fbpx
Wikipedia

Surface brightness fluctuation

Surface brightness fluctuation (SBF) is a secondary distance indicator used to estimate distances to galaxies. It is useful to 100 Mpc (parsec). The method measures the variance in a galaxy's light distribution arising from fluctuations in the numbers of and luminosities of individual stars per resolution element.

The SBF technique uses the fact that galaxies are made up of a finite number of stars. The number of stars in any small patch of a galaxy will vary from point to point, creating a noise-like fluctuation in its surface brightness. While the various stars present in a galaxy will cover an enormous range of luminosity, the SBF can be characterized as having an average brightness. A galaxy twice as far away appears twice as smooth as a result of the averaging. Older elliptical galaxies have fairly consistent stellar populations, thus it closely approximates a standard candle. In practice, corrections are required to account for variations in age or metallicity from galaxy to galaxy. Calibration of the method is made empirically from Cepheids or theoretically from stellar population models.

The SBF pattern is measured from the power spectrum of the residuals left behind from a deep galaxy image after a smooth model of the galaxy has been subtracted. The SBF pattern is evident as the transform of the point spread function in the Fourier domain. The amplitude of the spectrum gives the luminosity of the fluctuation star. Because the technique depends on a precise understanding of the image structure of the galaxy, extraneous sources such as globular clusters and background galaxies must be excluded. Corrections for interstellar dust absorption must also be accounted. In practice this means that SBF works best for elliptical galaxies or the bulges of S0 galaxies, and less so for spiral galaxies as they generally have complex morphologies and extensive dust features.

SBF is calibrated by use of nearby Cepheid period-luminosity relation (P-L) based on measurements of SBF magnitudes in the bulges of spiral galaxies with distances measured from Cepheid variables.[1][2]

SBF is an indicator that uses stars in the old stellar populations (Population II).[3]

References edit

  1. ^ Tonry, John L.; Dressler, Alan; Blakeslee, John P.; Ajhar, Edward A.; Fletcher, Andre B.; Luppino, Gerard A.; Metzger, Mark R.; Moore, Christopher B. (2001), "The SBF Survey of Galaxy Distances. IV. SBF Magnitudes, Colors, and Distances", Astrophysical Journal, 546 (2): 681–693, arXiv:astro-ph/0011223, Bibcode:2001ApJ...546..681T, doi:10.1086/318301, S2CID 17628238
  2. ^ Macri, L. M.; Stanek, K. Z.; Bersier, D.; Greenhill, L. J.; Reid, M. J. (2006), "A New Cepheid Distance to the Maser-Host Galaxy NGC 4258 and Its Implications for the Hubble Constant", Astrophysical Journal, 652 (2): 1133–1149, arXiv:astro-ph/0608211, Bibcode:2006ApJ...652.1133M, doi:10.1086/508530, S2CID 15728812
  3. ^ Ferrarese, Laura; Ford, Holland C.; Huchra, John; Kennicutt, Robert C. Jr.; Mould, Jeremy R.; Sakai, Shoko; Freedman, Wendy L.; Stetson, Peter B.; Madore, Barry F.; Gibson, Brad K.; Graham, John A.; Hughes, Shaun M.; Illingworth, Garth D.; Kelson, Daniel D.; Macri, Lucas; Sebo, Kim; Silbermann, N. A. (2000), "A Database of Cepheid Distance Moduli and Tip of the Red Giant Branch, Globular Cluster Luminosity Function, Planetary Nebula Luminosity Function, and Surface Brightness Fluctuation Data Useful for Distance Determinations", The Astrophysical Journal Supplement Series, 128 (2): 431–459, arXiv:astro-ph/9910501, Bibcode:2000ApJS..128..431F, doi:10.1086/313391, S2CID 121612286.

surface, brightness, fluctuation, secondary, distance, indicator, used, estimate, distances, galaxies, useful, parsec, method, measures, variance, galaxy, light, distribution, arising, from, fluctuations, numbers, luminosities, individual, stars, resolution, e. Surface brightness fluctuation SBF is a secondary distance indicator used to estimate distances to galaxies It is useful to 100 Mpc parsec The method measures the variance in a galaxy s light distribution arising from fluctuations in the numbers of and luminosities of individual stars per resolution element The SBF technique uses the fact that galaxies are made up of a finite number of stars The number of stars in any small patch of a galaxy will vary from point to point creating a noise like fluctuation in its surface brightness While the various stars present in a galaxy will cover an enormous range of luminosity the SBF can be characterized as having an average brightness A galaxy twice as far away appears twice as smooth as a result of the averaging Older elliptical galaxies have fairly consistent stellar populations thus it closely approximates a standard candle In practice corrections are required to account for variations in age or metallicity from galaxy to galaxy Calibration of the method is made empirically from Cepheids or theoretically from stellar population models The SBF pattern is measured from the power spectrum of the residuals left behind from a deep galaxy image after a smooth model of the galaxy has been subtracted The SBF pattern is evident as the transform of the point spread function in the Fourier domain The amplitude of the spectrum gives the luminosity of the fluctuation star Because the technique depends on a precise understanding of the image structure of the galaxy extraneous sources such as globular clusters and background galaxies must be excluded Corrections for interstellar dust absorption must also be accounted In practice this means that SBF works best for elliptical galaxies or the bulges of S0 galaxies and less so for spiral galaxies as they generally have complex morphologies and extensive dust features SBF is calibrated by use of nearby Cepheid period luminosity relation P L based on measurements of SBF magnitudes in the bulges of spiral galaxies with distances measured from Cepheid variables 1 2 SBF is an indicator that uses stars in the old stellar populations Population II 3 References edit Tonry John L Dressler Alan Blakeslee John P Ajhar Edward A Fletcher Andre B Luppino Gerard A Metzger Mark R Moore Christopher B 2001 The SBF Survey of Galaxy Distances IV SBF Magnitudes Colors and Distances Astrophysical Journal 546 2 681 693 arXiv astro ph 0011223 Bibcode 2001ApJ 546 681T doi 10 1086 318301 S2CID 17628238 Macri L M Stanek K Z Bersier D Greenhill L J Reid M J 2006 A New Cepheid Distance to the Maser Host Galaxy NGC 4258 and Its Implications for the Hubble Constant Astrophysical Journal 652 2 1133 1149 arXiv astro ph 0608211 Bibcode 2006ApJ 652 1133M doi 10 1086 508530 S2CID 15728812 Ferrarese Laura Ford Holland C Huchra John Kennicutt Robert C Jr Mould Jeremy R Sakai Shoko Freedman Wendy L Stetson Peter B Madore Barry F Gibson Brad K Graham John A Hughes Shaun M Illingworth Garth D Kelson Daniel D Macri Lucas Sebo Kim Silbermann N A 2000 A Database of Cepheid Distance Moduli and Tip of the Red Giant Branch Globular Cluster Luminosity Function Planetary Nebula Luminosity Function and Surface Brightness Fluctuation Data Useful for Distance Determinations The Astrophysical Journal Supplement Series 128 2 431 459 arXiv astro ph 9910501 Bibcode 2000ApJS 128 431F doi 10 1086 313391 S2CID 121612286 Retrieved from https en wikipedia org w index php title Surface brightness fluctuation amp oldid 1215917898, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.