fbpx
Wikipedia

Femur

The femur (/ˈfmər/; PL femurs or femora /ˈfɛmərə/),[1][2] or thigh bone, is the proximal bone of the hindlimb in tetrapod vertebrates. The head of the femur articulates with the acetabulum in the pelvic bone forming the hip joint, while the distal part of the femur articulates with the tibia (shinbone) and patella (kneecap), forming the knee joint. By most measures the two (left and right) femurs are the strongest bones of the body, and in humans, the largest and thickest.

Femur
Position of femur (shown in red)
Left femur seen from behind.
Details
OriginsGastrocnemius, vastus lateralis, vastus medialis and vastus intermedius
InsertionsGluteus maximus, gluteus medius, gluteus minimus, iliopsoas, lateral rotator group, adductors of the hip
Articulationship: acetabulum of pelvis superiorly
knee: with the tibia and patella inferiorly
Identifiers
LatinOs femoris, os longissimum
MeSHD005269
TA98A02.5.04.001
TA21360
FMA9611
Anatomical terms of bone
[edit on Wikidata]

Structure

The femur is the only bone in the upper leg. The two femurs converge medially toward the knees, where they articulate with the proximal ends of the tibiae. The angle of convergence of the femora is a major factor in determining the femoral-tibial angle. Human females have thicker pelvic bones, causing their femora to converge more than in males.

In the condition genu valgum (knock knee) the femurs converge so much that the knees touch one another. The opposite extreme is genu varum (bow-leggedness). In the general population of people without either genu valgum or genu varum, the femoral-tibial angle is about 175 degrees.[3]

The femur is the largest and thickest bone in the human body. By some measures, it is also the strongest bone in the human body. This depends on the type of measurement taken to calculate strength. Some strength tests show the temporal bone in the skull to be the strongest bone. The femur length on average is 26.74% of a person's height,[4] a ratio found in both men and women and most ethnic groups with only restricted variation, and is useful in anthropology because it offers a basis for a reasonable estimate of a subject's height from an incomplete skeleton.

The femur is categorised as a long bone and comprises a diaphysis (shaft or body) and two epiphyses (extremities) that articulate with adjacent bones in the hip and knee.[3]

Upper part

 
The upper extremity of right femur viewed from behind and above, showing head, neck, and the greater and lesser trochanter

The upper or proximal extremity (close to the torso) contains the head, neck, the two trochanters and adjacent structures.[3] The upper extremity is the shortest femoral extremity, the lower extremity is the thickest femoral extremity.

The head of the femur, which articulates with the acetabulum of the pelvic bone, comprises two-thirds of a sphere. It has a small groove, or fovea, connected through the round ligament to the sides of the acetabular notch. The head of the femur is connected to the shaft through the neck or collum. The neck is 4–5 cm. long and the diameter is smallest front to back and compressed at its middle. The collum forms an angle with the shaft in about 130 degrees. This angle is highly variant. In the infant it is about 150 degrees and in old age reduced to 120 degrees on average. An abnormal increase in the angle is known as coxa valga and an abnormal reduction is called coxa vara. Both the head and neck of the femur is vastly embedded in the hip musculature and can not be directly palpated. In skinny people with the thigh laterally rotated, the head of the femur can be felt deep as a resistance profound (deep) for the femoral artery.[3]

The transition area between the head and neck is quite rough due to attachment of muscles and the hip joint capsule. Here the two trochanters, greater and lesser trochanter, are found. The greater trochanter is almost box-shaped and is the most lateral prominent of the femur. The highest point of the greater trochanter is located higher than the collum and reaches the midpoint of the hip joint. The greater trochanter can easily be felt. The trochanteric fossa is a deep depression bounded posteriorly by the intertrochanteric crest on the medial surface of the greater trochanter. The lesser trochanter is a cone-shaped extension of the lowest part of the femur neck. The two trochanters are joined by the intertrochanteric crest on the back side and by the intertrochanteric line on the front.[3]

A slight ridge is sometimes seen commencing about the middle of the intertrochanteric crest, and reaching vertically downward for about 5 cm. along the back part of the body: it is called the linea quadrata (or quadrate line).

About the junction of the upper one-third and lower two-thirds on the intertrochanteric crest is the quadrate tubercle located. The size of the tubercle varies and it is not always located on the intertrochanteric crest and that also adjacent areas can be part of the quadrate tubercle, such as the posterior surface of the greater trochanter or the neck of the femur. In a small anatomical study it was shown that the epiphyseal line passes directly through the quadrate tubercle.[5]

Body

The body of the femur (or shaft) is large, thick and almost cylindrical in form. It is a little broader above than in the center, broadest and somewhat flattened from before backward below. It is slightly arched, so as to be convex in front, and concave behind, where it is strengthened by a prominent longitudinal ridge, the linea aspera which diverges proximally and distal as the medial and lateral ridge. Proximally the lateral ridge of the linea aspera becomes the gluteal tuberosity while the medial ridge continues as the pectineal line. Besides the linea aspera the shaft has two other bordes; a lateral and medial border. These three bordes separates the shaft into three surfaces: One anterior, one medial and one lateral. Due to the vast musculature of the thigh the shaft can not be palpated.[3]

The third trochanter is a bony projection occasionally present on the proximal femur near the superior border of the gluteal tuberosity. When present, it is oblong, rounded, or conical in shape and sometimes continuous with the gluteal ridge.[6] A structure of minor importance in humans, the incidence of the third trochanter varies from 17–72% between ethnic groups and it is frequently reported as more common in females than in males.[7]

Lower part

 
Lower extremity of right femur viewed from below.
 
Left knee joint from behind, showing interior ligaments.

The lower extremity of the femur (or distal extremity) is the thickest femoral extremity, the upper extremity is the shortest femoral extremity. It is somewhat cuboid in form, but its transverse diameter is greater than its antero-posterior (front to back). It consists of two oblong eminences known as the condyles.[3]

Anteriorly, the condyles are slightly prominent and are separated by a smooth shallow articular depression called the patellar surface. Posteriorly, they project considerably and a deep notch, the Intercondylar fossa of femur, is present between them. The lateral condyle is the more prominent and is the broader both in its antero-posterior and transverse diameters. The medial condyle is the longer and, when the femur is held with its body perpendicular, projects to a lower level. When, however, the femur is in its natural oblique position the lower surfaces of the two condyles lie practically in the same horizontal plane. The condyles are not quite parallel with one another; the long axis of the lateral is almost directly antero-posterior, but that of the medial runs backward and medialward. Their opposed surfaces are small, rough, and concave, and form the walls of the intercondyloid fossa. This fossa is limited above by a ridge, the intercondyloid line, and below by the central part of the posterior margin of the patellar surface. The posterior cruciate ligament of the knee joint is attached to the lower and front part of the medial wall of the fossa and the anterior cruciate ligament to an impression on the upper and back part of its lateral wall.[3]

The articular surface of the lower end of the femur occupies the anterior, inferior, and posterior surfaces of the condyles. Its front part is named the patellar surface and articulates with the patella; it presents a median groove which extends downward to the intercondyloid fossa and two convexities, the lateral of which is broader, more prominent, and extends farther upward than the medial.[3]

Each condyle is surmounted by an elevation, the epicondyle. The medial epicondyle is a large convex eminence to which the tibial collateral ligament of the knee-joint is attached. At its upper part is the adductor tubercle and behind it is a rough impression which gives origin to the medial head of the gastrocnemius. The lateral epicondyle which is smaller and less prominent than the medial, gives attachment to the fibular collateral ligament of the knee-joint.[3]

Development

The femur develops from the limb buds as a result of interactions between the ectoderm and the underlying mesoderm, formation occurs roughly around the fourth week of development.[8]

By the sixth week of development, the first hyaline cartilage model of the femur is formed by chondrocytes. Endochondral ossification begins by the end of the embryonic period and primary ossification centers are present in all long bones of the limbs, including the femur, by the 12th week of development. The hindlimb development lags behind forelimb development by 1–2 days.

Function

As the femur is the only bone in the thigh, it serves as an attachment point for all the muscles that exert their force over the hip and knee joints. Some biarticular muscles – which cross two joints, like the gastrocnemius and plantaris muscles – also originate from the femur. In all, 23 individual muscles either originate from or insert onto the femur.

In cross-section, the thigh is divided up into three separate fascial compartments divided by fascia, each containing muscles. These compartments use the femur as an axis, and are separated by tough connective tissue membranes (or septa). Each of these compartments has its own blood and nerve supply, and contains a different group of muscles. These compartments are named the anterior, medial and posterior fascial compartments.

Muscle attachments

 
Muscle attachments
(seen from the front)
 
Muscle attachments
(seen from the back)
Muscle Direction Attachment[9]
Iliacus muscle Insertion Lesser trochanter
Psoas major muscle Insertion Lesser trochanter
Gluteus maximus muscle Insertion Gluteal tuberosity
Gluteus medius muscle Insertion Lateral surface of greater trochanter
Gluteus minimus muscle Insertion Forefront of greater trochanter
Piriformis muscle Insertion Superior boundary of greater trochanter
Gemellus superior muscle Insertion Upper edge of Obturator internus's tendon (indirectly greater trochanter)
Obturator internus muscle Insertion Medial surface of greater trochanter
Gemellus inferior muscle Insertion Lower edge of Obturator internus's tendon (indirectly greater trochanter)
Quadratus femoris muscle Insertion Intertrochanteric crest
Obturator externus muscle Insertion Trochanteric fossa
Pectineus muscle Insertion Pectineal line
Adductor longus muscle Insertion Medial ridge of linea aspera
Adductor brevis muscle Insertion Medial ridge of linea aspera
Adductor magnus muscle Insertion Medial ridge of linea aspera and the adductor tubercle
Vastus lateralis muscle Origin Greater trochanter and lateral ridge of linea aspera
Vastus intermedius muscle Origin Front and lateral surface of femur
Vastus medialis muscle Origin Distal part of intertrochanteric line and medial ridge of linea aspera
Short head of biceps femoris Origin Lateral ridge of linea aspera
Popliteus muscle Origin Under the lateral epicondyle
Articularis genu muscle Origin Lower 1/4 of anterior femur deep to vastus intermedius
Gastrocnemius muscle Origin Behind the adductor tubercle, over the lateral epicondyle and the popliteal facies
Plantaris muscle Origin Over the lateral condyle

Clinical significance

Fractures

A femoral fracture that involves the femoral head, femoral neck or the shaft of the femur immediately below the lesser trochanter may be classified as a hip fracture, especially when associated with osteoporosis. Femur fractures can be managed in a pre-hospital setting with the use of a traction splint.

Diversity among animals

 
Femora of Moa chicks.

In primitive tetrapods, the main points of muscle attachment along the femur are the internal trochanter and third trochanter, and a ridge along the ventral surface of the femoral shaft referred to as the adductor crest. The neck of the femur is generally minimal or absent in the most primitive forms, reflecting a simple attachment to the acetabulum. The greater trochanter was present in the extinct archosaurs, as well as in modern birds and mammals, being associated with the loss of the primitive sprawling gait. The lesser trochanter is a unique development of mammals, which lack both the internal and fourth trochanters. The adductor crest is also often absent in mammals or alternatively reduced to a series of creases along the surface of the bone.[10] Structures analogous to the third trochanter are present in mammals, including some primates.[7]

Some species of whales,[11] snakes, and other non-walking vertebrates have vestigial femurs. In some snakes the protruding end of a pelvic spur, a vestigial pelvis and femur remnant which is not connected to the rest of the skeleton, plays a role in mating. This role in mating is hypothesized to have possibly occurred in Basilosauridae, an extinct family of whales with well-defined femurs, lower legs and feet. Occasionally, the genes that code for longer extremities cause a modern whale to develop miniature legs (atavism).[12]

One of the earliest known vertebrates to have a femur is the eusthenopteron, a prehistoric lobe-finned fish from the Late Devonian period.

Viral metagenomics

A recent study revealed that bone is a much richer source of persistent DNA viruses than earlier perceived. Besides Parvovirus 19 and hepatitis B virus, ten additional ones were discovered, namely several members of the herpes- and polyomavirus families, as well as human papillomavirus 31 and torque teno virus. [13]

Invertebrates

In invertebrate zoology the name femur appears in arthropodology. The usage is not homologous with that of vertebrate anatomy; the term "femur" simply has been adopted by analogy and refers, where applicable, to the most proximal of (usually) the two longest jointed segments of the legs of the arthropoda. The two basal segments preceding the femur are the coxa and trochanter. This convention is not followed in carcinology but it applies in arachnology and entomology. In myriapodology another segment, the prefemur, connects the trochanter and femur.

Additional media

References

  1. ^ "femora". Merriam-Webster Dictionary.
  2. ^ "femora". Dictionary.com Unabridged (Online). n.d.
  3. ^ a b c d e f g h i j Bojsen-Møller, Finn; Simonsen, Erik B.; Tranum-Jensen, Jørgen (2001). Bevægeapparatets anatomi [Anatomy of the Locomotive Apparatus] (in Danish) (12th ed.). pp. 239–241. ISBN 978-87-628-0307-7.
  4. ^ Feldesman, M.R., J.G. Kleckner, and J.K. Lundy. (November 1990). "The femur/stature ratio and estimates of stature in mid-and late-pleistocene fossil hominids". American Journal of Physical Anthropology. 83 (3): 359–372. doi:10.1002/ajpa.1330830309. PMID 2252082.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. ^ Sunderland S (January 1938). "The Quadrate Tubercle of the Femur". J. Anat. 72 (Pt 2): 309–12. PMC 1252427. PMID 17104699.
  6. ^ Lozanoff, Scott; Sciulli, Paul W; Schneider, Kim N (December 1985). "Third trochanter incidence and metric trait covariation in the human femur". J Anat. 143: 149–159. PMC 1166433. PMID 3870721.
  7. ^ a b Bolanowski, Wojciech; Śmiszkiewicz-Skwarska, Alicja; Polguj, Michał; Jędrzejewski, Kazimierz S (2005). "The occurrence of the third trochanter and its correlation to certain anthropometric parameters of the human femur" (PDF). Folia Morphol. 64 (3): 168–175. PMID 16228951.
  8. ^ Gilbert, Scott F. "Developmental Biology". 9th ed., 2010
  9. ^ Bojsen-Møller, Finn; Simonsen, Erik B.; Tranum-Jensen, Jørgen (2001). Bevægeapparatets anatomi [Anatomy of the Locomotive Apparatus] (in Danish) (12th ed.). pp. 364–367. ISBN 978-87-628-0307-7.
  10. ^ Romer, Alfred Sherwood; Parsons, Thomas S. (1977). The Vertebrate Body. Philadelphia, PA: Holt-Saunders International. pp. 204–205. ISBN 978-0-03-910284-5.
  11. ^ Struthers, John (January 1881). "The Bones, Articulations, and Muscles of the Rudimentary Hind-Limb of the Greenland Right-Whale (Balaena mysticetus)". Journal of Anatomy and Physiology. 15 (Pt 2): i1–176. PMC 1310010. PMID 17231384.
  12. ^ Bejder, Lars; Hall, Brian K. (2002). "Limbs in whales and limblessness in other vertebrates: mechanisms of evolutionary and developmental transformation and loss". Evolution & Development. 4 (6): 445–458. doi:10.1046/j.1525-142X.2002.02033.x. PMID 12492145. S2CID 8448387.
  13. ^ Toppinen, Mari; Pratas, Diogo; Väisänen, Elina; Söderlund-Venermo, Maria; Hedman, Klaus; Perdomo, Maria F.; Sajantila, Antti (2020). "The landscape of persistent human DNA viruses in femoral bone". Forensic Science International: Genetics. 48: 102353. doi:10.1016/j.fsigen.2020.102353. hdl:10138/332288. PMID 32668397. S2CID 220582800.

External links

  •   Media related to Femur at Wikimedia Commons
  •   The dictionary definition of Femur at Wiktionary
  •   The dictionary definition of thighbone at Wiktionary

femur, confused, with, fima, disambiguation, fema, disambiguation, femur, femurs, femora, thigh, bone, proximal, bone, hindlimb, tetrapod, vertebrates, head, femur, articulates, with, acetabulum, pelvic, bone, forming, joint, while, distal, part, femur, articu. Not to be confused with Fima disambiguation or FEMA disambiguation The femur ˈ f iː m er PL femurs or femora ˈ f ɛ m er e 1 2 or thigh bone is the proximal bone of the hindlimb in tetrapod vertebrates The head of the femur articulates with the acetabulum in the pelvic bone forming the hip joint while the distal part of the femur articulates with the tibia shinbone and patella kneecap forming the knee joint By most measures the two left and right femurs are the strongest bones of the body and in humans the largest and thickest FemurPosition of femur shown in red Left femur seen from behind DetailsOriginsGastrocnemius vastus lateralis vastus medialis and vastus intermediusInsertionsGluteus maximus gluteus medius gluteus minimus iliopsoas lateral rotator group adductors of the hipArticulationship acetabulum of pelvis superiorlyknee with the tibia and patella inferiorlyIdentifiersLatinOs femoris os longissimumMeSHD005269TA98A02 5 04 001TA21360FMA9611Anatomical terms of bone edit on Wikidata Contents 1 Structure 1 1 Upper part 1 2 Body 1 3 Lower part 1 4 Development 2 Function 2 1 Muscle attachments 3 Clinical significance 3 1 Fractures 4 Diversity among animals 4 1 Viral metagenomics 4 2 Invertebrates 5 Additional media 6 References 7 External linksStructure EditThe femur is the only bone in the upper leg The two femurs converge medially toward the knees where they articulate with the proximal ends of the tibiae The angle of convergence of the femora is a major factor in determining the femoral tibial angle Human females have thicker pelvic bones causing their femora to converge more than in males In the condition genu valgum knock knee the femurs converge so much that the knees touch one another The opposite extreme is genu varum bow leggedness In the general population of people without either genu valgum or genu varum the femoral tibial angle is about 175 degrees 3 The femur is the largest and thickest bone in the human body By some measures it is also the strongest bone in the human body This depends on the type of measurement taken to calculate strength Some strength tests show the temporal bone in the skull to be the strongest bone The femur length on average is 26 74 of a person s height 4 a ratio found in both men and women and most ethnic groups with only restricted variation and is useful in anthropology because it offers a basis for a reasonable estimate of a subject s height from an incomplete skeleton The femur is categorised as a long bone and comprises a diaphysis shaft or body and two epiphyses extremities that articulate with adjacent bones in the hip and knee 3 Upper part Edit Main article Upper extremity of femur The upper extremity of right femur viewed from behind and above showing head neck and the greater and lesser trochanter The upper or proximal extremity close to the torso contains the head neck the two trochanters and adjacent structures 3 The upper extremity is the shortest femoral extremity the lower extremity is the thickest femoral extremity The head of the femur which articulates with the acetabulum of the pelvic bone comprises two thirds of a sphere It has a small groove or fovea connected through the round ligament to the sides of the acetabular notch The head of the femur is connected to the shaft through the neck or collum The neck is 4 5 cm long and the diameter is smallest front to back and compressed at its middle The collum forms an angle with the shaft in about 130 degrees This angle is highly variant In the infant it is about 150 degrees and in old age reduced to 120 degrees on average An abnormal increase in the angle is known as coxa valga and an abnormal reduction is called coxa vara Both the head and neck of the femur is vastly embedded in the hip musculature and can not be directly palpated In skinny people with the thigh laterally rotated the head of the femur can be felt deep as a resistance profound deep for the femoral artery 3 The transition area between the head and neck is quite rough due to attachment of muscles and the hip joint capsule Here the two trochanters greater and lesser trochanter are found The greater trochanter is almost box shaped and is the most lateral prominent of the femur The highest point of the greater trochanter is located higher than the collum and reaches the midpoint of the hip joint The greater trochanter can easily be felt The trochanteric fossa is a deep depression bounded posteriorly by the intertrochanteric crest on the medial surface of the greater trochanter The lesser trochanter is a cone shaped extension of the lowest part of the femur neck The two trochanters are joined by the intertrochanteric crest on the back side and by the intertrochanteric line on the front 3 A slight ridge is sometimes seen commencing about the middle of the intertrochanteric crest and reaching vertically downward for about 5 cm along the back part of the body it is called the linea quadrata or quadrate line About the junction of the upper one third and lower two thirds on the intertrochanteric crest is the quadrate tubercle located The size of the tubercle varies and it is not always located on the intertrochanteric crest and that also adjacent areas can be part of the quadrate tubercle such as the posterior surface of the greater trochanter or the neck of the femur In a small anatomical study it was shown that the epiphyseal line passes directly through the quadrate tubercle 5 Body Edit Main article Body of femur The body of the femur or shaft is large thick and almost cylindrical in form It is a little broader above than in the center broadest and somewhat flattened from before backward below It is slightly arched so as to be convex in front and concave behind where it is strengthened by a prominent longitudinal ridge the linea aspera which diverges proximally and distal as the medial and lateral ridge Proximally the lateral ridge of the linea aspera becomes the gluteal tuberosity while the medial ridge continues as the pectineal line Besides the linea aspera the shaft has two other bordes a lateral and medial border These three bordes separates the shaft into three surfaces One anterior one medial and one lateral Due to the vast musculature of the thigh the shaft can not be palpated 3 The third trochanter is a bony projection occasionally present on the proximal femur near the superior border of the gluteal tuberosity When present it is oblong rounded or conical in shape and sometimes continuous with the gluteal ridge 6 A structure of minor importance in humans the incidence of the third trochanter varies from 17 72 between ethnic groups and it is frequently reported as more common in females than in males 7 Lower part Edit Main article Lower extremity of femur Lower extremity of right femur viewed from below Left knee joint from behind showing interior ligaments The lower extremity of the femur or distal extremity is the thickest femoral extremity the upper extremity is the shortest femoral extremity It is somewhat cuboid in form but its transverse diameter is greater than its antero posterior front to back It consists of two oblong eminences known as the condyles 3 Anteriorly the condyles are slightly prominent and are separated by a smooth shallow articular depression called the patellar surface Posteriorly they project considerably and a deep notch the Intercondylar fossa of femur is present between them The lateral condyle is the more prominent and is the broader both in its antero posterior and transverse diameters The medial condyle is the longer and when the femur is held with its body perpendicular projects to a lower level When however the femur is in its natural oblique position the lower surfaces of the two condyles lie practically in the same horizontal plane The condyles are not quite parallel with one another the long axis of the lateral is almost directly antero posterior but that of the medial runs backward and medialward Their opposed surfaces are small rough and concave and form the walls of the intercondyloid fossa This fossa is limited above by a ridge the intercondyloid line and below by the central part of the posterior margin of the patellar surface The posterior cruciate ligament of the knee joint is attached to the lower and front part of the medial wall of the fossa and the anterior cruciate ligament to an impression on the upper and back part of its lateral wall 3 The articular surface of the lower end of the femur occupies the anterior inferior and posterior surfaces of the condyles Its front part is named the patellar surface and articulates with the patella it presents a median groove which extends downward to the intercondyloid fossa and two convexities the lateral of which is broader more prominent and extends farther upward than the medial 3 Each condyle is surmounted by an elevation the epicondyle The medial epicondyle is a large convex eminence to which the tibial collateral ligament of the knee joint is attached At its upper part is the adductor tubercle and behind it is a rough impression which gives origin to the medial head of the gastrocnemius The lateral epicondyle which is smaller and less prominent than the medial gives attachment to the fibular collateral ligament of the knee joint 3 Development Edit Main article Limb development The femur develops from the limb buds as a result of interactions between the ectoderm and the underlying mesoderm formation occurs roughly around the fourth week of development 8 By the sixth week of development the first hyaline cartilage model of the femur is formed by chondrocytes Endochondral ossification begins by the end of the embryonic period and primary ossification centers are present in all long bones of the limbs including the femur by the 12th week of development The hindlimb development lags behind forelimb development by 1 2 days Function EditAs the femur is the only bone in the thigh it serves as an attachment point for all the muscles that exert their force over the hip and knee joints Some biarticular muscles which cross two joints like the gastrocnemius and plantaris muscles also originate from the femur In all 23 individual muscles either originate from or insert onto the femur In cross section the thigh is divided up into three separate fascial compartments divided by fascia each containing muscles These compartments use the femur as an axis and are separated by tough connective tissue membranes or septa Each of these compartments has its own blood and nerve supply and contains a different group of muscles These compartments are named the anterior medial and posterior fascial compartments Muscle attachments Edit Muscle attachments seen from the front Muscle attachments seen from the back Muscle Direction Attachment 9 Iliacus muscle Insertion Lesser trochanterPsoas major muscle Insertion Lesser trochanterGluteus maximus muscle Insertion Gluteal tuberosityGluteus medius muscle Insertion Lateral surface of greater trochanterGluteus minimus muscle Insertion Forefront of greater trochanterPiriformis muscle Insertion Superior boundary of greater trochanterGemellus superior muscle Insertion Upper edge of Obturator internus s tendon indirectly greater trochanter Obturator internus muscle Insertion Medial surface of greater trochanterGemellus inferior muscle Insertion Lower edge of Obturator internus s tendon indirectly greater trochanter Quadratus femoris muscle Insertion Intertrochanteric crestObturator externus muscle Insertion Trochanteric fossaPectineus muscle Insertion Pectineal lineAdductor longus muscle Insertion Medial ridge of linea asperaAdductor brevis muscle Insertion Medial ridge of linea asperaAdductor magnus muscle Insertion Medial ridge of linea aspera and the adductor tubercleVastus lateralis muscle Origin Greater trochanter and lateral ridge of linea asperaVastus intermedius muscle Origin Front and lateral surface of femurVastus medialis muscle Origin Distal part of intertrochanteric line and medial ridge of linea asperaShort head of biceps femoris Origin Lateral ridge of linea asperaPopliteus muscle Origin Under the lateral epicondyleArticularis genu muscle Origin Lower 1 4 of anterior femur deep to vastus intermediusGastrocnemius muscle Origin Behind the adductor tubercle over the lateral epicondyle and the popliteal faciesPlantaris muscle Origin Over the lateral condyleClinical significance EditFractures Edit Main articles Hip fracture and femoral fracture A femoral fracture that involves the femoral head femoral neck or the shaft of the femur immediately below the lesser trochanter may be classified as a hip fracture especially when associated with osteoporosis Femur fractures can be managed in a pre hospital setting with the use of a traction splint Diversity among animals EditSee also Evolution of cetaceans Skeletal evolution and Snake evolution Femora of Moa chicks In primitive tetrapods the main points of muscle attachment along the femur are the internal trochanter and third trochanter and a ridge along the ventral surface of the femoral shaft referred to as the adductor crest The neck of the femur is generally minimal or absent in the most primitive forms reflecting a simple attachment to the acetabulum The greater trochanter was present in the extinct archosaurs as well as in modern birds and mammals being associated with the loss of the primitive sprawling gait The lesser trochanter is a unique development of mammals which lack both the internal and fourth trochanters The adductor crest is also often absent in mammals or alternatively reduced to a series of creases along the surface of the bone 10 Structures analogous to the third trochanter are present in mammals including some primates 7 Some species of whales 11 snakes and other non walking vertebrates have vestigial femurs In some snakes the protruding end of a pelvic spur a vestigial pelvis and femur remnant which is not connected to the rest of the skeleton plays a role in mating This role in mating is hypothesized to have possibly occurred in Basilosauridae an extinct family of whales with well defined femurs lower legs and feet Occasionally the genes that code for longer extremities cause a modern whale to develop miniature legs atavism 12 One of the earliest known vertebrates to have a femur is the eusthenopteron a prehistoric lobe finned fish from the Late Devonian period Viral metagenomics Edit A recent study revealed that bone is a much richer source of persistent DNA viruses than earlier perceived Besides Parvovirus 19 and hepatitis B virus ten additional ones were discovered namely several members of the herpes and polyomavirus families as well as human papillomavirus 31 and torque teno virus 13 Invertebrates Edit Main article Arthropod leg In invertebrate zoology the name femur appears in arthropodology The usage is not homologous with that of vertebrate anatomy the term femur simply has been adopted by analogy and refers where applicable to the most proximal of usually the two longest jointed segments of the legs of the arthropoda The two basal segments preceding the femur are the coxa and trochanter This convention is not followed in carcinology but it applies in arachnology and entomology In myriapodology another segment the prefemur connects the trochanter and femur Additional media Edit Position of human femur shown in red Pelvis and patella are shown as semi transparent View from behind View from the front 3D image Long bone femur Muscles of thigh Lateral view Muscles of thigh Cross section Distribution forces of the femur source source source source source source source source source source source source Femur AnatomyReferences Edit femora Merriam Webster Dictionary femora Dictionary com Unabridged Online n d a b c d e f g h i j Bojsen Moller Finn Simonsen Erik B Tranum Jensen Jorgen 2001 Bevaegeapparatets anatomi Anatomy of the Locomotive Apparatus in Danish 12th ed pp 239 241 ISBN 978 87 628 0307 7 Feldesman M R J G Kleckner and J K Lundy November 1990 The femur stature ratio and estimates of stature in mid and late pleistocene fossil hominids American Journal of Physical Anthropology 83 3 359 372 doi 10 1002 ajpa 1330830309 PMID 2252082 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link Sunderland S January 1938 The Quadrate Tubercle of the Femur J Anat 72 Pt 2 309 12 PMC 1252427 PMID 17104699 Lozanoff Scott Sciulli Paul W Schneider Kim N December 1985 Third trochanter incidence and metric trait covariation in the human femur J Anat 143 149 159 PMC 1166433 PMID 3870721 a b Bolanowski Wojciech Smiszkiewicz Skwarska Alicja Polguj Michal Jedrzejewski Kazimierz S 2005 The occurrence of the third trochanter and its correlation to certain anthropometric parameters of the human femur PDF Folia Morphol 64 3 168 175 PMID 16228951 Gilbert Scott F Developmental Biology 9th ed 2010 Bojsen Moller Finn Simonsen Erik B Tranum Jensen Jorgen 2001 Bevaegeapparatets anatomi Anatomy of the Locomotive Apparatus in Danish 12th ed pp 364 367 ISBN 978 87 628 0307 7 Romer Alfred Sherwood Parsons Thomas S 1977 The Vertebrate Body Philadelphia PA Holt Saunders International pp 204 205 ISBN 978 0 03 910284 5 Struthers John January 1881 The Bones Articulations and Muscles of the Rudimentary Hind Limb of the Greenland Right Whale Balaena mysticetus Journal of Anatomy and Physiology 15 Pt 2 i1 176 PMC 1310010 PMID 17231384 Bejder Lars Hall Brian K 2002 Limbs in whales and limblessness in other vertebrates mechanisms of evolutionary and developmental transformation and loss Evolution amp Development 4 6 445 458 doi 10 1046 j 1525 142X 2002 02033 x PMID 12492145 S2CID 8448387 Toppinen Mari Pratas Diogo Vaisanen Elina Soderlund Venermo Maria Hedman Klaus Perdomo Maria F Sajantila Antti 2020 The landscape of persistent human DNA viruses in femoral bone Forensic Science International Genetics 48 102353 doi 10 1016 j fsigen 2020 102353 hdl 10138 332288 PMID 32668397 S2CID 220582800 External links Edit Media related to Femur at Wikimedia Commons The dictionary definition of Femur at Wiktionary The dictionary definition of thighbone at Wiktionary Retrieved from https en wikipedia org w index php title Femur amp oldid 1140448953, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.