fbpx
Wikipedia

Dyrosauridae

Dyrosauridae is a family of extinct neosuchian crocodyliforms that lived from the Campanian to the Eocene. Dyrosaurid fossils are globally distributed, having been found in Africa, Asia, Europe, North America and South America. Over a dozen species are currently known, varying greatly in overall size and cranial shape. A majority were aquatic, some terrestrial and others fully marine (see locomotion below), with species inhabiting both freshwater and marine environments. Ocean-dwelling dyrosaurids were among the few marine reptiles to survive the Cretaceous–Paleogene extinction event.

Dyrosauridae
Temporal range: 83.5–47 Ma Campanian - Eocene
Skull of the dyrosaurid Arambourgisuchus khouribgaensis
Scientific classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Reptilia
Clade: Pseudosuchia
Clade: Crocodylomorpha
Suborder: Tethysuchia
Family: Dyrosauridae
de Stefano, 1903
Genera

The dyrosaurids were a group of mostly marine, long jawed, crocodile-like quadrupeds up to 6 metres (20 ft) long.[1] The largest dyrosaurid was probably Phosphatosaurus estimated at 9 m (30 ft) in length.[2][3] Based on bone tissue evidence, it has been hypothesized that they were slow-growing[4] near-shore marine animals with interlocking closed jaws,[4] able to swim as well as walk on land. External nostrils at the posterior end of its snout and an internal naris in its pterygoid indicated a habit of hunting while swimming with the top of the head above the water, enabling it to breathe while stalking prey.[1]

Overview edit

 
Restoration of Dyrosaurus

Dyrosaurids are known to have a very characteristic skull shape with a long and thin snout that is approximately 68% of the total skull length. The most anterior part of the skull and snout is the external naris followed posteriorly by two premaxillae bones until they reach two maxillae bones separated by a single nasal bone.[1]

Typical in dyrosaurids is a single nasal element with a characteristic collection of small pits and a constant width until it widens to contact the lacrimal bones, then tapering off for a short distance until it meets the boundary of the frontals and prefrontals.[1]

 
Tooth

Dyrosaurs have a premaxilla with shallow pits that extend posterior to the third maxillary alveoli. There are two premaxillae that are narrow as compared to the maxillary bones and extend in the two long maxilla bones which separated by the single nasal bone. The last premaxilla and first maxilla are widely separated by a fourth dentary tooth. Alveoli are widely spaced anteriorly and the space between them decreases posteriorly from the fifteenth alveolus with the diameter remaining constant.[1]

The maxilla is long (approx. two and a half times the length of jugal) and forms most of the lateral margin of the skull.[5] According to Jouve and Barbosa and perhaps depending on the age of the animal, each maxilla bears 13-19 teeth.[5]

An important feature of the dyrosaurid dentition are deep occlusal pits, present particularly in the posterior region of the maxillae that get less pronounced anteriorly. The pits are indicative of an interlocking closed jaw for dyrosaurids because the pits give a way for the upper and lower jaws to alternate. Although they are still present in dyrosaurus phosphaticus, this feature of deep occlusal pits become less developed and broad.[5] Dyrosaurus teeth are homodont, conical, long, and slender, with asymmetrically labial and lingual surfaces. Posterior teeth are shorter and more compressed than anterior tooth indicating that the tooth size decreased anterior to posterior.

 
Jaw fragment

Dyrosaurs have a snout to skull length of about 68% and the genus Rhabdognathus and Atlantosuchus, Dyrosaurus and Arambourgisuchus have the largest snout proportions of all dyrosaurids. Snout length was previously used it to establish dyrosaurid relationships, while considering the lengthening of the snout to be a ‘more evolved’ character. This was not congruent with Jouve's conclusion which was that the longest snout is actually the primitive condition so the shorter or longer snout appears independently at least four times in dyrosaurid evolution.[6]

Paleobiogeography edit

Dyrosaurids were once considered an African group, but discoveries made starting from the 2000s indicate they inhabited the majority of the continents.[7] In fact, basal forms suggest that their cradle may have been North America.

General edit

Genus Status Age Location Description Images
Acherontisuchus Valid Paleocene   Colombia A large-bodied, long-snouted freshwater dyrosaurid from the Cerrejón Formation
Aigialosuchus Valid Campanian   Sweden A marine dyrosaurid from the Kristianstad Basin
Anthracosuchus Valid Paleocene   Colombia A short-snouted freshwater dyrosaurid from the Cerrejón Formation
Arambourgisuchus Valid Paleocene   Morocco A long-snouted marine dyrosaurid
Atlantosuchus Valid Paleocene   Morocco A long-snouted marine dyrosaurid with the longest snout length in proportion to body size of any dyrosaurid
Cerrejonisuchus Valid Paleocene   Colombia A small-bodied, short-snouted freshwater dyrosaurid from the Cerrejón Formation
Chenanisuchus Valid Maastrichtian-Paleocene   Mali
  Morocco
The genus spans the K-Pg boundary  
Congosaurus Valid Paleocene   Angola
Dyrosaurus Valid Eocene   Algeria
  Tunisia
A large-bodied, long-snouted marine dyrosaurid  
Guarinisuchus Valid Paleocene   Brazil probable Junior synonym of Hyposaurus derbianus  
Hyposaurus Valid Maastrichtian-Paleocene   Brazil
  Mali
  Nigeria
  US
Five species have been named, the most of any dyrosaurid genus; the genus spans the K-Pg boundary
Phosphatosaurus Valid Eocene   Mali
  Tunisia
A large-bodied, long-snouted marine dyrosaurid with blunt teeth and a spoon-shaped snout tip
Rhabdognathus Valid Maastrichtian-Paleogene   Mali
  Nigeria
A large-bodied, long-snouted marine dyrosaurid; the genus spans the K-Pg boundary
Sokotosaurus Junior synonym Junior synonym of Hyposaurus
Sokotosuchus Valid Maastrichtian   Nigeria A long-snouted marine dyrosaurid
Tilemsisuchus Valid Eocene   Mali

Phylogeny edit

Jouve et al. (2005) diagnose Dyrosauridae as a clade based on the following seven synapomorphies or shared characters:

  • Posteromedial wing of the retroarticular process dorsally situated ventrally on the retroarticular process
  • Occipital tuberosities small
  • Exoccipital participates largely to the occipital condyle
  • Supratemporal fenestra anteroposteriorly strongly elongated
  • Symphysis about as wide as high
  • Quadratojugal participates largely to the cranial condyle for articulation with the jaw
  • 4 premaxillary teeth

Jouve et al. 2020 provide a comprehensive analysis of the relationships of dyrosaurids, shown below. Note the former dyrosaurids Sabinosuchus and Fortignathus are recovered as a pholidosaurid and a peirosaurid, respectively.[8]

Palaeobiology edit

Growth edit

 
Skull

Evidence for the semi-aquatic life of dyrosaurids comes from careful analysis of bone structure. There are two types of structural bone organization that can occur in aquatic tetrapods: osteoporotic or pachyostotic. Osteoporotic bone is spongy and porous whereas pachyostotic involves an increase in skeletal mass. Spongy/porous bone such as osteoporotic is associated with faster swimming and better maneuverability in water because of the reduction in bone tissue, many extant cetaceans and marine turtles have osteoporotic bone which enables them to be good swimmers. Pachyostotic bone is a general/local increase in skeletal mass which can be caused by osteosclerosis (inner compaction of bone), pachyostosis (hyperplasy of compact cortices) or pachyeosclerosis (combination of the two). Research on dyrosaur bone performed by Rafael César Lima Pedroso de Andrade and Juliana Manso Sayao revealed that this family had osteoporotic bone tissue indicative of a fast-swimming ecology as well as some osteosclerosis which is a component of pachyostotic bone tissue. Osteoporosis is associated with a fully aquatic lifestyle whereas pachyostotic is not fully aquatic but is associated with fast swimming ecology. Therefore, dyrosaurs are semi-aquatic fast swimmers as indicated by their bone structure. Other evidence for near shore, semi-aquatic lifestyle is where the fossils are found, often in transitional marine sediments.[4] -using axial frequency swimming (that used primarily by extant crocodylians) with a greater undulatory motion and frequency of the tail due to highly developed musculature allowing a more powerful forward thrust.[4]

Dyrosaurids have a tissue pattern that is indicative of a slow-growth animal that was determined by careful analysis of a right femur and left tibia. In the left tibia, the cortex had a lamellar zonal bone with five lines of arrested growth (LAGs) which were spaced 300 mm apart, well as a clear vascular networks of primary osteons that decreased in density towards the membrane (periostially). The right femur had double LAGs and an EFS later as well as secondary osteons occurring in the deep cortex and the spongiosa. This tissue growth pattern is a common characteristic of slow growing animals.[4]

Habitat edit

Dyrosaurids are found in transitional marine sediments from the Late Cretaceous to lower Eocene.[4] This family is known mainly from Maastrichthian deposits in New Jersey and the late Cretaceous to early Paleogene rock from the Tethys Sea in northern and western Africa.[4] Fossils have also been found from the Paleocene and Eocene strata of Pakistan, as well as South America, Brazil, India, Southern Asia as well as coastal. Generally dyrosaurids are recovered from coastal and estuarine deposits through North Africa and the Middle East confirming their existence as semi-aquatic animals.[9]

Dyrosauridae had its greatest taxonomic diversity during the Early Paleogene but it appears as though the clade was able to obtain a greater and more widespread geographic distribution during the Late Cretaceous. The earliest records of dyrosaurids are either in or close to Africa with fragmentary occurrences from the Cenomanian of Sudan and Portugal and several other pre-Maastrichtian, Late Cretaceous discoveries in Egypt. Later, by the Maastrichtian of North America, the record of dyrosaurids became more complete by establishing a widespread distribution that appears to be maintained through the Paleocene and Eocene.[10]

Dyrosaurids have also been found from non-marine sediments. In northern Sudan, dyrosaurids are known from fluvial deposits, indicating that they lived in a river setting.[11] Bones from indeterminate dyrosaurids have been found in inland deposits in Pakistan as well. Some dyrosaurids, such as those from the Umm Himar Formation in Saudi Arabia, inhabited estuarine environments near the coast. The recently named dyrosaurids Cerrejonisuchus and Acherontisuchus have been recovered from the Cerrejón Formation in northwestern Colombia, which is thought to represent a transitional marine-freshwater environment surrounded by rainforest more inland than the estuarine environment of the Umm Himar Formation.[12] Cerrejonisuchus and Acherontisuchus lived in a neotropical setting during a time when global temperatures were much warmer than they are today.[13][14]

Reproduction edit

In 1978, it was proposed that dyrosaurids lived as adults in the ocean but reproduced in inland freshwater environments. Remains belonging to small-bodied dyrosaurids from Pakistan were interpreted as juveniles. Their presence in inland deposits was viewed as evidence that dyrosaurids hatched far from the ocean.[15] From the lower Eocene Oulad Abdoun Basin, there are very few juvenile dyrosaurids, but numerous similarly-sized adult specimens. This has furthered the assumption that juveniles lived in freshwater environments and adults lived in marine environments.[16] Recently however, the large-bodied and fully mature dyrosaurids of the Cerrejón Formation have shown that some dyrosaurids lived their entire lives in inland environments, never returning to the coast.[17]

Locomotion edit

A study on Cerrejonisuchus suggest this genus was more terrestrial than other dyrosaurids, and also shows that modern crocodylians are not good functional analogues for Dyrosauridae.[18]

References edit

  1. ^ a b c d e Jouve, Stéphane (March 2005). "A new description of the skull of Dyrosaurus phosphaticus (Thomas, 1893) (Mesoeucrocodylia: Dyrosauridae) from the Lower Eocene of North Africa". Canadian Journal of Earth Sciences. 42 (3): 323–337. Bibcode:2005CaJES..42..323J. doi:10.1139/e05-008. ISSN 0008-4077. Retrieved March 22, 2021.
  2. ^ Buffetaut, E. (1978). "Les Dyrosauridae (Crocodylia, Mesosuchia) des phosphates de l'Eocène inférieur de Tunisie: Dyrosaurus, Rhabdognathus, Phosphatosaurus". Géologie Méditerranéenne. 5 (2): 237–256. doi:10.3406/geolm.1978.1046.
  3. ^ Martin, Jeremy E.; Antoine, Pierre-Olivier; Perrier, Vincent; Welcomme, Jean-Loup; Metais, Gregoire; Marivaux, Laurent (2019-07-04). "A large crocodyloid from the Oligocene of the Bugti Hills, Pakistan" (PDF). Journal of Vertebrate Paleontology. 39 (4): e1671427. Bibcode:2019JVPal..39E1427M. doi:10.1080/02724634.2019.1671427. ISSN 0272-4634. S2CID 209439989.
  4. ^ a b c d e f g de Andrade, Rafael César Lima Pedroso; Sayão, Juliana Manso (2014-07-17). "Paleohistology and Lifestyle Inferences of a Dyrosaurid (Archosauria: Crocodylomorpha) from Paraíba Basin (Northeastern Brazil)". PLOS ONE. 9 (7): e102189. Bibcode:2014PLoSO...9j2189A. doi:10.1371/journal.pone.0102189. ISSN 1932-6203. PMC 4102515. PMID 25032965.
  5. ^ a b c Antonio Barbosa, José; Wilhelm Armin Kellner, Alexander. Somália Sales Viana, Maria. New dyrosaurid crocodylomorph and evidences for faunal turnover at the K–P transition in Brazil. 2008. Proceedings of the Royal Society. Downloaded from http://rspb.royalsocietypublishing.org/
  6. ^ Jouve, Stephane; Bouya, Baâdi; Amaghzaz, Mbarek (March 2008). "A Long-Snouted Dyrosaurid (Crocodyliformes, Mesoeucrocodylia) from the Paleocene of Morocco: Phylogenetic and Palaeobiogeographic Implications". Palaeontology. 51 (2): 281–294. Bibcode:2008Palgy..51..281J. doi:10.1111/j.1475-4983.2007.00747.x.
  7. ^ Jouve et al. (2008)
  8. ^ Jouve, Stéphane; de Muizon, Christian; Cespedes-Paz, Ricardo; Sossa-Soruco, Víctor; Knoll, Stephane (2020-10-19). "The longirostrine crocodyliforms from Bolivia and their evolution through the Cretaceous–Palaeogene boundary". Zoological Journal of the Linnean Society. 192 (zlaa081): 475–509. doi:10.1093/zoolinnean/zlaa081. ISSN 0024-4082.
  9. ^ Lamanna, Matthew C.; Smith, Joshua B.; Attia, Yousry S.; Dodson, Peter (2004-09-10). "From dinosaurs to dyrosaurids (Crocodyliformes): removal of the post-Cenomanian (Late Cretaceous) record of Ornithischia from Africa" (PDF). Journal of Vertebrate Paleontology. 24 (3): 764–768. doi:10.1671/0272-4634(2004)024[0764:FDTDCR]2.0.CO;2. ISSN 0272-4634. S2CID 16525132.[dead link]
  10. ^ Khosla, Ashu; Sertich, Joseph J. W.; Prasad, Guntupalli V. R.; Verma, Omkar (2009-12-12). "Dyrosaurid remains from the Intertrappean Beds of India and the Late Cretaceous distribution of Dyrosauridae". Journal of Vertebrate Paleontology. 29 (4): 1321–1326. Bibcode:2009JVPal..29.1321K. doi:10.1671/039.029.0416. ISSN 0272-4634. S2CID 130987967.
  11. ^ Buffetaut, E.; Bussert, R.; Brinkmann, W. (1990). "A new nonmarine vertebrate fauna in the Upper Cretaceous of northern Sudan". Berliner Geowissenschaftlische Abhandlungen. 120: 183–202.
  12. ^ Hastings, A. K; Bloch, J. I.; Cadena, E. A.; Jaramillo, C. A. (2010). "A new small short-snouted dyrosaurid (Crocodylomorpha, Mesoeucrocodylia) from the Paleocene of northeastern Colombia". Journal of Vertebrate Paleontology. 30 (1): 139–162. Bibcode:2010JVPal..30..139H. doi:10.1080/02724630903409204. S2CID 84705605.
  13. ^ Head, J. J.; Bloch, J. I.; Hastings, A. K.; Borque, J. R.; Cadena, E. A.; Herrera, F. A.; Polly, P. D.; Jaramillo, C. A. (2009). "Giant boid snake from the Palaeocene neotropics reveals hotter past equatorial temperatures". Nature. 457 (7230): 715–717. Bibcode:2009Natur.457..715H. doi:10.1038/nature07671. PMID 19194448. S2CID 4381423.
  14. ^ Kanapaux, B. (February 2, 2010). . University of Florida News. Archived from the original on June 8, 2010. Retrieved February 3, 2010.
  15. ^ Buffetaut, E. (1978). "Crocodilian remains from the Eocene of Pakistan". Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen. 156: 262–283.
  16. ^ Jouve, Stephanie; Bardet, Nathalie; Jalil, Nour-Eddine; Superbiola, Xabier Pereda; Bouya, Baâdi and Amagzaz, Mbarek. 2008. The oldest African crocodylian: phylogeny, paleobiogeography, and differential survivorship of marine reptiles through the Cretaceous-Tertiary boundary. Journal of Vertebrate Paleontology 28(2):409–421, June 2008
  17. ^ Hastings, A.K., Bloch, J. and Jaramillo, C.A. (2011). "A new longirostrine dyrosaurid (Crocodylomorpha, Mesoeucrocodylia) from the Paleocene of north-eastern Colombia: biogeographic and behavioural implications for new-world dyrosauridae". Palaeontology. 54 (5): 1095–116. Bibcode:2011Palgy..54.1095H. doi:10.1111/j.1475-4983.2011.01092.x.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  18. ^ Scavezzoni, Isaure; Fischer, Valentin (2021). "The postcranial skeleton of Cerrejonisuchus improcerus (Crocodyliformes: Dyrosauridae) and the unusual anatomy of dyrosaurids". PeerJ. 9: e11222. doi:10.7717/peerj.11222. PMC 8117932. PMID 34026348.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  • Barbosa, J.A., Kellner, A.W.A. and Viana, M.S.S. (2008). New dyrosaurid crocodylomorph and evidences for faunal turnover at the K–P transition in Brazil. Proceedings of the Royal Society B: Biological Sciences: Firstcite
  • Buffetaut, E. (1985). L'evolution des crocodiliens. Les animaux disparus-Pour la science, Paris 109.
  • Jouve, S.; Bouya, B.; Amaghzaz, M. (2008). "A long-snouted dyrosaurid (Crocodyliformes, Mesoeucrocodylia) from the Paleocene of Morocco: phylogenetic and palaeogeographic implications". Palaeontology. 51 (2): 281–294. Bibcode:2008Palgy..51..281J. doi:10.1111/j.1475-4983.2007.00747.x.
  • Jouve, S.; Iarochène, M.; Bouya, B.; Amaghzaz, M. (2005). "A new dyrosaurid crocodyliform from the Palaeocene of Morocco and a phylogenetic analysis of Dyrosauridae". Acta Palaeontologica Polonica. 50 (3): 581–594.

External links edit

  • Jouve et al. (2005)
  • Paleopedia page on Dyrosauridae

dyrosauridae, confused, with, dryosauridae, family, extinct, neosuchian, crocodyliforms, that, lived, from, campanian, eocene, dyrosaurid, fossils, globally, distributed, having, been, found, africa, asia, europe, north, america, south, america, over, dozen, s. Not to be confused with Dryosauridae Dyrosauridae is a family of extinct neosuchian crocodyliforms that lived from the Campanian to the Eocene Dyrosaurid fossils are globally distributed having been found in Africa Asia Europe North America and South America Over a dozen species are currently known varying greatly in overall size and cranial shape A majority were aquatic some terrestrial and others fully marine see locomotion below with species inhabiting both freshwater and marine environments Ocean dwelling dyrosaurids were among the few marine reptiles to survive the Cretaceous Paleogene extinction event DyrosauridaeTemporal range 83 5 47 Ma PreꞒ Ꞓ O S D C P T J K Pg N Campanian EoceneSkull of the dyrosaurid Arambourgisuchus khouribgaensisScientific classificationDomain EukaryotaKingdom AnimaliaPhylum ChordataClass ReptiliaClade PseudosuchiaClade CrocodylomorphaSuborder TethysuchiaFamily Dyrosauridaede Stefano 1903Genera Anthracosuchus Cerrejonisuchus Chenanisuchus Guarinisuchus Rodeosuchus Phosphatosaurinae Phosphatosaurus Sokotosuchus Hyposaurinae Acherontisuchus Aigialosuchus Arambourgisuchus Atlantosuchus Brachiosuchus Congosaurus Dorbignysuchus Dyrosaurus Hyposaurus Luciasuchus Rhabdognathus TilemsisuchusThe dyrosaurids were a group of mostly marine long jawed crocodile like quadrupeds up to 6 metres 20 ft long 1 The largest dyrosaurid was probably Phosphatosaurus estimated at 9 m 30 ft in length 2 3 Based on bone tissue evidence it has been hypothesized that they were slow growing 4 near shore marine animals with interlocking closed jaws 4 able to swim as well as walk on land External nostrils at the posterior end of its snout and an internal naris in its pterygoid indicated a habit of hunting while swimming with the top of the head above the water enabling it to breathe while stalking prey 1 Contents 1 Overview 2 Paleobiogeography 3 General 4 Phylogeny 5 Palaeobiology 5 1 Growth 5 2 Habitat 5 3 Reproduction 5 4 Locomotion 6 References 7 External linksOverview edit nbsp Restoration of DyrosaurusDyrosaurids are known to have a very characteristic skull shape with a long and thin snout that is approximately 68 of the total skull length The most anterior part of the skull and snout is the external naris followed posteriorly by two premaxillae bones until they reach two maxillae bones separated by a single nasal bone 1 Typical in dyrosaurids is a single nasal element with a characteristic collection of small pits and a constant width until it widens to contact the lacrimal bones then tapering off for a short distance until it meets the boundary of the frontals and prefrontals 1 nbsp ToothDyrosaurs have a premaxilla with shallow pits that extend posterior to the third maxillary alveoli There are two premaxillae that are narrow as compared to the maxillary bones and extend in the two long maxilla bones which separated by the single nasal bone The last premaxilla and first maxilla are widely separated by a fourth dentary tooth Alveoli are widely spaced anteriorly and the space between them decreases posteriorly from the fifteenth alveolus with the diameter remaining constant 1 The maxilla is long approx two and a half times the length of jugal and forms most of the lateral margin of the skull 5 According to Jouve and Barbosa and perhaps depending on the age of the animal each maxilla bears 13 19 teeth 5 An important feature of the dyrosaurid dentition are deep occlusal pits present particularly in the posterior region of the maxillae that get less pronounced anteriorly The pits are indicative of an interlocking closed jaw for dyrosaurids because the pits give a way for the upper and lower jaws to alternate Although they are still present in dyrosaurus phosphaticus this feature of deep occlusal pits become less developed and broad 5 Dyrosaurus teeth are homodont conical long and slender with asymmetrically labial and lingual surfaces Posterior teeth are shorter and more compressed than anterior tooth indicating that the tooth size decreased anterior to posterior nbsp Jaw fragmentDyrosaurs have a snout to skull length of about 68 and the genus Rhabdognathus and Atlantosuchus Dyrosaurus and Arambourgisuchus have the largest snout proportions of all dyrosaurids Snout length was previously used it to establish dyrosaurid relationships while considering the lengthening of the snout to be a more evolved character This was not congruent with Jouve s conclusion which was that the longest snout is actually the primitive condition so the shorter or longer snout appears independently at least four times in dyrosaurid evolution 6 Paleobiogeography editDyrosaurids were once considered an African group but discoveries made starting from the 2000s indicate they inhabited the majority of the continents 7 In fact basal forms suggest that their cradle may have been North America General editGenus Status Age Location Description ImagesAcherontisuchus Valid Paleocene nbsp Colombia A large bodied long snouted freshwater dyrosaurid from the Cerrejon FormationAigialosuchus Valid Campanian nbsp Sweden A marine dyrosaurid from the Kristianstad BasinAnthracosuchus Valid Paleocene nbsp Colombia A short snouted freshwater dyrosaurid from the Cerrejon FormationArambourgisuchus Valid Paleocene nbsp Morocco A long snouted marine dyrosauridAtlantosuchus Valid Paleocene nbsp Morocco A long snouted marine dyrosaurid with the longest snout length in proportion to body size of any dyrosauridCerrejonisuchus Valid Paleocene nbsp Colombia A small bodied short snouted freshwater dyrosaurid from the Cerrejon FormationChenanisuchus Valid Maastrichtian Paleocene nbsp Mali nbsp Morocco The genus spans the K Pg boundary nbsp Congosaurus Valid Paleocene nbsp AngolaDyrosaurus Valid Eocene nbsp Algeria nbsp Tunisia A large bodied long snouted marine dyrosaurid nbsp Guarinisuchus Valid Paleocene nbsp Brazil probable Junior synonym of Hyposaurus derbianus nbsp Hyposaurus Valid Maastrichtian Paleocene nbsp Brazil nbsp Mali nbsp Nigeria nbsp US Five species have been named the most of any dyrosaurid genus the genus spans the K Pg boundaryPhosphatosaurus Valid Eocene nbsp Mali nbsp Tunisia A large bodied long snouted marine dyrosaurid with blunt teeth and a spoon shaped snout tipRhabdognathus Valid Maastrichtian Paleogene nbsp Mali nbsp Nigeria A large bodied long snouted marine dyrosaurid the genus spans the K Pg boundarySokotosaurus Junior synonym Junior synonym of HyposaurusSokotosuchus Valid Maastrichtian nbsp Nigeria A long snouted marine dyrosauridTilemsisuchus Valid Eocene nbsp MaliPhylogeny editJouve et al 2005 diagnose Dyrosauridae as a clade based on the following seven synapomorphies or shared characters Posteromedial wing of the retroarticular process dorsally situated ventrally on the retroarticular process Occipital tuberosities small Exoccipital participates largely to the occipital condyle Supratemporal fenestra anteroposteriorly strongly elongated Symphysis about as wide as high Quadratojugal participates largely to the cranial condyle for articulation with the jaw 4 premaxillary teethJouve et al 2020 provide a comprehensive analysis of the relationships of dyrosaurids shown below Note the former dyrosaurids Sabinosuchus and Fortignathus are recovered as a pholidosaurid and a peirosaurid respectively 8 Dyrosauridae Chenanisuchus lateroculiAnthracosuchus balrogusCerrejonisuchus improcerusPhosphatosaurinae Phosphatosaurus gavialoidesSokotosuchus lanwilsoniRodeosuchus machukiruiHyposaurinae Dorbignysuchus niatuArambourgisuchus khouribgaensisLuciasuchus lurusinqaDyrosaurus maghribensisDyrosaurus phosphaticusAcherontisuchus guajirensisAtlantosuchus coupateziRhabdognathus aslerensisCongosaurus bequaertiRhabdognathus keiniensisPalaeobiology editGrowth edit nbsp SkullEvidence for the semi aquatic life of dyrosaurids comes from careful analysis of bone structure There are two types of structural bone organization that can occur in aquatic tetrapods osteoporotic or pachyostotic Osteoporotic bone is spongy and porous whereas pachyostotic involves an increase in skeletal mass Spongy porous bone such as osteoporotic is associated with faster swimming and better maneuverability in water because of the reduction in bone tissue many extant cetaceans and marine turtles have osteoporotic bone which enables them to be good swimmers Pachyostotic bone is a general local increase in skeletal mass which can be caused by osteosclerosis inner compaction of bone pachyostosis hyperplasy of compact cortices or pachyeosclerosis combination of the two Research on dyrosaur bone performed by Rafael Cesar Lima Pedroso de Andrade and Juliana Manso Sayao revealed that this family had osteoporotic bone tissue indicative of a fast swimming ecology as well as some osteosclerosis which is a component of pachyostotic bone tissue Osteoporosis is associated with a fully aquatic lifestyle whereas pachyostotic is not fully aquatic but is associated with fast swimming ecology Therefore dyrosaurs are semi aquatic fast swimmers as indicated by their bone structure Other evidence for near shore semi aquatic lifestyle is where the fossils are found often in transitional marine sediments 4 using axial frequency swimming that used primarily by extant crocodylians with a greater undulatory motion and frequency of the tail due to highly developed musculature allowing a more powerful forward thrust 4 Dyrosaurids have a tissue pattern that is indicative of a slow growth animal that was determined by careful analysis of a right femur and left tibia In the left tibia the cortex had a lamellar zonal bone with five lines of arrested growth LAGs which were spaced 300 mm apart well as a clear vascular networks of primary osteons that decreased in density towards the membrane periostially The right femur had double LAGs and an EFS later as well as secondary osteons occurring in the deep cortex and the spongiosa This tissue growth pattern is a common characteristic of slow growing animals 4 Habitat edit Dyrosaurids are found in transitional marine sediments from the Late Cretaceous to lower Eocene 4 This family is known mainly from Maastrichthian deposits in New Jersey and the late Cretaceous to early Paleogene rock from the Tethys Sea in northern and western Africa 4 Fossils have also been found from the Paleocene and Eocene strata of Pakistan as well as South America Brazil India Southern Asia as well as coastal Generally dyrosaurids are recovered from coastal and estuarine deposits through North Africa and the Middle East confirming their existence as semi aquatic animals 9 Dyrosauridae had its greatest taxonomic diversity during the Early Paleogene but it appears as though the clade was able to obtain a greater and more widespread geographic distribution during the Late Cretaceous The earliest records of dyrosaurids are either in or close to Africa with fragmentary occurrences from the Cenomanian of Sudan and Portugal and several other pre Maastrichtian Late Cretaceous discoveries in Egypt Later by the Maastrichtian of North America the record of dyrosaurids became more complete by establishing a widespread distribution that appears to be maintained through the Paleocene and Eocene 10 Dyrosaurids have also been found from non marine sediments In northern Sudan dyrosaurids are known from fluvial deposits indicating that they lived in a river setting 11 Bones from indeterminate dyrosaurids have been found in inland deposits in Pakistan as well Some dyrosaurids such as those from the Umm Himar Formation in Saudi Arabia inhabited estuarine environments near the coast The recently named dyrosaurids Cerrejonisuchus and Acherontisuchus have been recovered from the Cerrejon Formation in northwestern Colombia which is thought to represent a transitional marine freshwater environment surrounded by rainforest more inland than the estuarine environment of the Umm Himar Formation 12 Cerrejonisuchus and Acherontisuchus lived in a neotropical setting during a time when global temperatures were much warmer than they are today 13 14 Reproduction edit In 1978 it was proposed that dyrosaurids lived as adults in the ocean but reproduced in inland freshwater environments Remains belonging to small bodied dyrosaurids from Pakistan were interpreted as juveniles Their presence in inland deposits was viewed as evidence that dyrosaurids hatched far from the ocean 15 From the lower Eocene Oulad Abdoun Basin there are very few juvenile dyrosaurids but numerous similarly sized adult specimens This has furthered the assumption that juveniles lived in freshwater environments and adults lived in marine environments 16 Recently however the large bodied and fully mature dyrosaurids of the Cerrejon Formation have shown that some dyrosaurids lived their entire lives in inland environments never returning to the coast 17 Locomotion edit A study on Cerrejonisuchus suggest this genus was more terrestrial than other dyrosaurids and also shows that modern crocodylians are not good functional analogues for Dyrosauridae 18 References edit a b c d e Jouve Stephane March 2005 A new description of the skull of Dyrosaurus phosphaticus Thomas 1893 Mesoeucrocodylia Dyrosauridae from the Lower Eocene of North Africa Canadian Journal of Earth Sciences 42 3 323 337 Bibcode 2005CaJES 42 323J doi 10 1139 e05 008 ISSN 0008 4077 Retrieved March 22 2021 Buffetaut E 1978 Les Dyrosauridae Crocodylia Mesosuchia des phosphates de l Eocene inferieur de Tunisie Dyrosaurus Rhabdognathus Phosphatosaurus Geologie Mediterraneenne 5 2 237 256 doi 10 3406 geolm 1978 1046 Martin Jeremy E Antoine Pierre Olivier Perrier Vincent Welcomme Jean Loup Metais Gregoire Marivaux Laurent 2019 07 04 A large crocodyloid from the Oligocene of the Bugti Hills Pakistan PDF Journal of Vertebrate Paleontology 39 4 e1671427 Bibcode 2019JVPal 39E1427M doi 10 1080 02724634 2019 1671427 ISSN 0272 4634 S2CID 209439989 a b c d e f g de Andrade Rafael Cesar Lima Pedroso Sayao Juliana Manso 2014 07 17 Paleohistology and Lifestyle Inferences of a Dyrosaurid Archosauria Crocodylomorpha from Paraiba Basin Northeastern Brazil PLOS ONE 9 7 e102189 Bibcode 2014PLoSO 9j2189A doi 10 1371 journal pone 0102189 ISSN 1932 6203 PMC 4102515 PMID 25032965 a b c Antonio Barbosa Jose Wilhelm Armin Kellner Alexander Somalia Sales Viana Maria New dyrosaurid crocodylomorph and evidences for faunal turnover at the K P transition in Brazil 2008 Proceedings of the Royal Society Downloaded from http rspb royalsocietypublishing org Jouve Stephane Bouya Baadi Amaghzaz Mbarek March 2008 A Long Snouted Dyrosaurid Crocodyliformes Mesoeucrocodylia from the Paleocene of Morocco Phylogenetic and Palaeobiogeographic Implications Palaeontology 51 2 281 294 Bibcode 2008Palgy 51 281J doi 10 1111 j 1475 4983 2007 00747 x Jouve et al 2008 Jouve Stephane de Muizon Christian Cespedes Paz Ricardo Sossa Soruco Victor Knoll Stephane 2020 10 19 The longirostrine crocodyliforms from Bolivia and their evolution through the Cretaceous Palaeogene boundary Zoological Journal of the Linnean Society 192 zlaa081 475 509 doi 10 1093 zoolinnean zlaa081 ISSN 0024 4082 Lamanna Matthew C Smith Joshua B Attia Yousry S Dodson Peter 2004 09 10 From dinosaurs to dyrosaurids Crocodyliformes removal of the post Cenomanian Late Cretaceous record of Ornithischia from Africa PDF Journal of Vertebrate Paleontology 24 3 764 768 doi 10 1671 0272 4634 2004 024 0764 FDTDCR 2 0 CO 2 ISSN 0272 4634 S2CID 16525132 dead link Khosla Ashu Sertich Joseph J W Prasad Guntupalli V R Verma Omkar 2009 12 12 Dyrosaurid remains from the Intertrappean Beds of India and the Late Cretaceous distribution of Dyrosauridae Journal of Vertebrate Paleontology 29 4 1321 1326 Bibcode 2009JVPal 29 1321K doi 10 1671 039 029 0416 ISSN 0272 4634 S2CID 130987967 Buffetaut E Bussert R Brinkmann W 1990 A new nonmarine vertebrate fauna in the Upper Cretaceous of northern Sudan Berliner Geowissenschaftlische Abhandlungen 120 183 202 Hastings A K Bloch J I Cadena E A Jaramillo C A 2010 A new small short snouted dyrosaurid Crocodylomorpha Mesoeucrocodylia from the Paleocene of northeastern Colombia Journal of Vertebrate Paleontology 30 1 139 162 Bibcode 2010JVPal 30 139H doi 10 1080 02724630903409204 S2CID 84705605 Head J J Bloch J I Hastings A K Borque J R Cadena E A Herrera F A Polly P D Jaramillo C A 2009 Giant boid snake from the Palaeocene neotropics reveals hotter past equatorial temperatures Nature 457 7230 715 717 Bibcode 2009Natur 457 715H doi 10 1038 nature07671 PMID 19194448 S2CID 4381423 Kanapaux B February 2 2010 UF researchers Ancient crocodile relative likely food source for Titanoboa University of Florida News Archived from the original on June 8 2010 Retrieved February 3 2010 Buffetaut E 1978 Crocodilian remains from the Eocene of Pakistan Neues Jahrbuch fur Geologie und Palaontologie Abhandlungen 156 262 283 Jouve Stephanie Bardet Nathalie Jalil Nour Eddine Superbiola Xabier Pereda Bouya Baadi and Amagzaz Mbarek 2008 The oldest African crocodylian phylogeny paleobiogeography and differential survivorship of marine reptiles through the Cretaceous Tertiary boundary Journal of Vertebrate Paleontology 28 2 409 421 June 2008 Hastings A K Bloch J and Jaramillo C A 2011 A new longirostrine dyrosaurid Crocodylomorpha Mesoeucrocodylia from the Paleocene of north eastern Colombia biogeographic and behavioural implications for new world dyrosauridae Palaeontology 54 5 1095 116 Bibcode 2011Palgy 54 1095H doi 10 1111 j 1475 4983 2011 01092 x a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link Scavezzoni Isaure Fischer Valentin 2021 The postcranial skeleton of Cerrejonisuchus improcerus Crocodyliformes Dyrosauridae and the unusual anatomy of dyrosaurids PeerJ 9 e11222 doi 10 7717 peerj 11222 PMC 8117932 PMID 34026348 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint unflagged free DOI link Barbosa J A Kellner A W A and Viana M S S 2008 New dyrosaurid crocodylomorph and evidences for faunal turnover at the K P transition in Brazil Proceedings of the Royal Society B Biological Sciences Firstcite Buffetaut E 1985 L evolution des crocodiliens Les animaux disparus Pour la science Paris 109 Jouve S Bouya B Amaghzaz M 2008 A long snouted dyrosaurid Crocodyliformes Mesoeucrocodylia from the Paleocene of Morocco phylogenetic and palaeogeographic implications Palaeontology 51 2 281 294 Bibcode 2008Palgy 51 281J doi 10 1111 j 1475 4983 2007 00747 x Jouve S Iarochene M Bouya B Amaghzaz M 2005 A new dyrosaurid crocodyliform from the Palaeocene of Morocco and a phylogenetic analysis of Dyrosauridae Acta Palaeontologica Polonica 50 3 581 594 External links editJouve et al 2005 Mikko s Phylogeny Archive Dyrosauridae page Paleopedia page on Dyrosauridae Retrieved from https en wikipedia org w index php title Dyrosauridae amp oldid 1185054558, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.