fbpx
Wikipedia

Discovery and development of dipeptidyl peptidase-4 inhibitors

Dipeptidyl peptidase-4 inhibitors (DPP-4 inhibitors) are enzyme inhibitors that inhibit the enzyme dipeptidyl peptidase-4 (DPP-4). They are used in the treatment of type 2 diabetes mellitus. Inhibition of the DPP-4 enzyme prolongs and enhances the activity of incretins that play an important role in insulin secretion and blood glucose control regulation.[1] Type 2 diabetes mellitus is a chronic metabolic disease that results from inability of the β-cells in the pancreas to secrete sufficient amounts of insulin to meet the body's needs. Insulin resistance and increased hepatic glucose production can also play a role by increasing the body's demand for insulin. Current treatments, other than insulin supplementation, are sometimes not sufficient to achieve control and may cause undesirable side effects, such as weight gain and hypoglycemia. In recent years, new drugs have been developed, based on continuing research into the mechanism of insulin production and regulation of the metabolism of sugar in the body. The enzyme DPP-4 has been found to play a significant role.[2]

History edit

Since its discovery in 1967, serine protease DPP-4 has been a popular subject of research.[2] Inhibitors of DPP-4 have long been sought as tools to elucidate the functional significance of the enzyme. The first inhibitors were characterized in the late 1980s and 1990s. Each inhibitor was important to establish an early structure activity relationship (SAR) for subsequent investigation. The inhibitors fall into two main classes, those that interact covalently with DPP-4 and those that do not.[3] DPP-4 is a dipeptidase that selectively binds substrates that contain proline at the P1-position, thus many DPP-4 inhibitors have 5-membered heterocyclic rings that mimic proline, e.g. pyrrolidine, cyanopyrrolidine, thiazolidine and cyanothiazolidine.[4][5] These compounds commonly form covalent bonds to the catalytic residue Ser630.[5]

In 1994, researchers from Zeria Pharmaceuticals unveiled cyanopyrrolidines with a nitrile function group that was assumed to form an imidate with the catalytic serine. Concurrently other DPP-4 inhibitors without a nitrile group were published but they contained other serine-interacting motifs, e.g. boronic acids, phosphonates or diacyl hydroxylamines. These compounds were not as potent because of the similarity of DPP-4 and prolyl oligopeptidase (PEP) and also suffered from chemical instability. Ferring Pharmaceuticals filed for patent on two cyanopyrrolidine DPP-4 inhibitors, which they published in 1995. These compounds had excellent potency and improved chemical stability.

In 1995, Edwin B. Villhauer at Novartis started to explore N-substituted glycinyl-cyanopyrrolidines based on the fact that DPP-4 identifies N-methylglycine as an N-terminal amino acid. This group of new cyanopyrrolidines became extremely popular field of research in the following years. Some trials with dual inhibitors of DPP-4 and vasopeptidase have been represented, since vasopeptidase inhibition is believed to enhance the antidiabetic effect of DPP-4 inhibition by stimulating insulin secretion. Vasopeptidase-inhibiting motif is connected to the DPP-4 inhibitor at the N-substituent.[3][6]

DPP-4 mechanism edit

 

Fig.1: During a meal, the incretins glucagon-like peptide 1 (GLP-1) and glucose-dependent gastric inhibitory polypeptide (GIP) are released by the small intestine into the blood stream. These hormones regulate insulin secretion in a glucose-dependent manner. (GLP-1 has many roles in the human body. It stimulates insulin biosynthesis, inhibits glucagon secretion, slows gastric emptying, reduces appetite and stimulates regeneration of islet β-cells.)

GLP-1 and GIP have extremely short plasma half-lives due to very rapid inactivation, catalyzed by the enzyme DPP-4. Inhibition of DPP-4 slows their inactivation, thereby potentiating their action, leading to lower plasma glucose levels, hence its utility in the treatment of type 2 diabetes. (Figure 1).[2][7]

DPP-4 distribution and function edit

 
Fig.2: DPP-4 cleaves two amino acids from the N-terminal end of peptides, such as GLP-1.

DPP-4 is attached to the plasma membrane of the endothelium of almost every organ in the body. Tissues which strongly express DPP-4 include the exocrine pancreas, sweat glands, salivary and mammary glands, thymus, lymph nodes, biliary tract, kidney, liver, placenta, uterus, prostate, skin, and the capillary bed of the gut mucosa (where most GLP-1 is inactivated locally). It is also present, in soluble form, in body fluids, such as blood plasma and cerebrospinal fluid. (It also happens that DPP-4 is the CD26 T-cell activating antigen.)

DPP-4 selectively cleaves two amino acids from peptides, such as GLP-1 and GIP, which have proline or alanine in the second position (Figure 2). At the active site where DPP-4 has its effect, there is a characteristic arrangement of three amino acids, Asp-His-Ser. Since alanine and proline are crucial for the biological activity of GPL-1 and GIP, they are inactivated by cleaving away these amino acids. Thus, preventing the degradation of the incretin hormones GLP-1 and GIP by inhibition of DPP-4 has potential as a therapeutic strategy in the treatment of type 2 diabetes.[1][8]

DPP-4 characteristics edit

Since DPP-4 is a protease, it is not unexpected that inhibitors would likely have a peptide nature and this theme has carried through to contemporary research.[3]

Structure edit

X-ray structures of DPP-4 that have been published since 2003 give rather detailed information about the structural characteristics of the binding site. Many structurally diverse DPP-4 inhibitors have been discovered and it is not that surprising considering the properties of the binding site:[9]

1. A deep lipophilic pocket combined with several exposed aromatic side chains for achieving high affinity small molecule binding.

2. A significant solvent access that makes it possible to tune the physico-chemical properties of the inhibitors that leads to better pharmacokinetic behavior.

DPP-4 is a 766-amino acid transmembrane glycoprotein that belongs to the prolyloligopeptidase family. It consists of three parts; a cytoplasmic tail, a transmembrane region and an extracellular part. The extracellular part is divided into a catalytic domain and an eight-bladed β-propeller domain. The latter contributes to the inhibitor binding site. The catalytic domain shows an α/β-hydrolase fold and contains the catalytic triad Ser630 - Asp708 - His740. The S1-pocket is very hydrophobic and is composed of the side chains: Tyr631, Val656, Trp662, Tyr666 and Val711. Existing X-ray structures show that there is not much difference in size and shape of the pocket that indicates that the S1-pocket has high specificity for proline residues[9][8]

Binding site edit

 
Fig.3: The key interactions between the ligand and DPP-4 complex. The ligand's basic amine forms a hydrogen bonding network. The nitrile reacts with the catalytic active serine and forms an imidate adduct

DPP-4 inhibitors usually have an electrophilic group that can interact with the hydroxyl of the catalytic serine in the active binding site (Figure 3). Frequently that group is a nitrile group but can also be boronic acid or diphenyl phosphonate. This electrophilic group can bind to the imidate complex with covalent bonds and slow, tight-binding kinetics but this group is also responsible for stability issues due to reactions with the free amino group of the P2-amino acid. Therefore, inhibitors without the electrophilic group have also been developed, but these molecules have shown toxicity due to affinity to other dipeptidyl peptidases, e.g. DPP-2, DPP-8 and DPP-9.[10]

DPP-4 inhibitors span diverse structural types. In 2007 few of the most potent compounds contain a proline mimetic cyanopyrrolidine P1 group. This group enhances the potency, probably due to a transient covalent trapping of the nitrile group by the active site Ser630 hydroxyl, leading to delayed dissociation and slow tight binding of certain inhibitors. When these potency enhancements were achieved, some chemical stability issues were noted and more advanced molecules had to be made. To avoid these stability issues, the possibility to exclude the nitrile group was investigated. Amino acids with aryl or polar side chains did not show appreciable DPP-4 inhibition and in fact, all compounds without the nitrile group in this research suffered a 20 to 50-fold loss of potency corresponding to the compounds containing the nitrile group.[11]

Discovery and development edit

It is important to find a fast and accurate system to discover new DPP-4 inhibitors with ideal therapeutic profiles. High throughput screening (HTS) usually gives low hit rates in identifying the inhibitors but virtual screening (VS) can give higher rates. VS has for example been used to screen for small primary aliphatic amines to identify fragments that could be placed in S1 and S2 sites of DPP-4. On the other hand, these fragments were not very potent and therefore identified as a starting point to design better ones. Three-dimensional models can provide a useful tool for designing novel DPP-4 inhibitors. Pharmacophore models have been made based on key chemical features of compounds with DPP-4 inhibitory activity. These models can provide a hypothetical picture of the primary chemical feature responsible for inhibitory activity.[5] The first DPP-4 inhibitors were reversible inhibitors and came with bad side effects because of low selectivity. Researchers suspected that inhibitors with short half-lives would be preferred in order to minimize possible side effects. However, since clinical trials showed the opposite, the latest DPP-4 inhibitors have a long-lasting effect. One of the first reported DPP-4 inhibitor was P32/98 from Merck. It used thiazolidide as the P1-substitute and was the first DPP-4 inhibitor that showed effects in both animals and humans but it was not developed to a market drug due to side effects. Another old inhibitor is DPP-728 from Novartis, where 2-cyanopyrrolidine is used as the P1-substitute. The addition of the cyano group generally increases the potency. Therefore, researchers' attention was directed to those compounds. Usually, DPP-4 inhibitors are either substrate-like or non-substrate-like.[12]

 
Fig.4: A generic structure of a substrate-like inhibitor

Substrate-like inhibitors edit

Substrate-like inhibitors (Figure 4) are more common than the non-substrate-likes. They bind either covalently or non-covalently and have a basic structure where the P1-substituent occupies the S1-pocket and the P2-substituent occupies the S2-pocket. Usually they contain a proline mimetic that occupies the S1-pocket. Large substituents on the 2-cyanopyrrolidine ring are normally not tolerated since the S1-pocket is quite small.[12] Since DPP-4 is identical with the T-cell activation marker CD26 and DPP-4 inhibitors are known to inhibit T-cell proliferation, these compounds were initially thought to be potential immunomodulators. When the function against type 2 diabetes was discovered, the cyanopyrrolidines became a highly popular research material. A little later vildagliptin and saxagliptin, which are the most developed cyanopyrrolidine DPP-4 inhibitors to date, were discovered.[6]

Cyanopyrrolidines edit

Cyanopyrrolidines have two key interactions to the DPP-4 complex:[6]

1. Nitrile in the position of the scissile bond of the peptidic substrate that is important for high potency. The nitrile group forms reversible covalent bonds with the catalytically active serine hydroxyl (Ser630), i.e. cyanopyrrolidines are competitive inhibitors with slow dissociation kinetics.

2. Hydrogen bonding network between the protonated amino group and a negatively charged region of the protein surface, Glu205, Glu206 and Tyr662. All cyanopyrrolidines have basic, primary or secondary amine, which makes this network possible but these compounds usually drop in potency if these amines are changed. Nonetheless, two patent applications unveil that the amino group can be changed, i.e. replaced by a hydrazine, but it is claimed that these compounds do not only act via DPP-4 inhibition but also prevent diabetic vascular complications by acting as a radical scavenger.

Structure-activity relationship (SAR) edit

Important structure-activity relationship:[11]

1. Strict steric constraint exists around the pyrrolidine ring of cyanopyrrolidine-based inhibitors, with only hydrogen, fluoro, acetylene, nitrile, or methano substitution permitted.

2. Presence of a nitrile moiety on the pyrrolidine ring is critical to achieving potent activity

Also, systematic SAR investigation has shown that the ring size and stereochemistry for the P2 position is quite conditioned. A 5-membered ring and L-configuration has shown better results than a 4-membered or 6-membered ring with D-configuration. Only minor changes on the pyrrolidine ring can be tolerated, since the good fit of the ring with the hydrophobic S1 pocket is very important for high affinity. Some trials have been made, e.g. by replacing the pyrrolidine with a thiazoline. That led to improved potency but also loss of chemical stability. Efforts to improve chemical stability often led to loss of specificity because of interactions with DPP-8 and DPP-9. These interactions have been connected with increased toxicity and mortality in animals. There are strict limitations in the P1 position and hardly any changes are tolerated. On the other hand, a variety of changes can be made in the P2 position. In fact, substitution with quite big branched side chains, e.g. tert-butylglycin, normally increased activity and chemical stability, which could lead to longer-lasting inhibition of the DPP-4 enzyme. It has also been noted that biaryl-based side chains can also give highly active inhibitors. It was originally believed that only lipophilic substitution would be tolerated. Now it is stated that also the substitution of polar negatively charged side-chains as well as hydrophilic substitution can lead to excellent inhibitory activity.[6]

Chemical stability edit
 
Fig.5: Trans-rotamers are more stable then cis-rotamers. Cis-rotamers undergo intramolecular cyclization.

In general, DPP-4 inhibitors are not very stable compounds. Therefore, many researchers focus on enhancing the stability for cyanopyrrolidines. The most widespread technique to improve chemical stability is to incorporate a steric bulk. The two cyanopyrrolidines that have been most pronounced, vildagliptin and saxagliptin, were created in this manner. K579 is a DPP-4 inhibitor discovered by researchers at Kyowa Hakko Kyogo. It had improved not only chemical stability but also a longer-lasting action. That long-lasting action was most likely due to slow dissociation of the enzyme-inhibitor complex and an active oxide metabolite that undergoes enterohepatic circulation. The discovery of the active oxide was in fact a big breakthrough as it led to the development of vildagliptin and saxagliptin. One major problem in DPP-4 inhibitor stability is intramolecular cyclization. The precondition for the intramolecular cyclization is the conversion of the trans-rotamer, which is the DPP-4 binding rotamer (Figure 5). Thus, preventing this conversion will increase stability. This prevention was successful when incorporating an amide group into a ring, creating a compound that kept the DPP-4 inhibitory activity that, did not undergo the intramolecular cyclization and was even more selective over different DPP enzymes. It has also been reported that a cyanoazetidine in the P1 position and a β-amino acid in the P2 position increased stability.[6]

Vildagliptin edit

Vildagliptin (Galvus)(Figure 6) was first synthesized in May 1998 and was named after Edwin B. Villhauer. It was discovered when researchers at Novartis examined adamantyl derivatives that had proven to be very potent. The adamantyl group worked as a steric bulk and slowed intramolecular cyclization while increasing chemical stability. Furthermore, the primary metabolites were highly active. To avoid additional chiral center a hydroxylation at the adamantyl ring was carried out (Figure 6). The product, vildagliptin, was even more stable, undergoing intramolecular cyclization 30-times slower, and having high DPP-4 inhibitory activity and longer-lasting pharmacodynamic effect.[6]

Saxagliptin edit
 
Fig.6: The basic structure of cyanopyrrolidines compared with vildagliptin, saxagliptin, and denagliptin

Researchers at Bristol-Myers Squibb found that increased steric bulk of the N-terminal amino acid side-chain led to increased stability. To additionally increase stability the trans-rotamer was stabilized with a cis-4,5-methano substitution of the pyrrolidine ring, resulting in an intramolecular van-der-Waals interaction, thus preventing intramolecular cyclisation. Because of that increased stability, the researchers continued their investigation on cis-4,5-methano cyanopyrrolidines and came across with a new adamantyl derivative, which showed extraordinary ex vivo DPP-4 inhibition in rat plasma. Also noted, high microsomal turnover rate which indicated that the derivative was quickly converted to an active metabolite. After hydroxylation on the adamantyl group they had a product with better microsomal stability and improved chemical stability. That product was named saxagliptin (Onglyza) (Figure 6).[6] In June 2008 AstraZeneca and Bristol-Myers Squibb submitted a new drug application for Onglyza in the United States and a marketing authorization application in Europe.[13] Approval was granted in the United States by the FDA in July 2009 for Onglyza 5 mg and Onglyza 2.5 mg. This was later combined with extended-release metformin (taken once daily) and approved by the FDA in January 2011 under the trade name Kombiglyze XR.

Denagliptin edit

Denagliptin (Figure 6) is an advanced compound with a branched side-chain at the P2 position, but also has (4S)-fluoro substitution on the cyanopyrrolidine ring.[6] It is a well-known DPP-4 inhibitor developed by GlaxoSmithKline (GSK). Biological evaluations have shown that the S-configuration of the amino acid portion is essential for the inhibitory activity since the R-configuration showed reluctantly inhibition. These findings will be useful in future designs and synthesis of DPP-4 inhibitors.[14] GSK suspended Phase III clinical trials in October 2008.[15]

Azetidine based compounds edit

Informations for this group of inhibitors are quite restricted. Azetidine-based DPP-4 inhibitors can roughly be grouped into three main subcategories: 2-cyanoazetidines, 3-fluoroazetidines, and 2-ketoazetidines. The most potent ketoazetidines and cyanoazetidines have large hydrophobic amino acid groups bound to the azetidine nitrogen and are active below 100nM.[16]

Non-substrate-like inhibitors edit

Non-substrate-like inhibitors do not take after dipeptidic nature of DPP-4 substrates. They are non-covalent inhibitors and usually have an aromatic ring that occupies the S1-pocket, instead of the proline mimetic.[12]

In 1999, Merck started a drug development program on DPP-4 inhibitors. When they started internal screening and medicinal chemistry program, two DPP-4 inhibitors were already in clinical trials, isoleucyl thiazolidide (P32/38) and NVP-DPP728 from Novartis. Merck in-licensed L-threo-isoleucyl thiazolidide and its allo stereoisomer. In animal studies, they found that both isomers had similar affinity for DPP-4, similar in vivo efficacy, similar pharmacokinetic and metabolic profiles. Nevertheless, the allo isomer was 10-fold more toxic. The researchers found out that this difference in toxicity was due to the allo isomer's greater inhibition of DPP-8 and DPP-9 but not because of selective DPP-4 inhibition. More research also supported that DPP-4 inhibition would not cause compromised immune function. Once this link between affinity for DPP-8/DPP-9 and toxicity was discovered, Merck decided on identifying an inhibitor with more than a thousandfold affinity for DPP-4 over the other dipeptidases. For this purpose, they used positional scanning libraries. From scanning these libraries, the researchers discovered that both DPP-4 and DPP-8 showed a strong preference for breaking down peptides with a proline at the P1 position but they found a great difference at the P2 site; i.e., they found that acidic functionality at the P2 position could provide a greater affinity for DPP-4 over DPP-8. Merck kept up doing even more research and screening. They stopped working on compounds from the α-amino acid series related to isoleucyl thiazolidide due to lack of selectivity but instead they discovered a very selective β-amino acid piperazine series through SAR studies on two screening leads. When trying to stabilize the piperazine moiety, a group of bicyclic derivatives were made, which led to the identification of a potent and selective triazolopiperazine series. Most of these analogs showed excellent pharmacokinetic properties in preclinical species. Optimization of these compounds finally led to the discovery of sitagliptin.[17]

Sitagliptin edit

 
Fig.7: The structure of sitagliptin

Sitagliptin (Januvia) has a novel structure with β-amino amide derivatives (Figure 7). Since sitagliptin has shown excellent selectivity and in vivo efficacy it urged researchers to inspect the new structure of DPP-4 inhibitors with appended β-amino acid moiety. Further studies are being developed to optimize these compounds for the treatment of diabetes.[4] In October 2006 sitagliptin became the first DPP-4 inhibitor that got FDA approval for the treatment of type 2 diabetes.[18] Crystallographic structure of sitagliptin along with molecular modeling has been used to continue the search for structurally diverse inhibitors. A new potent, selective and orally bioavailable DPP-4 inhibitor was discovered by replacing the central cyclohexylamine in sitagliptin with 3-aminopiperidine. A 2-pyridyl substitution was the initial SAR breakthrough since that group plays a significant role in potency and selectivity for DPP-4.[2]

It has been shown with an X-ray crystallography how sitagliptin binds to the DPP-4 complex:[12]

1. The trifluorophenyl group occupies the S1-pocket

2. The trifluoromethyl group interacts with the side chains of residues Arg358 and Ser209.

3. The amino group forms a salt bridge with Tyr662 and the carboxylated groups of the two glutamate residues, Glu205 and Glu206.

4. The triazolopiperazine group collides with the phenyl group of residue Phe357

 
Fig.8: The structure of ABT-341

Constrained phenylethylamine compounds edit

Researchers at Abbott Laboratories identified three novel series of DPP-4 inhibitors using HTS. After more research and optimization ABT-341 was discovered (Figure 8). It is a potent and selective DPP-4 inhibitor with a 2D-structure very similar to sitagliptin. However, the 3D-structure is quite different. ABT-341 also has a trifluorophenyl group that occupies the S1-pocket and the free amino group, but the two carbonyl groups are orientated 180° away from each other. ABT-341 is also believed to interact with the Tyr547, probably because of steric hindrance between the cyclohexenyl ring and the tyrosine side-chain.[12] Omarigliptin is one of such compound which is in Phase-III development by Merck & Co.

Pyrrolidine compounds edit

The pyrrolidine type of DPP-4 inhibitors was first discovered after HTS.[19] Research showed that the pyrrolidine rings were the part of the compounds that fit into the binding site. Further development has led to fluoro substituted pyrrolidines that show superior activity, as well as pyrrolidines with fused cyclopropylrings that are highly active.[20]

Xanthine-based compounds edit

This is a different class of inhibitors that was identified with HTS.[12] Aromatic heterocyclic-based DPP-4 inhibitors have gained increased attention recently. The first patents describing xanthines (Figure 10) as DPP-4 inhibitors came from Boehringer-Ingelheim(BI) and Novo Nordisk.[21] When xanthine based DPP-4 inhibitors are compared with sitagliptin and vildagliptin it has shown a superior profile. Xanthines are believed to have higher potency, longer-lasting inhibition and longer-lasting improvement of glucose tolerance.[22]

Alogliptin edit

 
Fig.9: Quinazolinone structure and alogliptin

Alogliptin (Figure 9) is a novel DPP-4 inhibitor developed by the Takeda Pharmaceutical Company.[22] Researchers hypothesized that a quinazolinone based structure (Figure 9) would have the necessary groups to interact with the active site on the DPP-4 complex. Quinazolinone based compounds interacted effectively with the DPP-4 complex, but suffered from low metabolic half-life. It was found that when replacing the quinazolinone with a pyrimidinedione, the metabolic stability was increased and the result was a potent, selective, bioavailable DPP-4 inhibitor named alogliptin. The quinazoline based compounds showed potent inhibition and excellent selectivity over related protease, DPP-8. However, short metabolic half-life due to oxidation of the A-ring phenyl group was problematic. At first, the researchers tried to make a fluorinated derivative. The derivative showed improved metabolic stability and excellent inhibition of the DPP-4 enzyme. However, it was also found to inhibit CYP 450 3A4 and block the hERG channel. The solution to this problem was to replace the quinazolinone with other heterocycles, but the quinazolinone could be replaced without any loss of DPP-4 inhibition. Alogliptin was discovered when quinazolinone was replaced with a pyrimidinedione. Alogliptin has shown excellent inhibition of DPP-4 and extraordinary selectivity, greater than 10.000 fold over the closely related serine proteases DPP-8 and DPP-9. Also, it does not inhibit the CYP 450 enzymes nor block the hERG channel at concentration up to 30 µM. Based on this data, alogliptin was chosen for preclinical evaluation.[23] In January 2007 alogliptin was undergoing the phase III clinical trial and in October 2008 it was being reviewed by the U.S. Food and Drug Administration.[24]

Linagliptin edit

 
Fig.10: The structure of xanthine type inhibitors (TOP) and linagliptin (BOTTOM)

Researchers at BI discovered that using a buty-2-nyl group resulted in a potent candidate, called BI-1356 (Figure 10). In 2008 BI-1356 was undergoing phase III clinical trials; it was released as linagliptin in May 2011. X-ray crystallography has shown that that xanthine type binds the DPP-4 complex in a different way than other inhibitors:[12]

1. The amino group also interacts with the Glu205, Glu206 and Tyr662

2. The buty-2-nyl group occupies the S1-pocket

3. The uracil group undergoes a π-stacking interaction with the Tyr547 residue

4. The quinazoline group undergoes a π-stacking interaction with the Trp629 residue

Pharmacology edit

Comparative pharmacology of sitagliptin and vildagliptin.[18]
Drug Absorption Bioavailability (%) IC50 (nM) Mean volume of distribution (L) Protein binding (%) Half-life (hours,100 mg dose) Metabolism Excretion
Sitagliptin Rapidly absorbed with peak concentration at 1–4 hours 87 18 198 38 12.4 Small fraction undergoes hepatic metabolism via CYP 450 3A4 and 2C8 Excreted in an unchanged form in the urine (79%)
Vildagliptin Rapidly absorbed with peak concentration at 1–2 hours 85 3 70.5 9.3 1.68 (once a day) and 2.54 (twice a day) Hydrolysis resulting in a pharmacologically inactive metabolite. A fraction (22%) is also excreted unchanged by the kidneys Excretion of the metabolite is carried out through urine (85%) and feces (15%)

The pharmacokinetic properties of sitagliptin and vildagliptin appear unaffected by age, sex or BMI.[18] Clinical researches have shown that sitagliptin and vildagliptin do not have the side effects that tend to follow type 2 diabetes treatment, e.g. weight gain and hyperglycemia, but however, other side effects have been observed, including upper respiratory tract infections, sore throat and diarrhea.[5]

See also edit

References edit

  1. ^ a b Green, Brian; Flatt, Peter; Bailey, Clifford (December 2006), "Dipeptidyl peptidase IV (DPP IV) inhibitors: a newly emerging drug class for the treatment of type 2 diabetes", Diabetes and Vascular Disease Research, 3 (3): 159–165, doi:10.3132/dvdr.2006.024, PMID 17160910
  2. ^ a b c d Sebokova, Elena; Christ, Andreas; Boehringer, Markus; Mizrahi, Jacques (May 2006), "Dipeptidyl peptidase IV inhibitors: The next generation of new promising therapies for the management of type 2 diabetes", Current Topics in Medicinal Chemistry, 7 (6): 547–555, doi:10.2174/156802607780091019, PMID 17352676
  3. ^ a b c Wiedeman, Paul (May 2007), "DPP-IV Inhibition: Promising Therapy for the Treatment of Type 2 Diabetes", Progress in Medical Chemistry, Progress in Medicinal Chemistry, 45: 71–73, doi:10.1016/s0079-6468(06)45502-8, ISBN 978-0-444-52808-7, PMID 17280902
  4. ^ a b Ahn, Jin Hee; Shin, Mi Sik; June, Mi Ae; Jung, Sun Ho; Kang, Seung Kyu; Kim, Kwang Rok; Rhee, Sang Dal; Kang, Nam Sook; Kim, Seung Kyu (February 2007), "Synthesis, biological evaluation and structural determination of β-aminoacyl-containing cyclic hydrazine derivatives as dipeptidyl peptidase IV (DPP-IV) inhibitors", Bioorganic & Medicinal Chemistry Letters, 17 (9): 2622–2628, doi:10.1016/j.bmcl.2007.01.111, PMID 17331715
  5. ^ a b c d Lu, I-Lin; Tsai, Keng-Chang; Chiang, Yi-Kun; Jiaang, Weir-Torn; Wu, Ssu-Hui; Mahindroo, Neeraj; Chien, Chia-Hui; Lee, Shiow-Ju; Chen, Xin; Wu, Su-Ying (January 2008), "A three-dimensional pharmacophore model for dipeptidyl peptidase IV inhibitors", European Journal of Medicinal Chemistry, 43 (8): 1603–1611, doi:10.1016/j.ejmech.2007.11.014, PMID 18207285
  6. ^ a b c d e f g h Peters, Jens-Uwe (March 2007), "11 years of Cyanopyrrolidines as DPP-IV Inhibitors", Current Topics in Medicinal Chemistry, 7 (6): 579–595, doi:10.2174/156802607780091000, PMID 17352679
  7. ^ Cox, Jason; Harper, Bart; Mastracchio, Anthony; Leiting, Barbara; Roy, Ranabir; Reshma, Patel; Wu, Joseph; Lyons, Kathryn; He, Huaibing; Edmondson, Scott (June 2007), "Discovery of 3-aminopiperidines as potent, selective, and orally bioavailable dipeptidyl peptidase IV inhibitors", Bioorganic & Medicinal Chemistry, 17 (16): 4579–4583, doi:10.1016/j.bmcl.2007.05.087, PMID 17562364
  8. ^ a b Idris, Iskandar; Donnely, Richard (January 2007), "Dipeptidyl peptidase-IV inhibitors: a major new class of oral antidiabetic drug", Diabetes, Obesity and Metabolism, 9 (2): 153–165, doi:10.1111/j.1463-1326.2007.00705.x, PMID 17300591, S2CID 3102605
  9. ^ a b Kuhn, Bernd; Hennig, Michael; Mattei, Patrizio (March 2007), "Molecular Recognition of Ligands in Dipeptidyl Peptidase IV", Current Topics in Medicinal Chemistry, 7 (6): 609–619, doi:10.2174/156802607780091064, PMID 17352681
  10. ^ Veken, Pieter Van der; Haemers, Achiel; Augustyns, Koen (May 2007), "Prolyl peptidase related to dipeptidyl peptidase IV: Potential of specific inhibitors in drug discovery", Current Topics in Medicinal Chemistry, 7 (6): 621–635, doi:10.2174/156802607780091046, PMID 17352682
  11. ^ a b Simpkins, Ligaya; Bolton, Scott; Pi, Zulan; Scutton, James; Kwon, Chet; Magnin, David; Augeri, David; Gungor, Timur; Rotella, David; Hamann, Lawrence (September 2007), "Potent non-nitrile dipeptidic dipeptidyl peptidase IV inhibitors", Bioorganic & Medicinal Chemistry Letters, 17 (23): 6476–6480, doi:10.1016/j.bmcl.2007.09.090, PMID 17937986
  12. ^ a b c d e f g Pei, Zhonghua (March 2007), , Current Opinion in Drug Discovery & Development, 11 (4): 515–532, archived from the original on 2012-10-17, Subscription required
  13. ^ , archived from the original on 2011-07-07, retrieved 29 July 2013
  14. ^ Deng, Guanghui; Ye, Deju; Li, Yuanyuan; He, Lingyan; Zhou, Yu; Wang, Jiang; Li, Jia; Jiang, Hualiang; Liu, Hong (September 2008), "Synthesis of (S)-, (R)-, and (rac)-2-amino-3,3-bis(4-fluorophenyl)propanoic acids and an evaluation of the DPP-IV inhibitory activity of Denagliptin diastereomers", Tetrahedron, 64 (46): 10512–10516, doi:10.1016/j.tet.2008.08.097
  15. ^ Denagliptin, archived from the original on 2013-11-30
  16. ^ Ferraris, Dana; Belyakov, Sergei; Li, Weixing; Oliver, Eddie; Ko, Yao-Sen; Calvin, David; Lautar, Susan; Thomas, Bert; Rojas, Camilo (March 2007), "Azetidine-Based Inhibitors of Dipeptidyl Peptidase IV (DPP IV)", Current Topics in Medicinal Chemistry, 7 (6): 597–608, doi:10.2174/156802607780090993, PMID 17352680
  17. ^ Thornberry, Nancy A.; Weber, Ann E. (March 2007), "Discovery of JANUVIA (Sitagliptin), a Selective Dipeptidyl Peptidase IV Inhibitor for the Treatment of Type2 Diabetes", Current Topics in Medicinal Chemistry, 7 (6): 557–568, doi:10.2174/156802607780091028, PMID 17352677
  18. ^ a b c White, John (2008), "Dipeptidyl Peptidase-IV Inhibitors: Pharmacological Profile and Clinical Use", Clinical Diabetes, 26 (2): 53–57, doi:10.2337/diaclin.26.2.53, retrieved 29 July 2013
  19. ^ Wright, Stephen; Ammirati, Mark; Andrews, Kim; Brodeur, Anne; Danley, Dennis; Doran, Shawn; Lillquist, Jay; Liu, Shenping; McClure, Lester; Cox, Eric (August 2007), "(3R,4S)-4-(2,4,5-Trifluorophenyl)-pyrrolidin-3-ylamine inhibitors of dipeptidyl peptidase IV: Synthesis, in vitro, in vivo, and X-ray crystallographic characterization", Bioorganic & Medicinal Chemistry Letters, 17 (20): 5638–5642, doi:10.1016/j.bmcl.2007.07.081, PMID 17822893
  20. ^ Hulin, Bernard; Cabral, Shawn; Lopaze, Michael; VanVolkenburg, Maria; Andrews, Kim; Parker, Janice (August 2005), "New fluorinated pyrrolidine and azetidine amides as dipeptidyl peptidase IV inhibitors", Bioorganic & Medicinal Chemistry Letters, 15 (21): 4770–4773, doi:10.1016/j.bmcl.2005.07.026, PMID 16115768
  21. ^ Szczepankiewicz, Bruce G.; Kurukulasuriya, Ravi (March 2007), "Aromatic Heterocycle-Based DPP-IV Inhibitors: Xanthines and Related Structural Types", Current Topics in Medicinal Chemistry, 7 (6): 569–578, doi:10.2174/156802607780091073, PMID 17352678
  22. ^ a b Ferrannini, E.; Skrha, J.; Li, Eizirik; D.L., Gale; E., Jörgens; V. (2007), "Minutes of the 42nd general assembly of the European Association for the study of diabetes", Diabetologia, 50 (1 Supp): S362–S363, doi:10.1007/s00125-007-0809-7, PMID 17710465, ProQuest 213848837 (registration required)
  23. ^ Feng, Jun; Zhang, Zhiyuan; Wallace, Michael; Stafford, Jeffrey; Kaldor, Stephen; Kassel, Daniel; Navre, Marc; Shi, Lihong; Skene, Robert (January 2007), "Discovery of alogliptin: A potent, selective, bioavailable, and efficacious inhibitor of dipeptidyl peptidase IV", Journal of Medicinal Chemistry, 50 (10): 2297–2300, doi:10.1021/jm070104l, PMID 17441705, retrieved 29 July 2013
  24. ^ FDA Continues Review of Takeda's New Drug Application for Alogliptin (SYR-322), a DPP- 4 agent for Type 2 Diabetes, retrieved 29 July 2013

discovery, development, dipeptidyl, peptidase, inhibitors, dipeptidyl, peptidase, inhibitors, inhibitors, enzyme, inhibitors, that, inhibit, enzyme, dipeptidyl, peptidase, they, used, treatment, type, diabetes, mellitus, inhibition, enzyme, prolongs, enhances,. Dipeptidyl peptidase 4 inhibitors DPP 4 inhibitors are enzyme inhibitors that inhibit the enzyme dipeptidyl peptidase 4 DPP 4 They are used in the treatment of type 2 diabetes mellitus Inhibition of the DPP 4 enzyme prolongs and enhances the activity of incretins that play an important role in insulin secretion and blood glucose control regulation 1 Type 2 diabetes mellitus is a chronic metabolic disease that results from inability of the b cells in the pancreas to secrete sufficient amounts of insulin to meet the body s needs Insulin resistance and increased hepatic glucose production can also play a role by increasing the body s demand for insulin Current treatments other than insulin supplementation are sometimes not sufficient to achieve control and may cause undesirable side effects such as weight gain and hypoglycemia In recent years new drugs have been developed based on continuing research into the mechanism of insulin production and regulation of the metabolism of sugar in the body The enzyme DPP 4 has been found to play a significant role 2 Contents 1 History 2 DPP 4 mechanism 2 1 DPP 4 distribution and function 3 DPP 4 characteristics 3 1 Structure 3 2 Binding site 4 Discovery and development 4 1 Substrate like inhibitors 4 1 1 Cyanopyrrolidines 4 1 1 1 Structure activity relationship SAR 4 1 1 2 Chemical stability 4 1 1 3 Vildagliptin 4 1 1 4 Saxagliptin 4 1 1 5 Denagliptin 4 1 2 Azetidine based compounds 4 2 Non substrate like inhibitors 4 2 1 Sitagliptin 4 2 2 Constrained phenylethylamine compounds 4 2 3 Pyrrolidine compounds 4 3 Xanthine based compounds 4 3 1 Alogliptin 4 3 2 Linagliptin 5 Pharmacology 6 See also 7 ReferencesHistory editSince its discovery in 1967 serine protease DPP 4 has been a popular subject of research 2 Inhibitors of DPP 4 have long been sought as tools to elucidate the functional significance of the enzyme The first inhibitors were characterized in the late 1980s and 1990s Each inhibitor was important to establish an early structure activity relationship SAR for subsequent investigation The inhibitors fall into two main classes those that interact covalently with DPP 4 and those that do not 3 DPP 4 is a dipeptidase that selectively binds substrates that contain proline at the P1 position thus many DPP 4 inhibitors have 5 membered heterocyclic rings that mimic proline e g pyrrolidine cyanopyrrolidine thiazolidine and cyanothiazolidine 4 5 These compounds commonly form covalent bonds to the catalytic residue Ser630 5 In 1994 researchers from Zeria Pharmaceuticals unveiled cyanopyrrolidines with a nitrile function group that was assumed to form an imidate with the catalytic serine Concurrently other DPP 4 inhibitors without a nitrile group were published but they contained other serine interacting motifs e g boronic acids phosphonates or diacyl hydroxylamines These compounds were not as potent because of the similarity of DPP 4 and prolyl oligopeptidase PEP and also suffered from chemical instability Ferring Pharmaceuticals filed for patent on two cyanopyrrolidine DPP 4 inhibitors which they published in 1995 These compounds had excellent potency and improved chemical stability In 1995 Edwin B Villhauer at Novartis started to explore N substituted glycinyl cyanopyrrolidines based on the fact that DPP 4 identifies N methylglycine as an N terminal amino acid This group of new cyanopyrrolidines became extremely popular field of research in the following years Some trials with dual inhibitors of DPP 4 and vasopeptidase have been represented since vasopeptidase inhibition is believed to enhance the antidiabetic effect of DPP 4 inhibition by stimulating insulin secretion Vasopeptidase inhibiting motif is connected to the DPP 4 inhibitor at the N substituent 3 6 DPP 4 mechanism edit nbsp Fig 1 During a meal the incretins glucagon like peptide 1 GLP 1 and glucose dependent gastric inhibitory polypeptide GIP are released by the small intestine into the blood stream These hormones regulate insulin secretion in a glucose dependent manner GLP 1 has many roles in the human body It stimulates insulin biosynthesis inhibits glucagon secretion slows gastric emptying reduces appetite and stimulates regeneration of islet b cells GLP 1 and GIP have extremely short plasma half lives due to very rapid inactivation catalyzed by the enzyme DPP 4 Inhibition of DPP 4 slows their inactivation thereby potentiating their action leading to lower plasma glucose levels hence its utility in the treatment of type 2 diabetes Figure 1 2 7 DPP 4 distribution and function edit nbsp Fig 2 DPP 4 cleaves two amino acids from the N terminal end of peptides such as GLP 1 DPP 4 is attached to the plasma membrane of the endothelium of almost every organ in the body Tissues which strongly express DPP 4 include the exocrine pancreas sweat glands salivary and mammary glands thymus lymph nodes biliary tract kidney liver placenta uterus prostate skin and the capillary bed of the gut mucosa where most GLP 1 is inactivated locally It is also present in soluble form in body fluids such as blood plasma and cerebrospinal fluid It also happens that DPP 4 is the CD26 T cell activating antigen DPP 4 selectively cleaves two amino acids from peptides such as GLP 1 and GIP which have proline or alanine in the second position Figure 2 At the active site where DPP 4 has its effect there is a characteristic arrangement of three amino acids Asp His Ser Since alanine and proline are crucial for the biological activity of GPL 1 and GIP they are inactivated by cleaving away these amino acids Thus preventing the degradation of the incretin hormones GLP 1 and GIP by inhibition of DPP 4 has potential as a therapeutic strategy in the treatment of type 2 diabetes 1 8 DPP 4 characteristics editSince DPP 4 is a protease it is not unexpected that inhibitors would likely have a peptide nature and this theme has carried through to contemporary research 3 Structure edit X ray structures of DPP 4 that have been published since 2003 give rather detailed information about the structural characteristics of the binding site Many structurally diverse DPP 4 inhibitors have been discovered and it is not that surprising considering the properties of the binding site 9 1 A deep lipophilic pocket combined with several exposed aromatic side chains for achieving high affinity small molecule binding 2 A significant solvent access that makes it possible to tune the physico chemical properties of the inhibitors that leads to better pharmacokinetic behavior DPP 4 is a 766 amino acid transmembrane glycoprotein that belongs to the prolyloligopeptidase family It consists of three parts a cytoplasmic tail a transmembrane region and an extracellular part The extracellular part is divided into a catalytic domain and an eight bladed b propeller domain The latter contributes to the inhibitor binding site The catalytic domain shows an a b hydrolase fold and contains the catalytic triad Ser630 Asp708 His740 The S1 pocket is very hydrophobic and is composed of the side chains Tyr631 Val656 Trp662 Tyr666 and Val711 Existing X ray structures show that there is not much difference in size and shape of the pocket that indicates that the S1 pocket has high specificity for proline residues 9 8 Binding site edit nbsp Fig 3 The key interactions between the ligand and DPP 4 complex The ligand s basic amine forms a hydrogen bonding network The nitrile reacts with the catalytic active serine and forms an imidate adductDPP 4 inhibitors usually have an electrophilic group that can interact with the hydroxyl of the catalytic serine in the active binding site Figure 3 Frequently that group is a nitrile group but can also be boronic acid or diphenyl phosphonate This electrophilic group can bind to the imidate complex with covalent bonds and slow tight binding kinetics but this group is also responsible for stability issues due to reactions with the free amino group of the P2 amino acid Therefore inhibitors without the electrophilic group have also been developed but these molecules have shown toxicity due to affinity to other dipeptidyl peptidases e g DPP 2 DPP 8 and DPP 9 10 DPP 4 inhibitors span diverse structural types In 2007 few of the most potent compounds contain a proline mimetic cyanopyrrolidine P1 group This group enhances the potency probably due to a transient covalent trapping of the nitrile group by the active site Ser630 hydroxyl leading to delayed dissociation and slow tight binding of certain inhibitors When these potency enhancements were achieved some chemical stability issues were noted and more advanced molecules had to be made To avoid these stability issues the possibility to exclude the nitrile group was investigated Amino acids with aryl or polar side chains did not show appreciable DPP 4 inhibition and in fact all compounds without the nitrile group in this research suffered a 20 to 50 fold loss of potency corresponding to the compounds containing the nitrile group 11 Discovery and development editIt is important to find a fast and accurate system to discover new DPP 4 inhibitors with ideal therapeutic profiles High throughput screening HTS usually gives low hit rates in identifying the inhibitors but virtual screening VS can give higher rates VS has for example been used to screen for small primary aliphatic amines to identify fragments that could be placed in S1 and S2 sites of DPP 4 On the other hand these fragments were not very potent and therefore identified as a starting point to design better ones Three dimensional models can provide a useful tool for designing novel DPP 4 inhibitors Pharmacophore models have been made based on key chemical features of compounds with DPP 4 inhibitory activity These models can provide a hypothetical picture of the primary chemical feature responsible for inhibitory activity 5 The first DPP 4 inhibitors were reversible inhibitors and came with bad side effects because of low selectivity Researchers suspected that inhibitors with short half lives would be preferred in order to minimize possible side effects However since clinical trials showed the opposite the latest DPP 4 inhibitors have a long lasting effect One of the first reported DPP 4 inhibitor was P32 98 from Merck It used thiazolidide as the P1 substitute and was the first DPP 4 inhibitor that showed effects in both animals and humans but it was not developed to a market drug due to side effects Another old inhibitor is DPP 728 from Novartis where 2 cyanopyrrolidine is used as the P1 substitute The addition of the cyano group generally increases the potency Therefore researchers attention was directed to those compounds Usually DPP 4 inhibitors are either substrate like or non substrate like 12 nbsp Fig 4 A generic structure of a substrate like inhibitorSubstrate like inhibitors edit Substrate like inhibitors Figure 4 are more common than the non substrate likes They bind either covalently or non covalently and have a basic structure where the P1 substituent occupies the S1 pocket and the P2 substituent occupies the S2 pocket Usually they contain a proline mimetic that occupies the S1 pocket Large substituents on the 2 cyanopyrrolidine ring are normally not tolerated since the S1 pocket is quite small 12 Since DPP 4 is identical with the T cell activation marker CD26 and DPP 4 inhibitors are known to inhibit T cell proliferation these compounds were initially thought to be potential immunomodulators When the function against type 2 diabetes was discovered the cyanopyrrolidines became a highly popular research material A little later vildagliptin and saxagliptin which are the most developed cyanopyrrolidine DPP 4 inhibitors to date were discovered 6 Cyanopyrrolidines edit Cyanopyrrolidines have two key interactions to the DPP 4 complex 6 1 Nitrile in the position of the scissile bond of the peptidic substrate that is important for high potency The nitrile group forms reversible covalent bonds with the catalytically active serine hydroxyl Ser630 i e cyanopyrrolidines are competitive inhibitors with slow dissociation kinetics 2 Hydrogen bonding network between the protonated amino group and a negatively charged region of the protein surface Glu205 Glu206 and Tyr662 All cyanopyrrolidines have basic primary or secondary amine which makes this network possible but these compounds usually drop in potency if these amines are changed Nonetheless two patent applications unveil that the amino group can be changed i e replaced by a hydrazine but it is claimed that these compounds do not only act via DPP 4 inhibition but also prevent diabetic vascular complications by acting as a radical scavenger Structure activity relationship SAR edit Important structure activity relationship 11 1 Strict steric constraint exists around the pyrrolidine ring of cyanopyrrolidine based inhibitors with only hydrogen fluoro acetylene nitrile or methano substitution permitted 2 Presence of a nitrile moiety on the pyrrolidine ring is critical to achieving potent activityAlso systematic SAR investigation has shown that the ring size and stereochemistry for the P2 position is quite conditioned A 5 membered ring and L configuration has shown better results than a 4 membered or 6 membered ring with D configuration Only minor changes on the pyrrolidine ring can be tolerated since the good fit of the ring with the hydrophobic S1 pocket is very important for high affinity Some trials have been made e g by replacing the pyrrolidine with a thiazoline That led to improved potency but also loss of chemical stability Efforts to improve chemical stability often led to loss of specificity because of interactions with DPP 8 and DPP 9 These interactions have been connected with increased toxicity and mortality in animals There are strict limitations in the P1 position and hardly any changes are tolerated On the other hand a variety of changes can be made in the P2 position In fact substitution with quite big branched side chains e g tert butylglycin normally increased activity and chemical stability which could lead to longer lasting inhibition of the DPP 4 enzyme It has also been noted that biaryl based side chains can also give highly active inhibitors It was originally believed that only lipophilic substitution would be tolerated Now it is stated that also the substitution of polar negatively charged side chains as well as hydrophilic substitution can lead to excellent inhibitory activity 6 Chemical stability edit nbsp Fig 5 Trans rotamers are more stable then cis rotamers Cis rotamers undergo intramolecular cyclization In general DPP 4 inhibitors are not very stable compounds Therefore many researchers focus on enhancing the stability for cyanopyrrolidines The most widespread technique to improve chemical stability is to incorporate a steric bulk The two cyanopyrrolidines that have been most pronounced vildagliptin and saxagliptin were created in this manner K579 is a DPP 4 inhibitor discovered by researchers at Kyowa Hakko Kyogo It had improved not only chemical stability but also a longer lasting action That long lasting action was most likely due to slow dissociation of the enzyme inhibitor complex and an active oxide metabolite that undergoes enterohepatic circulation The discovery of the active oxide was in fact a big breakthrough as it led to the development of vildagliptin and saxagliptin One major problem in DPP 4 inhibitor stability is intramolecular cyclization The precondition for the intramolecular cyclization is the conversion of the trans rotamer which is the DPP 4 binding rotamer Figure 5 Thus preventing this conversion will increase stability This prevention was successful when incorporating an amide group into a ring creating a compound that kept the DPP 4 inhibitory activity that did not undergo the intramolecular cyclization and was even more selective over different DPP enzymes It has also been reported that a cyanoazetidine in the P1 position and a b amino acid in the P2 position increased stability 6 Vildagliptin edit Vildagliptin Galvus Figure 6 was first synthesized in May 1998 and was named after Edwin B Villhauer It was discovered when researchers at Novartis examined adamantyl derivatives that had proven to be very potent The adamantyl group worked as a steric bulk and slowed intramolecular cyclization while increasing chemical stability Furthermore the primary metabolites were highly active To avoid additional chiral center a hydroxylation at the adamantyl ring was carried out Figure 6 The product vildagliptin was even more stable undergoing intramolecular cyclization 30 times slower and having high DPP 4 inhibitory activity and longer lasting pharmacodynamic effect 6 Saxagliptin edit nbsp Fig 6 The basic structure of cyanopyrrolidines compared with vildagliptin saxagliptin and denagliptinResearchers at Bristol Myers Squibb found that increased steric bulk of the N terminal amino acid side chain led to increased stability To additionally increase stability the trans rotamer was stabilized with a cis 4 5 methano substitution of the pyrrolidine ring resulting in an intramolecular van der Waals interaction thus preventing intramolecular cyclisation Because of that increased stability the researchers continued their investigation on cis 4 5 methano cyanopyrrolidines and came across with a new adamantyl derivative which showed extraordinary ex vivo DPP 4 inhibition in rat plasma Also noted high microsomal turnover rate which indicated that the derivative was quickly converted to an active metabolite After hydroxylation on the adamantyl group they had a product with better microsomal stability and improved chemical stability That product was named saxagliptin Onglyza Figure 6 6 In June 2008 AstraZeneca and Bristol Myers Squibb submitted a new drug application for Onglyza in the United States and a marketing authorization application in Europe 13 Approval was granted in the United States by the FDA in July 2009 for Onglyza 5 mg and Onglyza 2 5 mg This was later combined with extended release metformin taken once daily and approved by the FDA in January 2011 under the trade name Kombiglyze XR Denagliptin edit Denagliptin Figure 6 is an advanced compound with a branched side chain at the P2 position but also has 4S fluoro substitution on the cyanopyrrolidine ring 6 It is a well known DPP 4 inhibitor developed by GlaxoSmithKline GSK Biological evaluations have shown that the S configuration of the amino acid portion is essential for the inhibitory activity since the R configuration showed reluctantly inhibition These findings will be useful in future designs and synthesis of DPP 4 inhibitors 14 GSK suspended Phase III clinical trials in October 2008 15 Azetidine based compounds edit Informations for this group of inhibitors are quite restricted Azetidine based DPP 4 inhibitors can roughly be grouped into three main subcategories 2 cyanoazetidines 3 fluoroazetidines and 2 ketoazetidines The most potent ketoazetidines and cyanoazetidines have large hydrophobic amino acid groups bound to the azetidine nitrogen and are active below 100nM 16 Non substrate like inhibitors edit Non substrate like inhibitors do not take after dipeptidic nature of DPP 4 substrates They are non covalent inhibitors and usually have an aromatic ring that occupies the S1 pocket instead of the proline mimetic 12 In 1999 Merck started a drug development program on DPP 4 inhibitors When they started internal screening and medicinal chemistry program two DPP 4 inhibitors were already in clinical trials isoleucyl thiazolidide P32 38 and NVP DPP728 from Novartis Merck in licensed L threo isoleucyl thiazolidide and its allo stereoisomer In animal studies they found that both isomers had similar affinity for DPP 4 similar in vivo efficacy similar pharmacokinetic and metabolic profiles Nevertheless the allo isomer was 10 fold more toxic The researchers found out that this difference in toxicity was due to the allo isomer s greater inhibition of DPP 8 and DPP 9 but not because of selective DPP 4 inhibition More research also supported that DPP 4 inhibition would not cause compromised immune function Once this link between affinity for DPP 8 DPP 9 and toxicity was discovered Merck decided on identifying an inhibitor with more than a thousandfold affinity for DPP 4 over the other dipeptidases For this purpose they used positional scanning libraries From scanning these libraries the researchers discovered that both DPP 4 and DPP 8 showed a strong preference for breaking down peptides with a proline at the P1 position but they found a great difference at the P2 site i e they found that acidic functionality at the P2 position could provide a greater affinity for DPP 4 over DPP 8 Merck kept up doing even more research and screening They stopped working on compounds from the a amino acid series related to isoleucyl thiazolidide due to lack of selectivity but instead they discovered a very selective b amino acid piperazine series through SAR studies on two screening leads When trying to stabilize the piperazine moiety a group of bicyclic derivatives were made which led to the identification of a potent and selective triazolopiperazine series Most of these analogs showed excellent pharmacokinetic properties in preclinical species Optimization of these compounds finally led to the discovery of sitagliptin 17 Sitagliptin edit nbsp Fig 7 The structure of sitagliptinSitagliptin Januvia has a novel structure with b amino amide derivatives Figure 7 Since sitagliptin has shown excellent selectivity and in vivo efficacy it urged researchers to inspect the new structure of DPP 4 inhibitors with appended b amino acid moiety Further studies are being developed to optimize these compounds for the treatment of diabetes 4 In October 2006 sitagliptin became the first DPP 4 inhibitor that got FDA approval for the treatment of type 2 diabetes 18 Crystallographic structure of sitagliptin along with molecular modeling has been used to continue the search for structurally diverse inhibitors A new potent selective and orally bioavailable DPP 4 inhibitor was discovered by replacing the central cyclohexylamine in sitagliptin with 3 aminopiperidine A 2 pyridyl substitution was the initial SAR breakthrough since that group plays a significant role in potency and selectivity for DPP 4 2 It has been shown with an X ray crystallography how sitagliptin binds to the DPP 4 complex 12 1 The trifluorophenyl group occupies the S1 pocket2 The trifluoromethyl group interacts with the side chains of residues Arg358 and Ser209 3 The amino group forms a salt bridge with Tyr662 and the carboxylated groups of the two glutamate residues Glu205 and Glu206 4 The triazolopiperazine group collides with the phenyl group of residue Phe357 nbsp Fig 8 The structure of ABT 341Constrained phenylethylamine compounds edit Researchers at Abbott Laboratories identified three novel series of DPP 4 inhibitors using HTS After more research and optimization ABT 341 was discovered Figure 8 It is a potent and selective DPP 4 inhibitor with a 2D structure very similar to sitagliptin However the 3D structure is quite different ABT 341 also has a trifluorophenyl group that occupies the S1 pocket and the free amino group but the two carbonyl groups are orientated 180 away from each other ABT 341 is also believed to interact with the Tyr547 probably because of steric hindrance between the cyclohexenyl ring and the tyrosine side chain 12 Omarigliptin is one of such compound which is in Phase III development by Merck amp Co Pyrrolidine compounds edit The pyrrolidine type of DPP 4 inhibitors was first discovered after HTS 19 Research showed that the pyrrolidine rings were the part of the compounds that fit into the binding site Further development has led to fluoro substituted pyrrolidines that show superior activity as well as pyrrolidines with fused cyclopropylrings that are highly active 20 Xanthine based compounds edit This is a different class of inhibitors that was identified with HTS 12 Aromatic heterocyclic based DPP 4 inhibitors have gained increased attention recently The first patents describing xanthines Figure 10 as DPP 4 inhibitors came from Boehringer Ingelheim BI and Novo Nordisk 21 When xanthine based DPP 4 inhibitors are compared with sitagliptin and vildagliptin it has shown a superior profile Xanthines are believed to have higher potency longer lasting inhibition and longer lasting improvement of glucose tolerance 22 Alogliptin edit nbsp Fig 9 Quinazolinone structure and alogliptinAlogliptin Figure 9 is a novel DPP 4 inhibitor developed by the Takeda Pharmaceutical Company 22 Researchers hypothesized that a quinazolinone based structure Figure 9 would have the necessary groups to interact with the active site on the DPP 4 complex Quinazolinone based compounds interacted effectively with the DPP 4 complex but suffered from low metabolic half life It was found that when replacing the quinazolinone with a pyrimidinedione the metabolic stability was increased and the result was a potent selective bioavailable DPP 4 inhibitor named alogliptin The quinazoline based compounds showed potent inhibition and excellent selectivity over related protease DPP 8 However short metabolic half life due to oxidation of the A ring phenyl group was problematic At first the researchers tried to make a fluorinated derivative The derivative showed improved metabolic stability and excellent inhibition of the DPP 4 enzyme However it was also found to inhibit CYP 450 3A4 and block the hERG channel The solution to this problem was to replace the quinazolinone with other heterocycles but the quinazolinone could be replaced without any loss of DPP 4 inhibition Alogliptin was discovered when quinazolinone was replaced with a pyrimidinedione Alogliptin has shown excellent inhibition of DPP 4 and extraordinary selectivity greater than 10 000 fold over the closely related serine proteases DPP 8 and DPP 9 Also it does not inhibit the CYP 450 enzymes nor block the hERG channel at concentration up to 30 µM Based on this data alogliptin was chosen for preclinical evaluation 23 In January 2007 alogliptin was undergoing the phase III clinical trial and in October 2008 it was being reviewed by the U S Food and Drug Administration 24 Linagliptin edit nbsp Fig 10 The structure of xanthine type inhibitors TOP and linagliptin BOTTOM Researchers at BI discovered that using a buty 2 nyl group resulted in a potent candidate called BI 1356 Figure 10 In 2008 BI 1356 was undergoing phase III clinical trials it was released as linagliptin in May 2011 X ray crystallography has shown that that xanthine type binds the DPP 4 complex in a different way than other inhibitors 12 1 The amino group also interacts with the Glu205 Glu206 and Tyr6622 The buty 2 nyl group occupies the S1 pocket3 The uracil group undergoes a p stacking interaction with the Tyr547 residue4 The quinazoline group undergoes a p stacking interaction with the Trp629 residuePharmacology editComparative pharmacology of sitagliptin and vildagliptin 18 Drug Absorption Bioavailability IC50 nM Mean volume of distribution L Protein binding Half life hours 100 mg dose Metabolism ExcretionSitagliptin Rapidly absorbed with peak concentration at 1 4 hours 87 18 198 38 12 4 Small fraction undergoes hepatic metabolism via CYP 450 3A4 and 2C8 Excreted in an unchanged form in the urine 79 Vildagliptin Rapidly absorbed with peak concentration at 1 2 hours 85 3 70 5 9 3 1 68 once a day and 2 54 twice a day Hydrolysis resulting in a pharmacologically inactive metabolite A fraction 22 is also excreted unchanged by the kidneys Excretion of the metabolite is carried out through urine 85 and feces 15 The pharmacokinetic properties of sitagliptin and vildagliptin appear unaffected by age sex or BMI 18 Clinical researches have shown that sitagliptin and vildagliptin do not have the side effects that tend to follow type 2 diabetes treatment e g weight gain and hyperglycemia but however other side effects have been observed including upper respiratory tract infections sore throat and diarrhea 5 See also editDipeptidyl peptidase 4 Dipeptidyl peptidase 4 inhibitors Linagliptin Vildagliptin Sitagliptin Saxagliptin Berberine teneligliptin gosogliptinReferences edit a b Green Brian Flatt Peter Bailey Clifford December 2006 Dipeptidyl peptidase IV DPP IV inhibitors a newly emerging drug class for the treatment of type 2 diabetes Diabetes and Vascular Disease Research 3 3 159 165 doi 10 3132 dvdr 2006 024 PMID 17160910 a b c d Sebokova Elena Christ Andreas Boehringer Markus Mizrahi Jacques May 2006 Dipeptidyl peptidase IV inhibitors The next generation of new promising therapies for the management of type 2 diabetes Current Topics in Medicinal Chemistry 7 6 547 555 doi 10 2174 156802607780091019 PMID 17352676 a b c Wiedeman Paul May 2007 DPP IV Inhibition Promising Therapy for the Treatment of Type 2 Diabetes Progress in Medical Chemistry Progress in Medicinal Chemistry 45 71 73 doi 10 1016 s0079 6468 06 45502 8 ISBN 978 0 444 52808 7 PMID 17280902 a b Ahn Jin Hee Shin Mi Sik June Mi Ae Jung Sun Ho Kang Seung Kyu Kim Kwang Rok Rhee Sang Dal Kang Nam Sook Kim Seung Kyu February 2007 Synthesis biological evaluation and structural determination of b aminoacyl containing cyclic hydrazine derivatives as dipeptidyl peptidase IV DPP IV inhibitors Bioorganic amp Medicinal Chemistry Letters 17 9 2622 2628 doi 10 1016 j bmcl 2007 01 111 PMID 17331715 a b c d Lu I Lin Tsai Keng Chang Chiang Yi Kun Jiaang Weir Torn Wu Ssu Hui Mahindroo Neeraj Chien Chia Hui Lee Shiow Ju Chen Xin Wu Su Ying January 2008 A three dimensional pharmacophore model for dipeptidyl peptidase IV inhibitors European Journal of Medicinal Chemistry 43 8 1603 1611 doi 10 1016 j ejmech 2007 11 014 PMID 18207285 a b c d e f g h Peters Jens Uwe March 2007 11 years of Cyanopyrrolidines as DPP IV Inhibitors Current Topics in Medicinal Chemistry 7 6 579 595 doi 10 2174 156802607780091000 PMID 17352679 Cox Jason Harper Bart Mastracchio Anthony Leiting Barbara Roy Ranabir Reshma Patel Wu Joseph Lyons Kathryn He Huaibing Edmondson Scott June 2007 Discovery of 3 aminopiperidines as potent selective and orally bioavailable dipeptidyl peptidase IV inhibitors Bioorganic amp Medicinal Chemistry 17 16 4579 4583 doi 10 1016 j bmcl 2007 05 087 PMID 17562364 a b Idris Iskandar Donnely Richard January 2007 Dipeptidyl peptidase IV inhibitors a major new class of oral antidiabetic drug Diabetes Obesity and Metabolism 9 2 153 165 doi 10 1111 j 1463 1326 2007 00705 x PMID 17300591 S2CID 3102605 a b Kuhn Bernd Hennig Michael Mattei Patrizio March 2007 Molecular Recognition of Ligands in Dipeptidyl Peptidase IV Current Topics in Medicinal Chemistry 7 6 609 619 doi 10 2174 156802607780091064 PMID 17352681 Veken Pieter Van der Haemers Achiel Augustyns Koen May 2007 Prolyl peptidase related to dipeptidyl peptidase IV Potential of specific inhibitors in drug discovery Current Topics in Medicinal Chemistry 7 6 621 635 doi 10 2174 156802607780091046 PMID 17352682 a b Simpkins Ligaya Bolton Scott Pi Zulan Scutton James Kwon Chet Magnin David Augeri David Gungor Timur Rotella David Hamann Lawrence September 2007 Potent non nitrile dipeptidic dipeptidyl peptidase IV inhibitors Bioorganic amp Medicinal Chemistry Letters 17 23 6476 6480 doi 10 1016 j bmcl 2007 09 090 PMID 17937986 a b c d e f g Pei Zhonghua March 2007 From the bench to the bedside Dipeptidyl peptidase IV inhibitors a new class of oral antihyperglycemic agents Current Opinion in Drug Discovery amp Development 11 4 515 532 archived from the original on 2012 10 17 Subscription required AstraZeneca and Bristol Myers Squibb submit New Drug Application in the United States and Marketing Authorization Application in Europe for ONGLYZA saxagliptin for the treatment of type 2 diabetes archived from the original on 2011 07 07 retrieved 29 July 2013 Deng Guanghui Ye Deju Li Yuanyuan He Lingyan Zhou Yu Wang Jiang Li Jia Jiang Hualiang Liu Hong September 2008 Synthesis of S R and rac 2 amino 3 3 bis 4 fluorophenyl propanoic acids and an evaluation of the DPP IV inhibitory activity of Denagliptin diastereomers Tetrahedron 64 46 10512 10516 doi 10 1016 j tet 2008 08 097 Denagliptin archived from the original on 2013 11 30 Ferraris Dana Belyakov Sergei Li Weixing Oliver Eddie Ko Yao Sen Calvin David Lautar Susan Thomas Bert Rojas Camilo March 2007 Azetidine Based Inhibitors of Dipeptidyl Peptidase IV DPP IV Current Topics in Medicinal Chemistry 7 6 597 608 doi 10 2174 156802607780090993 PMID 17352680 Thornberry Nancy A Weber Ann E March 2007 Discovery of JANUVIA Sitagliptin a Selective Dipeptidyl Peptidase IV Inhibitor for the Treatment of Type2 Diabetes Current Topics in Medicinal Chemistry 7 6 557 568 doi 10 2174 156802607780091028 PMID 17352677 a b c White John 2008 Dipeptidyl Peptidase IV Inhibitors Pharmacological Profile and Clinical Use Clinical Diabetes 26 2 53 57 doi 10 2337 diaclin 26 2 53 retrieved 29 July 2013 Wright Stephen Ammirati Mark Andrews Kim Brodeur Anne Danley Dennis Doran Shawn Lillquist Jay Liu Shenping McClure Lester Cox Eric August 2007 3R 4S 4 2 4 5 Trifluorophenyl pyrrolidin 3 ylamine inhibitors of dipeptidyl peptidase IV Synthesis in vitro in vivo and X ray crystallographic characterization Bioorganic amp Medicinal Chemistry Letters 17 20 5638 5642 doi 10 1016 j bmcl 2007 07 081 PMID 17822893 Hulin Bernard Cabral Shawn Lopaze Michael VanVolkenburg Maria Andrews Kim Parker Janice August 2005 New fluorinated pyrrolidine and azetidine amides as dipeptidyl peptidase IV inhibitors Bioorganic amp Medicinal Chemistry Letters 15 21 4770 4773 doi 10 1016 j bmcl 2005 07 026 PMID 16115768 Szczepankiewicz Bruce G Kurukulasuriya Ravi March 2007 Aromatic Heterocycle Based DPP IV Inhibitors Xanthines and Related Structural Types Current Topics in Medicinal Chemistry 7 6 569 578 doi 10 2174 156802607780091073 PMID 17352678 a b Ferrannini E Skrha J Li Eizirik D L Gale E Jorgens V 2007 Minutes of the 42nd general assembly of the European Association for the study of diabetes Diabetologia 50 1 Supp S362 S363 doi 10 1007 s00125 007 0809 7 PMID 17710465 ProQuest 213848837 registration required Feng Jun Zhang Zhiyuan Wallace Michael Stafford Jeffrey Kaldor Stephen Kassel Daniel Navre Marc Shi Lihong Skene Robert January 2007 Discovery of alogliptin A potent selective bioavailable and efficacious inhibitor of dipeptidyl peptidase IV Journal of Medicinal Chemistry 50 10 2297 2300 doi 10 1021 jm070104l PMID 17441705 retrieved 29 July 2013 FDA Continues Review of Takeda s New Drug Application for Alogliptin SYR 322 a DPP 4 agent for Type 2 Diabetes retrieved 29 July 2013 Retrieved from https en wikipedia org w index php title Discovery and development of dipeptidyl peptidase 4 inhibitors amp oldid 1169270571, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.