fbpx
Wikipedia

Cretalamna

Cretalamna is a genus of extinct otodontid shark that lived from the latest Early Cretaceous to Eocene epoch (about 103 to 46 million years ago). It is considered by many to be the ancestor of the largest sharks to have ever lived, such as Otodus angustidens, Otodus chubutensis, and Otodus megalodon.

Cretalamna
Temporal range: Late Albian-Lutetian, 103.13–46.25 Ma [1][2][3][4][5][a]
Jaws and teeth of the C. hattini holotype (LACM 128126) from the Niobrara Formation of Kansas
Speculative skeletal reconstruction
Scientific classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Chondrichthyes
Subclass: Elasmobranchii
Subdivision: Selachimorpha
Order: Lamniformes
Family: Otodontidae
Genus: Cretalamna
Glükman, 1958
Type species
Cretalamna appendiculata
Agassiz, 1835
Species
List of species
    • C. appendiculata Agassiz, 1835 (type)
    • C. lata Agassiz, 1843
    • C. borealis Priem, 1897
    • C. biauriculata Wanner, 1902
    • C. maroccana Arambourg, 1935
    • C. nigeriana Cappetta, 1972
    • C. arambourgi Cappetta & Case, 1975
    • C. catoxodon Siversson et al., 2015
    • C. deschutteri Siversson et al., 2015
    • C. ewelli Siversson et al., 2015
    • C. gertericorum Siversson et al., 2015
    • C. hattini Siversson et al., 2015
    • C. sarcoportheta Siversson et al., 2015
    • C. bryanti Ebersole and Ehret, 2018
Disputed or uncertain
    • 'C.' aschersoni Stromer, 1905
Synonyms[1][6][7][8][9]
List of synonyms
    • Squalus mustelus Mantell, 1822
    • Squalus cornubicus Geinitz, 1839
    • Odontaspis raphiodon Geinitz, 1839
    • Lamna appendiculata Agassiz, 1835
    • Otodus appendiculatus Agassiz, 1843
    • Otodus latus Agassiz, 1843
    • Otodus basalis Stoliczka, 1873
    • Lamna (Otodus) appendiculata Zittel, 1895
    • Lamna borealis Priem, 1897
    • Lamna (Otodus) appendicularis Toula, 1900
    • Odontaspis gigas Dalinkevicus, 1935
    • Lamna lata Gyen, 1937
    • Plicatolamna arcuata Edwards, 1976
    • Cretolamna appendiculata var. pachyrhiza Herman, 1977
    • Cretolamna appendiculata pachyrhiza Lauginiger and Hartstein, 1983
    • Cretoxyrhina cf. mantelli Kemp, 1991
    • Cretolamna woodwardi Welton and Farish, 1993
    • Cretolamna pachyrhyza Herman and Van Waes, 2012

Taxonomy edit

Research history edit

 
Original syntypes of Otodus appendiculatus (Fig. 1-25) and holotype of C. lata (Fig. 26) in the third volume of Recherches sur les poissons fossiles; the tooth in Fig. 10 is the sole lectotype of C. appendiculata

Cretalamna was first described by Swiss naturalist Louis Agassiz using five teeth previously identified as the common smooth-hound and collected by English paleontologist Gideon Mantell from the Southerham Grey Pit near Lewes, East Sussex. In his 1835 publication Rapport sur les poissons fossiles découverts en Angleterre, he reidentified them as a new species of porbeagle shark under the taxon Lamna appendiculata.[9] In 1843, Agassiz published Recherches sur les poissons fossiles, which reexamined Mantell's five teeth. Using them, eight additional teeth collected by Mantell, and twenty more teeth collected by various paleontologists in various locations (One tooth found by the 3rd Earl of Enniskillen from the Speeton Clay in Yorkshire; one tooth of the collection of a Strasbourg Museum from an unspecified location; one tooth of the collection of the Hancock Museum from the Marly Chalk near Cambridge; and six teeth of the collection of German paleontologist Heinrich Georg Bronn from chalk around Aachen), he described a species whose teeth had thick bulged roots, lateral cusplets, and extreme variability. Agassiz remarked that some of the examined teeth may be variable enough to belong to a separate species, but ultimately unified them under a new taxon Otodus appendiculatus.[10] The species would later be found in 1958 by Soviet paleontologist Leonid Glickman to belong to a distinct new genus- Cretalamna.[11]

Despite Agassiz's remarks on variability,[10] his ultimately broad interpretation of O. appendiculatus subsequently led the species to become a wastebasket taxon culminating to an interpretation of C. appendiculata as a variable cosmopolitan species with a 50 million year range. This changed when paleontologist Mikael Siversson found that the twenty-five syntypes actually represented a mix of at least six or more different species including three additional genera Dwardius, Cretoxyrhina, and Cretodus. To remedy the taxonomic issue, he redesignated one of the syntypes as the sole lectotype of C. appendiculata in 1999.[1][12] In 2015, he led a study which revisited the taxonomic situation and established a renewed description of the species, which led to the erection of six additional Cretalamna species- C. catoxodon, C. deschutteri, C. ewelli, C. gertericorum, C. hattini, and C. sarcoporthea.[1]

Before Siversson, other Cretalamna species have been described. Another species described by Agassiz under the taxon Otodus latus was demoted to a variation of C. appendiculata in 1908,[13] promoted into a subspecies in 1977 by Belgian paleontologist Jaques Herman,[14] and finally elevated to the species level as Cretolamna lata by Herman and paleontologist Van Waes Hilde in 2012.[15] In 1897, French paleontologist Fernand Priem described a single tooth from the Köpinge Sandstone in Scania, Sweden under the taxon Lamna borealis. This would be revised to 'Cretolamna borealis' by Glickman in a 1980 paper.[1] In 1902, German paleontologist Johannes Wanner described teeth from Egyptian Cretaceous deposits near the Dakhla Oasis and Farafra. He noted that the teeth are almost identical with that of the Otodus appendiculatus teeth, except that the Egyptian teeth also contained two clear pairs of lateral cusplets (a feature not seen in Otodus appendiculatus). Wanner concluded that the teeth were of a closely related new species and placed it under the taxon Otodus biauriculatus.[16] In 1935, French Paleontologist Camille Arambourg described a new subspecies of C. biauriculata from teeth found in Moroccan phosphates under the taxon Lamna biauriculata maroccana,[17] which was elevated into its own species in 1997.[18] In 1972, French ichthyologist Henri Cappetta described teeth from Maastrichtian deposits near the Mentès well in Tahoua, Niger, which he assigned to the subspecies Lamna biauriculata nigeriana.[19] This subspecies would also be elevated to its own species in 1991.[20] In 1975, Cappetta and American paleontologist Gerard Case examined Cretalamna teeth described by Arambourg in 1952 from Danian deposits in Morocco and proposed that it represents a new subspecies of the type species and assigned it the taxon Cretolamna appendiculata arambourgi,[21] which Siversson et al. (2015) elevated into its own species.[1] In 2018, American paleontologists Jun Ebersole and Dana Ehret described a new species of Cretalamna from various teeth from the Eutaw Formation and Mooreville Chalk in Alabama, which they named C. bryanti.[22]

Etymology edit

The genus Cretalamna is a portmanteau of creta, the Latin word for "chalk", prefixed to the genus Lamna, which is a romanization of the Ancient Greek λάμνα (lámna, meaning "kind of fierce shark"). When put together they mean "chalk-shark", which refers to chalk deposits from which the species' type specimens were found in.[11] The type species name appendiculata is a feminine form of the Latin word appendiculātus (having an appendage), a reference to the thick bulged roots found in C. appendiculata teeth.[10] The species name lata is derived from the feminine form of the Latin lātus (wide); a reference to the notably wide teeth of the species.[10] The species name borealis is derived from the Latin boreālis (northern); this is a reference to its discovery from fossil deposits in Sweden, a boreal locality.[1] The specific epithet of C. maroccana is a feminine form of the Latin word maroccānus (Moroccan), a reference to its type locality in Morocco.[23] C. biauriculata's specific epithet is a portmanteau derived from the Latin prefix bi- (two) prefixed onto the Latin auriculātā (eared), together meaning "having two ears". This is a reference to the species' large lateral cusplets, which somewhat resemble a pair of ears.[16] The species name nigeriana is derived from the country name Niger prefixed to the suffix -iana, a feminine variation of the Latin suffix -ānus (pertaining to), together meaning "pertaining to Niger". This is a reference to the species' type locality in Niger.[19] The species name sarcoportheta is derived from the Ancient Greek σαρκός (sarkos, meaning "flesh") prefixed to the Ancient Greek πορθητής (porthitís, meaning "destroyer"), together meaning "destroyer of flesh". The species name catoxodon is derived from the Ancient Greek κατοξυς (katoxys, meaning "very sharp") prefixed to the Ancient Greek ὀδών (odon, meaning "tooth". Together they mean "very sharp tooth", referring to the unusually sharp cutting edges of some C. catoxodon teeth.[1]

Six of the Cretalamna species have specific epithets that are named in honor of specific people, either for their contributions to the research of their associated species or for notable work they undertook. Of these six, five share a similar word structure that has a person's last name prefixed onto the Latin suffix -i (from). These species are C. arambourgi, which honors paleontologist Camille Arambourg for his discovery of the C. arambourgi type specimens and his contributions to North African paleontology;[21] C. bryanti, which honors the Bryant family who helped enhance the reputation and missions of the University of Alabama, Alabama Museum of Natural History, and McWane Science Center through their commitment to education and support;[22] C. deschutteri, which honors paleontologist Pieter De Scutter for his efforts to make Cretalamna teeth from a Bettrechies quarry available to Siversson et al. (2015) and for his work on Belgian Cenozoic sharks; C. ewelli, which honors paleontologist Keith Ewell who collected most of the C. ewelli type specimens in 2004; and C. hattini, which honors the late geologist Donald E. Hattin "for his work on the stratigraphy of the Niobrara Formation, western Kansas". The specific epithet of C. gertericorum is structured differently; it is derived from the names "Gert", "Eric", and the Latin suffix -orum (a masculine plural declension). The derived names "Gert" and "Eric" refer to fossil collectors Gert De Bie and Eric Collier, both of whom collected the majority of Cretalamna teeth examined in Siversson et al. (2015) that were from the Bettrechies quarry.[1]

Spelling edit

The valid spelling of Cretalamna, specifically between it and 'Cretolamna', has been subject to controversy. Originally, Glickman described the genus with the intention of naming it as 'Cretolamna' , but during publication of the corresponding 1958 paper a typographical error occurred, with the print misspelling it as 'Cretalamna' . Glickman pointed out the spelling as an error and continued to use his intended spelling 'Cretolamna' in later works.[17] This spelling was universally adopted until 1999 when Siversson remarked that this violates ICZN Articles 32 and 33, reinstating 'Cretalamna' as the valid spelling.[12] Since then, the reinstatement of 'Cretalamna' gained prominence and by the 2010s, was accepted by the majority of paleontologists.[1] However, some paleontologists including Cappetta strongly opposed it.[1][17] In an attempt to suppress the usage of 'Cretalamna' , Cappetta appealed to a representative of the ICZN, arguing that the original intentions of Glickman and the prevailing usage of 'Cretolamna' prior to Siversson (1999) secures its priority. The ICZN, who reportedly were impressed by Cappetta's "spirit", subsequently erected Article 33.3.1 of the 2000 Edition of the Code in order to address this situation in the future,[17] which states that "when an unjustified emendation is in prevailing usage and is attributed to the original author and date it is deemed to be a justified emendation". While Cappetta argued in a 2012 handbook that this new provision justifies the priority of 'Cretolamna' due to the spelling's overwhelmingly prevailing usage prior to its replacement by Siversson in 1999, Siversson himself pointed out in a 2015 paper that the provision cannot be worked retroactively, and that the continued prevailing usage of 'Cretalamna' since the provision's establishment ironically secures its priority rather than threaten it.[1] 'Cretalamna' currently remains as the most prevalent spelling and paleontologists have expressed the unlikeliness of a return to the usage of 'Cretolamna' .[17]

Description edit

 
Life restoration, showing a porbeagle or salmon shark-like profile

Cretalamna was a medium to large-sized shark. Based on vertebral comparisons with various extant lamniforms and Cretoxyrhina, a 2007 study by Kenshu Shimada estimated a total length of 2.3–3.0 metres (8–10 ft) for the most complete skeleton of a large individual (LACM 128126; C. hattini holotype[1]).[24] Shimada previously discovered that the total length of lamniform sharks is positively correlated with the size of their teeth in a reasonably linear relationship; thus, Shimada (2007)'s estimates enabled size estimations for Cretalamna based on teeth alone.[25][26] Subsequently, in 2019, the teeth of C. appendiculata from Himedo Park, Kugushima and Wadanohana which are larger than those in LACM 128126 yielded maximum length estimates of up to 3.4 metres (11 ft), 4.5 metres (15 ft) and 5 meters (16 ft), respectively.[26] In 2020, Shimada and colleagues estimated the maximum possible length of C. borealis up to 3.5 meters (11 ft) based on an upper jaw tooth specimen (LO 11350t) from Åsen locality.[27][1]

Body edit

The body plan of Cretalamna is almost completely known, informed by near-complete fossil impressions with soft tissue preserving the shark's outline from the Hjoula lagerstätte in Lebanon as documented by Pfiel (2021) and Greenfield (2022).[28] It was most similar to the porbeagle and salmon sharks in build, with a compact fusiform body, large pectoral and first dorsal fins and tail, and small second dorsal, pelvic, and anal fins. The first dorsal fin was positioned directly above the pectoral fins unlike its analog species, where the first dorsal fin is usually positioned behind it.[28] The tail fin was semi-lunate,[28] similar to the whale shark.[29] Such a body plan is indicative of an active fast-swimming pelagic shark likely partially warm-blooded through regional endothermy.[28][30]

Dentition edit

 
Fossil teeth of C. biauriculata from Khouribga (Morocco)

Cretalamna teeth are distinguished by a broad triangular cusp and two lateral cusplets. The cutting edges of the teeth are razor-like, while the sides have a smooth surface. Teeth symmetry is variable; some have exact bilateral symmetry whereas others have high asymmetry. Adjacent teeth do not overlap.[24]

The exact dentition of Cretalamna is uncertain due to poor fossil representation. Traditionally, most reconstructions of its dentition were constructed from individual shed teeth.[1] Based on a specimen of C. hattini (LACM 128126), the dentition of the shark follows a lamnoid pattern with at least fifteen upper tooth rows and eight lower tooth rows on each side of the jaw. The upper tooth rows contain, from front to back: two symphysial, two anterior, one intermediate, and ten lateral tooth rows. The lower tooth rows contain: two anterior, one intermediate, and five lateral tooth rows. This is given in the dental formula S2?.A2.I1.L10(+?)s?.a2.i1.l4, constructed in a 2007 study of LACM 128126 by paleontologist Kenshu Shimada. It is possible that Cretalamna contained more than two symphysial tooth rows, as the related Cretoxyrhina mantelli possessed four upper symphysial tooth rows.[24]

Jaw edit

In C. hattini, the upper and lower jaws are similar to that of Cretoxyrhina mantelli. The jaws also resemble those of modern alopiids (thresher sharks) and lamnids. Limited fossil evidence suggests that the upper jaws extended over the lower jaws, giving Cretalamna a subterminal mouth.[24]

Paleoecology edit

Distribution edit

Cretalamna was a widespread genus found in North Africa (Morocco), the Near East (Jordan),[31] West Africa (Mali),[32] North America both on the East Coast and in the Midwest and Central America (Tonosí, Panama).[33] Deposits in Morocco are usually Eocene in age; deposits in Jordan are of Cretaceous and Eocene in age; most deposits in the U.S. are of Cretaceous and Paleocene age;[34] and deposits in Mali are of Cretaceous (Maastrichtian) age.[32] C. maroccana is more prevalent in Morocco and Jordan, while C. appendiculata is more prevalent in the United States. Both species overlapped at one point in time.

Habitat edit

 
Outdated reconstruction of Cretalamna (13, lower right) with contemporaneous aquatic animals

Fossil evidence of Cretalamna is found in deposits representing a diverse set of marine environments, indicating that it was able to adapt to a wide range of habitats. This may have attributed to its ability to exist through a long temporal range.[24] The fusiform body of Cretalamna suggests it was a pelagic shark.[35]

The Cretaceous waters inhabited by Cretalamna were also home to a diverse range of cartilaginous fishes, bony fishes, turtles, squamates, plesiosaurs, pterosaurs, birds, and even some non-avian dinosaurs.[24]

Diet edit

 
Teeth of C. appendiculata found with Futabasaurus

The tooth morphology of Cretalamna implies that it was a generalist.[24] It was a predator and preyed upon large bony fish, turtles, mosasaurs, squids, and other sharks.[36] For example, multiple teeth of C. appendiculata have been found around elasmosaurid Futabasaurus, suggesting it predated or scavenged that elasmosaur.[25] Some tooth specimens of Cretalamna exhibit heavy wear—likely the result of drastic diet changes.[1]

Extinction edit

A possible factor to the extinction of Cretalamna is increased competition with newer generalist sharks during the Cenozoic.[24] It is widely believed that Otodus (and thus Carcharocles) is derived from Cretalamna due to its strong similarity to certain species within the genus.[22]

See also edit

Notes edit

  1. ^ Cappetta (2012) reported 'C'. aschersoni from the Priabonian of Egypt.

References edit

  1. ^ a b c d e f g h i j k l m n o p Mikael Siversson; Johan Lindgren; Michael G. Newbrey; Peter Cederström; Todd D. Cook (2015). "Cenomanian–Campanian (Late Cretaceous) mid-palaeolatitude sharks of Cretalamna appendiculata type" (PDF). Acta Palaeontologica Polonica. 60 (2): 339–384. doi:10.4202/app.2012.0137.
  2. ^ Mikael Siversson; Marcin Machalski (2017). "Late late Albian (Early Cretaceous) shark teeth from Annopol, Poland". Alcheringa: An Australasian Journal of Palaeontology. 41 (4): 433–463. doi:10.1080/03115518.2017.1282981. S2CID 133123002.
  3. ^ J.G. Ogg and L.A. Hinnov (2012). "Cretaceous". The Geologic Time Scale. pp. 793–853. doi:10.1016/B978-0-444-59425-9.00027-5. ISBN 9780444594259. {{cite book}}: |journal= ignored (help)
  4. ^ Agnete Weinreich Carlsen; Gilles Cuny (2014). "A study of the sharks and rays from the Lillebælt Clay (Early–Middle Eocene) of Denmark, and their palaeoecology" (PDF). Bulletin of the Geological Society of Denmark. 62 (1): 39–88. doi:10.37570/bgsd-2014-62-04.
  5. ^ N. Vandenberghe; F. J. Hilgen; R. P. Speijer (2012). "The Paleogene Period". The Geologic Time Scale 2012: 855–921. doi:10.1016/B978-0-444-59425-9.00028-7. ISBN 9780444594259. S2CID 129821669.
  6. ^ Vasja Mikuz (2003). "The elasmobranch Cretolamna appendiculata also in the Upper Cretaceous - Gosau beds near Stranice, Eastern Slovenia". Geologija (in Slovenian). 46 (1): 83–87. doi:10.5474/geologija.2003.006.
  7. ^ Arthur Smith Woodward (1889). Catalogue of the fossil fishes in the British Museum (Natural History). Vol. 1. British Museum. p. 393. doi:10.5962/bhl.title.61854.
  8. ^ Kenshu Shimada (2006). "Fossil marine vertebrates from the Lowermost Greenhorn Limestone (Upper Cretaceous: Middle Cenomanian) in southeastern Colorado". Journal of Paleontology. 80: 1–45. doi:10.1666/0022-3360(2006)80[1:FMVFTL]2.0.CO;2. ISSN 0022-3360. S2CID 130272120.
  9. ^ a b Louis Agassiz (1835). Rapport sur les poissons fossiles découverts en Angleterre (in French). Imprimerie de Petitpierre et Prince. p. 49. doi:10.5962/bhl.title.5745.
  10. ^ a b c d Louis Agassiz (1833–1843) [1838]. Recherches sur les poissons fossiles (in French). Vol. 3. Museum of Comparative Zoology.
  11. ^ a b Leonid Glickman (1958). "Rates of evolution in Lamoid sharks" (PDF). Doklady Akademii Nauk SSSR (in Russian). 123: 568–571.
  12. ^ a b Mikael Siversson (1999). "A new large lamniform shark from the uppermost Gearle Siltstone (Cenomanian, Late Cretaceous) of Western Australia". Transactions of the Royal Society of Edinburgh: Earth Sciences. 90 (1): 49–66. doi:10.1017/S0263593300002509. S2CID 131195702.
  13. ^ Fernand Priem (1908). Etude des Poissons Fossiles du Bassin Parisien (PDF) (in French). Publications des Annales de Paléontologie. pp. 69–70.
  14. ^ Jaques Herman (1977). "Les sélaciens des terrains néocrétacés & paléocènes de Belgique & des contrées limitrophes eléments d'une biostratigraphie intercontinentale". Toelichtende Verhandelingen voor de Geologische Kaart en Mijnkaart van België = Mémoires Pour Servir À l'Explication des Cartes Géologiques et Minières de la Belgique (in French). Geological Survey of Belgium: 210–216. ISSN 0408-9510.
  15. ^ Jaques Herman; Van Waes Hilde (2012). Observations concernant l'Évolution et la Systématique de quelques Euselachii, Neoselachii et Batoidei (Pisces - Elasmobranchii), actuels et fossiles (PDF) (in French). Géominpal Belgica 2. pp. 55–56. ISSN 2033-6365.
  16. ^ a b Johannes Wanner (1902). "Die Fauna der obersten weissen Kreide der libyschen Wüste". Palaeontographica (in German). 30 (2): 91–152.
  17. ^ a b c d e Jim Bourdon (2011). "Cretalamna". elasmo.com. Retrieved 31 March 2019.
  18. ^ Gerard Case; Henri Cappetta (1997). "A new selachian fauna from the Late Maastrichtian of Texas (Upper Cretaceous/Navarro Group; Kemp Formation)". Münchner Geowissenschaftliche Abhandlungen Reihe A: Geologie und Paläontologie. 34 (1): 134–189. ISSN 0177-0950.
  19. ^ a b Henri Cappetta (1972). "Les poissons crétacés et tertiaires du bassin des Iullemmeden (République du Niger)". Palaeovertebrata (in French). 5 (5): 179–251. ISSN 2274-0333.
  20. ^ R.T.J. Moody; P.J.C. Sutcliffe (1991). "The Cretaceous deposits of the Iullemmeden Basin of Niger, central West Africa". Cretaceous Research. 12 (2): 137–157. Bibcode:1991CrRes..12..137M. doi:10.1016/S0195-6671(05)80021-7.
  21. ^ a b Henri Cappetta; Gerard Case (1976). "Contribution a l'étude des sélaciens du groupe Monmouth (Campanien-Maestrichtien) du New Jersey". Palaeontographica Abteilung A (in French). 151 (1–3): 1–46.
  22. ^ a b c Jun A. Ebersole; Dana J. Ehret (2018). "A new species of Cretalamna sensu stricto (Lamniformes, Otodontidae) from the Late Cretaceous (Santonian-Campanian) of Alabama, USA". PeerJ. 6 (e4229): e4229. doi:10.7717/peerj.4229. PMC 5764036. PMID 29333348.
  23. ^ Camille Arambourg (1952). "Les vertébrés fossiles des gisements de phosphates (Maroc-Algérie-Tunisie)". Notes et Mémoires du Service Géologique du Maroc (in French). 92 (1): 1–372.
  24. ^ a b c d e f g h Shimada, Kenshu (2007). "Skeletal and Dental Anatomy of Lamniform Shark, Cretalamna Appendiculata, from Upper Cretaceous Niobrara Chalk of Kansas". Journal of Vertebrate Paleontology. 27 (3): 584–602. doi:10.1671/0272-4634(2007)27[584:SADAOL]2.0.CO;2. S2CID 131264105.
  25. ^ a b Shimada, K.; Tsuihiji, T.; Sato, T.; Hasegawa, Y. (2010). "A remarkable case of a shark-bitten elasmosaurid plesiosaur". Journal of Vertebrate Paleontology. 30 (2): 592–597. Bibcode:2010JVPal..30..592S. doi:10.1080/02724631003621920. S2CID 128760390.
  26. ^ a b Kitamura, N. (2019). "Features and Paleoecological Significance of the Shark Fauna from the Upper Cretaceous Hinoshima Formation, Himenoura Group, Southwest Japan". Paleontological Research. 23 (2): 110–130. doi:10.2517/2018PR013. S2CID 198148968.
  27. ^ Shimada, K.; Becker, M. A.; Griffiths, M. L. (2020). "Body, jaw, and dentition lengths of macrophagous lamniform sharks, and body size evolution in Lamniformes with special reference to 'off-the-scale' gigantism of the megatooth shark, Otodus megalodon". Historical Biology. 33 (11): 1–17. doi:10.1080/08912963.2020.1812598.
  28. ^ a b c d Greenfield, T. (2022). "Additions to "List of skeletal material from megatooth sharks", with a response to Shimada (2022)". Paleoichthys. 6: 6–11.
  29. ^ "Rhincodon typus". Florida Museum. 2020.
  30. ^ Martin, R.A. "Shark Ecomorphotypes". Elasmo Research.
  31. ^ Kaddumi H. F. 2009. Fossils of the Harrana Fauna and the Adjacent Areas. Publications of the Eternal River Museum of Natural History, Amman, pp 324
  32. ^ a b "Stratigraphy and Paleobiology of the Upper Cretaceous-Lower Paleogene Sediments from the Trans-Saharan Seaway in Mali". MorphoBank datasets. 2019-07-01. doi:10.7934/p2735. S2CID 242354960.
  33. ^ Vásquez, Sara; Pimiento, Catalina (2014). "Tiburones y rayas de la Formación Tonosí (Eoceno de Panamá)". Revista Geológica de América Central. 51. doi:10.15517/rgac.v51i1.16911.
  34. ^ Yoost, Derek. "Potomac River Fossils". Retrieved 14 May 2012.
  35. ^ Ferrón, Humberto G. (2017-09-22). "Regional endothermy as a trigger for gigantism in some extinct macropredatory sharks". PLOS ONE. 12 (9): e0185185. Bibcode:2017PLoSO..1285185F. doi:10.1371/journal.pone.0185185. ISSN 1932-6203. PMC 5609766. PMID 28938002.
  36. ^ Kent, Bretton W. (1987). Fossil Sharks of the Chesapeake Bay Region. Egan Rees & Boyer Inc.

cretalamna, genus, extinct, otodontid, shark, that, lived, from, latest, early, cretaceous, eocene, epoch, about, million, years, considered, many, ancestor, largest, sharks, have, ever, lived, such, otodus, angustidens, otodus, chubutensis, otodus, megalodon,. Cretalamna is a genus of extinct otodontid shark that lived from the latest Early Cretaceous to Eocene epoch about 103 to 46 million years ago It is considered by many to be the ancestor of the largest sharks to have ever lived such as Otodus angustidens Otodus chubutensis and Otodus megalodon CretalamnaTemporal range Late Albian Lutetian 103 13 46 25 Ma PreꞒ Ꞓ O S D C P T J K Pg N 1 2 3 4 5 a Jaws and teeth of the C hattini holotype LACM 128126 from the Niobrara Formation of Kansas Speculative skeletal reconstruction Scientific classification Domain Eukaryota Kingdom Animalia Phylum Chordata Class Chondrichthyes Subclass Elasmobranchii Subdivision Selachimorpha Order Lamniformes Family Otodontidae Genus CretalamnaGlukman 1958 Type species Cretalamna appendiculataAgassiz 1835 Species List of species C appendiculataAgassiz 1835 type C lataAgassiz 1843 C borealisPriem 1897 C biauriculataWanner 1902 C maroccanaArambourg 1935 C nigerianaCappetta 1972 C arambourgiCappetta amp Case 1975 C catoxodonSiversson et al 2015 C deschutteriSiversson et al 2015 C ewelliSiversson et al 2015 C gertericorumSiversson et al 2015 C hattiniSiversson et al 2015 C sarcoporthetaSiversson et al 2015 C bryantiEbersole and Ehret 2018 Disputed or uncertain C aschersoniStromer 1905 Synonyms 1 6 7 8 9 List of synonyms Squalus mustelus Mantell 1822 Squalus cornubicus Geinitz 1839 Odontaspis raphiodon Geinitz 1839 Lamna appendiculata Agassiz 1835 Otodus appendiculatus Agassiz 1843 Otodus latus Agassiz 1843 Otodus basalis Stoliczka 1873 Lamna Otodus appendiculata Zittel 1895 Lamna borealis Priem 1897 Lamna Otodus appendicularis Toula 1900 Odontaspis gigas Dalinkevicus 1935 Lamna lata Gyen 1937 Plicatolamna arcuata Edwards 1976 Cretolamna appendiculata var pachyrhiza Herman 1977 Cretolamna appendiculata pachyrhiza Lauginiger and Hartstein 1983 Cretoxyrhina cf mantelli Kemp 1991 Cretolamna woodwardi Welton and Farish 1993 Cretolamna pachyrhyza Herman and Van Waes 2012 Contents 1 Taxonomy 1 1 Research history 1 2 Etymology 1 3 Spelling 2 Description 2 1 Body 2 2 Dentition 2 3 Jaw 3 Paleoecology 3 1 Distribution 3 2 Habitat 3 3 Diet 3 4 Extinction 4 See also 5 Notes 6 ReferencesTaxonomy editResearch history edit nbsp Original syntypes of Otodus appendiculatus Fig 1 25 and holotype of C lata Fig 26 in the third volume of Recherches sur les poissons fossiles the tooth in Fig 10 is the sole lectotype of C appendiculata Cretalamna was first described by Swiss naturalist Louis Agassiz using five teeth previously identified as the common smooth hound and collected by English paleontologist Gideon Mantell from the Southerham Grey Pit near Lewes East Sussex In his 1835 publication Rapport sur les poissons fossiles decouverts en Angleterre he reidentified them as a new species of porbeagle shark under the taxon Lamna appendiculata 9 In 1843 Agassiz published Recherches sur les poissons fossiles which reexamined Mantell s five teeth Using them eight additional teeth collected by Mantell and twenty more teeth collected by various paleontologists in various locations One tooth found by the 3rd Earl of Enniskillen from the Speeton Clay in Yorkshire one tooth of the collection of a Strasbourg Museum from an unspecified location one tooth of the collection of the Hancock Museum from the Marly Chalk near Cambridge and six teeth of the collection of German paleontologist Heinrich Georg Bronn from chalk around Aachen he described a species whose teeth had thick bulged roots lateral cusplets and extreme variability Agassiz remarked that some of the examined teeth may be variable enough to belong to a separate species but ultimately unified them under a new taxon Otodus appendiculatus 10 The species would later be found in 1958 by Soviet paleontologist Leonid Glickman to belong to a distinct new genus Cretalamna 11 Despite Agassiz s remarks on variability 10 his ultimately broad interpretation of O appendiculatus subsequently led the species to become a wastebasket taxon culminating to an interpretation of C appendiculata as a variable cosmopolitan species with a 50 million year range This changed when paleontologist Mikael Siversson found that the twenty five syntypes actually represented a mix of at least six or more different species including three additional genera Dwardius Cretoxyrhina and Cretodus To remedy the taxonomic issue he redesignated one of the syntypes as the sole lectotype of C appendiculata in 1999 1 12 In 2015 he led a study which revisited the taxonomic situation and established a renewed description of the species which led to the erection of six additional Cretalamna species C catoxodon C deschutteri C ewelli C gertericorum C hattini and C sarcoporthea 1 Before Siversson other Cretalamna species have been described Another species described by Agassiz under the taxon Otodus latus was demoted to a variation of C appendiculata in 1908 13 promoted into a subspecies in 1977 by Belgian paleontologist Jaques Herman 14 and finally elevated to the species level as Cretolamna lata by Herman and paleontologist Van Waes Hilde in 2012 15 In 1897 French paleontologist Fernand Priem described a single tooth from the Kopinge Sandstone in Scania Sweden under the taxon Lamna borealis This would be revised to Cretolamna borealis by Glickman in a 1980 paper 1 In 1902 German paleontologist Johannes Wanner described teeth from Egyptian Cretaceous deposits near the Dakhla Oasis and Farafra He noted that the teeth are almost identical with that of the Otodus appendiculatus teeth except that the Egyptian teeth also contained two clear pairs of lateral cusplets a feature not seen in Otodus appendiculatus Wanner concluded that the teeth were of a closely related new species and placed it under the taxon Otodus biauriculatus 16 In 1935 French Paleontologist Camille Arambourg described a new subspecies of C biauriculata from teeth found in Moroccan phosphates under the taxon Lamna biauriculata maroccana 17 which was elevated into its own species in 1997 18 In 1972 French ichthyologist Henri Cappetta described teeth from Maastrichtian deposits near the Mentes well in Tahoua Niger which he assigned to the subspecies Lamna biauriculata nigeriana 19 This subspecies would also be elevated to its own species in 1991 20 In 1975 Cappetta and American paleontologist Gerard Case examined Cretalamna teeth described by Arambourg in 1952 from Danian deposits in Morocco and proposed that it represents a new subspecies of the type species and assigned it the taxon Cretolamna appendiculata arambourgi 21 which Siversson et al 2015 elevated into its own species 1 In 2018 American paleontologists Jun Ebersole and Dana Ehret described a new species of Cretalamna from various teeth from the Eutaw Formation and Mooreville Chalk in Alabama which they named C bryanti 22 Etymology edit The genus Cretalamna is a portmanteau of creta the Latin word for chalk prefixed to the genus Lamna which is a romanization of the Ancient Greek lamna lamna meaning kind of fierce shark When put together they mean chalk shark which refers to chalk deposits from which the species type specimens were found in 11 The type species name appendiculata is a feminine form of the Latin word appendiculatus having an appendage a reference to the thick bulged roots found in C appendiculata teeth 10 The species name lata is derived from the feminine form of the Latin latus wide a reference to the notably wide teeth of the species 10 The species name borealis is derived from the Latin borealis northern this is a reference to its discovery from fossil deposits in Sweden a boreal locality 1 The specific epithet of C maroccana is a feminine form of the Latin word maroccanus Moroccan a reference to its type locality in Morocco 23 C biauriculata s specific epithet is a portmanteau derived from the Latin prefix bi two prefixed onto the Latin auriculata eared together meaning having two ears This is a reference to the species large lateral cusplets which somewhat resemble a pair of ears 16 The species name nigeriana is derived from the country name Niger prefixed to the suffix iana a feminine variation of the Latin suffix anus pertaining to together meaning pertaining to Niger This is a reference to the species type locality in Niger 19 The species name sarcoportheta is derived from the Ancient Greek sarkos sarkos meaning flesh prefixed to the Ancient Greek por8hths porthitis meaning destroyer together meaning destroyer of flesh The species name catoxodon is derived from the Ancient Greek kato3ys katoxys meaning very sharp prefixed to the Ancient Greek ὀdwn odon meaning tooth Together they mean very sharp tooth referring to the unusually sharp cutting edges of some C catoxodon teeth 1 Six of the Cretalamna species have specific epithets that are named in honor of specific people either for their contributions to the research of their associated species or for notable work they undertook Of these six five share a similar word structure that has a person s last name prefixed onto the Latin suffix i from These species are C arambourgi which honors paleontologist Camille Arambourg for his discovery of the C arambourgi type specimens and his contributions to North African paleontology 21 C bryanti which honors the Bryant family who helped enhance the reputation and missions of the University of Alabama Alabama Museum of Natural History and McWane Science Center through their commitment to education and support 22 C deschutteri which honors paleontologist Pieter De Scutter for his efforts to make Cretalamna teeth from a Bettrechies quarry available to Siversson et al 2015 and for his work on Belgian Cenozoic sharks C ewelli which honors paleontologist Keith Ewell who collected most of the C ewelli type specimens in 2004 and C hattini which honors the late geologist Donald E Hattin for his work on the stratigraphy of the Niobrara Formation western Kansas The specific epithet of C gertericorum is structured differently it is derived from the names Gert Eric and the Latin suffix orum a masculine plural declension The derived names Gert and Eric refer to fossil collectors Gert De Bie and Eric Collier both of whom collected the majority of Cretalamna teeth examined in Siversson et al 2015 that were from the Bettrechies quarry 1 Spelling edit The valid spelling of Cretalamna specifically between it and Cretolamna has been subject to controversy Originally Glickman described the genus with the intention of naming it as Cretolamna but during publication of the corresponding 1958 paper a typographical error occurred with the print misspelling it as Cretalamna Glickman pointed out the spelling as an error and continued to use his intended spelling Cretolamna in later works 17 This spelling was universally adopted until 1999 when Siversson remarked that this violates ICZN Articles 32 and 33 reinstating Cretalamna as the valid spelling 12 Since then the reinstatement of Cretalamna gained prominence and by the 2010s was accepted by the majority of paleontologists 1 However some paleontologists including Cappetta strongly opposed it 1 17 In an attempt to suppress the usage of Cretalamna Cappetta appealed to a representative of the ICZN arguing that the original intentions of Glickman and the prevailing usage of Cretolamna prior to Siversson 1999 secures its priority The ICZN who reportedly were impressed by Cappetta s spirit subsequently erected Article 33 3 1 of the 2000 Edition of the Code in order to address this situation in the future 17 which states that when an unjustified emendation is in prevailing usage and is attributed to the original author and date it is deemed to be a justified emendation While Cappetta argued in a 2012 handbook that this new provision justifies the priority of Cretolamna due to the spelling s overwhelmingly prevailing usage prior to its replacement by Siversson in 1999 Siversson himself pointed out in a 2015 paper that the provision cannot be worked retroactively and that the continued prevailing usage of Cretalamna since the provision s establishment ironically secures its priority rather than threaten it 1 Cretalamna currently remains as the most prevalent spelling and paleontologists have expressed the unlikeliness of a return to the usage of Cretolamna 17 Description edit nbsp Life restoration showing a porbeagle or salmon shark like profile Cretalamna was a medium to large sized shark Based on vertebral comparisons with various extant lamniforms and Cretoxyrhina a 2007 study by Kenshu Shimada estimated a total length of 2 3 3 0 metres 8 10 ft for the most complete skeleton of a large individual LACM 128126 C hattini holotype 1 24 Shimada previously discovered that the total length of lamniform sharks is positively correlated with the size of their teeth in a reasonably linear relationship thus Shimada 2007 s estimates enabled size estimations for Cretalamna based on teeth alone 25 26 Subsequently in 2019 the teeth of C appendiculata from Himedo Park Kugushima and Wadanohana which are larger than those in LACM 128126 yielded maximum length estimates of up to 3 4 metres 11 ft 4 5 metres 15 ft and 5 meters 16 ft respectively 26 In 2020 Shimada and colleagues estimated the maximum possible length of C borealis up to 3 5 meters 11 ft based on an upper jaw tooth specimen LO 11350t from Asen locality 27 1 Body edit The body plan of Cretalamna is almost completely known informed by near complete fossil impressions with soft tissue preserving the shark s outline from the Hjoula lagerstatte in Lebanon as documented by Pfiel 2021 and Greenfield 2022 28 It was most similar to the porbeagle and salmon sharks in build with a compact fusiform body large pectoral and first dorsal fins and tail and small second dorsal pelvic and anal fins The first dorsal fin was positioned directly above the pectoral fins unlike its analog species where the first dorsal fin is usually positioned behind it 28 The tail fin was semi lunate 28 similar to the whale shark 29 Such a body plan is indicative of an active fast swimming pelagic shark likely partially warm blooded through regional endothermy 28 30 Dentition edit nbsp Fossil teeth of C biauriculata from Khouribga Morocco Cretalamna teeth are distinguished by a broad triangular cusp and two lateral cusplets The cutting edges of the teeth are razor like while the sides have a smooth surface Teeth symmetry is variable some have exact bilateral symmetry whereas others have high asymmetry Adjacent teeth do not overlap 24 The exact dentition of Cretalamna is uncertain due to poor fossil representation Traditionally most reconstructions of its dentition were constructed from individual shed teeth 1 Based on a specimen of C hattini LACM 128126 the dentition of the shark follows a lamnoid pattern with at least fifteen upper tooth rows and eight lower tooth rows on each side of the jaw The upper tooth rows contain from front to back two symphysial two anterior one intermediate and ten lateral tooth rows The lower tooth rows contain two anterior one intermediate and five lateral tooth rows This is given in the dental formula S2 A2 I1 L10 s a2 i1 l4 constructed in a 2007 study of LACM 128126 by paleontologist Kenshu Shimada It is possible that Cretalamna contained more than two symphysial tooth rows as the related Cretoxyrhina mantelli possessed four upper symphysial tooth rows 24 Jaw edit In C hattini the upper and lower jaws are similar to that of Cretoxyrhina mantelli The jaws also resemble those of modern alopiids thresher sharks and lamnids Limited fossil evidence suggests that the upper jaws extended over the lower jaws giving Cretalamna a subterminal mouth 24 Paleoecology editDistribution edit Cretalamna was a widespread genus found in North Africa Morocco the Near East Jordan 31 West Africa Mali 32 North America both on the East Coast and in the Midwest and Central America Tonosi Panama 33 Deposits in Morocco are usually Eocene in age deposits in Jordan are of Cretaceous and Eocene in age most deposits in the U S are of Cretaceous and Paleocene age 34 and deposits in Mali are of Cretaceous Maastrichtian age 32 C maroccana is more prevalent in Morocco and Jordan while C appendiculata is more prevalent in the United States Both species overlapped at one point in time Habitat edit nbsp Outdated reconstruction of Cretalamna 13 lower right with contemporaneous aquatic animals Fossil evidence of Cretalamna is found in deposits representing a diverse set of marine environments indicating that it was able to adapt to a wide range of habitats This may have attributed to its ability to exist through a long temporal range 24 The fusiform body of Cretalamna suggests it was a pelagic shark 35 The Cretaceous waters inhabited by Cretalamna were also home to a diverse range of cartilaginous fishes bony fishes turtles squamates plesiosaurs pterosaurs birds and even some non avian dinosaurs 24 Diet edit nbsp Teeth of C appendiculata found with Futabasaurus The tooth morphology of Cretalamna implies that it was a generalist 24 It was a predator and preyed upon large bony fish turtles mosasaurs squids and other sharks 36 For example multiple teeth of C appendiculata have been found around elasmosaurid Futabasaurus suggesting it predated or scavenged that elasmosaur 25 Some tooth specimens of Cretalamna exhibit heavy wear likely the result of drastic diet changes 1 Extinction edit A possible factor to the extinction of Cretalamna is increased competition with newer generalist sharks during the Cenozoic 24 It is widely believed that Otodus and thus Carcharocles is derived from Cretalamna due to its strong similarity to certain species within the genus 22 See also editCretaceous sharks Prehistoric fish SqualicoraxNotes edit Cappetta 2012 reported C aschersoni from the Priabonian of Egypt References edit a b c d e f g h i j k l m n o p Mikael Siversson Johan Lindgren Michael G Newbrey Peter Cederstrom Todd D Cook 2015 Cenomanian Campanian Late Cretaceous mid palaeolatitude sharks of Cretalamna appendiculata type PDF Acta Palaeontologica Polonica 60 2 339 384 doi 10 4202 app 2012 0137 Mikael Siversson Marcin Machalski 2017 Late late Albian Early Cretaceous shark teeth from Annopol Poland Alcheringa An Australasian Journal of Palaeontology 41 4 433 463 doi 10 1080 03115518 2017 1282981 S2CID 133123002 J G Ogg and L A Hinnov 2012 Cretaceous The Geologic Time Scale pp 793 853 doi 10 1016 B978 0 444 59425 9 00027 5 ISBN 9780444594259 a href Template Cite book html title Template Cite book cite book a journal ignored help Agnete Weinreich Carlsen Gilles Cuny 2014 A study of the sharks and rays from the Lillebaelt Clay Early Middle Eocene of Denmark and their palaeoecology PDF Bulletin of the Geological Society of Denmark 62 1 39 88 doi 10 37570 bgsd 2014 62 04 N Vandenberghe F J Hilgen R P Speijer 2012 The Paleogene Period The Geologic Time Scale 2012 855 921 doi 10 1016 B978 0 444 59425 9 00028 7 ISBN 9780444594259 S2CID 129821669 Vasja Mikuz 2003 The elasmobranch Cretolamna appendiculata also in the Upper Cretaceous Gosau beds near Stranice Eastern Slovenia Geologija in Slovenian 46 1 83 87 doi 10 5474 geologija 2003 006 Arthur Smith Woodward 1889 Catalogue of the fossil fishes in the British Museum Natural History Vol 1 British Museum p 393 doi 10 5962 bhl title 61854 Kenshu Shimada 2006 Fossil marine vertebrates from the Lowermost Greenhorn Limestone Upper Cretaceous Middle Cenomanian in southeastern Colorado Journal of Paleontology 80 1 45 doi 10 1666 0022 3360 2006 80 1 FMVFTL 2 0 CO 2 ISSN 0022 3360 S2CID 130272120 a b Louis Agassiz 1835 Rapport sur les poissons fossiles decouverts en Angleterre in French Imprimerie de Petitpierre et Prince p 49 doi 10 5962 bhl title 5745 a b c d Louis Agassiz 1833 1843 1838 Recherches sur les poissons fossiles in French Vol 3 Museum of Comparative Zoology a b Leonid Glickman 1958 Rates of evolution in Lamoid sharks PDF Doklady Akademii Nauk SSSR in Russian 123 568 571 a b Mikael Siversson 1999 A new large lamniform shark from the uppermost Gearle Siltstone Cenomanian Late Cretaceous of Western Australia Transactions of the Royal Society of Edinburgh Earth Sciences 90 1 49 66 doi 10 1017 S0263593300002509 S2CID 131195702 Fernand Priem 1908 Etude des Poissons Fossiles du Bassin Parisien PDF in French Publications des Annales de Paleontologie pp 69 70 Jaques Herman 1977 Les selaciens des terrains neocretaces amp paleocenes de Belgique amp des contrees limitrophes elements d une biostratigraphie intercontinentale Toelichtende Verhandelingen voor de Geologische Kaart en Mijnkaart van Belgie Memoires Pour Servir A l Explication des Cartes Geologiques et Minieres de la Belgique in French Geological Survey of Belgium 210 216 ISSN 0408 9510 Jaques Herman Van Waes Hilde 2012 Observations concernant l Evolution et la Systematique de quelques Euselachii Neoselachii et Batoidei Pisces Elasmobranchii actuels et fossiles PDF in French Geominpal Belgica 2 pp 55 56 ISSN 2033 6365 a b Johannes Wanner 1902 Die Fauna der obersten weissen Kreide der libyschen Wuste Palaeontographica in German 30 2 91 152 a b c d e Jim Bourdon 2011 Cretalamna elasmo com Retrieved 31 March 2019 Gerard Case Henri Cappetta 1997 A new selachian fauna from the Late Maastrichtian of Texas Upper Cretaceous Navarro Group Kemp Formation Munchner Geowissenschaftliche Abhandlungen Reihe A Geologie und Palaontologie 34 1 134 189 ISSN 0177 0950 a b Henri Cappetta 1972 Les poissons cretaces et tertiaires du bassin des Iullemmeden Republique du Niger Palaeovertebrata in French 5 5 179 251 ISSN 2274 0333 R T J Moody P J C Sutcliffe 1991 The Cretaceous deposits of the Iullemmeden Basin of Niger central West Africa Cretaceous Research 12 2 137 157 Bibcode 1991CrRes 12 137M doi 10 1016 S0195 6671 05 80021 7 a b Henri Cappetta Gerard Case 1976 Contribution a l etude des selaciens du groupe Monmouth Campanien Maestrichtien du New Jersey Palaeontographica Abteilung A in French 151 1 3 1 46 a b c Jun A Ebersole Dana J Ehret 2018 A new species of Cretalamna sensu stricto Lamniformes Otodontidae from the Late Cretaceous Santonian Campanian of Alabama USA PeerJ 6 e4229 e4229 doi 10 7717 peerj 4229 PMC 5764036 PMID 29333348 Camille Arambourg 1952 Les vertebres fossiles des gisements de phosphates Maroc Algerie Tunisie Notes et Memoires du Service Geologique du Maroc in French 92 1 1 372 a b c d e f g h Shimada Kenshu 2007 Skeletal and Dental Anatomy of Lamniform Shark Cretalamna Appendiculata from Upper Cretaceous Niobrara Chalk of Kansas Journal of Vertebrate Paleontology 27 3 584 602 doi 10 1671 0272 4634 2007 27 584 SADAOL 2 0 CO 2 S2CID 131264105 a b Shimada K Tsuihiji T Sato T Hasegawa Y 2010 A remarkable case of a shark bitten elasmosaurid plesiosaur Journal of Vertebrate Paleontology 30 2 592 597 Bibcode 2010JVPal 30 592S doi 10 1080 02724631003621920 S2CID 128760390 a b Kitamura N 2019 Features and Paleoecological Significance of the Shark Fauna from the Upper Cretaceous Hinoshima Formation Himenoura Group Southwest Japan Paleontological Research 23 2 110 130 doi 10 2517 2018PR013 S2CID 198148968 Shimada K Becker M A Griffiths M L 2020 Body jaw and dentition lengths of macrophagous lamniform sharks and body size evolution in Lamniformes with special reference to off the scale gigantism of the megatooth shark Otodus megalodon Historical Biology 33 11 1 17 doi 10 1080 08912963 2020 1812598 a b c d Greenfield T 2022 Additions to List of skeletal material from megatooth sharks with a response to Shimada 2022 Paleoichthys 6 6 11 Rhincodon typus Florida Museum 2020 Martin R A Shark Ecomorphotypes Elasmo Research Kaddumi H F 2009 Fossils of the Harrana Fauna and the Adjacent Areas Publications of the Eternal River Museum of Natural History Amman pp 324 a b Stratigraphy and Paleobiology of the Upper Cretaceous Lower Paleogene Sediments from the Trans Saharan Seaway in Mali MorphoBank datasets 2019 07 01 doi 10 7934 p2735 S2CID 242354960 Vasquez Sara Pimiento Catalina 2014 Tiburones y rayas de la Formacion Tonosi Eoceno de Panama Revista Geologica de America Central 51 doi 10 15517 rgac v51i1 16911 Yoost Derek Potomac River Fossils Retrieved 14 May 2012 Ferron Humberto G 2017 09 22 Regional endothermy as a trigger for gigantism in some extinct macropredatory sharks PLOS ONE 12 9 e0185185 Bibcode 2017PLoSO 1285185F doi 10 1371 journal pone 0185185 ISSN 1932 6203 PMC 5609766 PMID 28938002 Kent Bretton W 1987 Fossil Sharks of the Chesapeake Bay Region Egan Rees amp Boyer Inc Retrieved from https en wikipedia org w index php title Cretalamna amp oldid 1197841265, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.