Physical containment has also been utilized to prevent the escape of transgenes. Physical containment includes barriers such as filters in labs, screens in greenhouses, and isolation distances in the field. Isolation distances have not always been successful, such as transgene escape from an isolated field into the wild in herbicide-resistant bentgrass Agrostis stolonifera.[35]

Another suggested method that applies specifically to protection traits (e.g. pathogen resistance) is mitigation. Mitigation involves linking the positive trait (beneficial to fitness) to a trait that is negative (harmful to fitness) to wild but not domesticated individuals.[35] In this case, if the protection trait was introduced to a weed, the negative trait would also be introduced in order to decrease overall fitness of the weed and decrease possibility of the individual’s reproduction and thus propagation of the transgene.

Risks edit

Not all genetically engineered organisms cause genetic pollution. Genetic engineering has a variety of uses and is specifically defined as a direct manipulation of the genome of an organism. Genetic pollution can occur in response to the introduction of a species that is not native to a particular environment, and genetically engineered organisms are examples of individuals that could cause genetic pollution following introduction. Due to these risks, studies have been done in order to assess the risks of genetic pollution associated with organisms that have been genetically engineered:

  1. Genetic In a 10-year study of four different crops, none of the genetically engineered plants were found to be more invasive or more persistent than their conventional counterparts.[36] An often cited claimed example of genetic pollution is the reputed discovery of transgenes from GE maize in landraces of maize in Oaxaca, Mexico. The report from Quist and Chapela,[37] has since been discredited on methodological grounds.[38] The scientific journal that originally published the study concluded that "the evidence available is not sufficient to justify the publication of the original paper."[39] More recent attempts to replicate the original studies have concluded that genetically modified corn is absent from southern Mexico in 2003 and 2004.[40]
  2. A 2009 study verified the original findings of the controversial 2001 study, by finding transgenes in about 1% of 2000 samples of wild maize in Oaxaca, Mexico, despite Nature retracting the 2001 study and a second study failing to back up the findings of the initial study. The study found that the transgenes are common in some fields, but non-existent in others, hence explaining why a previous study failed to find them. Furthermore, not every laboratory method managed to find the transgenes.[41]
  3. A 2004 study performed near an Oregon field trial for a genetically modified variety of creeping bentgrass (Agrostis stolonifera) revealed that the transgene and its associate trait (resistance to the glyphosate herbicide) could be transmitted by wind pollination to resident plants of different Agrostis species, up to 14 kilometres (8.7 mi) from the test field.[42] In 2007, the Scotts Company, producer of the genetically modified bentgrass, agreed to pay a civil penalty of $500,000 to the United States Department of Agriculture (USDA). The USDA alleged that Scotts "failed to conduct a 2003 Oregon field trial in a manner which ensured that neither glyphosate-tolerant creeping bentgrass nor its offspring would persist in the environment".[43]

Not only are there risks in terms of genetic engineering, but there are risks that emerge from species hybridization. In Czechoslovakia, ibex were introduced from Turkey and Sinai to help promote the ibex population there, which caused hybrids that produced offspring too early, which caused the overall population to disappear completely.[44] The genes of each population of the ibex in Turkey and Sinai were locally adapted to their environments so when placed in a new environmental context did not flourish. Additionally, the environmental toll that may arise from the introduction of a new species may be so disruptive that the ecosystem is no longer able to sustain certain populations.

Controversy edit

Environmentalist perspectives edit

The use of the word "pollution" in the term genetic pollution has a deliberate negative connotation and is meant to convey the idea that mixing genetic information is bad for the environment. However, because the mixing of genetic information can lead to a variety of outcomes, "pollution" may not be the most accurate descriptor. Gene flow is undesirable according to some environmentalists and conservationists, including groups such as Greenpeace, TRAFFIC, and GeneWatch UK.[45][31][33][46][5][9][47]

"Invasive species have been a major cause of extinction throughout the world in the past few hundred years. Some of them prey on native wildlife, compete with it for resources, or spread disease, while others may hybridize with native species, causing "genetic pollution". In these ways, invasive species are as big a threat to the balance of nature as the direct overexploitation by humans of some species."[48]

It can also be considered undesirable if it leads to a loss of fitness in the wild populations.[49] The term can be associated with the gene flow from a mutation bred, synthetic organism or genetically engineered organism to a non GE organism,[24] by those who consider such gene flow detrimental.[45] These environmentalist groups stand in complete opposition to the development and production of genetically engineered organisms.

Governmental definition edit

From a governmental perspective, genetic pollution is defined as follows by the Food and Agriculture Organization of the United Nations:

"Uncontrolled spread of genetic information (frequently referring to transgenes) into the genomes of organisms in which such genes are not present in nature."[50]

Scientific perspectives edit

Use of the term 'genetic pollution' and similar phrases such as genetic deterioration, genetic swamping, genetic takeover, and genetic aggression, are being debated by scientists as many do not find it scientifically appropriate. Rhymer and Simberloff argue that these types of terms:

...imply either that hybrids are less fit than the parentals, which need not be the case, or that there is an inherent value in "pure" gene pools.[48]

They recommend that gene flow from invasive species be termed genetic mixing since:

"Mixing" need not be value-laden, and we use it here to denote mixing of gene pools whether or not associated with a decline in fitness.[48]

See also edit

References edit

  1. ^ a b c d Boffey PM (December 13, 1983). "Italy's Wild Dogs Winning Darwinian Battle". The New York Times. Although wolves and dogs have always lived in close contact in Italy and have presumably mated in the past, the newly worrisome element, in Dr. Boitani's opinion, is the increasing disparity in numbers, which suggests that interbreeding will become fairly common. As a result, genetic pollution of the wolf gene pool might reach irreversible levels, he warned. By hybridization, dogs can easily absorb the wolf genes and destroy the wolf, as it is, he said. The wolf might survive as a more doglike animal, better adapted to living close to people, he said, but it would not be what we today call a wolf.
  2. ^ Ellstrand NC (2001). "When Transgenes Wander, Should We Worry?". Plant Physiol. 125 (4): 1543–1545. doi:10.1104/pp.125.4.1543. PMC 1539377. PMID 11299333.
  3. ^ . Dictionary.com. Archived from the original on 2018-04-30. Retrieved 2018-04-30.
  4. ^ Waller, Donald M. (June 2015). "Genetic rescue: a safe or risky bet?". Molecular Ecology. 24 (11): 2595–2597. doi:10.1111/mec.13220. ISSN 1365-294X. PMID 26013990. S2CID 11573077.
  5. ^ a b c Butler D (18 August 1994). "Bid to protect wolves from genetic pollution". Nature. 370 (6490): 497. Bibcode:1994Natur.370..497B. doi:10.1038/370497a0.
  6. ^ a b Potts BM, Barbour RC, Hingston AB, Vaillancourt RE (2003). "Corrigendum to: TURNER REVIEW No. 6 Genetic pollution of native eucalypt gene pools—identifying the risks". Australian Journal of Botany. 51 (3): 333. doi:10.1071/BT02035_CO.
  7. ^ Haack, Robert A., et al. Managing Invasive Populations of Asian Longhorned Beetle and Citrus Longhorned Beetle: A Worldwide Perspective. vol. 55, Annual Review of Entomology, 2010, Managing Invasive Populations of Asian Longhorned Beetle and Citrus Longhorned Beetle: A Worldwide Perspective.
  8. ^ 2011, Invasive Plants Can Create Positive Ecological Change.
  9. ^ a b . TRAFFIC.org, the wildlife trade monitoring network, a joint programme of WWF and IUCN. The World Conservation Union. Archived from the original on 24 December 2007.
  10. ^ Effects of the introduction of invasive/non-native species - Joint Nature Conservation Committee (JNCC), a statutory adviser to Government on UK and international nature conservation. Accessed on November 25, 2007. : "Occasionally non-native species can reproduce with native species and produce hybrids, which will alter the genetic pool (a process called genetic pollution), which is an irreversible change."
  11. ^ Levin DA, Francisco-Ortega J, Jansen RK (1996-02-01). "Hybridization and the Extinction of Rare Plant Species". Conservation Biology. 10 (1): 10–16. doi:10.1046/j.1523-1739.1996.10010010.x. ISSN 1523-1739.
  12. ^ Anderson R (3 September 2017). "More than 160,000 non-native Atlantic salmon escaped into Washington waters in fish farm accident". Los Angeles Times. Retrieved 2018-04-30.
  13. ^ "'Environmental Nightmare' After Thousands Of Atlantic Salmon Escape Fish Farm". NPR.org. Retrieved 2018-04-30.
  14. ^ Scotti A. "Thousands of salmon escape from fish farm, and no one knows what will happen next". nydailynews.com. Retrieved 2018-04-30.
  15. ^ "Escapes: Net-pens are poor containment structures and escaped farmed salmon can compete with wild salmon for food and spawning habitat". Living Oceans. 2013-03-12. Retrieved 2018-04-30.
  16. ^ Montanari S. "How Did The Eclipse Let Thousands Of Farmed Salmon Escape?". Forbes. Retrieved 2018-04-30.
  17. ^ "Spill of farmed Atlantic salmon near San Juan Islands much bigger than first estimates". The Seattle Times. 2017-08-24. Retrieved 2018-04-30.
  18. ^ Braun, Ashley. "Farmed and Dangerous? Pacific Salmon Confront Rogue Atlantic Cousins". Scientific American. Retrieved 2018-05-01.
  19. ^ video, tronc. "Farmed salmon escape into Washington state waters". chicagotribune.com. Retrieved 2018-05-01.
  20. ^ "Atlantic Salmon (Salmo salar) - Aquatic Invasive Species | Washington Department of Fish & Wildlife". wdfw.wa.gov. Retrieved 2018-05-01.
  21. ^ Appleby, Kevin H. Amos and Andrew. "Atlantic Salmon in Washington State: A Fish Management Perspective - WDFW Publications | Washington Department of Fish & Wildlife". wdfw.wa.gov. Retrieved 2018-05-01.
  22. ^ Ellstrand, Norman C.; Prentice, Honor C.; Hancock, James F. (1999). "Gene Flow and Introgression from Domesticated Plants into Their Wild Relatives". Annual Review of Ecology and Systematics. 30 (1): 539–563. doi:10.1146/annurev.ecolsys.30.1.539.
  23. ^ Carroll, Sean B. (2010-05-24). "Tracking the Ancestry of Corn Back 9,000 Years". The New York Times. ISSN 0362-4331. Retrieved 2018-05-01.
  24. ^ a b c "Gene flow from GM to non-GM populations in the crop, forestry, animal and fishery sectors". Background document to Conference 7: May 31 - July 6, 2002; Electronic Forum on Biotechnology in Food and Agriculture. Food and Agriculture Organization of the United Nations (FAO).
  25. ^ Rifkin J (1998). The Biotech Century: Harnessing the Gene and Remaking the World. J P Tarcher. ISBN 978-0-87477-909-7.
  26. ^ Quinion M. "Genetic Pollution". World Wide Words.
  27. ^ Otchet A (1998). "Jeremy Rifkin: fears of a brave new world". an interview hosted by The United Nations Educational, Scientific and Cultural Organization (UNESCO).
  28. ^ Waltz, Emily (June 2010). "Glyphosate resistance threatens Roundup hegemony". Nature Biotechnology. 28 (6): 537–538. doi:10.1038/nbt0610-537. ISSN 1087-0156. PMID 20531318.
  29. ^ a b Krupke, C. H.; Holland, J. D.; Long, E. Y.; Eitzer, B. D. (2017-05-22). "Planting of neonicotinoid-treated maize poses risks for honey bees and other non-target organisms over a wide area without consistent crop yield benefit". Journal of Applied Ecology. 54 (5): 1449–1458. doi:10.1111/1365-2664.12924. ISSN 0021-8901.
  30. ^ Brown, Paul (2005-07-25). "GM crops created superweed, say scientists". the Guardian. Retrieved 2018-05-01.
  31. ^ a b . GM Contamination Register. Archived from the original on 2011-06-22. Retrieved 2010-07-08.
  32. ^ . GM Contamination Register. Archived from the original on 2017-02-12. Retrieved 2010-07-08.
  33. ^ a b . Archived from the original on 2005-06-05. Retrieved 2010-07-06.
  34. ^ a b Sang, Yi; Millwood, Reginald J.; Neal Stewart Jr, C. (2013-06-04). "Gene use restriction technologies for transgenic plant bioconfinement". Plant Biotechnology Journal. 11 (6): 649–658. doi:10.1111/pbi.12084. ISSN 1467-7644. PMID 23730743.
  35. ^ a b Gressel, Jonathan (2014-08-15). "Dealing with transgene flow of crop protection traits from crops to their relatives". Pest Management Science. 71 (5): 658–667. doi:10.1002/ps.3850. ISSN 1526-498X. PMID 24977384.
  36. ^ Crawley MJ, Brown SL, Hails RS, Kohn D, Rees M (8 February 2001). "Biotechnology: Transgenic crops in natural habitats". Nature. 409 (6821): 682–683. doi:10.1038/35055621. PMID 11217848. S2CID 4422713.
  37. ^ Quist D, Chapela IH (November 2001). "Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico". Nature. 414 (6863): 541–3. Bibcode:2001Natur.414..541Q. doi:10.1038/35107068. PMID 11734853. S2CID 4403182.
  38. ^ Christou P (2002). "No Credible Scientific Evidence is Presented to Support Claims that Transgenic DNA was Introgressed into Traditional Maize Landraces in Oaxaca, Mexico". Transgenic Research. 11 (1): 3–5. doi:10.1023/A:1013903300469. PMID 11874106. S2CID 12294956.
  39. ^ Metz M, Fütterer J (April 2002). . Nature. 416 (6881): 600–1, discussion 600, 602. Bibcode:2002Natur.416..600M. doi:10.1038/nature738. PMID 11935144. S2CID 4423495. Archived from the original on October 31, 2008.
  40. ^ Ortiz-García S, Ezcurra E, Schoel B, Acevedo F, Soberón J, Snow AA (August 2005). "Absence of detectable transgenes in local landraces of maize in Oaxaca, Mexico (2003-2004)". Proceedings of the National Academy of Sciences of the United States of America. 102 (35): 12338–43. Bibcode:2005PNAS..10212338O. doi:10.1073/pnas.0503356102. PMC 1184035. PMID 16093316.
  41. ^ "'Alien' genes escape into wild corn". New Scientist. 18 February 2009.
  42. ^ Watrud LS, Lee EH, Fairbrother A, Burdick C, Reichman JR, Bollman M, Storm M, King G, Van de Water PK (October 2004). "Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker". Proceedings of the National Academy of Sciences of the United States of America. 101 (40): 14533–8. Bibcode:2004PNAS..10114533W. doi:10.1073/pnas.0405154101. PMC 521937. PMID 15448206.
  43. ^ "USDA Concludes Genetically Engineered Creeping Bentgrass Investigation".
  44. ^ Genetic Rescue: a Safe or Risky Bet?
  45. ^ a b GE agriculture and genetic pollution 2010-04-11 at the Wayback Machine web article hosted by Greenpeace.org
  46. ^ "Say no to genetic pollution". Greenpeace.
  47. ^ Greenpeace. (PDF). Archived from the original (PDF) on 2018-05-01. Retrieved 2018-04-30.
  48. ^ a b c Rhymer JM, Simberloff D (1996). "Extinction by Hybridization and Introgression". Annual Review of Ecology and Systematics. 27: 83–109. doi:10.1146/annurev.ecolsys.27.1.83.
  49. ^ Milot E, Perrier C, Papillon L, Dodson JJ, Bernatchez L (April 2013). "Reduced fitness of Atlantic salmon released in the wild after one generation of captive breeding". Evolutionary Applications. 6 (3): 472–85. doi:10.1111/eva.12028. PMC 3673475. PMID 23745139.
  50. ^ Zaid A, Hughes HG, Porceddu E, Nicholas F (26 October 2007). . A FAO Research and Technology Paper. Food and Agriculture Organization of the United Nations. ISBN 978-92-5-104683-8. Archived from the original on 26 October 2007.

genetic, pollution, also, invasion, genetics, term, uncontrolled, gene, flow, into, wild, populations, defined, dispersal, contaminated, altered, genes, from, genetically, engineered, organisms, natural, organisms, cross, pollination, come, used, some, broader. See also Invasion genetics Genetic pollution is a term for uncontrolled 1 2 gene flow into wild populations It is defined as the dispersal of contaminated altered genes from genetically engineered organisms to natural organisms esp by cross pollination 3 but has come to be used in some broader ways It is related to the population genetics concept of gene flow and genetic rescue which is genetic material intentionally introduced to increase the fitness of a population 4 It is called genetic pollution when it negatively impacts the fitness of a population such as through outbreeding depression and the introduction of unwanted phenotypes which can lead to extinction Conservation biologists and conservationists have used the term to describe gene flow from domestic feral and non native species into wild indigenous species which they consider undesirable They promote awareness of the effects of introduced invasive species that may hybridize with native species causing genetic pollution In the fields of agriculture agroforestry and animal husbandry genetic pollution is used to describe gene flows between genetically engineered species and wild relatives The use of the word pollution is meant to convey the idea that mixing genetic information is bad for the environment but because the mixing of genetic information can lead to a variety of outcomes pollution may not always be the most accurate descriptor Contents 1 Gene flow to wild population 1 1 Importance 1 2 Introduced species 1 2 1 Invasive species 1 3 Domestic populations 1 3 1 Aquaculture 1 3 2 Crops 1 4 Genetically engineered organisms 1 4 1 Mutated organisms 1 4 2 Preventive measures 1 4 3 Risks 2 Controversy 2 1 Environmentalist perspectives 2 2 Governmental definition 2 3 Scientific perspectives 3 See also 4 ReferencesGene flow to wild population editFurther information Gene flowSome conservation biologists and conservationists have used genetic pollution for a number of years as a term to describe gene flow from a non native invasive subspecies domestic or genetically engineered population to a wild indigenous population 1 5 6 Importance edit The introduction of genetic material into the gene pool of a population by human intervention can have both positive and negative effects on populations When genetic material is intentionally introduced to increase the fitness of a population this is called genetic rescue When genetic material is unintentionally introduced to a population this is called genetic pollution and can negatively affect the fitness of a population primarily through outbreeding depression introduce other unwanted phenotypes or theoretically lead to extinction Introduced species edit Further information Introduced speciesAn introduced species is one that is not native to a given population that is either intentionally or accidentally brought into a given ecosystem Effects of introduction are highly variable but if an introduced species has a major negative impact on its new environment it can be considered an invasive species One such example is the introduction of the Asian Longhorned beetle in North America which was first detected in 1996 in Brooklyn New York It is believed that these beetles were introduced through cargo at trade ports The beetles are highly damaging to the environment and are estimated to cause risk to 35 of urban trees excluding natural forests 7 These beetles cause severe damage to the wood of trees by larval funneling Their presence in the ecosystem destabilizes community structure having a negative influence on many species in the system Introduced species are not always disruptive to an environment however Tomas Carlo and Jason Gleditch of Penn State University found that the number of invasive honeysuckle plants in the area correlated with the number and diversity of the birds in the Happy Valley Region of Pennsylvania suggesting introduced honeysuckle plants and birds formed a mutually beneficial relationship 8 Presence of introduced honeysuckle was associated with higher diversity of the bird populations in that area demonstrating that introduced species are not always detrimental to a given environment and it is completely context dependent Invasive species edit Conservation biologists and conservationists have for a number of years used the term to describe gene flow from domestic feral and non native species into wild indigenous species which they consider undesirable 1 5 6 For example TRAFFIC is the international wildlife trade monitoring network that works to limit trade in wild plants and animals so that it is not a threat to conservationist goals They promote awareness of the effects of introduced invasive species that may hybridize with native species causing genetic pollution 9 Furthermore the Joint Nature Conservation Committee the statutory adviser to the UK government has stated that invasive species will alter the genetic pool a process called genetic pollution which is an irreversible change 10 Invasive species can invade both large and small native populations and have a profound effect Upon invasion invasive species interbreed with native species to form sterile or more evolutionarily fit hybrids that can outcompete the native populations Invasive species can cause extinctions of small populations on islands that are particularly vulnerable due to their smaller amounts of genetic diversity In these populations local adaptations can be disrupted by the introduction of new genes that may not be as suitable for the small island environments For example the Cercocarpus traskiae of the Catalina Island off the coast of California has faced near extinction with only a single population remaining due to the hybridization of its offspring with Cercocarpus betuloides 11 Domestic populations edit Increased contact between wild and domesticated populations of organisms can lead to reproductive interactions that are detrimental to the wild population s ability to survive A wild population is one that lives in natural areas and is not regularly looked after by humans This contrasts with domesticated populations that live in human controlled areas and are regularly and historically in contact with humans Genes from domesticated populations are added to wild populations as a result of reproduction In many crop populations this can be the result of pollen traveling from farmed crops to neighboring wild plants of the same species For farmed animals this reproduction may happen as the result of escaped or released animals A popular example of this phenomenon is the gene flow between wolves and domesticated dogs The New York Times cites from the words of biologist Dr Luigi Boitani Although wolves and dogs have always lived in close contact in Italy and have presumably mated in the past the newly worrisome element in Dr Boitani s opinion is the increasing disparity in numbers which suggests that interbreeding will become fairly common As a result genetic pollution of the wolf gene pool might reach irreversible levels he warned By hybridization dogs can easily absorb the wolf genes and destroy the wolf as it is he said The wolf might survive as a more doglike animal better adapted to living close to people he said but it would not be what we today call a wolf 1 Aquaculture edit Aquaculture is the practice of farming aquatic animals or plants for the purpose of consumption This practice is becoming increasingly common for the production of salmon This is specifically termed aquaculture of salmonoids One of the dangers of this practice is the possibility of domesticated salmon breaking free from their containment The occurrence of escaping incidents is becoming increasingly common as aquaculture gains popularity 12 13 14 Farming structures may be ineffective at holding the vast number of fast growing animals they house 15 Natural disasters high tides and other environmental occurrences can also trigger aquatic animal escapes 16 17 The reason these escapes are considered dangers is the impact they pose for the wild population they reproduce with after escaping In many instances the wild population experiences a decreased likelihood of survival after reproducing with domesticated populations of salmon 18 19 The Washington Department of Fish and Wildlife cites that commonly expressed concerns surrounding escaped Atlantic salmon include competition with native salmon predation disease transfer hybridization and colonization 20 A report done by that organization in 1999 did not find that escaped salmon posed a significant risk to wild populations 21 Crops edit Crops refer to groups of plants grown for consumption Despite domestication over many years these plants are not so far removed from their wild relatives that they could reproduce if brought together Many crops are still grown in the areas they originated and gene flow between crops and wild relatives impacts the evolution of wild populations 22 Farmers can avoid reproduction between the different populations by timing their planting of crops so that crops are not flowering when wild relatives would be Domesticated crops have been changed through artificial selection and genetic engineering The genetic make ups of many crops is different from those of their wild relatives 23 but the closer they grow to one another the more likely they are to share genes through pollen Gene flow persists between crops and wild counterparts Genetically engineered organisms edit Further information Genetic engineering Genetically engineered organisms are genetically modified in a laboratory and therefore distinct from those that were bred through artificial selection In the fields of agriculture agroforestry and animal husbandry genetic pollution is being used to describe gene flows between GE species and wild relatives 24 An early use of the term genetic pollution in this later sense appears in a wide ranging review of the potential ecological effects of genetic engineering in The Ecologist magazine in July 1989 It was also popularized by environmentalist Jeremy Rifkin in his 1998 book The Biotech Century 25 While intentional crossbreeding between two genetically distinct varieties is described as hybridization with the subsequent introgression of genes Rifkin who had played a leading role in the ethical debate for over a decade before used genetic pollution to describe what he considered to be problems that might occur due to the unintentional process of modernly genetically modified organisms GMOs dispersing their genes into the natural environment by breeding with wild plants or animals 24 26 27 Concerns about negative consequences from gene flow between genetically engineered organisms and wild populations are valid Most corn and soybean crops grown in the midwestern USA are genetically modified There are corn and soybean varieties that are resistant to herbicides like glyphosate 28 and corn that produces neonicotinoid pesticide within all of its tissues 29 These genetic modifications are meant to increase yields of crops but there is little evidence that yields actually increase 29 While scientists are concerned genetically engineered organisms can have negative effects on surrounding plant and animal communities the risk of gene flow between genetically engineered organisms and wild populations is yet another concern Many farmed crops may be weed resistant and reproduce with wild relatives 30 More research is necessary to understand how much gene flow between genetically engineered crops and wild populations occurs and the impacts of genetic mixing Mutated organisms edit Mutations within organisms can be executed through the process of exposing the organism to chemicals or radiation in order to generate mutations This has been done in plants in order to create mutants that have a desired trait These mutants can then be bred with other mutants or individuals that are not mutated in order to maintain the mutant trait However similar to the risks associated with introducing individuals to a certain environment the variation created by mutated individuals could have a negative impact on native populations as well Further information Mutation breeding Preventive measures edit Since 2005 there has existed a GM Contamination Register launched for GeneWatch UK and Greenpeace International that records all incidents of intentional or accidental 31 32 release of organisms genetically modified using modern techniques 33 Genetic use restriction technologies GURTs were developed for the purpose of property protection but could be beneficial in preventing the dispersal of transgenes GeneSafe technologies introduced a method that became known as Terminator This method is based on seeds that produce sterile plants This would prevent movement of transgenes into wild populations as hybridization would not be possible 34 However this technology has never been deployed as it disproportionately negatively affects farmers in developing countries who save seeds to use each year whereas in developed countries farmers generally buy seeds from seed production companies 34 Physical containment has also been utilized to prevent the escape of transgenes Physical containment includes barriers such as filters in labs screens in greenhouses and isolation distances in the field Isolation distances have not always been successful such as transgene escape from an isolated field into the wild in herbicide resistant bentgrass Agrostis stolonifera 35 Another suggested method that applies specifically to protection traits e g pathogen resistance is mitigation Mitigation involves linking the positive trait beneficial to fitness to a trait that is negative harmful to fitness to wild but not domesticated individuals 35 In this case if the protection trait was introduced to a weed the negative trait would also be introduced in order to decrease overall fitness of the weed and decrease possibility of the individual s reproduction and thus propagation of the transgene Risks edit Not all genetically engineered organisms cause genetic pollution Genetic engineering has a variety of uses and is specifically defined as a direct manipulation of the genome of an organism Genetic pollution can occur in response to the introduction of a species that is not native to a particular environment and genetically engineered organisms are examples of individuals that could cause genetic pollution following introduction Due to these risks studies have been done in order to assess the risks of genetic pollution associated with organisms that have been genetically engineered Genetic In a 10 year study of four different crops none of the genetically engineered plants were found to be more invasive or more persistent than their conventional counterparts 36 An often cited claimed example of genetic pollution is the reputed discovery of transgenes from GE maize in landraces of maize in Oaxaca Mexico The report from Quist and Chapela 37 has since been discredited on methodological grounds 38 The scientific journal that originally published the study concluded that the evidence available is not sufficient to justify the publication of the original paper 39 More recent attempts to replicate the original studies have concluded that genetically modified corn is absent from southern Mexico in 2003 and 2004 40 A 2009 study verified the original findings of the controversial 2001 study by finding transgenes in about 1 of 2000 samples of wild maize in Oaxaca Mexico despite Nature retracting the 2001 study and a second study failing to back up the findings of the initial study The study found that the transgenes are common in some fields but non existent in others hence explaining why a previous study failed to find them Furthermore not every laboratory method managed to find the transgenes 41 A 2004 study performed near an Oregon field trial for a genetically modified variety of creeping bentgrass Agrostis stolonifera revealed that the transgene and its associate trait resistance to the glyphosate herbicide could be transmitted by wind pollination to resident plants of different Agrostis species up to 14 kilometres 8 7 mi from the test field 42 In 2007 the Scotts Company producer of the genetically modified bentgrass agreed to pay a civil penalty of 500 000 to the United States Department of Agriculture USDA The USDA alleged that Scotts failed to conduct a 2003 Oregon field trial in a manner which ensured that neither glyphosate tolerant creeping bentgrass nor its offspring would persist in the environment 43 Not only are there risks in terms of genetic engineering but there are risks that emerge from species hybridization In Czechoslovakia ibex were introduced from Turkey and Sinai to help promote the ibex population there which caused hybrids that produced offspring too early which caused the overall population to disappear completely 44 The genes of each population of the ibex in Turkey and Sinai were locally adapted to their environments so when placed in a new environmental context did not flourish Additionally the environmental toll that may arise from the introduction of a new species may be so disruptive that the ecosystem is no longer able to sustain certain populations Controversy editEnvironmentalist perspectives edit The use of the word pollution in the term genetic pollution has a deliberate negative connotation and is meant to convey the idea that mixing genetic information is bad for the environment However because the mixing of genetic information can lead to a variety of outcomes pollution may not be the most accurate descriptor Gene flow is undesirable according to some environmentalists and conservationists including groups such as Greenpeace TRAFFIC and GeneWatch UK 45 31 33 46 5 9 47 Invasive species have been a major cause of extinction throughout the world in the past few hundred years Some of them prey on native wildlife compete with it for resources or spread disease while others may hybridize with native species causing genetic pollution In these ways invasive species are as big a threat to the balance of nature as the direct overexploitation by humans of some species 48 It can also be considered undesirable if it leads to a loss of fitness in the wild populations 49 The term can be associated with the gene flow from a mutation bred synthetic organism or genetically engineered organism to a non GE organism 24 by those who consider such gene flow detrimental 45 These environmentalist groups stand in complete opposition to the development and production of genetically engineered organisms Governmental definition editFrom a governmental perspective genetic pollution is defined as follows by the Food and Agriculture Organization of the United Nations Uncontrolled spread of genetic information frequently referring to transgenes into the genomes of organisms in which such genes are not present in nature 50 Scientific perspectives edit Use of the term genetic pollution and similar phrases such as genetic deterioration genetic swamping genetic takeover and genetic aggression are being debated by scientists as many do not find it scientifically appropriate Rhymer and Simberloff argue that these types of terms imply either that hybrids are less fit than the parentals which need not be the case or that there is an inherent value in pure gene pools 48 They recommend that gene flow from invasive species be termed genetic mixing since Mixing need not be value laden and we use it here to denote mixing of gene pools whether or not associated with a decline in fitness 48 See also editBack breeding Biodiversity Bioethics Conservation biology Dysgenics Gene pool Genetic erosion Genetic monitoring Introgression Miscegenation Seeds of Destruction Hidden Agenda of Genetic Manipulation Starlink corn recallReferences edit a b c d Boffey PM December 13 1983 Italy s Wild Dogs Winning Darwinian Battle The New York Times Although wolves and dogs have always lived in close contact in Italy and have presumably mated in the past the newly worrisome element in Dr Boitani s opinion is the increasing disparity in numbers which suggests that interbreeding will become fairly common As a result genetic pollution of the wolf gene pool might reach irreversible levels he warned By hybridization dogs can easily absorb the wolf genes and destroy the wolf as it is he said The wolf might survive as a more doglike animal better adapted to living close to people he said but it would not be what we today call a wolf Ellstrand NC 2001 When Transgenes Wander Should We Worry Plant Physiol 125 4 1543 1545 doi 10 1104 pp 125 4 1543 PMC 1539377 PMID 11299333 the definition of genetic pollution Dictionary com Archived from the original on 2018 04 30 Retrieved 2018 04 30 Waller Donald M June 2015 Genetic rescue a safe or risky bet Molecular Ecology 24 11 2595 2597 doi 10 1111 mec 13220 ISSN 1365 294X PMID 26013990 S2CID 11573077 a b c Butler D 18 August 1994 Bid to protect wolves from genetic pollution Nature 370 6490 497 Bibcode 1994Natur 370 497B doi 10 1038 370497a0 a b Potts BM Barbour RC Hingston AB Vaillancourt RE 2003 Corrigendum to TURNER REVIEW No 6 Genetic pollution of native eucalypt gene pools identifying the risks Australian Journal of Botany 51 3 333 doi 10 1071 BT02035 CO Haack Robert A et al Managing Invasive Populations of Asian Longhorned Beetle and Citrus Longhorned Beetle A Worldwide Perspective vol 55 Annual Review of Entomology 2010 Managing Invasive Populations of Asian Longhorned Beetle and Citrus Longhorned Beetle A Worldwide Perspective 2011 Invasive Plants Can Create Positive Ecological Change a b When is wildlife trade a problem TRAFFIC org the wildlife trade monitoring network a joint programme of WWF and IUCN The World Conservation Union Archived from the original on 24 December 2007 Effects of the introduction of invasive non native species Joint Nature Conservation Committee JNCC a statutory adviser to Government on UK and international nature conservation Accessed on November 25 2007 Occasionally non native species can reproduce with native species and produce hybrids which will alter the genetic pool a process calledgenetic pollution which is an irreversible change Levin DA Francisco Ortega J Jansen RK 1996 02 01 Hybridization and the Extinction of Rare Plant Species Conservation Biology 10 1 10 16 doi 10 1046 j 1523 1739 1996 10010010 x ISSN 1523 1739 Anderson R 3 September 2017 More than 160 000 non native Atlantic salmon escaped into Washington waters in fish farm accident Los Angeles Times Retrieved 2018 04 30 Environmental Nightmare After Thousands Of Atlantic Salmon Escape Fish Farm NPR org Retrieved 2018 04 30 Scotti A Thousands of salmon escape from fish farm and no one knows what will happen next nydailynews com Retrieved 2018 04 30 Escapes Net pens are poor containment structures and escaped farmed salmon can compete with wild salmon for food and spawning habitat Living Oceans 2013 03 12 Retrieved 2018 04 30 Montanari S How Did The Eclipse Let Thousands Of Farmed Salmon Escape Forbes Retrieved 2018 04 30 Spill of farmed Atlantic salmon near San Juan Islands much bigger than first estimates The Seattle Times 2017 08 24 Retrieved 2018 04 30 Braun Ashley Farmed and Dangerous Pacific Salmon Confront Rogue Atlantic Cousins Scientific American Retrieved 2018 05 01 video tronc Farmed salmon escape into Washington state waters chicagotribune com Retrieved 2018 05 01 Atlantic Salmon Salmo salar Aquatic Invasive Species Washington Department of Fish amp Wildlife wdfw wa gov Retrieved 2018 05 01 Appleby Kevin H Amos and Andrew Atlantic Salmon in Washington State A Fish Management Perspective WDFW Publications Washington Department of Fish amp Wildlife wdfw wa gov Retrieved 2018 05 01 Ellstrand Norman C Prentice Honor C Hancock James F 1999 Gene Flow and Introgression from Domesticated Plants into Their Wild Relatives Annual Review of Ecology and Systematics 30 1 539 563 doi 10 1146 annurev ecolsys 30 1 539 Carroll Sean B 2010 05 24 Tracking the Ancestry of Corn Back 9 000 Years The New York Times ISSN 0362 4331 Retrieved 2018 05 01 a b c Gene flow from GM to non GM populations in the crop forestry animal and fishery sectors Background document to Conference 7 May 31 July 6 2002 Electronic Forum on Biotechnology in Food and Agriculture Food and Agriculture Organization of the United Nations FAO Rifkin J 1998 The Biotech Century Harnessing the Gene and Remaking the World J P Tarcher ISBN 978 0 87477 909 7 Quinion M Genetic Pollution World Wide Words Otchet A 1998 Jeremy Rifkin fears of a brave new world an interview hosted by The United Nations Educational Scientific and Cultural Organization UNESCO Waltz Emily June 2010 Glyphosate resistance threatens Roundup hegemony Nature Biotechnology 28 6 537 538 doi 10 1038 nbt0610 537 ISSN 1087 0156 PMID 20531318 a b Krupke C H Holland J D Long E Y Eitzer B D 2017 05 22 Planting of neonicotinoid treated maize poses risks for honey bees and other non target organisms over a wide area without consistent crop yield benefit Journal of Applied Ecology 54 5 1449 1458 doi 10 1111 1365 2664 12924 ISSN 0021 8901 Brown Paul 2005 07 25 GM crops created superweed say scientists the Guardian Retrieved 2018 05 01 a b Illegal Genetically Engineered Corn from Monsanto Detected in Argentina GM Contamination Register Archived from the original on 2011 06 22 Retrieved 2010 07 08 Brazil Illegal Roundup Ready cotton grown on 16 000 hectares GM Contamination Register Archived from the original on 2017 02 12 Retrieved 2010 07 08 a b GM Contamination Register Archived from the original on 2005 06 05 Retrieved 2010 07 06 a b Sang Yi Millwood Reginald J Neal Stewart Jr C 2013 06 04 Gene use restriction technologies for transgenic plant bioconfinement Plant Biotechnology Journal 11 6 649 658 doi 10 1111 pbi 12084 ISSN 1467 7644 PMID 23730743 a b Gressel Jonathan 2014 08 15 Dealing with transgene flow of crop protection traits from crops to their relatives Pest Management Science 71 5 658 667 doi 10 1002 ps 3850 ISSN 1526 498X PMID 24977384 Crawley MJ Brown SL Hails RS Kohn D Rees M 8 February 2001 Biotechnology Transgenic crops in natural habitats Nature 409 6821 682 683 doi 10 1038 35055621 PMID 11217848 S2CID 4422713 Quist D Chapela IH November 2001 Transgenic DNA introgressed into traditional maize landraces in Oaxaca Mexico Nature 414 6863 541 3 Bibcode 2001Natur 414 541Q doi 10 1038 35107068 PMID 11734853 S2CID 4403182 Christou P 2002 No Credible Scientific Evidence is Presented to Support Claims that Transgenic DNA was Introgressed into Traditional Maize Landraces in Oaxaca Mexico Transgenic Research 11 1 3 5 doi 10 1023 A 1013903300469 PMID 11874106 S2CID 12294956 Metz M Futterer J April 2002 Biodiversity Communications arising suspect evidence of transgenic contamination Nature 416 6881 600 1 discussion 600 602 Bibcode 2002Natur 416 600M doi 10 1038 nature738 PMID 11935144 S2CID 4423495 Archived from the original on October 31 2008 Ortiz Garcia S Ezcurra E Schoel B Acevedo F Soberon J Snow AA August 2005 Absence of detectable transgenes in local landraces of maize in Oaxaca Mexico 2003 2004 Proceedings of the National Academy of Sciences of the United States of America 102 35 12338 43 Bibcode 2005PNAS 10212338O doi 10 1073 pnas 0503356102 PMC 1184035 PMID 16093316 Alien genes escape into wild corn New Scientist 18 February 2009 Watrud LS Lee EH Fairbrother A Burdick C Reichman JR Bollman M Storm M King G Van de Water PK October 2004 Evidence for landscape level pollen mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker Proceedings of the National Academy of Sciences of the United States of America 101 40 14533 8 Bibcode 2004PNAS 10114533W doi 10 1073 pnas 0405154101 PMC 521937 PMID 15448206 USDA Concludes Genetically Engineered Creeping Bentgrass Investigation Genetic Rescue a Safe or Risky Bet a b GE agriculture and genetic pollution Archived 2010 04 11 at the Wayback Machine web article hosted by Greenpeace org Say no to genetic pollution Greenpeace Greenpeace Genetic Pollution a Multiplying Nightmare PDF Archived from the original PDF on 2018 05 01 Retrieved 2018 04 30 a b c Rhymer JM Simberloff D 1996 Extinction by Hybridization and Introgression Annual Review of Ecology and Systematics 27 83 109 doi 10 1146 annurev ecolsys 27 1 83 Milot E Perrier C Papillon L Dodson JJ Bernatchez L April 2013 Reduced fitness of Atlantic salmon released in the wild after one generation of captive breeding Evolutionary Applications 6 3 472 85 doi 10 1111 eva 12028 PMC 3673475 PMID 23745139 Zaid A Hughes HG Porceddu E Nicholas F 26 October 2007 Glossary of Biotechnology for Food and Agriculture A Revised and Augmented Edition of the Glossary of Biotechnology and Genetic Engineering A FAO Research and Technology Paper Food and Agriculture Organization of the United Nations ISBN 978 92 5 104683 8 Archived from the original on 26 October 2007 Retrieved from https en wikipedia org w index php title Genetic pollution amp oldid 1182699519, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.