fbpx
Wikipedia

Cosmic distance ladder

The cosmic distance ladder (also known as the extragalactic distance scale) is the succession of methods by which astronomers determine the distances to celestial objects. A direct distance measurement of an astronomical object is possible only for those objects that are "close enough" (within about a thousand parsecs) to Earth. The techniques for determining distances to more distant objects are all based on various measured correlations between methods that work at close distances and methods that work at larger distances. Several methods rely on a standard candle, which is an astronomical object that has a known luminosity.

The ladder analogy arises because no single technique can measure distances at all ranges encountered in astronomy. Instead, one method can be used to measure nearby distances, a second can be used to measure nearby to intermediate distances, and so on. Each rung of the ladder provides information that can be used to determine the distances at the next higher rung.

Direct measurement

 
The Astronomer shows the use of parallax to measure distance. It is made from parts of the Yale–Columbia Refractor telescope (1924) damaged when the 2003 Canberra bushfires burned out the Mount Stromlo Observatory; at Questacon, Canberra.[1]

At the base of the ladder are fundamental distance measurements, in which distances are determined directly, with no physical assumptions about the nature of the object in question. The precise measurement of stellar positions is part of the discipline of astrometry.

Astronomical unit

Direct distance measurements are based upon the astronomical unit (AU), which is defined as the mean distance between the Earth and the Sun. Kepler's laws provide precise ratios of the sizes of the orbits of objects orbiting the Sun, but provide no measurement of the overall scale of the orbit system. Radar is used to measure the distance between the orbits of the Earth and of a second body. From that measurement and the ratio of the two orbit sizes, the size of Earth's orbit is calculated. The Earth's orbit is known with an absolute precision of a few meters and a relative precision of a few parts in 100 billion (1×10−11).

Historically, observations of Venus transits were crucial in determining the AU; in the first half of the 20th century, observations of asteroids were also important. Presently the orbit of Earth is determined with high precision using radar measurements of distances to Venus and other nearby planets and asteroids,[2] and by tracking interplanetary spacecraft in their orbits around the Sun through the Solar System.

Parallax

 
Stellar parallax motion from annual parallax. Half the apex angle is the parallax angle.

The most important fundamental distance measurements come from trigonometric parallax. As the Earth orbits the Sun, the position of nearby stars will appear to shift slightly against the more distant background. These shifts are angles in an isosceles triangle, with 2 AU (the distance between the extreme positions of Earth's orbit around the Sun) making the base leg of the triangle and the distance to the star being the long equal length legs. The amount of shift is quite small, even for the nearest stars, measuring 1 arcsecond for an object at 1 parsec's distance (3.26 light-years), and thereafter decreasing in angular amount as the distance increases. Astronomers usually express distances in units of parsecs (parallax arcseconds); light-years are used in popular media.

Because parallax becomes smaller for a greater stellar distance, useful distances can be measured only for stars which are near enough to have a parallax larger than a few times the precision of the measurement. In the 1990s, for example, the Hipparcos mission obtained parallaxes for over a hundred thousand stars with a precision of about a milliarcsecond,[3] providing useful distances for stars out to a few hundred parsecs. The Hubble telescope WFC3 now has the potential to provide a precision of 20 to 40 microarcseconds, enabling reliable distance measurements up to 5,000 parsecs (16,000 ly) for small numbers of stars.[4][5] The Gaia space mission provided similarly accurate distances to most stars brighter than 15th magnitude.[6]

Stars have a velocity relative to the Sun that causes proper motion (transverse across the sky) and radial velocity (motion toward or away from the Sun). The former is determined by plotting the changing position of the stars over many years, while the latter comes from measuring the Doppler shift of the star's spectrum caused by motion along the line of sight. For a group of stars with the same spectral class and a similar magnitude range, a mean parallax can be derived from statistical analysis of the proper motions relative to their radial velocities. This statistical parallax method is useful for measuring the distances of bright stars beyond 50 parsecs and giant variable stars, including Cepheids and the RR Lyrae variables.[7]

 
Parallax measurements may be an important clue to understanding three of the universe's most elusive components: dark matter, dark energy and neutrinos.[8]
 
Hubble precision stellar distance measurement has been extended 10 times further into the Milky Way.[9]

The motion of the Sun through space provides a longer baseline that will increase the accuracy of parallax measurements, known as secular parallax. For stars in the Milky Way disk, this corresponds to a mean baseline of 4 AU per year, while for halo stars the baseline is 40 AU per year. After several decades, the baseline can be orders of magnitude greater than the Earth–Sun baseline used for traditional parallax. However, secular parallax introduces a higher level of uncertainty because the relative velocity of observed stars is an additional unknown. When applied to samples of multiple stars, the uncertainty can be reduced; the uncertainty is inversely proportional to the square root of the sample size.[10]

Moving cluster parallax is a technique where the motions of individual stars in a nearby star cluster can be used to find the distance to the cluster. Only open clusters are near enough for this technique to be useful. In particular the distance obtained for the Hyades has historically been an important step in the distance ladder.

Other individual objects can have fundamental distance estimates made for them under special circumstances. If the expansion of a gas cloud, like a supernova remnant or planetary nebula, can be observed over time, then an expansion parallax distance to that cloud can be estimated. Those measurements however suffer from uncertainties in the deviation of the object from sphericity. Binary stars which are both visual and spectroscopic binaries also can have their distance estimated by similar means, and don't suffer from the above geometric uncertainty. The common characteristic to these methods is that a measurement of angular motion is combined with a measurement of the absolute velocity (usually obtained via the Doppler effect). The distance estimate comes from computing how far the object must be to make its observed absolute velocity appear with the observed angular motion.

Expansion parallaxes in particular can give fundamental distance estimates for objects that are very far, because supernova ejecta have large expansion velocities and large sizes (compared to stars). Further, they can be observed with radio interferometers which can measure very small angular motions. These combine to provide fundamental distance estimates to supernovae in other galaxies.[11] Though valuable, such cases are quite rare, so they serve as important consistency checks on the distance ladder rather than workhorse steps by themselves.

Standard candles

Almost all astronomical objects used as physical distance indicators belong to a class that has a known brightness. By comparing this known luminosity to an object's observed brightness, the distance to the object can be computed using the inverse-square law. These objects of known brightness are termed standard candles, coined by Henrietta Swan Leavitt.[12]

The brightness of an object can be expressed in terms of its absolute magnitude. This quantity is derived from the logarithm of its luminosity as seen from a distance of 10 parsecs. The apparent magnitude, the magnitude as seen by the observer (an instrument called a bolometer is used), can be measured and used with the absolute magnitude to calculate the distance d to the object in parsecs[13] as follows:

 
or
 
where m is the apparent magnitude, and M the absolute magnitude. For this to be accurate, both magnitudes must be in the same frequency band and there can be no relative motion in the radial direction. Some means of correcting for interstellar extinction, which also makes objects appear fainter and more red, is needed, especially if the object lies within a dusty or gaseous region.[14] The difference between an object's absolute and apparent magnitudes is called its distance modulus, and astronomical distances, especially intergalactic ones, are sometimes tabulated in this way.

Problems

Two problems exist for any class of standard candle. The principal one is calibration, that is the determination of exactly what the absolute magnitude of the candle is. This includes defining the class well enough that members can be recognized, and finding enough members of that class with well-known distances to allow their true absolute magnitude to be determined with enough accuracy. The second problem lies in recognizing members of the class, and not mistakenly using a standard candle calibration on an object which does not belong to the class. At extreme distances, which is where one most wishes to use a distance indicator, this recognition problem can be quite serious.

A significant issue with standard candles is the recurring question of how standard they are. For example, all observations seem to indicate that Type Ia supernovae that are of known distance have the same brightness (corrected by the shape of the light curve). The basis for this closeness in brightness is discussed below; however, the possibility exists that the distant Type Ia supernovae have different properties than nearby Type Ia supernovae. The use of Type Ia supernovae is crucial in determining the correct cosmological model. If indeed the properties of Type Ia supernovae are different at large distances, i.e. if the extrapolation of their calibration to arbitrary distances is not valid, ignoring this variation can dangerously bias the reconstruction of the cosmological parameters, in particular the reconstruction of the matter density parameter.[15][clarification needed]

That this is not merely a philosophical issue can be seen from the history of distance measurements using Cepheid variables. In the 1950s, Walter Baade discovered that the nearby Cepheid variables used to calibrate the standard candle were of a different type than the ones used to measure distances to nearby galaxies. The nearby Cepheid variables were population I stars with much higher metal content than the distant population II stars. As a result, the population II stars were actually much brighter than believed, and when corrected, this had the effect of doubling the distances to the globular clusters, the nearby galaxies, and the diameter of the Milky Way.[citation needed]

Standard siren

Gravitational waves originating from the inspiral phase of compact binary systems, such as neutron stars or black holes, have the useful property that energy emitted as gravitational radiation comes exclusively from the orbital energy of the pair, and the resultant shrinking of their orbits is directly observable as an increase in the frequency of the emitted gravitational waves. To leading order, the rate of change of frequency   is given by[16][17]: 38 

 
where   is the gravitational constant,   is the speed of light, and   is a single (therefore computable[a]) number called the chirp mass of the system, a combination of the masses   of the two objects[19]
 
By observing the waveform, the chirp mass can be computed and thence the power (rate of energy emission) of the gravitational waves. Thus, such a gravitational wave source is a standard siren of known loudness.[20][17]

Just as with standard candles, given the emitted and received amplitudes, the inverse-square law determines the distance to the source. There are some differences with standard candles, however. Gravitational waves are not emitted isotropically, but measuring the polarisation of the wave provides enough information to determine the angle of emission. Gravitational wave detectors also have anisotropic antenna patterns, so the position of the source on the sky relative to the detectors is needed to determine the angle of reception. Generally, if a wave is detected by a network of three detectors at different locations, the network will measure enough information to make these corrections and obtain the distance. Also unlike standard candles, gravitational waves need no calibration against other distance measures. The measurement of distance does of course require the calibration of the gravitational wave detectors, but then the distance is fundamentally given as a multiple of the wavelength of the laser light being used in the gravitational wave interferometer.

There are other considerations that limit the accuracy of this distance, besides detector calibration. Fortunately, gravitational waves are not subject to extinction due to an intervening absorbing medium. But they are subject to gravitational lensing, in the same way as light. If a signal is strongly lensed, then it might be received as multiple events, separated in time (the analogue of multiple images of a quasar, for example). Less easy to discern and control for is the effect of weak lensing, where the signal's path through space is affected by many small magnification and demagnification events. This will be important for signals originating at cosmological redshifts greater than 1. Finally, it is difficult for detector networks to measure the polarization of a signal accurately if the binary system is observed nearly face-on;[21] such signals suffer significantly larger errors in the distance measurement. Unfortunately, binaries radiate most strongly perpendicular to the orbital plane, so face-on signals are intrinsically stronger and the most commonly observed.

If the binary consists of a pair of neutron stars, their merger will be accompanied by a kilonova/hypernova explosion that may allow the position to be accurately identified by electromagnetic telescopes. In such cases, the redshift of the host galaxy allows a determination of the Hubble constant  .[19] This was the case for GW170817, which was used to make the first such measurement.[22] Even if no electromagnetic counterpart can be identified for an ensemble of signals, it is possible to use a statistical method to infer the value of  .[19]

Standard ruler

Another class of physical distance indicator is the standard ruler. In 2008, galaxy diameters have been proposed as a possible standard ruler for cosmological parameter determination.[23] More recently the physical scale imprinted by baryon acoustic oscillations (BAO) in the early universe has been used. In the early universe (before recombination) the baryons and photons scatter off each other, and form a tightly-coupled fluid that can support sound waves. The waves are sourced by primordial density perturbations, and travel at speed that can be predicted from the baryon density and other cosmological parameters. The total distance that these sound waves can travel before recombination determines a fixed scale, which simply expands with the universe after recombination. BAO therefore provide a standard ruler that can be measured in galaxy surveys from the effect of baryons on the clustering of galaxies. The method requires an extensive galaxy survey in order to make this scale visible, but has been measured with percent-level precision (see baryon acoustic oscillations). The scale does depend on cosmological parameters like the baryon and matter densities, and the number of neutrinos, so distances based on BAO are more dependent on cosmological model than those based on local measurements.

Light echos can be also used as standard rulers,[24][25] although it is challenging to correctly measure the source geometry.[26][27]

Galactic distance indicators

With few exceptions, distances based on direct measurements are available only out to about a thousand parsecs, which is a modest portion of our own Galaxy. For distances beyond that, measures depend upon physical assumptions, that is, the assertion that one recognizes the object in question, and the class of objects is homogeneous enough that its members can be used for meaningful estimation of distance.

Physical distance indicators, used on progressively larger distance scales, include:

Main sequence fitting

When the absolute magnitude for a group of stars is plotted against the spectral classification of the star, in a Hertzsprung–Russell diagram, evolutionary patterns are found that relate to the mass, age and composition of the star. In particular, during their hydrogen burning period, stars lie along a curve in the diagram called the main sequence. By measuring these properties from a star's spectrum, the position of a main sequence star on the H–R diagram can be determined, and thereby the star's absolute magnitude estimated. A comparison of this value with the apparent magnitude allows the approximate distance to be determined, after correcting for interstellar extinction of the luminosity because of gas and dust.

In a gravitationally-bound star cluster such as the Hyades, the stars formed at approximately the same age and lie at the same distance. This allows relatively accurate main sequence fitting, providing both age and distance determination.

Extragalactic distance scale

Extragalactic distance indicators[31]
Method Uncertainty for Single Galaxy (mag) Distance to Virgo Cluster (Mpc) Range (Mpc)
Classical Cepheids 0.16 15–25 29
Novae 0.4 21.1 ± 3.9 20
Planetary Nebula Luminosity Function 0.3 15.4 ± 1.1 50
Globular Cluster Luminosity Function 0.4 18.8 ± 3.8 50
Surface Brightness Fluctuations 0.3 15.9 ± 0.9 50
Sigma-D relation 0.5 16.8 ± 2.4 > 100
Type Ia Supernovae 0.10 19.4 ± 5.0 > 1000

The extragalactic distance scale is a series of techniques used today by astronomers to determine the distance of cosmological bodies beyond our own galaxy, which are not easily obtained with traditional methods. Some procedures utilize properties of these objects, such as stars, globular clusters, nebulae, and galaxies as a whole. Other methods are based more on the statistics and probabilities of things such as entire galaxy clusters.

Wilson–Bappu effect

Discovered in 1956 by Olin Wilson and M.K. Vainu Bappu, the Wilson–Bappu effect utilizes the effect known as spectroscopic parallax. Many stars have features in their spectra, such as the calcium K-line, that indicate their absolute magnitude. The distance to the star can then be calculated from its apparent magnitude using the distance modulus.

There are major limitations to this method for finding stellar distances. The calibration of the spectral line strengths has limited accuracy and it requires a correction for interstellar extinction. Though in theory this method has the ability to provide reliable distance calculations to stars up to 7 megaparsecs (Mpc), it is generally only used for stars at hundreds of kiloparsecs (kpc).

Classical Cepheids

Beyond the reach of the Wilson–Bappu effect, the next method relies on the period-luminosity relation of classical Cepheid variable stars. The following relation can be used to calculate the distance to Galactic and extragalactic classical Cepheids:

      [32]
      [33]

Several problems complicate the use of Cepheids as standard candles and are actively debated, chief among them are: the nature and linearity of the period-luminosity relation in various passbands and the impact of metallicity on both the zero-point and slope of those relations, and the effects of photometric contamination (blending) and a changing (typically unknown) extinction law on Cepheid distances.[34][35][36][37][38][39][40][41][42]

These unresolved matters have resulted in cited values for the Hubble constant ranging between 60 km/s/Mpc and 80 km/s/Mpc. Resolving this discrepancy is one of the foremost problems in astronomy since some cosmological parameters of the Universe may be constrained significantly better by supplying a precise value of the Hubble constant.[43][44]

Cepheid variable stars were the key instrument in Edwin Hubble's 1923 conclusion that M31 (Andromeda) was an external galaxy, as opposed to a smaller nebula within the Milky Way. He was able to calculate the distance of M31 to 285 Kpc, today's value being 770 Kpc.[citation needed]

As detected thus far, NGC 3370, a spiral galaxy in the constellation Leo, contains the farthest Cepheids yet found at a distance of 29 Mpc. Cepheid variable stars are in no way perfect distance markers: at nearby galaxies they have an error of about 7% and up to a 15% error for the most distant.[citation needed]

Supernovae

 
SN 1994D (bright spot on the lower left) in the NGC 4526 galaxy. Image by NASA, ESA, The Hubble Key Project Team, and The High-Z Supernova Search Team

There are several different methods for which supernovae can be used to measure extragalactic distances.

Measuring a supernova's photosphere

We can assume that a supernova expands in a spherically symmetric manner. If the supernova is close enough such that we can measure the angular extent, θ(t), of its photosphere, we can use the equation

 
where ω is angular velocity, θ is angular extent. In order to get an accurate measurement, it is necessary to make two observations separated by time Δt. Subsequently, we can use
 
where d is the distance to the supernova, Vej is the supernova's ejecta's radial velocity (it can be assumed that Vej equals Vθ if spherically symmetric).

This method works only if the supernova is close enough to be able to measure accurately the photosphere. Similarly, the expanding shell of gas is in fact not perfectly spherical nor a perfect blackbody. Also interstellar extinction can hinder the accurate measurements of the photosphere. This problem is further exacerbated by core-collapse supernova. All of these factors contribute to the distance error of up to 25%.

Type Ia light curves

Type Ia supernovae are some of the best ways to determine extragalactic distances. Ia's occur when a binary white dwarf star begins to accrete matter from its companion star. As the white dwarf gains matter, eventually it reaches its Chandrasekhar limit of  .

Once reached, the star becomes unstable and undergoes a runaway nuclear fusion reaction. Because all Type Ia supernovae explode at about the same mass, their absolute magnitudes are all the same. This makes them very useful as standard candles. All Type Ia supernovae have a standard blue and visual magnitude of

 
Therefore, when observing a Type Ia supernova, if it is possible to determine what its peak magnitude was, then its distance can be calculated. It is not intrinsically necessary to capture the supernova directly at its peak magnitude; using the multicolor light curve shape method (MLCS), the shape of the light curve (taken at any reasonable time after the initial explosion) is compared to a family of parameterized curves that will determine the absolute magnitude at the maximum brightness. This method also takes into effect interstellar extinction/dimming from dust and gas.

Similarly, the stretch method fits the particular supernovae magnitude light curves to a template light curve. This template, as opposed to being several light curves at different wavelengths (MLCS) is just a single light curve that has been stretched (or compressed) in time. By using this Stretch Factor, the peak magnitude can be determined.[45]

Using Type Ia supernovae is one of the most accurate methods, particularly since supernova explosions can be visible at great distances (their luminosities rival that of the galaxy in which they are situated), much farther than Cepheid Variables (500 times farther). Much time has been devoted to the refining of this method. The current uncertainty approaches a mere 5%, corresponding to an uncertainty of just 0.1 magnitudes.

Novae in distance determinations

Novae can be used in much the same way as supernovae to derive extragalactic distances. There is a direct relation between a nova's max magnitude and the time for its visible light to decline by two magnitudes. This relation is shown to be:

 
Where   is the time derivative of the nova's mag, describing the average rate of decline over the first 2 magnitudes.

After novae fade, they are about as bright as the most luminous Cepheid variable stars, therefore both these techniques have about the same max distance: ~ 20 Mpc. The error in this method produces an uncertainty in magnitude of about ±0.4

Globular cluster luminosity function

Based on the method of comparing the luminosities of globular clusters (located in galactic halos) from distant galaxies to that of the Virgo Cluster, the globular cluster luminosity function carries an uncertainty of distance of about 20% (or 0.4 magnitudes).

US astronomer William Alvin Baum first attempted to use globular clusters to measure distant elliptical galaxies. He compared the brightest globular clusters in Virgo A galaxy with those in Andromeda, assuming the luminosities of the clusters were the same in both. Knowing the distance to Andromeda, Baum has assumed a direct correlation and estimated Virgo A's distance.

Baum used just a single globular cluster, but individual formations are often poor standard candles. Canadian astronomer René Racine assumed the use of the globular cluster luminosity function (GCLF) would lead to a better approximation. The number of globular clusters as a function of magnitude is given by:

 
where m0 is the turnover magnitude, M0 is the magnitude of the Virgo cluster, and sigma is the dispersion ~ 1.4 mag.

It is assumed that globular clusters all have roughly the same luminosities within the universe. There is no universal globular cluster luminosity function that applies to all galaxies.

Planetary nebula luminosity function

Like the GCLF method, a similar numerical analysis can be used for planetary nebulae within far off galaxies. The planetary nebula luminosity function (PNLF) was first proposed in the late 1970s by Holland Cole and David Jenner. They suggested that all planetary nebulae might all have similar maximum intrinsic brightness, now calculated to be M = −4.53. This would therefore make them potential standard candles for determining extragalactic distances.

Astronomer George Howard Jacoby and his colleagues later proposed that the PNLF function equaled:

 
Where N(M) is number of planetary nebula, having absolute magnitude M. M* is equal to the nebula with the brightest magnitude.

Surface brightness fluctuation method

 
Galaxy cluster

The following method deals with the overall inherent properties of galaxies. These methods, though with varying error percentages, have the ability to make distance estimates beyond 100 Mpc, though it is usually applied more locally.

The surface brightness fluctuation (SBF) method takes advantage of the use of CCD cameras on telescopes. Because of spatial fluctuations in a galaxy's surface brightness, some pixels on these cameras will pick up more stars than others. However, as distance increases the picture will become increasingly smoother. Analysis of this describes a magnitude of the pixel-to-pixel variation, which is directly related to a galaxy's distance.

Sigma-D relation

The Sigma-D relation (or Σ-D relation), used in elliptical galaxies, relates the angular diameter (D) of the galaxy to its velocity dispersion. It is important to describe exactly what D represents, in order to understand this method. It is, more precisely, the galaxy's angular diameter out to the surface brightness level of 20.75 B-mag arcsec−2. This surface brightness is independent of the galaxy's actual distance from us. Instead, D is inversely proportional to the galaxy's distance, represented as d. Thus, this relation does not employ standard candles. Rather, D provides a standard ruler. This relation between D and Σ is

 
where C is a constant which depends on the distance to the galaxy clusters.[46]

This method has the potential to become one of the strongest methods of galactic distance calculators, perhaps exceeding the range of even the Tully–Fisher method. As of today, however, elliptical galaxies are not bright enough to provide a calibration for this method through the use of techniques such as Cepheids. Instead, calibration is done using more crude methods.

Overlap and scaling

A succession of distance indicators, which is the distance ladder, is needed for determining distances to other galaxies. The reason is that objects bright enough to be recognized and measured at such distances are so rare that few or none are present nearby, so there are too few examples close enough with reliable trigonometric parallax to calibrate the indicator. For example, Cepheid variables, one of the best indicators for nearby spiral galaxies, cannot yet be satisfactorily calibrated by parallax alone, though the Gaia space mission can now weigh in on that specific problem. The situation is further complicated by the fact that different stellar populations generally do not have all types of stars in them. Cepheids in particular are massive stars, with short lifetimes, so they will only be found in places where stars have very recently been formed. Consequently, because elliptical galaxies usually have long ceased to have large-scale star formation, they will not have Cepheids. Instead, distance indicators whose origins are in an older stellar population (like novae and RR Lyrae variables) must be used. However, RR Lyrae variables are less luminous than Cepheids, and novae are unpredictable and an intensive monitoring program—and luck during that program—is needed to gather enough novae in the target galaxy for a good distance estimate.

Because the more distant steps of the cosmic distance ladder depend upon the nearer ones, the more distant steps include the effects of errors in the nearer steps, both systematic and statistical ones. The result of these propagating errors means that distances in astronomy are rarely known to the same level of precision as measurements in the other sciences, and that the precision necessarily is poorer for more distant types of object.

Another concern, especially for the very brightest standard candles, is their "standardness": how homogeneous the objects are in their true absolute magnitude. For some of these different standard candles, the homogeneity is based on theories about the formation and evolution of stars and galaxies, and is thus also subject to uncertainties in those aspects. For the most luminous of distance indicators, the Type Ia supernovae, this homogeneity is known to be poor[47][clarification needed]; however, no other class of object is bright enough to be detected at such large distances, so the class is useful simply because there is no real alternative.

The observational result of Hubble's Law, the proportional relationship between distance and the speed with which a galaxy is moving away from us (usually referred to as redshift) is a product of the cosmic distance ladder. Edwin Hubble observed that fainter galaxies are more redshifted. Finding the value of the Hubble constant was the result of decades of work by many astronomers, both in amassing the measurements of galaxy redshifts and in calibrating the steps of the distance ladder. Hubble's Law is the primary means we have for estimating the distances of quasars and distant galaxies in which individual distance indicators cannot be seen.

See also

Footnotes

  1. ^ If the signal were to depend on the individual masses separately, there would not be enough observable information in the signal at the lowest order to infer its intrinsic loudness. This degeneracy between the masses therefore is crucial for the loudness measurement, but it is no accident: It has a fundamental origin in the scale-free nature of gravity in Einstein's general relativity.[18]

References

  1. ^ "The Astronomer". 16 April 2013. from the original on 9 May 2021. Retrieved 9 May 2021.
  2. ^ Ash, M. E.; Shapiro, I. I.; Smith, W. B. (1967). "Astronomical constants and planetary ephemerides deduced from radar and optical observations". The Astronomical Journal. 72: 338. Bibcode:1967AJ.....72..338A. doi:10.1086/110230.
  3. ^ Perryman, M. A. C.; et al. (1999). "The HIPPARCOS Catalogue". Astronomy and Astrophysics. 323: L49–L52. Bibcode:1997A&A...323L..49P.
  4. ^ Harrington, J. D.; Villard, R. (10 April 2014). "NASA's Hubble Extends Stellar Tape Measure 10 Times Farther Into Space". NASA. from the original on 17 February 2019. Retrieved 17 October 2014.
  5. ^ Riess, A. G.; Casertano, S.; Anderson, J.; MacKenty, J.; Filippenko, A. V. (2014). "Parallax Beyond a Kiloparsec from Spatially Scanning the Wide Field Camera 3 on the Hubble Space Telescope". The Astrophysical Journal. 785 (2): 161. arXiv:1401.0484. Bibcode:2014ApJ...785..161R. doi:10.1088/0004-637X/785/2/161. S2CID 55928992.
  6. ^ Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics. 616. A1. arXiv:1804.09365. Bibcode:2018A&A...616A...1G. doi:10.1051/0004-6361/201833051.
  7. ^ B., Baidyanath (2003). An Introduction to Astrophysics. PHI Learning Private Limited. ISBN 978-81-203-1121-3.
  8. ^ "Hubble finds Universe may be expanding faster than expected". from the original on 11 September 2018. Retrieved 3 June 2016.
  9. ^ "Hubble stretches the stellar tape measure ten times further". ESA/Hubble Images. from the original on October 30, 2017. Retrieved April 12, 2014.
  10. ^ Popowski, P.; Gould, A. (1998). "Mathematics of Statistical Parallax and the Local Distance Scale". arXiv:astro-ph/9703140.
  11. ^ Bartel, N.; et al. (1994). "The shape, expansion rate and distance of supernova 1993J from VLBI measurements". Nature. 368 (6472): 610–613. Bibcode:1994Natur.368..610B. doi:10.1038/368610a0. S2CID 4316734.
  12. ^ Fernie, J. D. (December 1969). "The Period-Luminosity Relation: A Historical Review". Publications of the Astronomical Society of the Pacific. 81 (483): 707. Bibcode:1969PASP...81..707F. doi:10.1086/128847. ISSN 0004-6280.
  13. ^ "Finding the Distance to Stars - Distance Modulus". Australia Telescope National Facility. from the original on 2020-11-07. Retrieved 2020-11-02.
  14. ^ "Type Ia Supernova". Weekly Topic. Caglow. from the original on 29 February 2012. Retrieved 30 January 2012.
  15. ^ Linden, S.; Virey, J.-M.; Tilquin, A. (2009). "Cosmological parameter extraction and biases from type Ia supernova magnitude evolution". Astronomy and Astrophysics. 506 (3): 1095–1105. arXiv:0907.4495. Bibcode:2009A&A...506.1095L. doi:10.1051/0004-6361/200912811. S2CID 15178494. (And references therein.)
  16. ^ Cutler, Curt; Flanagan, Éanna E. (15 March 1994). "Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform?". Physical Review D. 49 (6): 2658–2697. arXiv:gr-qc/9402014. Bibcode:1994PhRvD..49.2658C. doi:10.1103/PhysRevD.49.2658. PMID 10017261. S2CID 5808548.
  17. ^ a b Holz, Daniel E.; Hughes, Scott A.; Schutz, Bernard F. (December 2018). "Measuring cosmic distances with standard sirens". Physics Today. 71 (12): 34–40. Bibcode:2018PhT....71l..34H. doi:10.1063/PT.3.4090. ISSN 0031-9228.
  18. ^ Forward, Robert L.; Berman, David (12 June 1967). "Gravitational-Radiation Detection Range for Binary Stellar Systems". Physical Review Letters. 18 (24): 1071–1074. Bibcode:1967PhRvL..18.1071F. doi:10.1103/PhysRevLett.18.1071. ISSN 0031-9007.
  19. ^ a b c Schutz, Bernard F. (25 September 1986). "Determining the Hubble constant from gravitational wave observations". Nature. 323 (6086): 310–311. arXiv:1307.2638. Bibcode:1986Natur.323..310S. doi:10.1038/323310a0. hdl:11858/00-001M-0000-0013-73C1-2. ISSN 0028-0836. S2CID 4327285.
  20. ^ Hendry, Martin; Woan, Graham (February 2007). "Gravitational astrophysics" (PDF). Astronomy & Geophysics. 48 (1): 1.10–1.17. Bibcode:2007A&G....48a..10H. CiteSeerX 10.1.1.163.5500. doi:10.1111/j.1468-4004.2007.48110.x. S2CID 8926158. (PDF) from the original on 2012-12-22. Retrieved 2019-08-04.
  21. ^ Nissanke, Samaya; Holz, Daniel E.; Hughes, Scott A.; Dalal, Neal; Sievers, Jonathan L. (2010-12-10). "Exploring Short Gamma-Ray Bursts as Gravitational-Wave Standard Sirens". The Astrophysical Journal. 725 (1): 496–514. arXiv:0904.1017. Bibcode:2010ApJ...725..496N. doi:10.1088/0004-637X/725/1/496. hdl:1721.1/60956. ISSN 0004-637X. S2CID 14028891.
  22. ^ Abbott, B. P.; et al. (LIGO Scientific Collaboration & Virgo Collaboration) (16 October 2017). "A gravitational-wave standard siren measurement of the Hubble constant". Nature. 551 (7678): 85–88. arXiv:1710.05835. Bibcode:2017Natur.551...85A. doi:10.1038/nature24471. PMID 29094696.
  23. ^ Marinoni, C.; et al. (2008). "Geometrical tests of cosmological models. I. Probing dark energy using the kinematics of high redshift galaxies". Astronomy and Astrophysics. 478 (1): 43–55. arXiv:0710.0759. Bibcode:2008A&A...478...43M. doi:10.1051/0004-6361:20077116. from the original on 2022-01-26. Retrieved 2019-10-23.
  24. ^ "Light echoes whisper the distance to a star" (Press release). European Southern Observatory. 11 February 2008. from the original on 2015-09-24. Retrieved 2015-10-18.
  25. ^ Kervella, Pierre; Mérand, Antoine; Szabados, László; Fouqué, Pascal; Bersier, David; Pompei, Emanuela; Perrin, Guy (2 March 2008). "The long-period Galactic Cepheid RS Puppis I. A geometric distance from its light echoes". Astronomy and Astrophysics. 480 (1): 167–178. arXiv:0802.1501. Bibcode:2008A&A...480..167K. doi:10.1051/0004-6361:20078961. we derive a geometric distance of 1992±28 pc to RS Pup
  26. ^ Bond, Howard E.; Sparks, William B. (4 March 2009). "On geometric distance determination to the Cepheid RS Puppis from its light echoes". Astronomy and Astrophysics. 495 (2): 371–377. arXiv:0811.2943. Bibcode:2009A&A...495..371B. doi:10.1051/0004-6361:200810280. We conclude that most of the knots are in fact likely to lie in front of the plane of the sky, thus invalidating the Kervella et al. result. [...] Although the Kervella et al. distance result is invalidated, we show that high-resolution polarimetric imaging has the potential to yield a valid geometric distance to this important Cepheid.
  27. ^ Kervella, Pierre; Bond, Howard E.; Cracraft, Misty; Szabados, László; Breitfelder, Joanne; Mérand2, Antoine; Sparks, William B.; Gallenne, Alexandre; Bersier, David; Fouqué, Pascal; Anderson, Richard I. (December 2014). "The long-period Galactic Cepheid RS Puppis. III. A geometric distance from HST polarimetric imaging of its light echoes". Astronomy and Astrophysics. 572: A7 (13 pp.). arXiv:1408.1697. Bibcode:2014A&A...572A...7K. doi:10.1051/0004-6361/201424395. We obtain a distance of 1910±80 pc (4.2%)
  28. ^ Bonanos, A. Z. (2006). "Eclipsing Binaries: Tools for Calibrating the Extragalactic Distance Scale". Proceedings of IAU Symposium. 240: 79–87. arXiv:astro-ph/0610923. Bibcode:2007IAUS..240...79B. CiteSeerX 10.1.1.254.2692. doi:10.1017/S1743921307003845. S2CID 18827791.
  29. ^ Ferrarese, L; et al. (2000). "A Database of Cepheid Distance Moduli and Tip of the Red Giant Branch, Globular Cluster Luminosity Function, Planetary Nebula Luminosity Function, and Surface Brightness Fluctuation Data Useful for Distance Determinations". The Astrophysical Journal Supplement Series. 128 (2): 431–459. arXiv:astro-ph/9910501. Bibcode:2000ApJS..128..431F. doi:10.1086/313391. S2CID 121612286.
  30. ^ Colgate, S. A. (1979). "Supernovae as a standard candle for cosmology". Astrophysical Journal. 232 (1): 404–408. Bibcode:1979ApJ...232..404C. doi:10.1086/157300.
  31. ^ Adapted from George H. Jacoby; David Branch; Robin Ciardullo; Roger L. Davies; William E. Harris; Michael J. Pierce; Christopher J. Pritchet; John L. Tonry; Douglas L. Welch (1992). "A critical review of selected techniques for measuring extragalactic distances". Publications of the Astronomical Society of the Pacific. 104 (678): 599–662. Bibcode:1992PASP..104..599J. doi:10.1086/133035. JSTOR 40679907.
  32. ^ Benedict, G. Fritz et al. "Hubble Space Telescope Fine Guidance Sensor Parallaxes of Galactic Cepheid Variable Stars: Period-Luminosity Relations" 2016-01-23 at the Wayback Machine, The Astronomical Journal, Volume 133, Issue 4, pp. 1810–1827 (2007)
  33. ^ Majaess, Daniel; Turner, David; Moni Bidin, Christian; Mauro, Francesco; Geisler, Douglas; Gieren, Wolfgang; Minniti, Dante; Chené, André-Nicolas; Lucas, Philip; Borissova, Jura; Kurtev, Radostn; Dékány, Istvan; Saito, Roberto K. "New Evidence Supporting Membership for TW Nor in Lyngå 6 and the Centaurus Spiral Arm" 2017-03-10 at the Wayback Machine, ApJ Letters, Volume 741, Issue 2, article id. L2 (2011)
  34. ^ Stanek, K. Z.; Udalski, A. (1999). "The Optical Gravitational Lensing Experiment. Investigating the Influence of Blending on the Cepheid Distance Scale with Cepheids in the Large Magellanic Cloud". arXiv:astro-ph/9909346.
  35. ^ Udalski, A.; Wyrzykowski, L.; Pietrzynski, G.; Szewczyk, O.; Szymanski, M.; Kubiak, M.; Soszynski, I.; Zebrun, K. (2001). "The Optical Gravitational Lensing Experiment. Cepheids in the Galaxy IC1613: No Dependence of the Period-Luminosity Relation on Metallicity". Acta Astronomica. 51: 221. arXiv:astro-ph/0109446. Bibcode:2001AcA....51..221U.
  36. ^ Ngeow, C.; Kanbur, S. M. (2006). "The Hubble Constant from Type Ia Supernovae Calibrated with the Linear and Nonlinear Cepheid Period-Luminosity Relations". The Astrophysical Journal. 642 (1): L29. arXiv:astro-ph/0603643. Bibcode:2006ApJ...642L..29N. doi:10.1086/504478. S2CID 17860528.
  37. ^ Macri, L. M.; Stanek, K. Z.; Bersier, D.; Greenhill, L. J.; Reid, M. J. (2006). "A New Cepheid Distance to the Maser–Host Galaxy NGC 4258 and Its Implications for the Hubble Constant". The Astrophysical Journal. 652 (2): 1133–1149. arXiv:astro-ph/0608211. Bibcode:2006ApJ...652.1133M. doi:10.1086/508530. S2CID 15728812.
  38. ^ Bono, G.; Caputo, F.; Fiorentino, G.; Marconi, M.; Musella, I. (2008). "Cepheids in External Galaxies. I. The Maser–Host Galaxy NGC 4258 and the Metallicity Dependence of Period–Luminosity and Period–Wesenheit Relations". The Astrophysical Journal. 684 (1): 102. arXiv:0805.1592. Bibcode:2008ApJ...684..102B. doi:10.1086/589965. S2CID 6275274.
  39. ^ Majaess, D.; Turner, D.; Lane, D. (2009). "Type II Cepheids as Extragalactic Distance Candles". Acta Astronomica. 59 (4): 403. arXiv:0909.0181. Bibcode:2009AcA....59..403M.
  40. ^ Madore, Barry F.; Freedman, Wendy L. (2009). "Concerning the Slope of the Cepheid Period–Luminosity Relation". The Astrophysical Journal. 696 (2): 1498–1501. arXiv:0902.3747. Bibcode:2009ApJ...696.1498M. doi:10.1088/0004-637X/696/2/1498. S2CID 16325249.
  41. ^ Scowcroft, V.; Bersier, D.; Mould, J. R.; Wood, P. R. (2009). "The effect of metallicity on Cepheid magnitudes and the distance to M33". Monthly Notices of the Royal Astronomical Society. 396 (3): 43–47. arXiv:0903.4088. Bibcode:2009MNRAS.396.1287S. doi:10.1111/j.1365-2966.2009.14822.x.
  42. ^ Majaess, D. (2010). "The Cepheids of Centaurus A (NGC 5128) and Implications for H0". Acta Astronomica. 60 (2): 121. arXiv:1006.2458. Bibcode:2010AcA....60..121M.
  43. ^ Tammann, G. A.; Sandage, A.; Reindl, B. (2008). "The expansion field: The value of H 0". Annual Review of Astronomy and Astrophysics. 15 (4): 289. arXiv:0806.3018. Bibcode:2008A&ARv..15..289T. doi:10.1007/s00159-008-0012-y. S2CID 18463474.
  44. ^ Freedman, Wendy L.; Madore, Barry F. (2010). "The Hubble Constant". Annual Review of Astronomy and Astrophysics. 48: 673–710. arXiv:1004.1856. Bibcode:2010ARA&A..48..673F. doi:10.1146/annurev-astro-082708-101829. S2CID 119263173.
  45. ^ Coelho, R.; et al. (2015). "Standardization of type Ia supernovae". European Journal of Physics. 36 (1): 015007. arXiv:1411.3596. Bibcode:2015EJPh...36a5007C. doi:10.1088/0143-0807/36/1/015007. S2CID 119096479.
  46. ^ Dressler, Alan (1987). "The Dn-sigma relation for bulges of disk galaxies - A new, independent measure of the Hubble constant". The Astrophysical Journal. 317: 1. Bibcode:1987ApJ...317....1D. doi:10.1086/165251. ISSN 0004-637X. from the original on 2018-06-10. Retrieved 2021-06-06.
  47. ^ Gilfanov, Marat; Bogdán, Ákos (2010). "An upper limit on the contribution of accreting white dwarfs to the type Ia supernova rate". Nature. 463 (3): 924–925. arXiv:1002.3359. Bibcode:2010Natur.463..924G. doi:10.1038/nature08685. PMID 20164924. S2CID 4389201.

Bibliography

  • Carroll, Bradley W.; Ostlie, Dale A. (2014). An Introduction to Modern Astrophysics. Harlow, United Kingdom: Pearson Education Limited. ISBN 978-1-292-02293-2.
  • Measuring the Universe The Cosmological Distance Ladder, Stephen Webb, copyright 2001.
  • Pasachoff, J.M.; Filippenko, A. (2013). The Cosmos: Astronomy in the New Millennium (4th ed.). Cambridge: Cambridge University Press. ISBN 978-1-107-68756-1.
  • The Astrophysical Journal, The Globular Cluster Luminosity Function as a Distance Indicator: Dynamical Effects, Ostriker and Gnedin, May 5, 1997.
  • An Introduction to Distance Measurement in Astronomy, Richard de Grijs, Chichester: John Wiley & Sons, 2011, ISBN 978-0-470-51180-0.

External links

  • The ABC's of distances (UCLA)
  • The Extragalactic Distance Scale by Bill Keel
  • The Hubble Space Telescope Key Project on the Extragalactic Distance Scale
  • The Hubble Constant, a historical discussion
  • NASA Cosmic Distance Scale
  • PNLF information database
  • The Astrophysical Journal

cosmic, distance, ladder, various, definitions, distance, cosmology, distance, measures, cosmology, cosmic, distance, ladder, also, known, extragalactic, distance, scale, succession, methods, which, astronomers, determine, distances, celestial, objects, direct. For various definitions of distance in cosmology see Distance measures cosmology The cosmic distance ladder also known as the extragalactic distance scale is the succession of methods by which astronomers determine the distances to celestial objects A direct distance measurement of an astronomical object is possible only for those objects that are close enough within about a thousand parsecs to Earth The techniques for determining distances to more distant objects are all based on various measured correlations between methods that work at close distances and methods that work at larger distances Several methods rely on a standard candle which is an astronomical object that has a known luminosity Light green boxes Technique applicable to star forming galaxies Light blue boxes Technique applicable to Population II galaxies Light Purple boxes Geometric distance technique Light Red box The planetary nebula luminosity function technique is applicable to all populations of the Virgo Supercluster Solid black lines Well calibrated ladder step Dashed black lines Uncertain calibration ladder step The ladder analogy arises because no single technique can measure distances at all ranges encountered in astronomy Instead one method can be used to measure nearby distances a second can be used to measure nearby to intermediate distances and so on Each rung of the ladder provides information that can be used to determine the distances at the next higher rung Contents 1 Direct measurement 1 1 Astronomical unit 1 2 Parallax 2 Standard candles 2 1 Problems 3 Standard siren 4 Standard ruler 5 Galactic distance indicators 5 1 Main sequence fitting 6 Extragalactic distance scale 6 1 Wilson Bappu effect 6 2 Classical Cepheids 6 3 Supernovae 6 3 1 Measuring a supernova s photosphere 6 3 2 Type Ia light curves 6 3 3 Novae in distance determinations 6 4 Globular cluster luminosity function 6 5 Planetary nebula luminosity function 6 6 Surface brightness fluctuation method 6 7 Sigma D relation 7 Overlap and scaling 8 See also 9 Footnotes 10 References 11 Bibliography 12 External linksDirect measurement Edit The Astronomer shows the use of parallax to measure distance It is made from parts of the Yale Columbia Refractor telescope 1924 damaged when the 2003 Canberra bushfires burned out the Mount Stromlo Observatory at Questacon Canberra 1 At the base of the ladder are fundamental distance measurements in which distances are determined directly with no physical assumptions about the nature of the object in question The precise measurement of stellar positions is part of the discipline of astrometry Astronomical unit Edit Main article Astronomical unit Direct distance measurements are based upon the astronomical unit AU which is defined as the mean distance between the Earth and the Sun Kepler s laws provide precise ratios of the sizes of the orbits of objects orbiting the Sun but provide no measurement of the overall scale of the orbit system Radar is used to measure the distance between the orbits of the Earth and of a second body From that measurement and the ratio of the two orbit sizes the size of Earth s orbit is calculated The Earth s orbit is known with an absolute precision of a few meters and a relative precision of a few parts in 100 billion 1 10 11 Historically observations of Venus transits were crucial in determining the AU in the first half of the 20th century observations of asteroids were also important Presently the orbit of Earth is determined with high precision using radar measurements of distances to Venus and other nearby planets and asteroids 2 and by tracking interplanetary spacecraft in their orbits around the Sun through the Solar System Parallax Edit Main article Stellar parallax Further information Parsec Stellar parallax motion from annual parallax Half the apex angle is the parallax angle The most important fundamental distance measurements come from trigonometric parallax As the Earth orbits the Sun the position of nearby stars will appear to shift slightly against the more distant background These shifts are angles in an isosceles triangle with 2 AU the distance between the extreme positions of Earth s orbit around the Sun making the base leg of the triangle and the distance to the star being the long equal length legs The amount of shift is quite small even for the nearest stars measuring 1 arcsecond for an object at 1 parsec s distance 3 26 light years and thereafter decreasing in angular amount as the distance increases Astronomers usually express distances in units of parsecs parallax arcseconds light years are used in popular media Because parallax becomes smaller for a greater stellar distance useful distances can be measured only for stars which are near enough to have a parallax larger than a few times the precision of the measurement In the 1990s for example the Hipparcos mission obtained parallaxes for over a hundred thousand stars with a precision of about a milliarcsecond 3 providing useful distances for stars out to a few hundred parsecs The Hubble telescope WFC3 now has the potential to provide a precision of 20 to 40 microarcseconds enabling reliable distance measurements up to 5 000 parsecs 16 000 ly for small numbers of stars 4 5 The Gaia space mission provided similarly accurate distances to most stars brighter than 15th magnitude 6 Stars have a velocity relative to the Sun that causes proper motion transverse across the sky and radial velocity motion toward or away from the Sun The former is determined by plotting the changing position of the stars over many years while the latter comes from measuring the Doppler shift of the star s spectrum caused by motion along the line of sight For a group of stars with the same spectral class and a similar magnitude range a mean parallax can be derived from statistical analysis of the proper motions relative to their radial velocities This statistical parallax method is useful for measuring the distances of bright stars beyond 50 parsecs and giant variable stars including Cepheids and the RR Lyrae variables 7 Parallax measurements may be an important clue to understanding three of the universe s most elusive components dark matter dark energy and neutrinos 8 Hubble precision stellar distance measurement has been extended 10 times further into the Milky Way 9 The motion of the Sun through space provides a longer baseline that will increase the accuracy of parallax measurements known as secular parallax For stars in the Milky Way disk this corresponds to a mean baseline of 4 AU per year while for halo stars the baseline is 40 AU per year After several decades the baseline can be orders of magnitude greater than the Earth Sun baseline used for traditional parallax However secular parallax introduces a higher level of uncertainty because the relative velocity of observed stars is an additional unknown When applied to samples of multiple stars the uncertainty can be reduced the uncertainty is inversely proportional to the square root of the sample size 10 Moving cluster parallax is a technique where the motions of individual stars in a nearby star cluster can be used to find the distance to the cluster Only open clusters are near enough for this technique to be useful In particular the distance obtained for the Hyades has historically been an important step in the distance ladder Other individual objects can have fundamental distance estimates made for them under special circumstances If the expansion of a gas cloud like a supernova remnant or planetary nebula can be observed over time then an expansion parallax distance to that cloud can be estimated Those measurements however suffer from uncertainties in the deviation of the object from sphericity Binary stars which are both visual and spectroscopic binaries also can have their distance estimated by similar means and don t suffer from the above geometric uncertainty The common characteristic to these methods is that a measurement of angular motion is combined with a measurement of the absolute velocity usually obtained via the Doppler effect The distance estimate comes from computing how far the object must be to make its observed absolute velocity appear with the observed angular motion Expansion parallaxes in particular can give fundamental distance estimates for objects that are very far because supernova ejecta have large expansion velocities and large sizes compared to stars Further they can be observed with radio interferometers which can measure very small angular motions These combine to provide fundamental distance estimates to supernovae in other galaxies 11 Though valuable such cases are quite rare so they serve as important consistency checks on the distance ladder rather than workhorse steps by themselves Standard candles EditAlmost all astronomical objects used as physical distance indicators belong to a class that has a known brightness By comparing this known luminosity to an object s observed brightness the distance to the object can be computed using the inverse square law These objects of known brightness are termed standard candles coined by Henrietta Swan Leavitt 12 The brightness of an object can be expressed in terms of its absolute magnitude This quantity is derived from the logarithm of its luminosity as seen from a distance of 10 parsecs The apparent magnitude the magnitude as seen by the observer an instrument called a bolometer is used can be measured and used with the absolute magnitude to calculate the distance d to the object in parsecs 13 as follows 5 log 10 d m M 5 displaystyle 5 cdot log 10 d m M 5 or d 10 m M 5 5 displaystyle d 10 m M 5 5 where m is the apparent magnitude and M the absolute magnitude For this to be accurate both magnitudes must be in the same frequency band and there can be no relative motion in the radial direction Some means of correcting for interstellar extinction which also makes objects appear fainter and more red is needed especially if the object lies within a dusty or gaseous region 14 The difference between an object s absolute and apparent magnitudes is called its distance modulus and astronomical distances especially intergalactic ones are sometimes tabulated in this way Problems Edit Two problems exist for any class of standard candle The principal one is calibration that is the determination of exactly what the absolute magnitude of the candle is This includes defining the class well enough that members can be recognized and finding enough members of that class with well known distances to allow their true absolute magnitude to be determined with enough accuracy The second problem lies in recognizing members of the class and not mistakenly using a standard candle calibration on an object which does not belong to the class At extreme distances which is where one most wishes to use a distance indicator this recognition problem can be quite serious A significant issue with standard candles is the recurring question of how standard they are For example all observations seem to indicate that Type Ia supernovae that are of known distance have the same brightness corrected by the shape of the light curve The basis for this closeness in brightness is discussed below however the possibility exists that the distant Type Ia supernovae have different properties than nearby Type Ia supernovae The use of Type Ia supernovae is crucial in determining the correct cosmological model If indeed the properties of Type Ia supernovae are different at large distances i e if the extrapolation of their calibration to arbitrary distances is not valid ignoring this variation can dangerously bias the reconstruction of the cosmological parameters in particular the reconstruction of the matter density parameter 15 clarification needed That this is not merely a philosophical issue can be seen from the history of distance measurements using Cepheid variables In the 1950s Walter Baade discovered that the nearby Cepheid variables used to calibrate the standard candle were of a different type than the ones used to measure distances to nearby galaxies The nearby Cepheid variables were population I stars with much higher metal content than the distant population II stars As a result the population II stars were actually much brighter than believed and when corrected this had the effect of doubling the distances to the globular clusters the nearby galaxies and the diameter of the Milky Way citation needed Standard siren EditGravitational waves originating from the inspiral phase of compact binary systems such as neutron stars or black holes have the useful property that energy emitted as gravitational radiation comes exclusively from the orbital energy of the pair and the resultant shrinking of their orbits is directly observable as an increase in the frequency of the emitted gravitational waves To leading order the rate of change of frequency f displaystyle f is given by 16 17 38 d f d t 96 p 8 3 G M 5 3 f 11 3 5 c 5 displaystyle frac df dt frac 96 pi 8 3 G mathcal M frac 5 3 f frac 11 3 5 c 5 where G displaystyle G is the gravitational constant c displaystyle c is the speed of light and M displaystyle mathcal M is a single therefore computable a number called the chirp mass of the system a combination of the masses m 1 m 2 displaystyle m 1 m 2 of the two objects 19 M m 1 m 2 3 5 m 1 m 2 1 5 displaystyle mathcal M frac m 1 m 2 3 5 m 1 m 2 1 5 By observing the waveform the chirp mass can be computed and thence the power rate of energy emission of the gravitational waves Thus such a gravitational wave source is a standard siren of known loudness 20 17 Just as with standard candles given the emitted and received amplitudes the inverse square law determines the distance to the source There are some differences with standard candles however Gravitational waves are not emitted isotropically but measuring the polarisation of the wave provides enough information to determine the angle of emission Gravitational wave detectors also have anisotropic antenna patterns so the position of the source on the sky relative to the detectors is needed to determine the angle of reception Generally if a wave is detected by a network of three detectors at different locations the network will measure enough information to make these corrections and obtain the distance Also unlike standard candles gravitational waves need no calibration against other distance measures The measurement of distance does of course require the calibration of the gravitational wave detectors but then the distance is fundamentally given as a multiple of the wavelength of the laser light being used in the gravitational wave interferometer There are other considerations that limit the accuracy of this distance besides detector calibration Fortunately gravitational waves are not subject to extinction due to an intervening absorbing medium But they are subject to gravitational lensing in the same way as light If a signal is strongly lensed then it might be received as multiple events separated in time the analogue of multiple images of a quasar for example Less easy to discern and control for is the effect of weak lensing where the signal s path through space is affected by many small magnification and demagnification events This will be important for signals originating at cosmological redshifts greater than 1 Finally it is difficult for detector networks to measure the polarization of a signal accurately if the binary system is observed nearly face on 21 such signals suffer significantly larger errors in the distance measurement Unfortunately binaries radiate most strongly perpendicular to the orbital plane so face on signals are intrinsically stronger and the most commonly observed If the binary consists of a pair of neutron stars their merger will be accompanied by a kilonova hypernova explosion that may allow the position to be accurately identified by electromagnetic telescopes In such cases the redshift of the host galaxy allows a determination of the Hubble constant H 0 displaystyle H 0 19 This was the case for GW170817 which was used to make the first such measurement 22 Even if no electromagnetic counterpart can be identified for an ensemble of signals it is possible to use a statistical method to infer the value of H 0 displaystyle H 0 19 Standard ruler EditAnother class of physical distance indicator is the standard ruler In 2008 galaxy diameters have been proposed as a possible standard ruler for cosmological parameter determination 23 More recently the physical scale imprinted by baryon acoustic oscillations BAO in the early universe has been used In the early universe before recombination the baryons and photons scatter off each other and form a tightly coupled fluid that can support sound waves The waves are sourced by primordial density perturbations and travel at speed that can be predicted from the baryon density and other cosmological parameters The total distance that these sound waves can travel before recombination determines a fixed scale which simply expands with the universe after recombination BAO therefore provide a standard ruler that can be measured in galaxy surveys from the effect of baryons on the clustering of galaxies The method requires an extensive galaxy survey in order to make this scale visible but has been measured with percent level precision see baryon acoustic oscillations The scale does depend on cosmological parameters like the baryon and matter densities and the number of neutrinos so distances based on BAO are more dependent on cosmological model than those based on local measurements Light echos can be also used as standard rulers 24 25 although it is challenging to correctly measure the source geometry 26 27 Galactic distance indicators EditSee also distance measures cosmology With few exceptions distances based on direct measurements are available only out to about a thousand parsecs which is a modest portion of our own Galaxy For distances beyond that measures depend upon physical assumptions that is the assertion that one recognizes the object in question and the class of objects is homogeneous enough that its members can be used for meaningful estimation of distance Physical distance indicators used on progressively larger distance scales include Dynamical parallax uses orbital parameters of visual binaries to measure the mass of the system and hence use the mass luminosity relation to determine the luminosity Eclipsing binaries In the last decade measurement of eclipsing binaries fundamental parameters has become possible with 8 meter class telescopes This makes it feasible to use them as indicators of distance Recently they have been used to give direct distance estimates to the Large Magellanic Cloud LMC Small Magellanic Cloud SMC Andromeda Galaxy and Triangulum Galaxy Eclipsing binaries offer a direct method to gauge the distance to galaxies to a new improved 5 level of accuracy which is feasible with current technology to a distance of around 3 Mpc 3 million parsecs 28 RR Lyrae variables used for measuring distances within the galaxy and in nearby globular clusters The following four indicators all use stars in the old stellar populations Population II 29 Tip of the red giant branch TRGB distance indicator Planetary nebula luminosity function PNLF Globular cluster luminosity function GCLF Surface brightness fluctuation SBF In galactic astronomy X ray bursts thermonuclear flashes on the surface of a neutron star are used as standard candles Observations of X ray burst sometimes show X ray spectra indicating radius expansion Therefore the X ray flux at the peak of the burst should correspond to Eddington luminosity which can be calculated once the mass of the neutron star is known 1 5 solar masses is a commonly used assumption This method allows distance determination of some low mass X ray binaries Low mass X ray binaries are very faint in the optical making their distances extremely difficult to determine Interstellar masers can be used to derive distances to galactic and some extragalactic objects that have maser emission Cepheids and novae The Tully Fisher relation The Faber Jackson relation Type Ia supernovae that have a very well determined maximum absolute magnitude as a function of the shape of their light curve and are useful in determining extragalactic distances up to a few hundred Mpc 30 A notable exception is SN 2003fg the Champagne Supernova a Type Ia supernova of unusual nature Redshifts and Hubble s lawMain sequence fitting Edit Main article Spectroscopic parallax When the absolute magnitude for a group of stars is plotted against the spectral classification of the star in a Hertzsprung Russell diagram evolutionary patterns are found that relate to the mass age and composition of the star In particular during their hydrogen burning period stars lie along a curve in the diagram called the main sequence By measuring these properties from a star s spectrum the position of a main sequence star on the H R diagram can be determined and thereby the star s absolute magnitude estimated A comparison of this value with the apparent magnitude allows the approximate distance to be determined after correcting for interstellar extinction of the luminosity because of gas and dust In a gravitationally bound star cluster such as the Hyades the stars formed at approximately the same age and lie at the same distance This allows relatively accurate main sequence fitting providing both age and distance determination Extragalactic distance scale EditExtragalactic distance indicators 31 Method Uncertainty for Single Galaxy mag Distance to Virgo Cluster Mpc Range Mpc Classical Cepheids 0 16 15 25 29Novae 0 4 21 1 3 9 20Planetary Nebula Luminosity Function 0 3 15 4 1 1 50Globular Cluster Luminosity Function 0 4 18 8 3 8 50Surface Brightness Fluctuations 0 3 15 9 0 9 50Sigma D relation 0 5 16 8 2 4 gt 100Type Ia Supernovae 0 10 19 4 5 0 gt 1000The extragalactic distance scale is a series of techniques used today by astronomers to determine the distance of cosmological bodies beyond our own galaxy which are not easily obtained with traditional methods Some procedures utilize properties of these objects such as stars globular clusters nebulae and galaxies as a whole Other methods are based more on the statistics and probabilities of things such as entire galaxy clusters Wilson Bappu effect Edit Main article Wilson Bappu effect Discovered in 1956 by Olin Wilson and M K Vainu Bappu the Wilson Bappu effect utilizes the effect known as spectroscopic parallax Many stars have features in their spectra such as the calcium K line that indicate their absolute magnitude The distance to the star can then be calculated from its apparent magnitude using the distance modulus There are major limitations to this method for finding stellar distances The calibration of the spectral line strengths has limited accuracy and it requires a correction for interstellar extinction Though in theory this method has the ability to provide reliable distance calculations to stars up to 7 megaparsecs Mpc it is generally only used for stars at hundreds of kiloparsecs kpc Classical Cepheids Edit Beyond the reach of the Wilson Bappu effect the next method relies on the period luminosity relation of classical Cepheid variable stars The following relation can be used to calculate the distance to Galactic and extragalactic classical Cepheids 5 log 10 d V 3 34 log 10 P 2 45 V I 7 52 displaystyle 5 log 10 d V 3 34 log 10 P 2 45 V I 7 52 32 5 log 10 d V 3 37 log 10 P 2 55 V I 7 48 displaystyle 5 log 10 d V 3 37 log 10 P 2 55 V I 7 48 33 Several problems complicate the use of Cepheids as standard candles and are actively debated chief among them are the nature and linearity of the period luminosity relation in various passbands and the impact of metallicity on both the zero point and slope of those relations and the effects of photometric contamination blending and a changing typically unknown extinction law on Cepheid distances 34 35 36 37 38 39 40 41 42 These unresolved matters have resulted in cited values for the Hubble constant ranging between 60 km s Mpc and 80 km s Mpc Resolving this discrepancy is one of the foremost problems in astronomy since some cosmological parameters of the Universe may be constrained significantly better by supplying a precise value of the Hubble constant 43 44 Cepheid variable stars were the key instrument in Edwin Hubble s 1923 conclusion that M31 Andromeda was an external galaxy as opposed to a smaller nebula within the Milky Way He was able to calculate the distance of M31 to 285 Kpc today s value being 770 Kpc citation needed As detected thus far NGC 3370 a spiral galaxy in the constellation Leo contains the farthest Cepheids yet found at a distance of 29 Mpc Cepheid variable stars are in no way perfect distance markers at nearby galaxies they have an error of about 7 and up to a 15 error for the most distant citation needed Supernovae Edit SN 1994D bright spot on the lower left in the NGC 4526 galaxy Image by NASA ESA The Hubble Key Project Team and The High Z Supernova Search Team There are several different methods for which supernovae can be used to measure extragalactic distances Measuring a supernova s photosphere Edit We can assume that a supernova expands in a spherically symmetric manner If the supernova is close enough such that we can measure the angular extent 8 t of its photosphere we can use the equationw D 8 D t displaystyle omega frac Delta theta Delta t where w is angular velocity 8 is angular extent In order to get an accurate measurement it is necessary to make two observations separated by time Dt Subsequently we can use d V e j w displaystyle d frac V ej omega where d is the distance to the supernova Vej is the supernova s ejecta s radial velocity it can be assumed that Vej equals V8 if spherically symmetric This method works only if the supernova is close enough to be able to measure accurately the photosphere Similarly the expanding shell of gas is in fact not perfectly spherical nor a perfect blackbody Also interstellar extinction can hinder the accurate measurements of the photosphere This problem is further exacerbated by core collapse supernova All of these factors contribute to the distance error of up to 25 Type Ia light curves Edit Type Ia supernovae are some of the best ways to determine extragalactic distances Ia s occur when a binary white dwarf star begins to accrete matter from its companion star As the white dwarf gains matter eventually it reaches its Chandrasekhar limit of 1 4 M displaystyle 1 4M odot Once reached the star becomes unstable and undergoes a runaway nuclear fusion reaction Because all Type Ia supernovae explode at about the same mass their absolute magnitudes are all the same This makes them very useful as standard candles All Type Ia supernovae have a standard blue and visual magnitude of M B M V 19 3 0 3 displaystyle M B approx M V approx 19 3 pm 0 3 Therefore when observing a Type Ia supernova if it is possible to determine what its peak magnitude was then its distance can be calculated It is not intrinsically necessary to capture the supernova directly at its peak magnitude using the multicolor light curve shape method MLCS the shape of the light curve taken at any reasonable time after the initial explosion is compared to a family of parameterized curves that will determine the absolute magnitude at the maximum brightness This method also takes into effect interstellar extinction dimming from dust and gas Similarly the stretch method fits the particular supernovae magnitude light curves to a template light curve This template as opposed to being several light curves at different wavelengths MLCS is just a single light curve that has been stretched or compressed in time By using this Stretch Factor the peak magnitude can be determined 45 Using Type Ia supernovae is one of the most accurate methods particularly since supernova explosions can be visible at great distances their luminosities rival that of the galaxy in which they are situated much farther than Cepheid Variables 500 times farther Much time has been devoted to the refining of this method The current uncertainty approaches a mere 5 corresponding to an uncertainty of just 0 1 magnitudes Novae in distance determinations Edit Novae can be used in much the same way as supernovae to derive extragalactic distances There is a direct relation between a nova s max magnitude and the time for its visible light to decline by two magnitudes This relation is shown to be M V max 9 96 2 31 log 10 x displaystyle M V max 9 96 2 31 log 10 dot x Where x displaystyle dot x is the time derivative of the nova s mag describing the average rate of decline over the first 2 magnitudes After novae fade they are about as bright as the most luminous Cepheid variable stars therefore both these techniques have about the same max distance 20 Mpc The error in this method produces an uncertainty in magnitude of about 0 4 Globular cluster luminosity function Edit This section does not cite any sources Please help improve this section by adding citations to reliable sources Unsourced material may be challenged and removed July 2022 Learn how and when to remove this template message Based on the method of comparing the luminosities of globular clusters located in galactic halos from distant galaxies to that of the Virgo Cluster the globular cluster luminosity function carries an uncertainty of distance of about 20 or 0 4 magnitudes US astronomer William Alvin Baum first attempted to use globular clusters to measure distant elliptical galaxies He compared the brightest globular clusters in Virgo A galaxy with those in Andromeda assuming the luminosities of the clusters were the same in both Knowing the distance to Andromeda Baum has assumed a direct correlation and estimated Virgo A s distance Baum used just a single globular cluster but individual formations are often poor standard candles Canadian astronomer Rene Racine assumed the use of the globular cluster luminosity function GCLF would lead to a better approximation The number of globular clusters as a function of magnitude is given by F m A e m m 0 2 2 s 2 displaystyle Phi m Ae m m 0 2 2 sigma 2 where m0 is the turnover magnitude M0 is the magnitude of the Virgo cluster and sigma is the dispersion 1 4 mag It is assumed that globular clusters all have roughly the same luminosities within the universe There is no universal globular cluster luminosity function that applies to all galaxies Planetary nebula luminosity function Edit This section does not cite any sources Please help improve this section by adding citations to reliable sources Unsourced material may be challenged and removed July 2022 Learn how and when to remove this template message Like the GCLF method a similar numerical analysis can be used for planetary nebulae within far off galaxies The planetary nebula luminosity function PNLF was first proposed in the late 1970s by Holland Cole and David Jenner They suggested that all planetary nebulae might all have similar maximum intrinsic brightness now calculated to be M 4 53 This would therefore make them potential standard candles for determining extragalactic distances Astronomer George Howard Jacoby and his colleagues later proposed that the PNLF function equaled N M e 0 307 M 1 e 3 M M displaystyle N M propto e 0 307M 1 e 3 M M Where N M is number of planetary nebula having absolute magnitude M M is equal to the nebula with the brightest magnitude Surface brightness fluctuation method Edit This section does not cite any sources Please help improve this section by adding citations to reliable sources Unsourced material may be challenged and removed July 2022 Learn how and when to remove this template message Galaxy cluster The following method deals with the overall inherent properties of galaxies These methods though with varying error percentages have the ability to make distance estimates beyond 100 Mpc though it is usually applied more locally The surface brightness fluctuation SBF method takes advantage of the use of CCD cameras on telescopes Because of spatial fluctuations in a galaxy s surface brightness some pixels on these cameras will pick up more stars than others However as distance increases the picture will become increasingly smoother Analysis of this describes a magnitude of the pixel to pixel variation which is directly related to a galaxy s distance Sigma D relation Edit The Sigma D relation or S D relation used in elliptical galaxies relates the angular diameter D of the galaxy to its velocity dispersion It is important to describe exactly what D represents in order to understand this method It is more precisely the galaxy s angular diameter out to the surface brightness level of 20 75 B mag arcsec 2 This surface brightness is independent of the galaxy s actual distance from us Instead D is inversely proportional to the galaxy s distance represented as d Thus this relation does not employ standard candles Rather D provides a standard ruler This relation between D and S islog D 1 333 log S C displaystyle log D 1 333 log Sigma C where C is a constant which depends on the distance to the galaxy clusters 46 This method has the potential to become one of the strongest methods of galactic distance calculators perhaps exceeding the range of even the Tully Fisher method As of today however elliptical galaxies are not bright enough to provide a calibration for this method through the use of techniques such as Cepheids Instead calibration is done using more crude methods Overlap and scaling EditA succession of distance indicators which is the distance ladder is needed for determining distances to other galaxies The reason is that objects bright enough to be recognized and measured at such distances are so rare that few or none are present nearby so there are too few examples close enough with reliable trigonometric parallax to calibrate the indicator For example Cepheid variables one of the best indicators for nearby spiral galaxies cannot yet be satisfactorily calibrated by parallax alone though the Gaia space mission can now weigh in on that specific problem The situation is further complicated by the fact that different stellar populations generally do not have all types of stars in them Cepheids in particular are massive stars with short lifetimes so they will only be found in places where stars have very recently been formed Consequently because elliptical galaxies usually have long ceased to have large scale star formation they will not have Cepheids Instead distance indicators whose origins are in an older stellar population like novae and RR Lyrae variables must be used However RR Lyrae variables are less luminous than Cepheids and novae are unpredictable and an intensive monitoring program and luck during that program is needed to gather enough novae in the target galaxy for a good distance estimate Because the more distant steps of the cosmic distance ladder depend upon the nearer ones the more distant steps include the effects of errors in the nearer steps both systematic and statistical ones The result of these propagating errors means that distances in astronomy are rarely known to the same level of precision as measurements in the other sciences and that the precision necessarily is poorer for more distant types of object Another concern especially for the very brightest standard candles is their standardness how homogeneous the objects are in their true absolute magnitude For some of these different standard candles the homogeneity is based on theories about the formation and evolution of stars and galaxies and is thus also subject to uncertainties in those aspects For the most luminous of distance indicators the Type Ia supernovae this homogeneity is known to be poor 47 clarification needed however no other class of object is bright enough to be detected at such large distances so the class is useful simply because there is no real alternative The observational result of Hubble s Law the proportional relationship between distance and the speed with which a galaxy is moving away from us usually referred to as redshift is a product of the cosmic distance ladder Edwin Hubble observed that fainter galaxies are more redshifted Finding the value of the Hubble constant was the result of decades of work by many astronomers both in amassing the measurements of galaxy redshifts and in calibrating the steps of the distance ladder Hubble s Law is the primary means we have for estimating the distances of quasars and distant galaxies in which individual distance indicators cannot be seen See also Edit Space portalAraucaria Project Distance measure Orders of magnitude length Astronomical Standard rulerFootnotes Edit If the signal were to depend on the individual masses separately there would not be enough observable information in the signal at the lowest order to infer its intrinsic loudness This degeneracy between the masses therefore is crucial for the loudness measurement but it is no accident It has a fundamental origin in the scale free nature of gravity in Einstein s general relativity 18 References Edit The Astronomer 16 April 2013 Archived from the original on 9 May 2021 Retrieved 9 May 2021 Ash M E Shapiro I I Smith W B 1967 Astronomical constants and planetary ephemerides deduced from radar and optical observations The Astronomical Journal 72 338 Bibcode 1967AJ 72 338A doi 10 1086 110230 Perryman M A C et al 1999 The HIPPARCOS Catalogue Astronomy and Astrophysics 323 L49 L52 Bibcode 1997A amp A 323L 49P Harrington J D Villard R 10 April 2014 NASA s Hubble Extends Stellar Tape Measure 10 Times Farther Into Space NASA Archived from the original on 17 February 2019 Retrieved 17 October 2014 Riess A G Casertano S Anderson J MacKenty J Filippenko A V 2014 Parallax Beyond a Kiloparsec from Spatially Scanning the Wide Field Camera 3 on the Hubble Space Telescope The Astrophysical Journal 785 2 161 arXiv 1401 0484 Bibcode 2014ApJ 785 161R doi 10 1088 0004 637X 785 2 161 S2CID 55928992 Brown A G A et al Gaia collaboration August 2018 Gaia Data Release 2 Summary of the contents and survey properties Astronomy amp Astrophysics 616 A1 arXiv 1804 09365 Bibcode 2018A amp A 616A 1G doi 10 1051 0004 6361 201833051 B Baidyanath 2003 An Introduction to Astrophysics PHI Learning Private Limited ISBN 978 81 203 1121 3 Hubble finds Universe may be expanding faster than expected Archived from the original on 11 September 2018 Retrieved 3 June 2016 Hubble stretches the stellar tape measure ten times further ESA Hubble Images Archived from the original on October 30 2017 Retrieved April 12 2014 Popowski P Gould A 1998 Mathematics of Statistical Parallax and the Local Distance Scale arXiv astro ph 9703140 Bartel N et al 1994 The shape expansion rate and distance of supernova 1993J from VLBI measurements Nature 368 6472 610 613 Bibcode 1994Natur 368 610B doi 10 1038 368610a0 S2CID 4316734 Fernie J D December 1969 The Period Luminosity Relation A Historical Review Publications of the Astronomical Society of the Pacific 81 483 707 Bibcode 1969PASP 81 707F doi 10 1086 128847 ISSN 0004 6280 Finding the Distance to Stars Distance Modulus Australia Telescope National Facility Archived from the original on 2020 11 07 Retrieved 2020 11 02 Type Ia Supernova Weekly Topic Caglow Archived from the original on 29 February 2012 Retrieved 30 January 2012 Linden S Virey J M Tilquin A 2009 Cosmological parameter extraction and biases from type Ia supernova magnitude evolution Astronomy and Astrophysics 506 3 1095 1105 arXiv 0907 4495 Bibcode 2009A amp A 506 1095L doi 10 1051 0004 6361 200912811 S2CID 15178494 And references therein Cutler Curt Flanagan Eanna E 15 March 1994 Gravitational waves from merging compact binaries How accurately can one extract the binary s parameters from the inspiral waveform Physical Review D 49 6 2658 2697 arXiv gr qc 9402014 Bibcode 1994PhRvD 49 2658C doi 10 1103 PhysRevD 49 2658 PMID 10017261 S2CID 5808548 a b Holz Daniel E Hughes Scott A Schutz Bernard F December 2018 Measuring cosmic distances with standard sirens Physics Today 71 12 34 40 Bibcode 2018PhT 71l 34H doi 10 1063 PT 3 4090 ISSN 0031 9228 Forward Robert L Berman David 12 June 1967 Gravitational Radiation Detection Range for Binary Stellar Systems Physical Review Letters 18 24 1071 1074 Bibcode 1967PhRvL 18 1071F doi 10 1103 PhysRevLett 18 1071 ISSN 0031 9007 a b c Schutz Bernard F 25 September 1986 Determining the Hubble constant from gravitational wave observations Nature 323 6086 310 311 arXiv 1307 2638 Bibcode 1986Natur 323 310S doi 10 1038 323310a0 hdl 11858 00 001M 0000 0013 73C1 2 ISSN 0028 0836 S2CID 4327285 Hendry Martin Woan Graham February 2007 Gravitational astrophysics PDF Astronomy amp Geophysics 48 1 1 10 1 17 Bibcode 2007A amp G 48a 10H CiteSeerX 10 1 1 163 5500 doi 10 1111 j 1468 4004 2007 48110 x S2CID 8926158 Archived PDF from the original on 2012 12 22 Retrieved 2019 08 04 Nissanke Samaya Holz Daniel E Hughes Scott A Dalal Neal Sievers Jonathan L 2010 12 10 Exploring Short Gamma Ray Bursts as Gravitational Wave Standard Sirens The Astrophysical Journal 725 1 496 514 arXiv 0904 1017 Bibcode 2010ApJ 725 496N doi 10 1088 0004 637X 725 1 496 hdl 1721 1 60956 ISSN 0004 637X S2CID 14028891 Abbott B P et al LIGO Scientific Collaboration amp Virgo Collaboration 16 October 2017 A gravitational wave standard siren measurement of the Hubble constant Nature 551 7678 85 88 arXiv 1710 05835 Bibcode 2017Natur 551 85A doi 10 1038 nature24471 PMID 29094696 Marinoni C et al 2008 Geometrical tests of cosmological models I Probing dark energy using the kinematics of high redshift galaxies Astronomy and Astrophysics 478 1 43 55 arXiv 0710 0759 Bibcode 2008A amp A 478 43M doi 10 1051 0004 6361 20077116 Archived from the original on 2022 01 26 Retrieved 2019 10 23 Light echoes whisper the distance to a star Press release European Southern Observatory 11 February 2008 Archived from the original on 2015 09 24 Retrieved 2015 10 18 Kervella Pierre Merand Antoine Szabados Laszlo Fouque Pascal Bersier David Pompei Emanuela Perrin Guy 2 March 2008 The long period Galactic Cepheid RS Puppis I A geometric distance from its light echoes Astronomy and Astrophysics 480 1 167 178 arXiv 0802 1501 Bibcode 2008A amp A 480 167K doi 10 1051 0004 6361 20078961 we derive a geometric distance of 1992 28 pc to RS Pup Bond Howard E Sparks William B 4 March 2009 On geometric distance determination to the Cepheid RS Puppis from its light echoes Astronomy and Astrophysics 495 2 371 377 arXiv 0811 2943 Bibcode 2009A amp A 495 371B doi 10 1051 0004 6361 200810280 We conclude that most of the knots are in fact likely to lie in front of the plane of the sky thus invalidating the Kervella et al result Although the Kervella et al distance result is invalidated we show that high resolution polarimetric imaging has the potential to yield a valid geometric distance to this important Cepheid Kervella Pierre Bond Howard E Cracraft Misty Szabados Laszlo Breitfelder Joanne Merand2 Antoine Sparks William B Gallenne Alexandre Bersier David Fouque Pascal Anderson Richard I December 2014 The long period Galactic Cepheid RS Puppis III A geometric distance from HST polarimetric imaging of its light echoes Astronomy and Astrophysics 572 A7 13 pp arXiv 1408 1697 Bibcode 2014A amp A 572A 7K doi 10 1051 0004 6361 201424395 We obtain a distance of 1910 80 pc 4 2 Bonanos A Z 2006 Eclipsing Binaries Tools for Calibrating the Extragalactic Distance Scale Proceedings of IAU Symposium 240 79 87 arXiv astro ph 0610923 Bibcode 2007IAUS 240 79B CiteSeerX 10 1 1 254 2692 doi 10 1017 S1743921307003845 S2CID 18827791 Ferrarese L et al 2000 A Database of Cepheid Distance Moduli and Tip of the Red Giant Branch Globular Cluster Luminosity Function Planetary Nebula Luminosity Function and Surface Brightness Fluctuation Data Useful for Distance Determinations The Astrophysical Journal Supplement Series 128 2 431 459 arXiv astro ph 9910501 Bibcode 2000ApJS 128 431F doi 10 1086 313391 S2CID 121612286 Colgate S A 1979 Supernovae as a standard candle for cosmology Astrophysical Journal 232 1 404 408 Bibcode 1979ApJ 232 404C doi 10 1086 157300 Adapted from George H Jacoby David Branch Robin Ciardullo Roger L Davies William E Harris Michael J Pierce Christopher J Pritchet John L Tonry Douglas L Welch 1992 A critical review of selected techniques for measuring extragalactic distances Publications of the Astronomical Society of the Pacific 104 678 599 662 Bibcode 1992PASP 104 599J doi 10 1086 133035 JSTOR 40679907 Benedict G Fritz et al Hubble Space Telescope Fine Guidance Sensor Parallaxes of Galactic Cepheid Variable Stars Period Luminosity Relations Archived 2016 01 23 at the Wayback Machine The Astronomical Journal Volume 133 Issue 4 pp 1810 1827 2007 Majaess Daniel Turner David Moni Bidin Christian Mauro Francesco Geisler Douglas Gieren Wolfgang Minniti Dante Chene Andre Nicolas Lucas Philip Borissova Jura Kurtev Radostn Dekany Istvan Saito Roberto K New Evidence Supporting Membership for TW Nor in Lynga 6 and the Centaurus Spiral Arm Archived 2017 03 10 at the Wayback Machine ApJ Letters Volume 741 Issue 2 article id L2 2011 Stanek K Z Udalski A 1999 The Optical Gravitational Lensing Experiment Investigating the Influence of Blending on the Cepheid Distance Scale with Cepheids in the Large Magellanic Cloud arXiv astro ph 9909346 Udalski A Wyrzykowski L Pietrzynski G Szewczyk O Szymanski M Kubiak M Soszynski I Zebrun K 2001 The Optical Gravitational Lensing Experiment Cepheids in the Galaxy IC1613 No Dependence of the Period Luminosity Relation on Metallicity Acta Astronomica 51 221 arXiv astro ph 0109446 Bibcode 2001AcA 51 221U Ngeow C Kanbur S M 2006 The Hubble Constant from Type Ia Supernovae Calibrated with the Linear and Nonlinear Cepheid Period Luminosity Relations The Astrophysical Journal 642 1 L29 arXiv astro ph 0603643 Bibcode 2006ApJ 642L 29N doi 10 1086 504478 S2CID 17860528 Macri L M Stanek K Z Bersier D Greenhill L J Reid M J 2006 A New Cepheid Distance to the Maser Host Galaxy NGC 4258 and Its Implications for the Hubble Constant The Astrophysical Journal 652 2 1133 1149 arXiv astro ph 0608211 Bibcode 2006ApJ 652 1133M doi 10 1086 508530 S2CID 15728812 Bono G Caputo F Fiorentino G Marconi M Musella I 2008 Cepheids in External Galaxies I The Maser Host Galaxy NGC 4258 and the Metallicity Dependence of Period Luminosity and Period Wesenheit Relations The Astrophysical Journal 684 1 102 arXiv 0805 1592 Bibcode 2008ApJ 684 102B doi 10 1086 589965 S2CID 6275274 Majaess D Turner D Lane D 2009 Type II Cepheids as Extragalactic Distance Candles Acta Astronomica 59 4 403 arXiv 0909 0181 Bibcode 2009AcA 59 403M Madore Barry F Freedman Wendy L 2009 Concerning the Slope of the Cepheid Period Luminosity Relation The Astrophysical Journal 696 2 1498 1501 arXiv 0902 3747 Bibcode 2009ApJ 696 1498M doi 10 1088 0004 637X 696 2 1498 S2CID 16325249 Scowcroft V Bersier D Mould J R Wood P R 2009 The effect of metallicity on Cepheid magnitudes and the distance to M33 Monthly Notices of the Royal Astronomical Society 396 3 43 47 arXiv 0903 4088 Bibcode 2009MNRAS 396 1287S doi 10 1111 j 1365 2966 2009 14822 x Majaess D 2010 The Cepheids of Centaurus A NGC 5128 and Implications for H0 Acta Astronomica 60 2 121 arXiv 1006 2458 Bibcode 2010AcA 60 121M Tammann G A Sandage A Reindl B 2008 The expansion field The value of H 0 Annual Review of Astronomy and Astrophysics 15 4 289 arXiv 0806 3018 Bibcode 2008A amp ARv 15 289T doi 10 1007 s00159 008 0012 y S2CID 18463474 Freedman Wendy L Madore Barry F 2010 The Hubble Constant Annual Review of Astronomy and Astrophysics 48 673 710 arXiv 1004 1856 Bibcode 2010ARA amp A 48 673F doi 10 1146 annurev astro 082708 101829 S2CID 119263173 Coelho R et al 2015 Standardization of type Ia supernovae European Journal of Physics 36 1 015007 arXiv 1411 3596 Bibcode 2015EJPh 36a5007C doi 10 1088 0143 0807 36 1 015007 S2CID 119096479 Dressler Alan 1987 The Dn sigma relation for bulges of disk galaxies A new independent measure of the Hubble constant The Astrophysical Journal 317 1 Bibcode 1987ApJ 317 1D doi 10 1086 165251 ISSN 0004 637X Archived from the original on 2018 06 10 Retrieved 2021 06 06 Gilfanov Marat Bogdan Akos 2010 An upper limit on the contribution of accreting white dwarfs to the type Ia supernova rate Nature 463 3 924 925 arXiv 1002 3359 Bibcode 2010Natur 463 924G doi 10 1038 nature08685 PMID 20164924 S2CID 4389201 Bibliography EditCarroll Bradley W Ostlie Dale A 2014 An Introduction to Modern Astrophysics Harlow United Kingdom Pearson Education Limited ISBN 978 1 292 02293 2 Measuring the Universe The Cosmological Distance Ladder Stephen Webb copyright 2001 Pasachoff J M Filippenko A 2013 The Cosmos Astronomy in the New Millennium 4th ed Cambridge Cambridge University Press ISBN 978 1 107 68756 1 The Astrophysical Journal The Globular Cluster Luminosity Function as a Distance Indicator Dynamical Effects Ostriker and Gnedin May 5 1997 An Introduction to Distance Measurement in Astronomy Richard de Grijs Chichester John Wiley amp Sons 2011 ISBN 978 0 470 51180 0 External links EditThe ABC s of distances UCLA The Extragalactic Distance Scale by Bill Keel The Hubble Space Telescope Key Project on the Extragalactic Distance Scale The Hubble Constant a historical discussion NASA Cosmic Distance Scale PNLF information database The Astrophysical Journal Retrieved from https en wikipedia org w index php title Cosmic distance ladder amp oldid 1132408625, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.