fbpx
Wikipedia

Copper electroplating

Copper electroplating is the process of electroplating a layer of copper onto the surface of a metal object. Copper is used both as a standalone coating and as an undercoat onto which other metals are subsequently plated.[1] The copper layer can be decorative, provide corrosion resistance, increase electrical and thermal conductivity, or improve the adhesion of additional deposits to the substrate.[2][3]

Copper plating on aluminium

Overview edit

Copper electroplating takes place in an electrolytic cell using electrolysis. As with all plating processes, the part to be plated must be cleaned before depositing metal to remove soils, grease, oxides, and defects.[4][5] After precleaning, the part is immersed in the cell's aqueous electrolyte solution and functions as the cathode. A copper anode is also immersed in the solution. During plating, a direct electric current is applied to the cell which causes the copper in the anode to dissolve into the electrolyte through oxidation, losing electrons and ionizing into copper cations. The copper cations form a coordination complex with salts present in the electrolyte, after which they are transported from the anode to the cathode. At the cathode, the copper ions are reduced to metallic copper by gaining electrons. This causes a thin, solid, metallic copper film to deposit onto the surface of the part.

The anodes can be either simple copper slabs or titanium or steel baskets filled with copper nuggets or balls.[6] The anodes may be placed in anode bags, which are typically made of polypropylene or another fabric and are used to contain insoluble particles that flake off the anode and prevent them from contaminating the plating bath.[2][7]

Copper electroplating baths can be used to plate either a strike or flash coating, which is a thin highly-adherent initial layer that is plated with additional layers of metal and that serves to improve adhesion of the subsequent layers to the underlying substrate, or a thicker coating of copper that may serve as the finish layer or as a standalone coating.[5]

Types of plating chemistries edit

There are a variety of different electrolyte chemistries that can be used for copper electroplating, but most can be broadly characterized into five general categories based on the complexing agent:[2][6]

  1. Alkaline cyanide
  2. Alkaline non-cyanide
  3. Acid sulfate
  4. Acid fluoroborate
  5. Pyrophosphate

Alkaline cyanide edit

Alkaline cyanide baths have historically been one of the most commonly-used plating chemistries for copper electrodeposition.[5][8] Cyanide copper baths typically provide high covering and throwing power, allowing uniform and complete coverage of the substrate, but often plate at lower current efficiency.[2] They produce a metal finish favored for its diffusion blocking character. Diffusion blocking is used to improve the long term adherence of different metals, e.g. chromium and steel. It is also used to prevent the second material from diffusing into the substrate.

Cyanide baths contain cuprous cyanide as the source of copper(I) ions, sodium or potassium cyanide as a source of free cyanide that complexes with cuprous cyanide to render it soluble, and sodium or potassium hydroxide for increased conductivity and pH control.[9] Baths may also contain Rochelle salts and sodium or potassium carbonate, as well as a variety of proprietary additives.[2] Cyanide copper baths can be used as low-efficiency strike-only baths, medium-efficiency strike-plate baths, and high efficiency plating baths.[6]

Bath composition edit

Chemical Name Formula Strike[6] Strike-plate[6] High-efficiency plate[6]
Sodium Potassium Sodium Potassium Sodium Potassium
Copper(I) cyanide CuCN 30 g/L 30 g/L 42 g/L 42 g/L 75 g/L 60 g/L
Sodium or potassium cyanide NaCN or KCN 48 g/L 58.5 g/L 51.9 g/L 66.6 g/L 97.5 g/L 102 g/L
Sodium or potassium hydroxide NaOH or KOH 3.75–7.5 g/L 3.75–7.5 g/L Control to pH 10.2–10.5 15 g/L 15 g/L
Rochelle salts KNaC4H4O6·4H2O 30 g/L 30 g/L 60 g/L 60 g/L 45 g/L 45 g/L
Sodium or potassium carbonate Na2CO3 or K2CO3 15 g/L 15 g/L 30 g/L 30 g/L 15 g/L 15 g/L

Operating conditions edit

  • Temperature: 24-66 °C (strike); 40-55 °C (strike-plate); 60-71 °C (high-efficiency)[6]
  • Cathode current density: 0.5-4.0 A/dm2 (strike); 1.0-1.5 A/dm2 (strike-plate); 8.6 A/dm2 (high-efficiency)[6]
  • Current efficiency: 30-60% (strike); 30-50% (strike-plate); 90-99% (high-efficiency);[6]
  • pH: >11.0[2]

Toxicity edit

Commercial platers typically use a copper cyanide solution, which retains a high concentration of copper. However, the presence of free cyanide in the baths makes them dangerous due to the highly toxic nature of cyanide. This creates both health hazards as well as issues with waste disposal.[6]

Alkaline non-cyanide edit

Due to safety concerns surrounding the use of cyanide-based plating chemistry, alkaline copper plating baths that do not contain cyanide have been developed. However, they generally see only limited use compared with the more common cyanide-based alkaline chemistry.[2]

Acid sulfate edit

Acid copper sulfate electrolytes are relatively simple solutions of copper sulfate and sulfuric acid that are cheaper and easier to maintain and control than cyanide copper electrolytes.[2] Compared to cyanide baths, they provide higher current efficiency and allow for higher current density and thus faster plating rates, but they usually have less throwing power, although high-throw variations exist.[2] Additionally, they cannot be used to plate directly onto less-noble metals such as steel or zinc without first applying a cyanide-based strike or other barrier layer, otherwise the acid in the bath will cause an immersion coating to form that will compromise adhesion.[6] Due to this phenomenon as well as the lower throwing power, acid sulfate baths are not usually used as strike baths.[2]

Along with alkaline cyanide, acid copper baths are among the most commonly-used copper plating electrolytes,[10] with industrial applications that include decorative plating, electroforming, rotogravure, and printed circuit board and semiconductor fabrication.[6][11]

Acid sulfate baths contain cupric sulfate as the source of copper(II) ions; sulfuric acid to increase bath conductivity, ensure copper salt solubility, decrease anode and cathode polarization, and increase throwing power; and a source of chloride ions such as hydrochloric acid or sodium chloride, which helps reduce anode polarization and prevents striated deposits from forming.[6] Most baths also contain a variety of organic additives to help refine the grain structure, improve ductility, and brighten the deposit.[12] Variations of the acid copper electrolyte include general-purpose baths, high-throw baths, and high-speed baths. The high-throw and high-speed baths are used when greater throwing power and faster plating rates are required, including for printed circuit board fabrication where high throw is required to plate the low-current-density areas in the through holes.[2]

Bath composition edit

Chemical Name Formula Bath concentration[2]
General-purpose[2] High-throw[2] High-speed[2]
Copper(II) sulfate CuSO4 190–250 g/L 60–90 g/L 80–135 g/L
Sulfuric acid H2SO4 45–90 g/L 150–225 g/L 185–260 g/L
Chloride ion Cl 20–150 ppm 30–80 ppm 40–80 ppm
Additives Varies Varies

Operating conditions edit

  • Temperature: Usually ambient,[6] although some baths may operate as high as 43 °C[2]
  • Cathode current density: 2–20 A/dm2 (general purpose); 1.5–5 A/dm2 (high throw); 5–20 A/dm2 (high speed)[2]
  • Current efficiency: 100%[6]

Additives edit

Various common and proprietary additives have been developed for acid copper electrolytes to help improve throwing and leveling power, brighten the finish, control hardness and ductility, and impart other desired properties to the deposit. Historical formulations dating to the mid-20th century often used thiourea and molasses, while other formulations used various gums, carbohydrates, and sulfonic acids.[13][8]

For semiconductor and printed circuit board applications, acid copper baths use additives that facilitate plating in high-aspect-ratio vias and through holes. Such additives can be grouped into three categories:[14]

Without these additives, copper will preferentially deposit on the surface near the top of the vias instead of inside the vias due to the lower local current density inside the vias, leading to top-down via filling and undesirable voids. The suppressor inhibits plating near the top of the via and the surface, while the brightener accelerates plating near the bottom of the via. The leveler helps prevent buildup at the via opening and creates a smoother surface finish.[14][15]

Acid fluoroborate edit

Copper fluoroborate baths are similar to acid sulfate baths, but they use fluoroborate as the anion rather than sulfate.[6] Copper fluoroborate is much more soluble than copper sulfate, which allows one to dissolve larger quantities of copper salt into the bath, enabling much higher current densities than what is possible in copper sulfate baths. Their main use is for high-speed plating where high current densities are required. Drawbacks to the fluoroborate chemistry include lower throwing power than acid sulfate baths, higher cost to operate, and greater safety hazards and waste treatment concerns.[2]

Acid fluoroborate baths contain cupric tetrafluoroborate and fluoroboric acid. Boric acid is typically added to the bath to prevent hydrolysis of the fluoroborate ions, which generates free fluoride in the bath. Unlike acid sulfate baths, fluoroborate baths usually do not contain organic additives.[6]

Bath composition edit

Chemical Name Formula Bath concentration[6]
High concentration Low concentration
Copper(II) tetrafluoroborate Cu(BF4)2 459 g/L 225 g/L
Fluoroboric acid HBF4 40.5 g/L 15 g/L

Operating conditions edit

  • Temperature: 18-66 °C[6]
  • Cathode current density: 13-38 A/dm2 (high concentration); 8-13 A/dm2 (low concentration)[6]
  • pH: 0.2-0.6 (high concentration); 1.0-1.7 (low concentration)[6]

Pyrophosphate edit

Pyrophosphate copper plating baths possess gentler chemistry compared to the toxic alkaline cyanide baths and the corrosive acid copper baths, operating at mildly alkaline pH and utilizing relatively non-toxic pyrophosphate compounds. While pyrophosphate electrolytes are easier to waste treat than alkaline cyanide and acid plating baths, they are more difficult to maintain and control. Pyrophosphate baths offer high throwing power and produce bright, ductile deposits, making them particularly useful for printed circuit board fabrication where high throw is required for plating high-aspect-ratio through holes.[2][16]

Pyrophosphate baths contain cupric pyrophosphate as a source of copper(II) ions, potassium pyrophosphate as a source of free pyrophosphate that increases bath conductivity and helps with anode dissolution, ammonia for increased anode dissolution and deposit grain refinement, and a source of nitrate ions such as potassium or ammonium nitrate to decrease cathode polarization and increase the maximum allowed current density. When the bath is made up, the copper pyrophosphate and potassium pyrophosphate react to form a complex, [K6Cu(P2O7)2], which dissociates to form the Cu(P2O7)26− anion from which copper deposits. Variations of the pyrophosphate electrolyte include general-purpose baths, strike baths, and printed circuit baths. Printed circuit baths typically contain organic additives to improve ductility and throwing power.[2][6]

In pyrophosphate baths, orthophosphate ions are formed from the hydrolysis of pyrophosphate and tend to build up in the electrolyte over time, which presents maintenance challenges. Orthophosphate ions decrease bath throwing power and deposit ductility at concentrations above 40–60 g/L, and they lead to lower solution conductivity, banded deposits, and lower bright current density range at concentrations beyond 100 g/L. Orthophosphate is removed from the bath by either doing partial bails and dilutions or by completely dumping and remaking the bath.[6]

Current control edit

It is important to control the current to produce the smoothest copper surface possible. With a higher current, hydrogen bubbles will form on the item to be plated, leaving surface imperfections. Often various other chemicals are added to improve plating uniformity and brightness. These additives can be anything from dish soap to proprietary compounds. Without some form of additive, it is almost impossible to obtain a smooth plated surface.

The surface formed always needs to be polished to achieve a shine. As formed it has a matte luster.

Applications edit

 
PCBs being fabricated in an industrial copper pattern plating line

Excluding the continuous strip plating industry, copper is the second most commonly-plated metal after nickel.[6] Copper electroplating offers a number of advantages over other plating processes, including low metal cost, high-conductivity and high-ductility bright finish, and high plating efficiency. The process has a variety of both decorative and engineering applications.

Decorative applications edit

Decorative copper electroplating takes advantage of the high levelling power of copper bath formulations that produce bright deposits, the ability of copper to cover defects in the base metal, and the softness of copper that makes it easy to buff and polish for a glossy finish. While copper may be used as the final decorative surface layer, it is usually subsequently plated with other metals that are more resistant to wear or tarnish such as chromium, nickel, or gold; in this case, the brightness of the copper undercoat enhances the appearance of the subsequent finish layer.[5] Products that utilize decorative copper plating include automotive trim, furniture, door and cabinet handles, light fixtures, kitchen utensils, other household goods, and apparel.[9][17]

Copper plating is also used for minting currency.[18][19]

Engineering applications edit

Copper electroplating sees widespread usage in the manufacture of electrical and electronic devices, owing to copper's high electrical conductivity – it is the second-most electrically conductive metal after silver.[20] Copper is electroplated onto printed circuit boards to add metal to the through holes and fabricate the board's conductive circuit traces. This is done either through a subtractive process where copper is plated as a blanket unpatterned layer that is subsequently etched with a patterned mask to form the desired circuitry (panel plating), or through an additive or semi-additive process where a patterned mask that exposes the desired circuitry is applied to the board followed by copper plating onto the unmasked circuit areas (pattern plating).[12] The semiconductor industry uses the damascene process to pattern-plate copper into vias and trenches of interconnects for metallization.[21] Copper is also used to plate steel wire for electrical cabling applications.[22]

As a soft metal, copper is also malleable and so has the inherent flexibility to maintain adhesion even if a substrate is subject to being bent and manipulated post plating. When electroplated, copper provides a smooth and even coverage which therefore provides an excellent base for additional coating or plating processes. Corrosion resistance is another advantage to copper. Although copper is not as effective at resisting corrosion as nickel and so is commonly used as a base layer for nickel if enhanced corrosion protection is needed; typically the case for materials that are required to work in marine and subsea environments. Lastly, copper has anti-bacterial properties and so is used in some medical applications.[23]

See also edit

References edit

  1. ^ "Copper Plating". Spectrum Metal Finishing, Inc. Retrieved July 20, 2022.
  2. ^ a b c d e f g h i j k l m n o p q r s t Snyder, Donald. "Choosing and Troubleshooting Copper Electroplating Processes". Products Finishing. Retrieved July 20, 2022.
  3. ^ "Industrial Copper Plating". Electro-Coatings. Retrieved July 20, 2022.
  4. ^ ASTM B322-99 Standard
  5. ^ a b c d Flott, Leslie W. (January 1, 2000). "Metal finishing: an overview". Metal Finishing. 98 (1): 20–34. doi:10.1016/S0026-0576(00)80308-6. ISSN 0026-0576. Retrieved July 21, 2022.
  6. ^ a b c d e f g h i j k l m n o p q r s t u v w x Barauskas, Romualdas "Ron" (January 1, 2000). "Copper plating". Metal Finishing. 98 (1): 234–247. doi:10.1016/S0026-0576(00)80330-X. ISSN 0026-0576. Retrieved July 21, 2022.
  7. ^ "ANODE BAGS". Anode Products Company, Inc. Retrieved July 23, 2022.
  8. ^ a b Bandes, Herbert (1945). "The Electrodeposition of Copper". Transactions of the Electrochemical Society. 88 (1): 263–278. doi:10.1149/1.3071688. Retrieved April 9, 2022.
  9. ^ a b Horner, Jack. "Cyanide Copper Plating" (PDF). Plating & Surface Finishing. Retrieved July 24, 2022.
  10. ^ "ACIDIC COPPER PLATING". Consonni S.R.L. Retrieved July 26, 2022.
  11. ^ "Acid Copper Plating Tank". Think & Tinker, Ltd. Retrieved July 26, 2022.
  12. ^ a b "Acid Copper Through-hole Plating". Think & Tinker, Ltd. Retrieved July 26, 2022.
  13. ^ Passal, Frank (1959). "A look back in plating & surface finishing: Copper plating (1909-1959)" (PDF). Plating. 46 (6): 628.
  14. ^ a b Hsu, Chia-Fu; Dow, Wei-Ping; Chang, Hou-Chien; Chiu, Wen-Yu (2015). "Optimization of the Copper Plating Process Using the Taguchi Experimental Design Method: I. Microvia Filling by Copper Plating Using Dual Levelers". Journal of the Electrochemical Society. 162 (10): D525–D530. doi:10.1149/2.0531510jes. S2CID 98052573.
  15. ^ "Copper Electroplating: How It Works and Its Common Applications Copper Electroplating: How It Works and Its Common Applications". RapidDirect.com. 26 April 2022. Retrieved May 12, 2023.
  16. ^ "Copper Plating For Excellent Electrical & Thermal Conductivity & Adhesion". Hi-Tech Plating & The Tinning Company. Retrieved July 27, 2022.
  17. ^ "Copper Plating Processes for Decorative Applications". Technic. Retrieved July 28, 2022.
  18. ^ "What's a Penny Made Of?". Live Science. 21 June 2016. Retrieved July 28, 2022.
  19. ^ "One Penny Coin". Royal Mint. Retrieved July 28, 2022.
  20. ^ Hammond, C.R. (2004). The Elements, in Handbook of Chemistry and Physics (81st ed.). CRC press. ISBN 978-0-8493-0485-9.
  21. ^ Carpio, R.; Jaworski, A. (2019). "Review—Management of Copper Damascene Plating". Journal of the Electrochemical Society. 166 (1): D3072–D3096. Bibcode:2019JElS..166D3072C. doi:10.1149/2.0101901jes. S2CID 106292271.
  22. ^ Hamilton Jr., Allen C. "Acid Sulfate & Pyrophosphate Copper Plating" (PDF). Plating & Surface Finishing. Retrieved July 24, 2022.
  23. ^ "Why use copper plating? The benefits of copper plating". 2018-02-22.

External links edit

  • Real plating on PTH treated Electroless copper plating on YouTube (responsibly)

copper, electroplating, process, electroplating, layer, copper, onto, surface, metal, object, copper, used, both, standalone, coating, undercoat, onto, which, other, metals, subsequently, plated, copper, layer, decorative, provide, corrosion, resistance, incre. Copper electroplating is the process of electroplating a layer of copper onto the surface of a metal object Copper is used both as a standalone coating and as an undercoat onto which other metals are subsequently plated 1 The copper layer can be decorative provide corrosion resistance increase electrical and thermal conductivity or improve the adhesion of additional deposits to the substrate 2 3 Copper plating on aluminium Contents 1 Overview 2 Types of plating chemistries 2 1 Alkaline cyanide 2 1 1 Bath composition 2 1 2 Operating conditions 2 1 3 Toxicity 2 2 Alkaline non cyanide 2 3 Acid sulfate 2 3 1 Bath composition 2 3 2 Operating conditions 2 3 3 Additives 2 4 Acid fluoroborate 2 4 1 Bath composition 2 4 2 Operating conditions 2 5 Pyrophosphate 3 Current control 4 Applications 4 1 Decorative applications 4 2 Engineering applications 5 See also 6 References 7 External linksOverview editCopper electroplating takes place in an electrolytic cell using electrolysis As with all plating processes the part to be plated must be cleaned before depositing metal to remove soils grease oxides and defects 4 5 After precleaning the part is immersed in the cell s aqueous electrolyte solution and functions as the cathode A copper anode is also immersed in the solution During plating a direct electric current is applied to the cell which causes the copper in the anode to dissolve into the electrolyte through oxidation losing electrons and ionizing into copper cations The copper cations form a coordination complex with salts present in the electrolyte after which they are transported from the anode to the cathode At the cathode the copper ions are reduced to metallic copper by gaining electrons This causes a thin solid metallic copper film to deposit onto the surface of the part The anodes can be either simple copper slabs or titanium or steel baskets filled with copper nuggets or balls 6 The anodes may be placed in anode bags which are typically made of polypropylene or another fabric and are used to contain insoluble particles that flake off the anode and prevent them from contaminating the plating bath 2 7 Copper electroplating baths can be used to plate either a strike or flash coating which is a thin highly adherent initial layer that is plated with additional layers of metal and that serves to improve adhesion of the subsequent layers to the underlying substrate or a thicker coating of copper that may serve as the finish layer or as a standalone coating 5 Types of plating chemistries editThere are a variety of different electrolyte chemistries that can be used for copper electroplating but most can be broadly characterized into five general categories based on the complexing agent 2 6 Alkaline cyanide Alkaline non cyanide Acid sulfate Acid fluoroborate PyrophosphateAlkaline cyanide edit Alkaline cyanide baths have historically been one of the most commonly used plating chemistries for copper electrodeposition 5 8 Cyanide copper baths typically provide high covering and throwing power allowing uniform and complete coverage of the substrate but often plate at lower current efficiency 2 They produce a metal finish favored for its diffusion blocking character Diffusion blocking is used to improve the long term adherence of different metals e g chromium and steel It is also used to prevent the second material from diffusing into the substrate Cyanide baths contain cuprous cyanide as the source of copper I ions sodium or potassium cyanide as a source of free cyanide that complexes with cuprous cyanide to render it soluble and sodium or potassium hydroxide for increased conductivity and pH control 9 Baths may also contain Rochelle salts and sodium or potassium carbonate as well as a variety of proprietary additives 2 Cyanide copper baths can be used as low efficiency strike only baths medium efficiency strike plate baths and high efficiency plating baths 6 Bath composition edit Chemical Name Formula Strike 6 Strike plate 6 High efficiency plate 6 Sodium Potassium Sodium Potassium Sodium PotassiumCopper I cyanide CuCN 30 g L 30 g L 42 g L 42 g L 75 g L 60 g LSodium or potassium cyanide NaCN or KCN 48 g L 58 5 g L 51 9 g L 66 6 g L 97 5 g L 102 g LSodium or potassium hydroxide NaOH or KOH 3 75 7 5 g L 3 75 7 5 g L Control to pH 10 2 10 5 15 g L 15 g LRochelle salts KNaC4H4O6 4H2O 30 g L 30 g L 60 g L 60 g L 45 g L 45 g LSodium or potassium carbonate Na2CO3 or K2CO3 15 g L 15 g L 30 g L 30 g L 15 g L 15 g LOperating conditions edit Temperature 24 66 C strike 40 55 C strike plate 60 71 C high efficiency 6 Cathode current density 0 5 4 0 A dm2 strike 1 0 1 5 A dm2 strike plate 8 6 A dm2 high efficiency 6 Current efficiency 30 60 strike 30 50 strike plate 90 99 high efficiency 6 pH gt 11 0 2 Toxicity edit Commercial platers typically use a copper cyanide solution which retains a high concentration of copper However the presence of free cyanide in the baths makes them dangerous due to the highly toxic nature of cyanide This creates both health hazards as well as issues with waste disposal 6 Alkaline non cyanide edit Due to safety concerns surrounding the use of cyanide based plating chemistry alkaline copper plating baths that do not contain cyanide have been developed However they generally see only limited use compared with the more common cyanide based alkaline chemistry 2 Acid sulfate edit Acid copper sulfate electrolytes are relatively simple solutions of copper sulfate and sulfuric acid that are cheaper and easier to maintain and control than cyanide copper electrolytes 2 Compared to cyanide baths they provide higher current efficiency and allow for higher current density and thus faster plating rates but they usually have less throwing power although high throw variations exist 2 Additionally they cannot be used to plate directly onto less noble metals such as steel or zinc without first applying a cyanide based strike or other barrier layer otherwise the acid in the bath will cause an immersion coating to form that will compromise adhesion 6 Due to this phenomenon as well as the lower throwing power acid sulfate baths are not usually used as strike baths 2 Along with alkaline cyanide acid copper baths are among the most commonly used copper plating electrolytes 10 with industrial applications that include decorative plating electroforming rotogravure and printed circuit board and semiconductor fabrication 6 11 Acid sulfate baths contain cupric sulfate as the source of copper II ions sulfuric acid to increase bath conductivity ensure copper salt solubility decrease anode and cathode polarization and increase throwing power and a source of chloride ions such as hydrochloric acid or sodium chloride which helps reduce anode polarization and prevents striated deposits from forming 6 Most baths also contain a variety of organic additives to help refine the grain structure improve ductility and brighten the deposit 12 Variations of the acid copper electrolyte include general purpose baths high throw baths and high speed baths The high throw and high speed baths are used when greater throwing power and faster plating rates are required including for printed circuit board fabrication where high throw is required to plate the low current density areas in the through holes 2 Bath composition edit Chemical Name Formula Bath concentration 2 General purpose 2 High throw 2 High speed 2 Copper II sulfate CuSO4 190 250 g L 60 90 g L 80 135 g LSulfuric acid H2SO4 45 90 g L 150 225 g L 185 260 g LChloride ion Cl 20 150 ppm 30 80 ppm 40 80 ppmAdditives Varies VariesOperating conditions edit Temperature Usually ambient 6 although some baths may operate as high as 43 C 2 Cathode current density 2 20 A dm2 general purpose 1 5 5 A dm2 high throw 5 20 A dm2 high speed 2 Current efficiency 100 6 Additives edit Various common and proprietary additives have been developed for acid copper electrolytes to help improve throwing and leveling power brighten the finish control hardness and ductility and impart other desired properties to the deposit Historical formulations dating to the mid 20th century often used thiourea and molasses while other formulations used various gums carbohydrates and sulfonic acids 13 8 For semiconductor and printed circuit board applications acid copper baths use additives that facilitate plating in high aspect ratio vias and through holes Such additives can be grouped into three categories 14 Suppressors also known as inhibitors or carriers typically polyethers such as polyethylene glycol or polypropylene glycol Accelerators also known as brighteners typically thiols or disulfides such as 3 Mercapto 1 propanesulfonic acid or bis 3 sodium sulfopropyl disulfide Levelers examples include dyes such as Janus Green B Alcian Blue and Diazine Black Without these additives copper will preferentially deposit on the surface near the top of the vias instead of inside the vias due to the lower local current density inside the vias leading to top down via filling and undesirable voids The suppressor inhibits plating near the top of the via and the surface while the brightener accelerates plating near the bottom of the via The leveler helps prevent buildup at the via opening and creates a smoother surface finish 14 15 Acid fluoroborate edit Copper fluoroborate baths are similar to acid sulfate baths but they use fluoroborate as the anion rather than sulfate 6 Copper fluoroborate is much more soluble than copper sulfate which allows one to dissolve larger quantities of copper salt into the bath enabling much higher current densities than what is possible in copper sulfate baths Their main use is for high speed plating where high current densities are required Drawbacks to the fluoroborate chemistry include lower throwing power than acid sulfate baths higher cost to operate and greater safety hazards and waste treatment concerns 2 Acid fluoroborate baths contain cupric tetrafluoroborate and fluoroboric acid Boric acid is typically added to the bath to prevent hydrolysis of the fluoroborate ions which generates free fluoride in the bath Unlike acid sulfate baths fluoroborate baths usually do not contain organic additives 6 Bath composition edit Chemical Name Formula Bath concentration 6 High concentration Low concentrationCopper II tetrafluoroborate Cu BF4 2 459 g L 225 g LFluoroboric acid HBF4 40 5 g L 15 g LOperating conditions edit Temperature 18 66 C 6 Cathode current density 13 38 A dm2 high concentration 8 13 A dm2 low concentration 6 pH 0 2 0 6 high concentration 1 0 1 7 low concentration 6 Pyrophosphate edit Pyrophosphate copper plating baths possess gentler chemistry compared to the toxic alkaline cyanide baths and the corrosive acid copper baths operating at mildly alkaline pH and utilizing relatively non toxic pyrophosphate compounds While pyrophosphate electrolytes are easier to waste treat than alkaline cyanide and acid plating baths they are more difficult to maintain and control Pyrophosphate baths offer high throwing power and produce bright ductile deposits making them particularly useful for printed circuit board fabrication where high throw is required for plating high aspect ratio through holes 2 16 Pyrophosphate baths contain cupric pyrophosphate as a source of copper II ions potassium pyrophosphate as a source of free pyrophosphate that increases bath conductivity and helps with anode dissolution ammonia for increased anode dissolution and deposit grain refinement and a source of nitrate ions such as potassium or ammonium nitrate to decrease cathode polarization and increase the maximum allowed current density When the bath is made up the copper pyrophosphate and potassium pyrophosphate react to form a complex K6Cu P2O7 2 which dissociates to form the Cu P2O7 26 anion from which copper deposits Variations of the pyrophosphate electrolyte include general purpose baths strike baths and printed circuit baths Printed circuit baths typically contain organic additives to improve ductility and throwing power 2 6 In pyrophosphate baths orthophosphate ions are formed from the hydrolysis of pyrophosphate and tend to build up in the electrolyte over time which presents maintenance challenges Orthophosphate ions decrease bath throwing power and deposit ductility at concentrations above 40 60 g L and they lead to lower solution conductivity banded deposits and lower bright current density range at concentrations beyond 100 g L Orthophosphate is removed from the bath by either doing partial bails and dilutions or by completely dumping and remaking the bath 6 Current control editThis section needs additional citations for verification Please help improve this article by adding citations to reliable sources in this section Unsourced material may be challenged and removed Find sources Copper electroplating news newspapers books scholar JSTOR August 2022 Learn how and when to remove this template message It is important to control the current to produce the smoothest copper surface possible With a higher current hydrogen bubbles will form on the item to be plated leaving surface imperfections Often various other chemicals are added to improve plating uniformity and brightness These additives can be anything from dish soap to proprietary compounds Without some form of additive it is almost impossible to obtain a smooth plated surface The surface formed always needs to be polished to achieve a shine As formed it has a matte luster Applications edit nbsp PCBs being fabricated in an industrial copper pattern plating lineExcluding the continuous strip plating industry copper is the second most commonly plated metal after nickel 6 Copper electroplating offers a number of advantages over other plating processes including low metal cost high conductivity and high ductility bright finish and high plating efficiency The process has a variety of both decorative and engineering applications Decorative applications edit Decorative copper electroplating takes advantage of the high levelling power of copper bath formulations that produce bright deposits the ability of copper to cover defects in the base metal and the softness of copper that makes it easy to buff and polish for a glossy finish While copper may be used as the final decorative surface layer it is usually subsequently plated with other metals that are more resistant to wear or tarnish such as chromium nickel or gold in this case the brightness of the copper undercoat enhances the appearance of the subsequent finish layer 5 Products that utilize decorative copper plating include automotive trim furniture door and cabinet handles light fixtures kitchen utensils other household goods and apparel 9 17 Copper plating is also used for minting currency 18 19 Engineering applications edit Copper electroplating sees widespread usage in the manufacture of electrical and electronic devices owing to copper s high electrical conductivity it is the second most electrically conductive metal after silver 20 Copper is electroplated onto printed circuit boards to add metal to the through holes and fabricate the board s conductive circuit traces This is done either through a subtractive process where copper is plated as a blanket unpatterned layer that is subsequently etched with a patterned mask to form the desired circuitry panel plating or through an additive or semi additive process where a patterned mask that exposes the desired circuitry is applied to the board followed by copper plating onto the unmasked circuit areas pattern plating 12 The semiconductor industry uses the damascene process to pattern plate copper into vias and trenches of interconnects for metallization 21 Copper is also used to plate steel wire for electrical cabling applications 22 As a soft metal copper is also malleable and so has the inherent flexibility to maintain adhesion even if a substrate is subject to being bent and manipulated post plating When electroplated copper provides a smooth and even coverage which therefore provides an excellent base for additional coating or plating processes Corrosion resistance is another advantage to copper Although copper is not as effective at resisting corrosion as nickel and so is commonly used as a base layer for nickel if enhanced corrosion protection is needed typically the case for materials that are required to work in marine and subsea environments Lastly copper has anti bacterial properties and so is used in some medical applications 23 See also editCopper clad aluminium wire Electroless copper plating ElectroplatingReferences edit Copper Plating Spectrum Metal Finishing Inc Retrieved July 20 2022 a b c d e f g h i j k l m n o p q r s t Snyder Donald Choosing and Troubleshooting Copper Electroplating Processes Products Finishing Retrieved July 20 2022 Industrial Copper Plating Electro Coatings Retrieved July 20 2022 ASTM B322 99 Standard a b c d Flott Leslie W January 1 2000 Metal finishing an overview Metal Finishing 98 1 20 34 doi 10 1016 S0026 0576 00 80308 6 ISSN 0026 0576 Retrieved July 21 2022 a b c d e f g h i j k l m n o p q r s t u v w x Barauskas Romualdas Ron January 1 2000 Copper plating Metal Finishing 98 1 234 247 doi 10 1016 S0026 0576 00 80330 X ISSN 0026 0576 Retrieved July 21 2022 ANODE BAGS Anode Products Company Inc Retrieved July 23 2022 a b Bandes Herbert 1945 The Electrodeposition of Copper Transactions of the Electrochemical Society 88 1 263 278 doi 10 1149 1 3071688 Retrieved April 9 2022 a b Horner Jack Cyanide Copper Plating PDF Plating amp Surface Finishing Retrieved July 24 2022 ACIDIC COPPER PLATING Consonni S R L Retrieved July 26 2022 Acid Copper Plating Tank Think amp Tinker Ltd Retrieved July 26 2022 a b Acid Copper Through hole Plating Think amp Tinker Ltd Retrieved July 26 2022 Passal Frank 1959 A look back in plating amp surface finishing Copper plating 1909 1959 PDF Plating 46 6 628 a b Hsu Chia Fu Dow Wei Ping Chang Hou Chien Chiu Wen Yu 2015 Optimization of the Copper Plating Process Using the Taguchi Experimental Design Method I Microvia Filling by Copper Plating Using Dual Levelers Journal of the Electrochemical Society 162 10 D525 D530 doi 10 1149 2 0531510jes S2CID 98052573 Copper Electroplating How It Works and Its Common Applications Copper Electroplating How It Works and Its Common Applications RapidDirect com 26 April 2022 Retrieved May 12 2023 Copper Plating For Excellent Electrical amp Thermal Conductivity amp Adhesion Hi Tech Plating amp The Tinning Company Retrieved July 27 2022 Copper Plating Processes for Decorative Applications Technic Retrieved July 28 2022 What s a Penny Made Of Live Science 21 June 2016 Retrieved July 28 2022 One Penny Coin Royal Mint Retrieved July 28 2022 Hammond C R 2004 The Elements in Handbook of Chemistry and Physics 81st ed CRC press ISBN 978 0 8493 0485 9 Carpio R Jaworski A 2019 Review Management of Copper Damascene Plating Journal of the Electrochemical Society 166 1 D3072 D3096 Bibcode 2019JElS 166D3072C doi 10 1149 2 0101901jes S2CID 106292271 Hamilton Jr Allen C Acid Sulfate amp Pyrophosphate Copper Plating PDF Plating amp Surface Finishing Retrieved July 24 2022 Why use copper plating The benefits of copper plating 2018 02 22 External links editReal plating on PTH treated Electroless copper plating on YouTube responsibly Retrieved from https en wikipedia org w index php title Copper electroplating amp oldid 1206403233, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.