fbpx
Wikipedia

Bird strike

A bird strike—sometimes called birdstrike, bird ingestion (for an engine), bird hit, or bird aircraft strike hazard (BASH)—is a collision between an airborne animal (usually a bird or bat)[1] and a moving vehicle, usually an aircraft. The term is also used for bird deaths resulting from collisions with structures such as power lines, towers and wind turbines (see Bird–skyscraper collisions and Towerkill).[2]

F-16 canopy after a bird strike
Mercedes-Benz 300SL sports car following the impact of a vulture to the windscreen at the 1952 Carrera Panamericana

A significant threat to flight safety, bird strikes have caused a number of accidents with human casualties.[3] There are over 13,000 bird strikes annually in the US alone.[4] However, the number of major accidents involving civil aircraft is quite low and it has been estimated that there is only about 1 accident resulting in human death in one billion (109) flying hours.[5] The majority of bird strikes (65%) cause little damage to the aircraft;[6] however, the collision is usually fatal to the bird(s) involved.[citation needed]

The Canada goose has been ranked as the third most hazardous wildlife species to aircraft (behind deer and vultures),[7] with approximately 240 goose-aircraft collisions in the United States each year. 80% of all bird strikes go unreported.[8]

Most accidents occur when a bird (or birds) collides with the windscreen or is sucked into the engine of jet aircraft. These cause annual damages that have been estimated at $400 million[3] within the United States alone and up to $1.2 billion to commercial aircraft worldwide.[9] In addition to property damage, collisions between man-made structures and conveyances and birds is a contributing factor, among many others, to the worldwide decline of many avian species.[10]

The International Civil Aviation Organization (ICAO) received 65,139 bird strike reports for 2011–14, and the Federal Aviation Administration counted 177,269 wildlife strike reports on civil aircraft between 1990 and 2015, growing 38% in seven years from 2009 to 2015. Birds accounted for 97%.[11]

Event description

 
View of fan blades of Pratt & Whitney JT8D jet engine after a bird strike
 
Inside of a jet engine after a bird strike
 
An ICE 3 high speed train after hitting a bird
 
A bird control vehicle belonging to Copenhagen Airport Kastrup, equipped with various tools

Bird strikes happen most often during takeoff or landing, or during low altitude flight.[12] However, bird strikes have also been reported at high altitudes, some as high as 6,000 to 9,000 m (20,000 to 30,000 ft) above the ground. Bar-headed geese have been seen flying as high as 10,175 m (33,383 ft) above sea level. An aircraft over the Ivory Coast collided with a Rüppell's vulture at the altitude of 11,300 m (37,100 ft), the current record avian height.[13] The majority of bird collisions occur near or at airports (90%, according to the ICAO) during takeoff, landing and associated phases. According to the FAA wildlife hazard management manual for 2005, less than 8% of strikes occur above 900 m (3,000 ft) and 61% occur at less than 30 m (98 ft).[citation needed]

The point of impact is usually any forward-facing edge of the vehicle such as a wing leading edge, nose cone, jet engine cowling or engine inlet.

Jet engine ingestion is extremely serious due to the rotation speed of the engine fan and engine design. As the bird strikes a fan blade, that blade can be displaced into another blade and so forth, causing a cascading failure. Jet engines are particularly vulnerable during the takeoff phase when the engine is turning at a very high speed and the plane is at a low altitude where birds are more commonly found.

The force of the impact on an aircraft depends on the weight of the animal and the speed difference and direction at the point of impact. The energy of the impact increases with the square of the speed difference. High-speed impacts, as with jet aircraft, can cause considerable damage and even catastrophic failure to the vehicle. The energy of a 5 kg (11 lb) bird moving at a relative velocity of 275 km/h (171 mph) approximately equals the energy of a 100 kg (220 lb) weight dropped from a height of 15 metres (49 ft).[14] However, according to the FAA only 15% of strikes (ICAO 11%) actually result in damage to the aircraft.[15]

Bird strikes can damage vehicle components, or injure passengers. Flocks of birds are especially dangerous and can lead to multiple strikes, with corresponding damage. Depending on the damage, aircraft at low altitudes or during take-off and landing often cannot recover in time.[16] US Airways Flight 1549 is a classic example of this. The engines on the Airbus A320 used on that flight were torn apart by multiple bird strikes at low altitude. There was no time to make a safe landing at an airport, forcing a water landing in the Hudson River.

Remains of the bird, termed snarge,[17][18] are sent to identification centers where forensic techniques may be used to identify the species involved. These samples need to be taken carefully by trained personnel to ensure proper analysis[19] and reduce the risks of infection (zoonoses).[20]

Species

Most bird strikes involve large birds with big populations, particularly geese and gulls in the United States. In parts of the US, Canada geese and migratory snow geese populations have risen significantly[21] while feral Canada geese and greylag geese have increased in parts of Europe, increasing the risk of these large birds to aircraft.[22] In other parts of the world, large birds of prey such as Gyps vultures and Milvus kites are often involved.[5] In the US, reported strikes are mainly from waterfowl (30%), gulls (22%), raptors (20%), and pigeons and doves (7%).[21] The Smithsonian Institution's Feather Identification Laboratory has identified turkey vultures as the most damaging birds, followed by Canada geese and white pelicans,[23] all of which are very large birds. In terms of frequency, the laboratory most commonly finds mourning doves and horned larks involved in the strike.[23]

The largest numbers of strikes happen during the spring and fall migrations. Bird strikes above 500 feet (150 m) altitude are about 7 times more common at night than during the day during the bird migration season.[24]

Large land animals, such as deer, can also be a problem to aircraft during takeoff and landing. Between 1990 and 2013, civil aircraft experienced more than 1,000 collisions with deer and 440 with coyotes.[21]

An animal hazard reported from London Stansted Airport in England is rabbits: they get run over by ground vehicles and planes, and they pass large amounts of droppings, which attract mice, which in turn attract owls, which then become another birdstrike hazard.[25]

Countermeasures

There are three approaches to reduce the effect of bird strikes. The vehicles can be designed to be more bird resistant, the birds can be moved out of the way of the vehicle, or the vehicle can be moved out of the way of the birds.

Vehicle design

Most large commercial jet engines include design features that ensure they can shut-down after "ingesting" a bird weighing up to 1.8 kg (4.0 lb). The engine does not have to survive the ingestion, just be safely shut down. This is a 'stand-alone' requirement, i.e., the engine, not the aircraft, must pass the test. Multiple strikes (from hitting a bird flock) on twin-engine jet aircraft are very serious events because they can disable multiple aircraft systems, requiring emergency action to land the aircraft, as in the January 15, 2009 forced ditching of US Airways Flight 1549.

As required by EASA's CS 25.631 or FAA's 14 CFR § 25.571(e)(1) post Amdt 25-96, modern jet aircraft structures are designed for continued safe flight and landing after withstanding one 4 lb (1.8 kg) bird impact anywhere on the aircraft (including the flight deck windshields). Per FAA's 14 CFR § 25.631, they must also withstand one 8 lb (3.6 kg) bird impact anywhere on the empennage (tail). Flight deck windows on jet aircraft must be able to withstand one 4 lb (1.8 kg) bird collision without yielding or spalling. For the empennage (tail), this is usually accomplished by designing redundant structures and protected locations for control system elements or protective devices such as splitter plates or energy-absorbing material. Often, one aircraft manufacturer will use similar protective design features for all of its aircraft models, to minimize testing and certification costs. Transport Canada also pays particular attention to these requirements during aircraft certification, considering there are many documented cases in North America of bird strikes with large Canada geese which weigh approximately 8 lb (3.6 kg) on average, and can sometimes weigh as much as 14.3 lb (6.5 kg).

At first, bird strike testing by manufacturers involved firing a bird carcass from a gas cannon and sabot system into the tested unit. The carcass was soon replaced with suitable density blocks, often gelatin, to ease testing. Current certification efforts are mainly conducted with limited testing, supported by more detailed analysis using computer simulation,[26] although final testing usually involves some physical experiments (see birdstrike simulator).

Based on US NTSB recommendation following the 2009 US Airways Flight 1549, the EASA in 2017, followed a year after by the FAA, proposed that engines should sustain a bird strike not only on takeoff and climb where turbofans are turning at their fastest, but also in descent when they turn more slowly; new regulations could apply for the Boeing NMA engines.[27]

Wildlife management

 
An Airbus A330 of China Eastern behind a flock of birds at London Heathrow

Though there are many methods available to wildlife managers at airports, no single method will work in all instances and with all species. Wildlife management in the airport environment can be grouped into two broad categories: non-lethal and lethal. Integration of multiple non-lethal methods with lethal methods results in the most effective airfield wildlife management strategy.

Non-lethal

Non-lethal management can be further broken down into habitat manipulation, exclusion, visual, auditory, tactile, or chemical repellents, and relocation.

Habitat manipulation

One of the primary reasons that wildlife is seen in airports is an abundance of food. Food resources on airports can be either removed or made less desirable. One of the most abundant food resources found on airports is turfgrass. This grass is planted to reduce runoff, control erosion, absorb jet wash, allow passage of emergency vehicles, and to be aesthetically pleasing (DeVault et al. 2013[28]) However, turfgrass is a preferred food source for species of birds that pose a serious risk to aircraft, chiefly the Canada goose (Branta canadensis). Turfgrass planted at airports should be a species that geese do not prefer (e.g. St. Augustine grass) and should be managed in such a way that reduces its attractiveness to other wildlife such as small rodents and raptors (Commander, Naval Installations Command 2010,[29] DeVault et al. 2013[28]). It has been recommended that turfgrass be maintained at a height of 7–14 inches through regular mowing and fertilization (U.S. Air Force 2004[30]).

Wetlands are another major attractant of wildlife in the airport environment. They are of particular concern because they attract waterfowl which have a high potential to damage aircraft (Federal Aviation Administration 2013[31]). With large areas of impervious surfaces, airports must employ methods to collect runoff and reduce its flow velocity. These best management practices often involve temporarily ponding runoff. Short of redesigning existing runoff control systems to include non-accessible water such as subsurface flow wetlands (DeVault et al. 2013[28]), frequent drawdowns and covering of exposed water with floating covers and wire grids should be employed (International Civil Aviation Organization 1991[32]). The implementation of covers and wire grids must not hinder emergency services.

Exclusion

Though excluding birds from the entire airport environment is virtually impossible, it is possible to exclude deer and other mammals that constitute a small percentage of wildlife strikes. Three-meter high fences made of chain link or woven wire, with barbed wire outriggers, are the most effective. When used as a perimeter fence, these fences also serve to keep unauthorized people off of the airport (Seamans 2001[33]). Realistically every fence must have gates. Gates that are left open allow deer and other mammals onto the airport. 4.6 meter long cattle guards have been shown to be effective at deterring deer up to 98% of the time (Belant et al. 1998[34]).

Hangars with open superstructures often attract birds to nest and roost in. Hangar doors are often left open to increase ventilation, especially in the evenings. Birds in hangars are in proximity to the airfield and their droppings are both a health and damage concern. Netting is often deployed across the superstructure of a hangar denying access to the rafters where the birds roost and nest while still allowing the hangar doors to remain open for ventilation and aircraft movements. Strip curtains and door netting may also be used but are subject to improper use (e.g. tying the strips to the side of the door) by those working in the hangar. (U.S. Air Force 2004,[30] Commander, Naval Installations Command 2010[29]).

Visual repellents

There have been a variety of visual repellent and harassment techniques used in airport wildlife management. They include using birds of prey and dogs, effigies, landing lights, and lasers. Birds of prey have been used with great effectiveness at landfills where there were large populations of feeding gulls (Cook et al. 2008[35]). Dogs have also been used with success as visual deterrents and means of harassment for birds at airfields (DeVault et al. 2013[28]). However, airport wildlife managers must consider the risk of knowingly releasing animals in the airport environment. Both birds of prey and dogs must be monitored by a handler when deployed and must be cared for, when not deployed. Airport wildlife managers must consider the economics of these methods (Seamans 2001[33]).

Effigies of both predators and conspecifics have been used with success to disperse gulls and vultures. The effigies of conspecifics are often placed in unnatural positions where they can freely move with the wind. Effigies have been found to be the most effective in situations where the nuisance birds have other options (e.g. other forage, loafing, and roosting areas) available. Time to habituation varies. (Seamans et al. 2007,[36] DeVault et al. 2013[28]).

Lasers have been used with success to disperse several species of birds. However, lasers are species-specific as certain species will only react to certain wavelengths. Lasers become more effective as ambient light levels decrease, thereby limiting effectiveness during daylight hours. Some species show a very short time to habituation (Airport Cooperative Research Program, 2011[37]). The risks of lasers to aircrews must be evaluated when determining whether or not to deploy lasers on airfields.[38] Southampton Airport utilizes a laser device which disables the laser past a certain elevation, eliminating the risk of the beam being shone directly at aircraft and air traffic control tower (Southampton Airport 2014).[39]

Auditory repellents

Auditory repellents are commonly used in both agricultural and aviation contexts. Devices such as propane exploders (cannons), pyrotechnics, and bioacoustics are frequently deployed on airports. Propane exploders are capable of creating noises of approximately 130 decibels (Wildlife Control Supplies[40]). They can be programmed to fire at designated intervals, can be remote controlled, or motion activated. Due to their stationary and often predictable nature, wildlife quickly becomes habituated to propane cannons. Lethal control may be used to extend the effectiveness of propane exploders (Washburn et al. 2006).

 
Wireless specialized launcher mounted in an airport vehicle

Pyrotechnics utilizing either an exploding shell or a screamer can effectively scare birds away from runways. They are commonly launched from a 12 gauge shotgun or a flare pistol, or from a wireless specialized launcher and as such, can be aimed to allow control personnel to "steer" the species that is being harassed. Birds show varying degrees of habituation to pyrotechnics. Studies have shown that lethal reinforcement of pyrotechnic harassment has extended its usefulness (Baxter and Allen 2008[41]). Screamer type cartridges are still intact at the end of their flight (as opposed to exploding shells that destroy themselves) constituting a foreign object damage hazard and must be picked up. The use of pyrotechnics is considered "take" by the U.S. Fish and Wildlife Service (USFWS) and USFWS must be consulted if federally threatened or endangered species could be affected. Pyrotechnics are a potential fire hazard and must be deployed judiciously in dry conditions (Commander, Naval Installations Command, 2010,[29] Airport Cooperative Research Program 2011[37]).

Bioacoustics, or the playing of conspecific distress or predator calls to frighten animals, is widely used. This method relies on the animal's evolutionary danger response (Airport Cooperative Research Program 2011[37]).However, bioacoustics are species-specific and birds may quickly become habituated to them and they should not be used as a primary means of control (U.S. Air Force 2004,[30] Commander, Naval Installations Command 2010[29]).

In 2012, operators at Gloucestershire Airport in the United Kingdom revealed that songs by the American-Swiss singer Tina Turner were more effective than animal noises for scaring birds from its runways.[42]

Tactile repellents

Sharpened spikes to deter perching and loafing are commonly used. Generally, large birds require different applications than small birds do (DeVault et al. 2013[28]).

Chemical repellents

There are only two chemical bird repellents registered for use in the United States. They are methyl anthranilate and anthraquinone. Methyl anthranilate is a primary repellent that produces an immediate unpleasant sensation that is reflexive and does not have to be learned. As such it is most effective for transient populations of birds (DeVault et al. 2013[28]). Methyl anthranilate has been used with great success at rapidly dispersing birds from flight lines at Homestead Air Reserve Station (Engeman et al. 2002[43]). Anthraquinone is a secondary repellent that has a laxative effect that is not instantaneous. Because of this it is most effective on resident populations of wildlife that will have time to learn an aversive response (Izhaki 2002,[44] DeVault et al. 2013[28]).

Relocation

Relocation of raptors from airports is often considered preferable to lethal control methods by both biologists and the public. There are complex legal issues surrounding the capture and relocation of species protected by the Migratory Bird Treaty Act of 1918 and the Bald and Golden Eagle Protection Act of 1940. Prior to capture, proper permits must be obtained and the high mortality rates as well as the risk of disease transmission associated with relocation must be weighed. Between 2008 and 2010, U.S. Department of Agriculture Wildlife Services personnel relocated 606 red-tailed hawks from airports in the United States after the failure of multiple harassment attempts. The return rate of these hawks was 6%; however the relocation mortality rate for these hawks was never determined (DeVault et al. 2013[28]).

Lethal

Lethal wildlife control on airports falls into two categories: reinforcement of other non-lethal methods and population control.

Reinforcement

The premise of effigies, pyrotechnics, and propane exploders is that there be a perceived immediate danger to the species to be dispersed. Initially, the sight of an unnaturally positioned effigy or the sound of pyrotechnics or exploders is enough to elicit a danger response from wildlife. As wildlife become habituated to non-lethal methods the culling of small numbers of wildlife in the presence of conspecifics can restore the danger response (Baxter and Allan 2008, Cook et al. 2008, Commander, Naval Installations Command 2010,[29] DeVault et al. 2013[28]).

Population control

Under certain circumstances, lethal wildlife control is needed to control the population of a species. This control can be localized or regional. Localized population control is often used to control species that are residents of the airfield such as deer that have bypassed the perimeter fence. In this instance sharpshooting would be highly effective, such as is seen at Chicago O'Hare International Airport (DeVault et al. 2013[28]).

Regional population control has been used on species that cannot be excluded from the airport environment. A nesting colony of laughing gulls at Jamaica Bay Wildlife Refuge contributed to 98–315 bird strikes per year, in 1979–1992, at adjacent John F. Kennedy International Airport (JFK). Though JFK had an active bird management program that precluded birds from feeding and loafing on the airport, it did not stop them from overflying the airport to other feeding sites. U.S. Department of Agriculture Wildlife Services personnel began shooting all gulls that flew over the airport, hypothesizing that eventually, the gulls would alter their flight patterns. They shot 28,352 gulls in two years (approximately half of the population at Jamaica Bay and 5–6% of the nationwide population per year). Strikes with laughing gulls decreased by 89% by 1992. However this was more a function of the population reduction than the gulls altering their flight pattern (Dolbeer et al. 1993,[45] Dolbeer et al. 2003,[46] DeVault et al. 2013[28]).

Flight path

Pilots should not take off or land in the presence of wildlife and should avoid migratory routes,[47] wildlife reserves, estuaries and other sites where birds may congregate. When operating in the presence of bird flocks, pilots should seek to climb above 3,000 feet (910 m) as rapidly as possible as most bird strikes occur below 3,000 feet (910 m). Additionally, pilots should slow down their aircraft when confronted with birds. The energy that must be dissipated in the collision is approximately the relative kinetic energy ( ) of the bird, defined by the equation   where   is the mass of the bird and   is the relative velocity (the difference of the velocities of the bird and the plane, resulting in a lower absolute value if they are flying in the same direction and higher absolute value if they are flying in opposite directions). Therefore, the speed of the aircraft is much more important than the size of the bird when it comes to reducing energy transfer in a collision. The same can be said for jet engines: the slower the rotation of the engine, the less energy which will be imparted onto the engine at collision.

The body density of the bird is also a parameter that influences the amount of damage caused.[48]

The US Military Avian Hazard Advisory System (AHAS) uses near real-time data from the 148 CONUS based National Weather Service Next Generation Weather Radar (NEXRAD or WSR 88-D) system to provide current bird hazard conditions for published military low-level routes, ranges, and military operating areas (MOAs). Additionally, AHAS incorporates weather forecast data with the Bird Avoidance Model (BAM) to predict soaring bird activity within the next 24 hours and then defaults to the BAM for planning purposes when activity is scheduled outside the 24-hour window. The BAM is a static historical hazard model based on many years of bird distribution data from Christmas Bird Counts (CBC), Breeding Bird Surveys (BBS), and National Wildlife Refuge Data. The BAM also incorporates potentially hazardous bird attractions such as landfills and golf courses. AHAS is now an integral part of military low-level mission planning, aircrew being able to access the current bird hazard conditions at www.usahas.com. AHAS will provide relative risk assessments for the planned mission and give aircrew the opportunity to select a less hazardous route should the planned route be rated severe or moderate. Prior to 2003, the US Air Force BASH Team bird strike database indicated that approximately 25% of all strikes were associated with low-level routes and bombing ranges. More importantly, these strikes accounted for more than 50% of all of the reported damage costs. After a decade of using AHAS for avoiding routes with severe ratings, the strike percentage associated with low-level flight operations has been reduced to 12% and associated costs cut in half.

Avian radar[49] is an important tool for aiding in bird strike mitigation as part of overall safety management systems at civilian and military airfields. Properly designed and equipped avian radars can track thousands of birds simultaneously in real-time, night and day, through 360° of coverage, out to ranges of 10 km and beyond for flocks, updating every target's position (longitude, latitude, altitude), speed, heading, and size every 2–3 seconds. Data from these systems can be used to generate information products ranging from real-time threat alerts to historical analyses of bird activity patterns in both time and space. The United States Federal Aviation Administration (FAA) and the United States Department of Defense (DOD) have conducted extensive science-based field testing and validation of commercial avian radar systems for civil and military applications, respectively. The FAA used evaluations of commercial 3D avian radar systems developed and marketed by Accipiter Radar[50] as the basis for FAA Advisory Circular 150/5220-25[51] and a guidance letter[52] on using Airport Improvement Program funds to acquire avian radar systems at Part 139 airports.[53] Similarly, the DOD-sponsored Integration and Validation of Avian Radars (IVAR)[54] project evaluated the functional and performance characteristics of Accipiter® avian radars under operational conditions at Navy, Marine Corps, and Air Force airfields. Accipiter avian radar systems operating at Seattle-Tacoma International Airport,[55] Chicago O'Hare International Airport, and Marine Corps Air Station Cherry Point made significant contributions to the evaluations carried out in the aforementioned FAA and DoD initiatives. Additional scientific and technical papers on avian radar systems are listed below,[56][57][58] and on the Accipiter Radar web site.[59]

A US company, DeTect, in 2003, developed the only production model bird radar in operational use for real-time, tactical bird-aircraft strike avoidance by air traffic controllers. These systems are operational at both commercial airports and military airfields. The system has widely used technology available for bird–aircraft strike hazard (BASH) management and for real-time detection, tracking and alerting of hazardous bird activity at commercial airports, military airfields, and military training and bombing ranges. After extensive evaluation and on-site testing, MERLIN technology was chosen by NASA and was ultimately used for detecting and tracking dangerous vulture activity during the 22 space shuttle launches from 2006 to the conclusion of the program in 2011. The US Air Force has contracted DeTect since 2003 to provide the Avian Hazard Advisory System (AHAS) previously mentioned.

TNO, a Dutch R&D Institute, has developed the successful ROBIN (Radar Observation of Bird Intensity) for the Royal Netherlands Airforce. ROBIN is a near real-time monitoring system for flight movements of birds. ROBIN identifies flocks of birds within the signals of large radar systems. This information is used to give Air Force pilots warning during landing and take-off. Years of observation of bird migration with ROBIN have also provided a better insight into bird migration behavior, which has had an influence on averting collisions with birds, and therefore on flight safety. Since the implementation of the ROBIN system at the Royal Netherlands Airforce the number of collisions between birds and aircraft in the vicinity of military airbases has decreased by more than 50%.

There are no civil aviation counterparts to the above military strategies. Some experimentation with small portable radar units has taken place at some airports. However, no standard has been adopted for radar warning nor has any governmental policy regarding warnings been implemented.

History

 
Eugene Gilbert in Bleriot XI attacked by eagle over Pyrenees in 1911 depicted in this painting
 
A Fw 190D-9 of 10./JG 54 Grünherz, pilot (Leutnant Theo Nibel), downed by a partridge which flew into the nose radiator near Brussels on 1 January 1945

The Federal Aviation Administration (FAA) estimates bird strikes cost US aviation 400 million dollars annually and have resulted in over 200 worldwide deaths since 1988.[60] In the United Kingdom, the Central Science Laboratory estimates[9] that worldwide, birdstrikes cost airlines around US$1.2 billion annually. This includes repair cost and lost revenue while the damaged aircraft is out of service. There were 4,300 bird strikes listed by the United States Air Force and 5,900 by US civil aircraft in 2003.

The first reported bird strike was by Orville Wright in 1905. According to the Wright Brothers' diaries, "Orville [...] flew 4,751 meters in 4 minutes 45 seconds, four complete circles. Twice passed over the fence into Beard's cornfield. Chased flock of birds for two rounds and killed one which fell on top of the upper surface and after a time fell off when swinging a sharp curve."[5]

During the 1911 Paris to Madrid air race, French pilot Eugene Gilbert encountered an angry mother eagle over the Pyrenees. Gilbert, flying an open-cockpit Bleriot XI, was able to ward off the large bird by firing pistol shots at it but did not kill it.[61][62]

The first recorded bird strike fatality was reported in 1912 when aero-pioneer Cal Rodgers collided with a gull which became jammed in his aircraft control cables. He crashed at Long Beach, California, was pinned under the wreckage, and drowned.[3][63]

During the 1952 edition of the Carrera Panamericana, eventual race winners Karl Kling and Hans Klenk suffered a bird strike incident when the Mercedes-Benz W194 was struck by a vulture in the windscreen. During a long right-hand bend in the opening stage taken at almost 200 km/h (120 mph), Kling failed to spot vultures sitting by the side of the road. When the vultures were scattered after hearing the virtually unsilenced W194 coming towards them, one vulture impacted through the windscreen on the passenger side. The impact was enough to briefly knock Klenk unconscious. Despite bleeding badly from facial injuries caused by the shattered windscreen, Klenk ordered Kling to maintain speed, and held on until a tire change almost 70 km (43 mi) later to clean himself and the car up. For extra protection, eight vertical steel bars were bolted over the new windscreen.[64] Kling and Klenk also discussed the species and size of the dead bird, agreeing that had had a minimum 115-centimetre (45 in) wingspan and weighed as much as five fattened geese.[65]

 
A Sikorsky UH-60 Black Hawk after a collision with a common crane (bird), and resulting failure of the windshield
 
The same UH-60, as seen from the inside

Alan Stacey's fatal accident during the 1960 Belgian Grand Prix was caused when a bird hit him in the face on lap 25, causing his Lotus 18-Climax to crash at the fast, sweeping right hand Burnenville curve. According to fellow driver Innes Ireland's testimony in a mid-1980s edition of Road & Track magazine, Ireland stated that some spectators claimed that a bird had flown into Stacey's face while he was approaching the curve, possibly knocking him unconscious, or even possibly killing him by breaking his neck or inflicting a fatal head injury, before the car crashed.[66]

The greatest loss of life directly linked to a bird strike was on October 4, 1960, when a Lockheed L-188 Electra, flying from Boston as Eastern Air Lines Flight 375, flew through a flock of common starlings during take-off, damaging all four engines. The aircraft crashed into Boston harbor shortly after takeoff, with 62 fatalities out of 72 passengers.[67] Subsequently, minimum bird ingestion standards for jet engines were developed by the FAA.

NASA astronaut Theodore Freeman was killed in 1964 when a goose shattered the plexiglass cockpit canopy of his Northrop T-38 Talon. Shards were ingested by the engines, leading to a fatal crash.[68]

In November 12, 1975, Overseas National Airways Flight 032, the flight crew initiated a rejected takeoff after accelerating through a large flock of gulls at John F. Kennedy International Airport, resulting in a runway excursion.[69] Of the 139 aircraft occupants, all survived, while the aircraft was destroyed by an intense post-crash fire.[69] An investigation was carried out on the #3 engine by General Electric Aircraft Engines (GEAE) in Ohio. Disassembly revealed that several engine fan blades were damaged and broken, causing blades to abrade the epoxy fan shroud; as the epoxy combusted, it ignited jet fuel leaking from a broken fuel line.[69] However, GEAE denied that the ingested birds were the underlying cause of the damage.[69] Company investigators speculated that a tire or landing gear failure had occurred prior to the bird strikes, and that tire, wheel or landing gear debris ingested into the engine caused the fan blade damage and cut the fuel line.[69] To demonstrate that the General Electric CF6 engine was capable of withstanding a bird strike, the National Transportation Safety Board conducted a test with a sample engine.[69]

In 1988, Ethiopian Airlines Flight 604 sucked pigeons into both engines during takeoff and then crashed, killing 35 passengers.[70]

In 1995, a Dassault Falcon 20 crashed at a Paris airport during an emergency landing attempt after sucking lapwings into an engine, which caused an engine failure and a fire in the airplane's fuselage; all 10 people on board were killed.[71]

On September 22, 1995, a U.S. Air Force Boeing E-3 Sentry AWACS aircraft (Callsign Yukla 27, serial number 77-0354), crashed shortly after takeoff from Elmendorf AFB. The aircraft lost power in both port side engines after these engines ingested several Canada geese during takeoff. It crashed about two miles (3.2 km) from the runway, killing all 24 crew members on board.[72]

On March 30, 1999, during the inaugural run of the hypercoaster Apollo's Chariot in Virginia, passenger Fabio Lanzoni suffered a bird strike by a goose and required three stitches to his face. The roller coaster has a height of over 200 feet and reaches speeds over 70 miles per hour.[73]

On November 28, 2004, the nose landing gear of KLM Flight 1673, a Boeing 737-400, struck a bird during takeoff at Amsterdam Airport Schiphol. The incident was reported to air traffic control, the landing gear was raised normally, and the flight continued normally to its destination. Upon touching down at Barcelona International Airport, the aircraft started deviating to the left of the runway centreline. The crew applied right rudder, braking, and the nose wheel steering tiller but could not keep the aircraft on the runway. After it veered off the paved surface of the runway at about 100 knots, the jet went through an area of soft sand. The nose landing gear leg collapsed and the left main landing gear leg detached from its fittings shortly before the aircraft came to a stop perched over the edge of a drainage canal. All 140 passengers and six crew evacuated safely, but the aircraft itself had to be written off. The cause was discovered to be a broken cable in the nose wheel steering system caused by the bird collision. Contributing to the snapped cable was the improper application of grease during routine maintenance which led to severe wear of the cable.[74]

In April 2007, a Thomsonfly Boeing 757 from Manchester Airport to Lanzarote Airport suffered a bird strike when at least one bird, supposedly a crow, was ingested by the starboard engine. The plane landed safely back at Manchester Airport a while later. The incident was captured by two plane spotters on opposite sides of the airport, as well as the emergency calls picked up by a plane spotter's radio.[67]

The Space Shuttle Discovery also hit a bird (a vulture) during the launch of STS-114 on July 26, 2005, although the collision occurred soon after lift-off and at low speed, with no obvious damage to the shuttle.[75]

On November 10, 2008, Ryanair Flight 4102 from Frankfurt to Rome made an emergency landing at Ciampino Airport after multiple bird strikes caused both engines to fail. After touchdown, the left main landing gear collapsed, and the aircraft briefly veered off the runway. Passengers and crew were evacuated through the starboard emergency exits.[76]

On January 4, 2009, a Sikorsky S-76 helicopter hit a red-tailed hawk in Louisiana. The hawk hit the helicopter just above the windscreen. The impact forced the activation of the engine fire suppression control handles, retarding the throttles and causing the engines to lose power. Eight of the nine people on board died in the subsequent crash; the survivor, a passenger, was seriously injured.[77]

On January 15, 2009, US Airways Flight 1549 from LaGuardia Airport to Charlotte/Douglas International Airport ditched into the Hudson River after experiencing a loss of both turbines. It is suspected[by whom?] that the engine failure was caused by running into a flock of geese at an altitude of about 975 m (3,199 feet), shortly after takeoff. All 150 passengers and 5 crew members were safely evacuated after a successful water landing.[78] On May 28, 2010, the NTSB published its final report into the accident.[79]

On August 15, 2019, Ural Airlines Flight 178 from Moscow–Zhukovsky to Simferopol, Crimea, suffered a bird strike after taking off from Zhukovsky and crash landed in a cornfield 5 kilometers away from the airport. 74 people were injured, all with minor injuries.[80]

Bug strikes

Flying insect strikes, like bird strikes, have been encountered by pilots since aircraft were invented. Future United States Air Force general Henry H. Arnold, as a young officer, nearly lost control of his Wright Model B in 1911 after a bug flew into his eye while he was not wearing goggles, distracting him.

In 1968, North Central Airlines Flight 261, a Convair 580, encountered large concentrations of insects between Chicago and Milwaukee. The accumulated insect remains on the windshield severely impaired the flightcrew's forward visibility; as a result, while descending to land at Milwaukee, the aircraft suffered a mid-air collision with a private Cessna 150 that the Convair's flightcrew had been unable to see until a split second before the collision, killing the three occupants of the Cessna and severely injuring the Convair's first officer.[81]

In 1986, a Boeing B-52 Stratofortress on a low-level training mission entered a swarm of locusts. The insects' impacts on the aircraft's windscreens rendered the crew unable to see, forcing them to abort the mission and fly using the aircraft's instruments alone. The aircraft eventually landed safely.[82]

In 2010, the Australian Civil Aviation Safety Authority (CASA) issued a warning to pilots about the potential dangers of flying through a locust swarm. CASA warned that the insects could cause loss of engine power and loss of visibility, and blocking of an aircraft's pitot tubes, causing inaccurate airspeed readings.[83][84]

Bug strikes can also affect the operation of machinery on the ground, especially motorcycles. The team on the US TV show MythBusters – in a 2010 episode entitled "Bug Special" – concluded that death could occur if a motorist were hit by a flying insect of sufficient mass in a vulnerable part of the body. Anecdotal evidence from motorcyclists supports pain, bruising, soreness, stings, and forced dismount caused by collision with an insect at speed.[85]

In popular culture

See also

References

  1. ^ Gard, Katie; Groszos, Mark S.; Brevik, Eric C.; Lee, Gregory W. (2007). (PDF). Georgia Journal of Science. 65 (4): 161–169. Archived from the original (PDF) on 2009-01-07.
  2. ^ Manville A.M., II. (2005). "Bird strikes and electrocutions at power lines, communication lowers, and wind turbines: state of the art and slate of the science—next steps toward mitigation.". In C.J. Ralph; T. D. Rich (eds.). Bird Conservation Implementation in the Americas: Proceedings 3rd International Partners in Flight Conference 2002. U.S.D.A. Forest Service. GTR-PSW-191, Albany. CA.
  3. ^ a b c Sodhi, Navjot S. (2002). "Competition in the air: birds versus aircraft". The Auk. 119 (3): 587–595. doi:10.1642/0004-8038(2002)119[0587:CITABV]2.0.CO;2. S2CID 31967680.
  4. ^ Richard Dolbeer; et al. (November 2016). Wildlife Strikes to Civil Aircraft in the United States, 1990-2015 (PDF). Federal Aviation Administration. p. xii. Retrieved 28 March 2018.
  5. ^ a b c Thorpe, John (2003). (PDF). International Bird Strike Committee, IBSC 26 Warsaw. Archived from the original (PDF) on 2009-02-27. Retrieved 2009-01-17.
  6. ^ Milson, T.P. & N. Horton (1995). Birdstrike. An assessment of the hazard on UK civil aerodromes 1976–1990. Central Science Laboratory, Sand Hutton, York, UK.
  7. ^ Dolbeer, Richard A.; Wright, Sandra E.; Cleary, Edward C. (2000). "Ranking the Hazard Level of Wildlife Species to Aviation". Wildlife Society Bulletin. 28 (2): 372–378. JSTOR 3783694. Retrieved 2022-01-16.
  8. ^ Cleary, Edward; Dolbeer, Richard (July 2005). "Wildlife Hazard Management at Airports: A Manual for Airport Personnel". USDA National Wildlife Research Center – Staff Publications. 133: 9. Retrieved 19 August 2019.
  9. ^ a b Allan, John R.; Alex P. Orosz (2001-08-27). "The costs of birdstrikes to commercial aviation". 2001 Bird Strike Committee-Usa/Canada, Third Joint Annual Meeting, Calgary, Ab. DigitalCommons@University of Nebraska. Retrieved 2009-01-16.
  10. ^ "Threats To Birds: Collisions". August 22, 2019.
  11. ^ "How Bird Strikes Impact Engines". Aviation Week. October 7, 2016.
  12. ^ Richardson, W. John (1994). (PDF). Bird Strike Committee Europe BSCE 22/WP22, Vienna. Archived from the original (PDF) on 2009-02-27. Retrieved 2009-01-17.
  13. ^ Thomas Alerstam, David A. Christie, Astrid Ulfstrand. Bird Migration (1990). Page 276.
  14. ^ Note however that the momentum (as distinct from the kinetic energy) of the bird in this example is considerably less than that of the tonne weight, and therefore the force required to deflect it is also considerably less.
  15. ^ Dolbeer, Richard A. (2020). Wildlife Stirkes to Civil Aircraft in the United States (PDF). Washington, DC: U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION. p. 45.
  16. ^ Freeze, Christopher. "What Happens After a Bird Strike?". ALPA.org. Air Line Pilots Association. Retrieved 11 October 2020.
  17. ^ Dove, CJ; Marcy Heacker; Lee Weigt (2006). "DNA identification of birdstrike remains-progress report". Bird Strike Committee USA/CANADA, 8th Annual meeting, St. Louis.
  18. ^ Bittel, Jason (14 April 2022). "'Snarge' Happens, and Studying It Makes Your Flight Safer". The New York Times. Retrieved 2022-04-17.
  19. ^ Laybourne, R. C. & C. Dove (1994). (PDF). Proc. Bird Strike Comm. Europe 22, Vienna 1994. pp. 531–543. Archived from the original (PDF) on 2009-02-27. Retrieved 2009-01-17.
  20. ^ Noam Leader; Ofer Mokady; Yoram Yom-Tov (2006). "Indirect Flight of an African Bat to Israel: An Example of the Potential for Zoonotic Pathogens to Move between Continents". Vector-Borne and Zoonotic Diseases. 6 (4): 347–350. doi:10.1089/vbz.2006.6.347. PMID 17187568.
  21. ^ a b c DID YOU KNOW THAT?, Bird Strike Committee USA, 25 August 2014, Waterfowl (30%), gulls (22%), raptors (20%), and pigeons/doves (7%) represented 79% of the reported bird strikes causing damage to USA civil aircraft, 1990–2012.... Over 1,070 civil aircraft collisions with deer and 440 collisions with coyotes were reported in the USA, 1990–2013.... The North American non-migratory Canada goose population increased about 4-fold from 1 million birds in 1990 to over 3.5 million in 2013.... The North American population of greater snow geese increased from about 90,000 birds in 1970 to over 1,000,000 birds in 2012.
  22. ^ Allan, J. R.; Bell, J. C.; Jackson, V. S. (1999). "An Assessment of the World-wide Risk To Aircraft From Large flocking Birds". Bird Strike Committee Proceedings 1999 Bird Strike Committee-USA/Canada, Vancouver, BC.
  23. ^ a b Rice, Jeff (September 23, 2005). . Wired Magazine. Archived from the original on October 19, 2007.
  24. ^ Dolbeer, RA (2006). "Height Distribution of Birds Recorded by Collisions with Civil Aircraft". Journal of Wildlife Management. 70 (5): 1345–1350. doi:10.2193/0022-541x(2006)70[1345:hdobrb]2.0.co;2. S2CID 55714045. Retrieved 2018-04-29.
  25. ^ Television program "Stansted: the Inside Story", 6 to 7 pm, Sunday 6 March 2011, Fiver (TV channel)
  26. ^ V. Bheemreddy et al., "Study of Bird Strikes Using Smooth Particle Hydrodynamics and Stochastic Parametric Evaluation[permanent dead link]," Journal of Aircraft, Vol. 49, pp. 1513–1520, 2012.
  27. ^ Stephen Trimble (6 July 2018). "Regulators propose new rule for engine bird ingestion". Flightglobal.
  28. ^ a b c d e f g h i j k l T. L. DeVault, B. F. Blackwell, and J. L. Belant, editors. 2013. Wildlife in airport environments: preventing animal–aircraft collisions through science-based management. Johns Hopkins University Press, Baltimore, Maryland, USA.
  29. ^ a b c d e Commander, Naval Installations Command, Air Operations Program Director. 2010. Bird/animal aircraft strike hazard (BASH) manual. Department of the Navy. Washington D.C., USA.
  30. ^ a b c U.S. Air Force. 2004. Air Force pamphlet 91–212: Bird/wildlife aircraft strike hazard (BASH) management techniques. Washington D.C., USA.
  31. ^ Federal Aviation Administration. 2013. Wildlife strikes to civil aircraft in the United States: 1990–2012. National Wildlife Strike Database Serial Report Number 19. Washington D.C., USA.
  32. ^ International Civil Aviation Organization. 1991. Bird control and reduction. Airport services manual, Document 9137-AN/898, Part 3. Montreal, Quebec, Canada.
  33. ^ a b Seamans, T. W., 2001. A review of deer control devices intended for use on airports. Proceedings of the 3rd joint annual meeting. Bird Strike Committee-USA/Canada, 27–30 August 2001, Calgary, Alberta, Canada.
  34. ^ Belant, J. L., T. W. Seamans, and C. P. Dwyer. 1998. Cattle guards reduce white-tailed deer crossings through fence openings. International Journal of Pest Management 44:247–249.
  35. ^ Cook, A., S. Rushton, J. Allen, and A. Baxter. 2008. An evaluation of techniques to control problem bird species on landfill sites. Environmental Management 41: 834–843.
  36. ^ Seamans, T. W., C. R. Hicks, and J. P. Kenneth. 2007. Dead bird effigies: a nightmare for gulls? Proceedings of the 9th joint annual meeting. Bird Strike Committee-USA/Canada, Kingston, Ontario, Canada.
  37. ^ a b c Airport Cooperative Research Program. 2011. Bird harassment, repellent, and deterrent techniques for use on and near airports. Transportation Research Board. Washington D.C., USA.
  38. ^ FAA Order JO 7400.2L, Procedures for Handling Airspace Matters, effective 2017-10-12 (with changes), accessed 2017-12-04
  39. ^ Southampton Airport. 2014. Southampton Airport brings in the next generation of bird control lasers. < http://www.southamptonairport.com/news/news-press/2014/07/09/southampton-airport-brings-in-next-generation-of-bird-control-lasers/ 2016-10-14 at the Wayback Machine>. Accessed 11 Oct 2016.
  40. ^ Wildlife Control Supplies. 2013. M4 Single Bang Propane Cannon. < http://www.wildlifecontrolsupplies.com/animal/NWS2501/WCSRJM4.html>. Accessed 26 Oct 2013.
  41. ^ Baxter, A. T., and J. R. Allan, 2008. Use of lethal control to reduce habituation to blank rounds by scavenging birds. Journal of Wildlife Management 72:1653–1657.
  42. ^ "Tina Turner scares birds at Gloucestershire Airport". ITV News. 3 November 2012. Retrieved 3 January 2020.
  43. ^ Engeman, R. M., J. Peterla, and B. Constantin. 2002. Methyl anthranilate aerosol for dispersing birds from the flight lines at Homestead Air Reserve Station. USDA National Wildlife Research Center-Staff Publications.
  44. ^ Izhaki, I. (2002). "Emodin – a secondary metabolite with multiple ecological functions in higher plants". New Phytologist. 155 (2): 205–217. doi:10.1046/j.1469-8137.2002.00459.x.
  45. ^ Dolbeer, R. A.; Belant, J. L.; Sillings, J. (1993). "Shooting gulls reduces strikes with aircraft at John F. Kennedy International Airport". Wildlife Society Bulletin. 21: 442–450.
  46. ^ Dolbeer, R. A., R. B. Chipman, A. L. Gosser, and S. C. Barras. 2003. Does shooting alter flight patterns of gulls: a case study at John F. Kennedy International Airport. Proceedings of the International Bird Strike Committee 26:49–67.
  47. ^ . Transport Canada. Archived from the original on 2008-06-06. Retrieved 2009-03-24.
  48. ^ "Determination of body density for twelve bird species". Ibis. 137 (3): 424–428. 1995. doi:10.1111/j.1474-919X.1995.tb08046.x.
  49. ^ Beason, Robert C., et al., "Beware the Boojum: caveats and strengths of avian radar" 2015-04-02 at the Wayback Machine, Human-Wildlife Interactions, Spring 2013
  50. ^ "Accipiter Radar: Bird Strike Prevention Applications"
  51. ^ "Airport Avian Radar Systems"
  52. ^ "Program Guidance Letter 12-04" 2016-03-03 at the Wayback Machine
  53. ^ "Part 139 Airport Certification"
  54. ^ "Validation and Integration of Networked Avian Radars: RC-200723" 2015-04-02 at the Wayback Machine
  55. ^ . Archived from the original on 2015-02-25. Retrieved 2015-03-03.
  56. ^ Nohara, Tim J., "Reducing Bird Strikes – new Radar Networks Can Help Make Skies Safer"[permanent dead link], Journal of Air Traffic Control, Summer 2009
  57. ^ Klope, Matthew W., et al., "Role of near-miss bird strikes in assessing hazards.", Human-Wildlife Interactions, Fall 2009
  58. ^ Nohara, Tim J., et al., "Avian Stakeholder Management of Bird Strike Risks – Enhancing Communication Processes To Pilots and Air Traffic Controllers for Information Derived From Avian Radar 2015-04-02 at the Wayback Machine, Summer 2012
  59. ^ "Accipiter Radar: Avian Scientific Papers" 2015-04-02 at the Wayback Machine
  60. ^ John Ostrom. "Bird Strike Committee USA statistics on birdstrikes". Retrieved 2009-12-13.
  61. ^ The Pathfinders c. 1980 by David Nevin for Time-Life books
  62. ^ La Domenica del Corriere, cover painting depicting Gilbert's encounter with an eagle, 4 July 1911
  63. ^ Howard, Fred (1998). Wilbur and Orville: A Biography of the Wright Brothers. Courier Dover. p. 375. ISBN 0-486-40297-5.
  64. ^ "The 'Buzzard Bar' Mercecdes" (PDF). Autoweek. 1987-08-31.
  65. ^ "MB Revisits Carrera Panamericana Rally 50 Years Ago: Page 2". Worldcarfans. Retrieved 2009-06-24.
  66. ^ Thomas O'Keefe, Clark and Gurney, The Best of Both Worlds, Atlas F1, Volume 7, Issue 5.
  67. ^ a b "Major bird strike incidents". The Daily Telegraph. 17 June 2011. Retrieved 23 June 2013.
  68. ^ Burgess, Colin; Doolan, Kate; Vis, Bert (2008). Fallen Astronauts: Heroes Who Died Reaching the Moon. Lincoln, Nebraska: University of Nebraska. p. 20. ISBN 978-0-8032-1332-6.
  69. ^ a b c d e f "Lessons Learned". lessonslearned.faa.gov. Retrieved 2021-11-30.
  70. ^ Ranter, Harro. "ASN Aircraft accident Boeing 737-260 ET-AJA Bahar Dar Airport (BJR)". aviation-safety.net. Retrieved 2022-09-17.
  71. ^ Transport Canada – Wildlife-strike Costs and Legal Liability
  72. ^ "CVR transcript Boeing E-3 USAF Yukla 27 – 22 SEP 1995". Accident investigation. Aviation Safety Network. 22 September 1995. Retrieved 2009-01-16.
  73. ^ "Fabio Survives Goose Encounter, but Take a Gander at His Honker". Los Angeles Times. 1999-04-09. Retrieved 2019-08-17.
  74. ^ Accident description at the Aviation Safety Network
  75. ^ Young, Kelly (2006-04-28). "The Space Vulture Squadron". Retrieved 2009-01-17.
  76. ^ Milmo, Dan (10 November 2008). "Bird strike forces Ryanair jet into emergency landing in Italy". guardian.co.uk. Retrieved 2009-01-16.
  77. ^ "Brief of accident; Sikorsky S-76C aircraft registration N748P" (PDF). National Transportation Safety Board. 2010-11-24. Retrieved May 2, 2012.[permanent dead link]
  78. ^ US Airways Plane Crashes Into Hudson River April 16, 2009, at the Wayback Machine
  79. ^ "CREW Actions and Safety Equipment Credited with Saving Lives in US Airways 1549 Hudson River Ditching, NTSB Says". NTSB. 2010-05-04. Retrieved 17 Nov 2019.
  80. ^ "Число пострадавших при посадке A321 в поле возросло до 74 человек". РИА Новости (in Russian). 2019-08-15. Retrieved 2022-01-30.
  81. ^ (PDF). National Transportation Safety Board. 8 July 1969. Archived from the original (PDF) on 19 April 2021. Retrieved 29 April 2022.
  82. ^ Turek, Raymond (March 2002). "Low-level locusts: Think through the potential consequences of any plan". Combat Edge (The US Department of the Air Force). Retrieved May 2, 2012.
  83. ^ Orreal, Jorja (September 27, 2010). "Aircraft warned to avoid flying in locust plague areas". The Courier Mail (Brisbane). Retrieved May 2, 2012.
  84. ^ Gray, Darren (28 September 2010). . The Land. Archived from the original on 6 April 2012. Retrieved May 2, 2012.
  85. ^ "Could a bug strike be fatal? Oh what a way to go..." Facebook. December 1, 2010. Archived from the original on 2022-02-26. Retrieved September 19, 2014.

External links

  • Wildlife Hazard Mitigation – Federal Aviation Administration
  • Avian Hazard Advisory System
  • Australian Aviation Wildlife Hazard Group
  • Bird Strike Committee USA
  • Reza Hedayati Mojtaba Sadighi (2015). Bird Strike : An Experimental, Theoretical and Numerical Investigation. Woodhead Publishing. p. 258. ISBN 978-0-08-100093-9.
  • Video of the Thomsonfly 757 bird strike and emergency landing on YouTube
  • International Bird Strike Committee
  • Bomben, Andrea. 2022. Wildlife strike. A guide for airline pilot. IBN Editore. Roma. Italy. [1]
  • Bomben, Andrea. 2022. Wildlife Strike Handbook (WSH). First edition.[2]
  • World Birdstrike Association. [3]

bird, strike, this, article, about, bird, collisions, with, aircraft, other, vehicles, bird, collisions, with, buildings, bird, skyscraper, collisions, towerkill, bird, strike, sometimes, called, birdstrike, bird, ingestion, engine, bird, bird, aircraft, strik. This article is about bird collisions with aircraft or other vehicles For bird collisions with buildings see Bird skyscraper collisions and Towerkill A bird strike sometimes called birdstrike bird ingestion for an engine bird hit or bird aircraft strike hazard BASH is a collision between an airborne animal usually a bird or bat 1 and a moving vehicle usually an aircraft The term is also used for bird deaths resulting from collisions with structures such as power lines towers and wind turbines see Bird skyscraper collisions and Towerkill 2 F 16 canopy after a bird strike Mercedes Benz 300SL sports car following the impact of a vulture to the windscreen at the 1952 Carrera Panamericana A significant threat to flight safety bird strikes have caused a number of accidents with human casualties 3 There are over 13 000 bird strikes annually in the US alone 4 However the number of major accidents involving civil aircraft is quite low and it has been estimated that there is only about 1 accident resulting in human death in one billion 109 flying hours 5 The majority of bird strikes 65 cause little damage to the aircraft 6 however the collision is usually fatal to the bird s involved citation needed The Canada goose has been ranked as the third most hazardous wildlife species to aircraft behind deer and vultures 7 with approximately 240 goose aircraft collisions in the United States each year 80 of all bird strikes go unreported 8 Most accidents occur when a bird or birds collides with the windscreen or is sucked into the engine of jet aircraft These cause annual damages that have been estimated at 400 million 3 within the United States alone and up to 1 2 billion to commercial aircraft worldwide 9 In addition to property damage collisions between man made structures and conveyances and birds is a contributing factor among many others to the worldwide decline of many avian species 10 The International Civil Aviation Organization ICAO received 65 139 bird strike reports for 2011 14 and the Federal Aviation Administration counted 177 269 wildlife strike reports on civil aircraft between 1990 and 2015 growing 38 in seven years from 2009 to 2015 Birds accounted for 97 11 Contents 1 Event description 2 Species 3 Countermeasures 3 1 Vehicle design 3 2 Wildlife management 3 2 1 Non lethal 3 2 1 1 Habitat manipulation 3 2 1 2 Exclusion 3 2 1 3 Visual repellents 3 2 1 4 Auditory repellents 3 2 1 5 Tactile repellents 3 2 1 6 Chemical repellents 3 2 1 7 Relocation 3 2 2 Lethal 3 2 2 1 Reinforcement 3 2 2 2 Population control 3 3 Flight path 4 History 5 Bug strikes 6 In popular culture 7 See also 8 References 9 External linksEvent description Edit View of fan blades of Pratt amp Whitney JT8D jet engine after a bird strike Inside of a jet engine after a bird strike An ICE 3 high speed train after hitting a bird A bird control vehicle belonging to Copenhagen Airport Kastrup equipped with various tools Bird strikes happen most often during takeoff or landing or during low altitude flight 12 However bird strikes have also been reported at high altitudes some as high as 6 000 to 9 000 m 20 000 to 30 000 ft above the ground Bar headed geese have been seen flying as high as 10 175 m 33 383 ft above sea level An aircraft over the Ivory Coast collided with a Ruppell s vulture at the altitude of 11 300 m 37 100 ft the current record avian height 13 The majority of bird collisions occur near or at airports 90 according to the ICAO during takeoff landing and associated phases According to the FAA wildlife hazard management manual for 2005 less than 8 of strikes occur above 900 m 3 000 ft and 61 occur at less than 30 m 98 ft citation needed The point of impact is usually any forward facing edge of the vehicle such as a wing leading edge nose cone jet engine cowling or engine inlet Jet engine ingestion is extremely serious due to the rotation speed of the engine fan and engine design As the bird strikes a fan blade that blade can be displaced into another blade and so forth causing a cascading failure Jet engines are particularly vulnerable during the takeoff phase when the engine is turning at a very high speed and the plane is at a low altitude where birds are more commonly found The force of the impact on an aircraft depends on the weight of the animal and the speed difference and direction at the point of impact The energy of the impact increases with the square of the speed difference High speed impacts as with jet aircraft can cause considerable damage and even catastrophic failure to the vehicle The energy of a 5 kg 11 lb bird moving at a relative velocity of 275 km h 171 mph approximately equals the energy of a 100 kg 220 lb weight dropped from a height of 15 metres 49 ft 14 However according to the FAA only 15 of strikes ICAO 11 actually result in damage to the aircraft 15 Bird strikes can damage vehicle components or injure passengers Flocks of birds are especially dangerous and can lead to multiple strikes with corresponding damage Depending on the damage aircraft at low altitudes or during take off and landing often cannot recover in time 16 US Airways Flight 1549 is a classic example of this The engines on the Airbus A320 used on that flight were torn apart by multiple bird strikes at low altitude There was no time to make a safe landing at an airport forcing a water landing in the Hudson River Remains of the bird termed snarge 17 18 are sent to identification centers where forensic techniques may be used to identify the species involved These samples need to be taken carefully by trained personnel to ensure proper analysis 19 and reduce the risks of infection zoonoses 20 Species EditMost bird strikes involve large birds with big populations particularly geese and gulls in the United States In parts of the US Canada geese and migratory snow geese populations have risen significantly 21 while feral Canada geese and greylag geese have increased in parts of Europe increasing the risk of these large birds to aircraft 22 In other parts of the world large birds of prey such as Gyps vultures and Milvus kites are often involved 5 In the US reported strikes are mainly from waterfowl 30 gulls 22 raptors 20 and pigeons and doves 7 21 The Smithsonian Institution s Feather Identification Laboratory has identified turkey vultures as the most damaging birds followed by Canada geese and white pelicans 23 all of which are very large birds In terms of frequency the laboratory most commonly finds mourning doves and horned larks involved in the strike 23 The largest numbers of strikes happen during the spring and fall migrations Bird strikes above 500 feet 150 m altitude are about 7 times more common at night than during the day during the bird migration season 24 Large land animals such as deer can also be a problem to aircraft during takeoff and landing Between 1990 and 2013 civil aircraft experienced more than 1 000 collisions with deer and 440 with coyotes 21 An animal hazard reported from London Stansted Airport in England is rabbits they get run over by ground vehicles and planes and they pass large amounts of droppings which attract mice which in turn attract owls which then become another birdstrike hazard 25 Countermeasures EditThere are three approaches to reduce the effect of bird strikes The vehicles can be designed to be more bird resistant the birds can be moved out of the way of the vehicle or the vehicle can be moved out of the way of the birds Vehicle design Edit Most large commercial jet engines include design features that ensure they can shut down after ingesting a bird weighing up to 1 8 kg 4 0 lb The engine does not have to survive the ingestion just be safely shut down This is a stand alone requirement i e the engine not the aircraft must pass the test Multiple strikes from hitting a bird flock on twin engine jet aircraft are very serious events because they can disable multiple aircraft systems requiring emergency action to land the aircraft as in the January 15 2009 forced ditching of US Airways Flight 1549 As required by EASA s CS 25 631 or FAA s 14 CFR 25 571 e 1 post Amdt 25 96 modern jet aircraft structures are designed for continued safe flight and landing after withstanding one 4 lb 1 8 kg bird impact anywhere on the aircraft including the flight deck windshields Per FAA s 14 CFR 25 631 they must also withstand one 8 lb 3 6 kg bird impact anywhere on the empennage tail Flight deck windows on jet aircraft must be able to withstand one 4 lb 1 8 kg bird collision without yielding or spalling For the empennage tail this is usually accomplished by designing redundant structures and protected locations for control system elements or protective devices such as splitter plates or energy absorbing material Often one aircraft manufacturer will use similar protective design features for all of its aircraft models to minimize testing and certification costs Transport Canada also pays particular attention to these requirements during aircraft certification considering there are many documented cases in North America of bird strikes with large Canada geese which weigh approximately 8 lb 3 6 kg on average and can sometimes weigh as much as 14 3 lb 6 5 kg At first bird strike testing by manufacturers involved firing a bird carcass from a gas cannon and sabot system into the tested unit The carcass was soon replaced with suitable density blocks often gelatin to ease testing Current certification efforts are mainly conducted with limited testing supported by more detailed analysis using computer simulation 26 although final testing usually involves some physical experiments see birdstrike simulator Based on US NTSB recommendation following the 2009 US Airways Flight 1549 the EASA in 2017 followed a year after by the FAA proposed that engines should sustain a bird strike not only on takeoff and climb where turbofans are turning at their fastest but also in descent when they turn more slowly new regulations could apply for the Boeing NMA engines 27 Wildlife management Edit An Airbus A330 of China Eastern behind a flock of birds at London Heathrow Though there are many methods available to wildlife managers at airports no single method will work in all instances and with all species Wildlife management in the airport environment can be grouped into two broad categories non lethal and lethal Integration of multiple non lethal methods with lethal methods results in the most effective airfield wildlife management strategy Non lethal Edit Non lethal management can be further broken down into habitat manipulation exclusion visual auditory tactile or chemical repellents and relocation Habitat manipulation Edit One of the primary reasons that wildlife is seen in airports is an abundance of food Food resources on airports can be either removed or made less desirable One of the most abundant food resources found on airports is turfgrass This grass is planted to reduce runoff control erosion absorb jet wash allow passage of emergency vehicles and to be aesthetically pleasing DeVault et al 2013 28 However turfgrass is a preferred food source for species of birds that pose a serious risk to aircraft chiefly the Canada goose Branta canadensis Turfgrass planted at airports should be a species that geese do not prefer e g St Augustine grass and should be managed in such a way that reduces its attractiveness to other wildlife such as small rodents and raptors Commander Naval Installations Command 2010 29 DeVault et al 2013 28 It has been recommended that turfgrass be maintained at a height of 7 14 inches through regular mowing and fertilization U S Air Force 2004 30 Wetlands are another major attractant of wildlife in the airport environment They are of particular concern because they attract waterfowl which have a high potential to damage aircraft Federal Aviation Administration 2013 31 With large areas of impervious surfaces airports must employ methods to collect runoff and reduce its flow velocity These best management practices often involve temporarily ponding runoff Short of redesigning existing runoff control systems to include non accessible water such as subsurface flow wetlands DeVault et al 2013 28 frequent drawdowns and covering of exposed water with floating covers and wire grids should be employed International Civil Aviation Organization 1991 32 The implementation of covers and wire grids must not hinder emergency services Exclusion Edit Though excluding birds from the entire airport environment is virtually impossible it is possible to exclude deer and other mammals that constitute a small percentage of wildlife strikes Three meter high fences made of chain link or woven wire with barbed wire outriggers are the most effective When used as a perimeter fence these fences also serve to keep unauthorized people off of the airport Seamans 2001 33 Realistically every fence must have gates Gates that are left open allow deer and other mammals onto the airport 4 6 meter long cattle guards have been shown to be effective at deterring deer up to 98 of the time Belant et al 1998 34 Hangars with open superstructures often attract birds to nest and roost in Hangar doors are often left open to increase ventilation especially in the evenings Birds in hangars are in proximity to the airfield and their droppings are both a health and damage concern Netting is often deployed across the superstructure of a hangar denying access to the rafters where the birds roost and nest while still allowing the hangar doors to remain open for ventilation and aircraft movements Strip curtains and door netting may also be used but are subject to improper use e g tying the strips to the side of the door by those working in the hangar U S Air Force 2004 30 Commander Naval Installations Command 2010 29 Visual repellents Edit There have been a variety of visual repellent and harassment techniques used in airport wildlife management They include using birds of prey and dogs effigies landing lights and lasers Birds of prey have been used with great effectiveness at landfills where there were large populations of feeding gulls Cook et al 2008 35 Dogs have also been used with success as visual deterrents and means of harassment for birds at airfields DeVault et al 2013 28 However airport wildlife managers must consider the risk of knowingly releasing animals in the airport environment Both birds of prey and dogs must be monitored by a handler when deployed and must be cared for when not deployed Airport wildlife managers must consider the economics of these methods Seamans 2001 33 Effigies of both predators and conspecifics have been used with success to disperse gulls and vultures The effigies of conspecifics are often placed in unnatural positions where they can freely move with the wind Effigies have been found to be the most effective in situations where the nuisance birds have other options e g other forage loafing and roosting areas available Time to habituation varies Seamans et al 2007 36 DeVault et al 2013 28 Lasers have been used with success to disperse several species of birds However lasers are species specific as certain species will only react to certain wavelengths Lasers become more effective as ambient light levels decrease thereby limiting effectiveness during daylight hours Some species show a very short time to habituation Airport Cooperative Research Program 2011 37 The risks of lasers to aircrews must be evaluated when determining whether or not to deploy lasers on airfields 38 Southampton Airport utilizes a laser device which disables the laser past a certain elevation eliminating the risk of the beam being shone directly at aircraft and air traffic control tower Southampton Airport 2014 39 Auditory repellents Edit Auditory repellents are commonly used in both agricultural and aviation contexts Devices such as propane exploders cannons pyrotechnics and bioacoustics are frequently deployed on airports Propane exploders are capable of creating noises of approximately 130 decibels Wildlife Control Supplies 40 They can be programmed to fire at designated intervals can be remote controlled or motion activated Due to their stationary and often predictable nature wildlife quickly becomes habituated to propane cannons Lethal control may be used to extend the effectiveness of propane exploders Washburn et al 2006 Wireless specialized launcher mounted in an airport vehicle Pyrotechnics utilizing either an exploding shell or a screamer can effectively scare birds away from runways They are commonly launched from a 12 gauge shotgun or a flare pistol or from a wireless specialized launcher and as such can be aimed to allow control personnel to steer the species that is being harassed Birds show varying degrees of habituation to pyrotechnics Studies have shown that lethal reinforcement of pyrotechnic harassment has extended its usefulness Baxter and Allen 2008 41 Screamer type cartridges are still intact at the end of their flight as opposed to exploding shells that destroy themselves constituting a foreign object damage hazard and must be picked up The use of pyrotechnics is considered take by the U S Fish and Wildlife Service USFWS and USFWS must be consulted if federally threatened or endangered species could be affected Pyrotechnics are a potential fire hazard and must be deployed judiciously in dry conditions Commander Naval Installations Command 2010 29 Airport Cooperative Research Program 2011 37 Bioacoustics or the playing of conspecific distress or predator calls to frighten animals is widely used This method relies on the animal s evolutionary danger response Airport Cooperative Research Program 2011 37 However bioacoustics are species specific and birds may quickly become habituated to them and they should not be used as a primary means of control U S Air Force 2004 30 Commander Naval Installations Command 2010 29 In 2012 operators at Gloucestershire Airport in the United Kingdom revealed that songs by the American Swiss singer Tina Turner were more effective than animal noises for scaring birds from its runways 42 Tactile repellents Edit Sharpened spikes to deter perching and loafing are commonly used Generally large birds require different applications than small birds do DeVault et al 2013 28 Chemical repellents Edit There are only two chemical bird repellents registered for use in the United States They are methyl anthranilate and anthraquinone Methyl anthranilate is a primary repellent that produces an immediate unpleasant sensation that is reflexive and does not have to be learned As such it is most effective for transient populations of birds DeVault et al 2013 28 Methyl anthranilate has been used with great success at rapidly dispersing birds from flight lines at Homestead Air Reserve Station Engeman et al 2002 43 Anthraquinone is a secondary repellent that has a laxative effect that is not instantaneous Because of this it is most effective on resident populations of wildlife that will have time to learn an aversive response Izhaki 2002 44 DeVault et al 2013 28 Relocation Edit Relocation of raptors from airports is often considered preferable to lethal control methods by both biologists and the public There are complex legal issues surrounding the capture and relocation of species protected by the Migratory Bird Treaty Act of 1918 and the Bald and Golden Eagle Protection Act of 1940 Prior to capture proper permits must be obtained and the high mortality rates as well as the risk of disease transmission associated with relocation must be weighed Between 2008 and 2010 U S Department of Agriculture Wildlife Services personnel relocated 606 red tailed hawks from airports in the United States after the failure of multiple harassment attempts The return rate of these hawks was 6 however the relocation mortality rate for these hawks was never determined DeVault et al 2013 28 Lethal Edit Lethal wildlife control on airports falls into two categories reinforcement of other non lethal methods and population control Reinforcement Edit The premise of effigies pyrotechnics and propane exploders is that there be a perceived immediate danger to the species to be dispersed Initially the sight of an unnaturally positioned effigy or the sound of pyrotechnics or exploders is enough to elicit a danger response from wildlife As wildlife become habituated to non lethal methods the culling of small numbers of wildlife in the presence of conspecifics can restore the danger response Baxter and Allan 2008 Cook et al 2008 Commander Naval Installations Command 2010 29 DeVault et al 2013 28 Population control Edit Under certain circumstances lethal wildlife control is needed to control the population of a species This control can be localized or regional Localized population control is often used to control species that are residents of the airfield such as deer that have bypassed the perimeter fence In this instance sharpshooting would be highly effective such as is seen at Chicago O Hare International Airport DeVault et al 2013 28 Regional population control has been used on species that cannot be excluded from the airport environment A nesting colony of laughing gulls at Jamaica Bay Wildlife Refuge contributed to 98 315 bird strikes per year in 1979 1992 at adjacent John F Kennedy International Airport JFK Though JFK had an active bird management program that precluded birds from feeding and loafing on the airport it did not stop them from overflying the airport to other feeding sites U S Department of Agriculture Wildlife Services personnel began shooting all gulls that flew over the airport hypothesizing that eventually the gulls would alter their flight patterns They shot 28 352 gulls in two years approximately half of the population at Jamaica Bay and 5 6 of the nationwide population per year Strikes with laughing gulls decreased by 89 by 1992 However this was more a function of the population reduction than the gulls altering their flight pattern Dolbeer et al 1993 45 Dolbeer et al 2003 46 DeVault et al 2013 28 Flight path Edit Pilots should not take off or land in the presence of wildlife and should avoid migratory routes 47 wildlife reserves estuaries and other sites where birds may congregate When operating in the presence of bird flocks pilots should seek to climb above 3 000 feet 910 m as rapidly as possible as most bird strikes occur below 3 000 feet 910 m Additionally pilots should slow down their aircraft when confronted with birds The energy that must be dissipated in the collision is approximately the relative kinetic energy E k displaystyle E k of the bird defined by the equation E k 1 2 m v 2 displaystyle E k frac 1 2 mv 2 where m displaystyle m is the mass of the bird and v displaystyle v is the relative velocity the difference of the velocities of the bird and the plane resulting in a lower absolute value if they are flying in the same direction and higher absolute value if they are flying in opposite directions Therefore the speed of the aircraft is much more important than the size of the bird when it comes to reducing energy transfer in a collision The same can be said for jet engines the slower the rotation of the engine the less energy which will be imparted onto the engine at collision The body density of the bird is also a parameter that influences the amount of damage caused 48 The US Military Avian Hazard Advisory System AHAS uses near real time data from the 148 CONUS based National Weather Service Next Generation Weather Radar NEXRAD or WSR 88 D system to provide current bird hazard conditions for published military low level routes ranges and military operating areas MOAs Additionally AHAS incorporates weather forecast data with the Bird Avoidance Model BAM to predict soaring bird activity within the next 24 hours and then defaults to the BAM for planning purposes when activity is scheduled outside the 24 hour window The BAM is a static historical hazard model based on many years of bird distribution data from Christmas Bird Counts CBC Breeding Bird Surveys BBS and National Wildlife Refuge Data The BAM also incorporates potentially hazardous bird attractions such as landfills and golf courses AHAS is now an integral part of military low level mission planning aircrew being able to access the current bird hazard conditions at www usahas com AHAS will provide relative risk assessments for the planned mission and give aircrew the opportunity to select a less hazardous route should the planned route be rated severe or moderate Prior to 2003 the US Air Force BASH Team bird strike database indicated that approximately 25 of all strikes were associated with low level routes and bombing ranges More importantly these strikes accounted for more than 50 of all of the reported damage costs After a decade of using AHAS for avoiding routes with severe ratings the strike percentage associated with low level flight operations has been reduced to 12 and associated costs cut in half Avian radar 49 is an important tool for aiding in bird strike mitigation as part of overall safety management systems at civilian and military airfields Properly designed and equipped avian radars can track thousands of birds simultaneously in real time night and day through 360 of coverage out to ranges of 10 km and beyond for flocks updating every target s position longitude latitude altitude speed heading and size every 2 3 seconds Data from these systems can be used to generate information products ranging from real time threat alerts to historical analyses of bird activity patterns in both time and space The United States Federal Aviation Administration FAA and the United States Department of Defense DOD have conducted extensive science based field testing and validation of commercial avian radar systems for civil and military applications respectively The FAA used evaluations of commercial 3D avian radar systems developed and marketed by Accipiter Radar 50 as the basis for FAA Advisory Circular 150 5220 25 51 and a guidance letter 52 on using Airport Improvement Program funds to acquire avian radar systems at Part 139 airports 53 Similarly the DOD sponsored Integration and Validation of Avian Radars IVAR 54 project evaluated the functional and performance characteristics of Accipiter avian radars under operational conditions at Navy Marine Corps and Air Force airfields Accipiter avian radar systems operating at Seattle Tacoma International Airport 55 Chicago O Hare International Airport and Marine Corps Air Station Cherry Point made significant contributions to the evaluations carried out in the aforementioned FAA and DoD initiatives Additional scientific and technical papers on avian radar systems are listed below 56 57 58 and on the Accipiter Radar web site 59 A US company DeTect in 2003 developed the only production model bird radar in operational use for real time tactical bird aircraft strike avoidance by air traffic controllers These systems are operational at both commercial airports and military airfields The system has widely used technology available for bird aircraft strike hazard BASH management and for real time detection tracking and alerting of hazardous bird activity at commercial airports military airfields and military training and bombing ranges After extensive evaluation and on site testing MERLIN technology was chosen by NASA and was ultimately used for detecting and tracking dangerous vulture activity during the 22 space shuttle launches from 2006 to the conclusion of the program in 2011 The US Air Force has contracted DeTect since 2003 to provide the Avian Hazard Advisory System AHAS previously mentioned TNO a Dutch R amp D Institute has developed the successful ROBIN Radar Observation of Bird Intensity for the Royal Netherlands Airforce ROBIN is a near real time monitoring system for flight movements of birds ROBIN identifies flocks of birds within the signals of large radar systems This information is used to give Air Force pilots warning during landing and take off Years of observation of bird migration with ROBIN have also provided a better insight into bird migration behavior which has had an influence on averting collisions with birds and therefore on flight safety Since the implementation of the ROBIN system at the Royal Netherlands Airforce the number of collisions between birds and aircraft in the vicinity of military airbases has decreased by more than 50 There are no civil aviation counterparts to the above military strategies Some experimentation with small portable radar units has taken place at some airports However no standard has been adopted for radar warning nor has any governmental policy regarding warnings been implemented History Edit Eugene Gilbert in Bleriot XI attacked by eagle over Pyrenees in 1911 depicted in this painting A Fw 190D 9 of 10 JG 54 Grunherz pilot Leutnant Theo Nibel downed by a partridge which flew into the nose radiator near Brussels on 1 January 1945 The Federal Aviation Administration FAA estimates bird strikes cost US aviation 400 million dollars annually and have resulted in over 200 worldwide deaths since 1988 60 In the United Kingdom the Central Science Laboratory estimates 9 that worldwide birdstrikes cost airlines around US 1 2 billion annually This includes repair cost and lost revenue while the damaged aircraft is out of service There were 4 300 bird strikes listed by the United States Air Force and 5 900 by US civil aircraft in 2003 The first reported bird strike was by Orville Wright in 1905 According to the Wright Brothers diaries Orville flew 4 751 meters in 4 minutes 45 seconds four complete circles Twice passed over the fence into Beard s cornfield Chased flock of birds for two rounds and killed one which fell on top of the upper surface and after a time fell off when swinging a sharp curve 5 During the 1911 Paris to Madrid air race French pilot Eugene Gilbert encountered an angry mother eagle over the Pyrenees Gilbert flying an open cockpit Bleriot XI was able to ward off the large bird by firing pistol shots at it but did not kill it 61 62 The first recorded bird strike fatality was reported in 1912 when aero pioneer Cal Rodgers collided with a gull which became jammed in his aircraft control cables He crashed at Long Beach California was pinned under the wreckage and drowned 3 63 During the 1952 edition of the Carrera Panamericana eventual race winners Karl Kling and Hans Klenk suffered a bird strike incident when the Mercedes Benz W194 was struck by a vulture in the windscreen During a long right hand bend in the opening stage taken at almost 200 km h 120 mph Kling failed to spot vultures sitting by the side of the road When the vultures were scattered after hearing the virtually unsilenced W194 coming towards them one vulture impacted through the windscreen on the passenger side The impact was enough to briefly knock Klenk unconscious Despite bleeding badly from facial injuries caused by the shattered windscreen Klenk ordered Kling to maintain speed and held on until a tire change almost 70 km 43 mi later to clean himself and the car up For extra protection eight vertical steel bars were bolted over the new windscreen 64 Kling and Klenk also discussed the species and size of the dead bird agreeing that had had a minimum 115 centimetre 45 in wingspan and weighed as much as five fattened geese 65 A Sikorsky UH 60 Black Hawk after a collision with a common crane bird and resulting failure of the windshield The same UH 60 as seen from the inside Alan Stacey s fatal accident during the 1960 Belgian Grand Prix was caused when a bird hit him in the face on lap 25 causing his Lotus 18 Climax to crash at the fast sweeping right hand Burnenville curve According to fellow driver Innes Ireland s testimony in a mid 1980s edition of Road amp Track magazine Ireland stated that some spectators claimed that a bird had flown into Stacey s face while he was approaching the curve possibly knocking him unconscious or even possibly killing him by breaking his neck or inflicting a fatal head injury before the car crashed 66 The greatest loss of life directly linked to a bird strike was on October 4 1960 when a Lockheed L 188 Electra flying from Boston as Eastern Air Lines Flight 375 flew through a flock of common starlings during take off damaging all four engines The aircraft crashed into Boston harbor shortly after takeoff with 62 fatalities out of 72 passengers 67 Subsequently minimum bird ingestion standards for jet engines were developed by the FAA NASA astronaut Theodore Freeman was killed in 1964 when a goose shattered the plexiglass cockpit canopy of his Northrop T 38 Talon Shards were ingested by the engines leading to a fatal crash 68 In November 12 1975 Overseas National Airways Flight 032 the flight crew initiated a rejected takeoff after accelerating through a large flock of gulls at John F Kennedy International Airport resulting in a runway excursion 69 Of the 139 aircraft occupants all survived while the aircraft was destroyed by an intense post crash fire 69 An investigation was carried out on the 3 engine by General Electric Aircraft Engines GEAE in Ohio Disassembly revealed that several engine fan blades were damaged and broken causing blades to abrade the epoxy fan shroud as the epoxy combusted it ignited jet fuel leaking from a broken fuel line 69 However GEAE denied that the ingested birds were the underlying cause of the damage 69 Company investigators speculated that a tire or landing gear failure had occurred prior to the bird strikes and that tire wheel or landing gear debris ingested into the engine caused the fan blade damage and cut the fuel line 69 To demonstrate that the General Electric CF6 engine was capable of withstanding a bird strike the National Transportation Safety Board conducted a test with a sample engine 69 In 1988 Ethiopian Airlines Flight 604 sucked pigeons into both engines during takeoff and then crashed killing 35 passengers 70 In 1995 a Dassault Falcon 20 crashed at a Paris airport during an emergency landing attempt after sucking lapwings into an engine which caused an engine failure and a fire in the airplane s fuselage all 10 people on board were killed 71 On September 22 1995 a U S Air Force Boeing E 3 Sentry AWACS aircraft Callsign Yukla 27 serial number 77 0354 crashed shortly after takeoff from Elmendorf AFB The aircraft lost power in both port side engines after these engines ingested several Canada geese during takeoff It crashed about two miles 3 2 km from the runway killing all 24 crew members on board 72 On March 30 1999 during the inaugural run of the hypercoaster Apollo s Chariot in Virginia passenger Fabio Lanzoni suffered a bird strike by a goose and required three stitches to his face The roller coaster has a height of over 200 feet and reaches speeds over 70 miles per hour 73 On November 28 2004 the nose landing gear of KLM Flight 1673 a Boeing 737 400 struck a bird during takeoff at Amsterdam Airport Schiphol The incident was reported to air traffic control the landing gear was raised normally and the flight continued normally to its destination Upon touching down at Barcelona International Airport the aircraft started deviating to the left of the runway centreline The crew applied right rudder braking and the nose wheel steering tiller but could not keep the aircraft on the runway After it veered off the paved surface of the runway at about 100 knots the jet went through an area of soft sand The nose landing gear leg collapsed and the left main landing gear leg detached from its fittings shortly before the aircraft came to a stop perched over the edge of a drainage canal All 140 passengers and six crew evacuated safely but the aircraft itself had to be written off The cause was discovered to be a broken cable in the nose wheel steering system caused by the bird collision Contributing to the snapped cable was the improper application of grease during routine maintenance which led to severe wear of the cable 74 In April 2007 a Thomsonfly Boeing 757 from Manchester Airport to Lanzarote Airport suffered a bird strike when at least one bird supposedly a crow was ingested by the starboard engine The plane landed safely back at Manchester Airport a while later The incident was captured by two plane spotters on opposite sides of the airport as well as the emergency calls picked up by a plane spotter s radio 67 The Space Shuttle Discovery also hit a bird a vulture during the launch of STS 114 on July 26 2005 although the collision occurred soon after lift off and at low speed with no obvious damage to the shuttle 75 On November 10 2008 Ryanair Flight 4102 from Frankfurt to Rome made an emergency landing at Ciampino Airport after multiple bird strikes caused both engines to fail After touchdown the left main landing gear collapsed and the aircraft briefly veered off the runway Passengers and crew were evacuated through the starboard emergency exits 76 On January 4 2009 a Sikorsky S 76 helicopter hit a red tailed hawk in Louisiana The hawk hit the helicopter just above the windscreen The impact forced the activation of the engine fire suppression control handles retarding the throttles and causing the engines to lose power Eight of the nine people on board died in the subsequent crash the survivor a passenger was seriously injured 77 On January 15 2009 US Airways Flight 1549 from LaGuardia Airport to Charlotte Douglas International Airport ditched into the Hudson River after experiencing a loss of both turbines It is suspected by whom that the engine failure was caused by running into a flock of geese at an altitude of about 975 m 3 199 feet shortly after takeoff All 150 passengers and 5 crew members were safely evacuated after a successful water landing 78 On May 28 2010 the NTSB published its final report into the accident 79 On August 15 2019 Ural Airlines Flight 178 from Moscow Zhukovsky to Simferopol Crimea suffered a bird strike after taking off from Zhukovsky and crash landed in a cornfield 5 kilometers away from the airport 74 people were injured all with minor injuries 80 Bug strikes EditFlying insect strikes like bird strikes have been encountered by pilots since aircraft were invented Future United States Air Force general Henry H Arnold as a young officer nearly lost control of his Wright Model B in 1911 after a bug flew into his eye while he was not wearing goggles distracting him In 1968 North Central Airlines Flight 261 a Convair 580 encountered large concentrations of insects between Chicago and Milwaukee The accumulated insect remains on the windshield severely impaired the flightcrew s forward visibility as a result while descending to land at Milwaukee the aircraft suffered a mid air collision with a private Cessna 150 that the Convair s flightcrew had been unable to see until a split second before the collision killing the three occupants of the Cessna and severely injuring the Convair s first officer 81 In 1986 a Boeing B 52 Stratofortress on a low level training mission entered a swarm of locusts The insects impacts on the aircraft s windscreens rendered the crew unable to see forcing them to abort the mission and fly using the aircraft s instruments alone The aircraft eventually landed safely 82 In 2010 the Australian Civil Aviation Safety Authority CASA issued a warning to pilots about the potential dangers of flying through a locust swarm CASA warned that the insects could cause loss of engine power and loss of visibility and blocking of an aircraft s pitot tubes causing inaccurate airspeed readings 83 84 Bug strikes can also affect the operation of machinery on the ground especially motorcycles The team on the US TV show MythBusters in a 2010 episode entitled Bug Special concluded that death could occur if a motorist were hit by a flying insect of sufficient mass in a vulnerable part of the body Anecdotal evidence from motorcyclists supports pain bruising soreness stings and forced dismount caused by collision with an insect at speed 85 In popular culture EditIn the March 1942 Boy s Own Paper story Biggles and the Purple Plague by Capt W E Johns an immense swarm of locusts threatens food supplies and the aviators have trouble flying An episode of the classic Jonny Quest animated TV show features a giant condor ripping the wing off of a Fokker D VII World War One fighter plane In the 1965 film Sands of the Kalahari a twin engine plane is brought down by a locust swarm that smears the windscreen and clogs the carburetor intakes In the 1989 film Indiana Jones and the Last Crusade Henry Jones Sr Sean Connery uses an umbrella to scare a flock of birds into the path of an attacking Luftwaffe fighter plane causing it to sustain multiple bird strikes and crash saving his life and the life of his son Indiana Jones Harrison Ford In the 1997 film The Edge starring Anthony Hopkins and Alec Baldwin their floatplane crashes after encountering bird strike leaving the two stranded in the wilderness with their friend The 2016 film Sully shows US Airways Flight 1549 captained by Chesley Sullenberger that was forced to ditch on the Hudson River in 2009 after sustaining a bird strike shortly after takeoff from LaGuardia Airport In the 2022 film Top Gun Maverick Phoenix and Bob are forced to eject after a bird strike causes the engines of their F A 18F to flame out See also Edit Aviation portal Animals portalAEDC Ballistic Range S 3 Carla Dove ornithologist and researcher specializing in bird strikes Chicken gun Foreign object damage Mid air collision an aerial collision between aircraft Roxie Collie Laybourne Stray animals at Indian airportsReferences Edit Gard Katie Groszos Mark S Brevik Eric C Lee Gregory W 2007 Spatial analysis of Bird Aircraft Strike Hazard for Moody Air Force Base aircraft in the state of Georgia Report PDF Georgia Journal of Science 65 4 161 169 Archived from the original PDF on 2009 01 07 Manville A M II 2005 Bird strikes and electrocutions at power lines communication lowers and wind turbines state of the art and slate of the science next steps toward mitigation In C J Ralph T D Rich eds Bird Conservation Implementation in the Americas Proceedings 3rd International Partners in Flight Conference 2002 U S D A Forest Service GTR PSW 191 Albany CA a b c Sodhi Navjot S 2002 Competition in the air birds versus aircraft The Auk 119 3 587 595 doi 10 1642 0004 8038 2002 119 0587 CITABV 2 0 CO 2 S2CID 31967680 Richard Dolbeer et al November 2016 Wildlife Strikes to Civil Aircraft in the United States 1990 2015 PDF Federal Aviation Administration p xii Retrieved 28 March 2018 a b c Thorpe John 2003 Fatalities and destroyed civil aircraft due to bird strikes 1912 2002 PDF International Bird Strike Committee IBSC 26 Warsaw Archived from the original PDF on 2009 02 27 Retrieved 2009 01 17 Milson T P amp N Horton 1995 Birdstrike An assessment of the hazard on UK civil aerodromes 1976 1990 Central Science Laboratory Sand Hutton York UK Dolbeer Richard A Wright Sandra E Cleary Edward C 2000 Ranking the Hazard Level of Wildlife Species to Aviation Wildlife Society Bulletin 28 2 372 378 JSTOR 3783694 Retrieved 2022 01 16 Cleary Edward Dolbeer Richard July 2005 Wildlife Hazard Management at Airports A Manual for Airport Personnel USDA National Wildlife Research Center Staff Publications 133 9 Retrieved 19 August 2019 a b Allan John R Alex P Orosz 2001 08 27 The costs of birdstrikes to commercial aviation 2001 Bird Strike Committee Usa Canada Third Joint Annual Meeting Calgary Ab DigitalCommons University of Nebraska Retrieved 2009 01 16 Threats To Birds Collisions August 22 2019 How Bird Strikes Impact Engines Aviation Week October 7 2016 Richardson W John 1994 Serious birdstrike related accidents to military aircraft of ten countries preliminary analysis of circumstances PDF Bird Strike Committee Europe BSCE 22 WP22 Vienna Archived from the original PDF on 2009 02 27 Retrieved 2009 01 17 Thomas Alerstam David A Christie Astrid Ulfstrand Bird Migration 1990 Page 276 Note however that the momentum as distinct from the kinetic energy of the bird in this example is considerably less than that of the tonne weight and therefore the force required to deflect it is also considerably less Dolbeer Richard A 2020 Wildlife Stirkes to Civil Aircraft in the United States PDF Washington DC U S DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION p 45 Freeze Christopher What Happens After a Bird Strike ALPA org Air Line Pilots Association Retrieved 11 October 2020 Dove CJ Marcy Heacker Lee Weigt 2006 DNA identification of birdstrike remains progress report Bird Strike Committee USA CANADA 8th Annual meeting St Louis Bittel Jason 14 April 2022 Snarge Happens and Studying It Makes Your Flight Safer The New York Times Retrieved 2022 04 17 Laybourne R C amp C Dove 1994 Preparation of Bird Strike Remains for Identification PDF Proc Bird Strike Comm Europe 22 Vienna 1994 pp 531 543 Archived from the original PDF on 2009 02 27 Retrieved 2009 01 17 Noam Leader Ofer Mokady Yoram Yom Tov 2006 Indirect Flight of an African Bat to Israel An Example of the Potential for Zoonotic Pathogens to Move between Continents Vector Borne and Zoonotic Diseases 6 4 347 350 doi 10 1089 vbz 2006 6 347 PMID 17187568 a b c DID YOU KNOW THAT Bird Strike Committee USA 25 August 2014 Waterfowl 30 gulls 22 raptors 20 and pigeons doves 7 represented 79 of the reported bird strikes causing damage to USA civil aircraft 1990 2012 Over 1 070 civil aircraft collisions with deer and 440 collisions with coyotes were reported in the USA 1990 2013 The North American non migratory Canada goose population increased about 4 fold from 1 million birds in 1990 to over 3 5 million in 2013 The North American population of greater snow geese increased from about 90 000 birds in 1970 to over 1 000 000 birds in 2012 Allan J R Bell J C Jackson V S 1999 An Assessment of the World wide Risk To Aircraft From Large flocking Birds Bird Strike Committee Proceedings 1999 Bird Strike Committee USA Canada Vancouver BC a b Rice Jeff September 23 2005 Bird Plus Plane Equals Snarge Wired Magazine Archived from the original on October 19 2007 Dolbeer RA 2006 Height Distribution of Birds Recorded by Collisions with Civil Aircraft Journal of Wildlife Management 70 5 1345 1350 doi 10 2193 0022 541x 2006 70 1345 hdobrb 2 0 co 2 S2CID 55714045 Retrieved 2018 04 29 Television program Stansted the Inside Story 6 to 7 pm Sunday 6 March 2011 Fiver TV channel V Bheemreddy et al Study of Bird Strikes Using Smooth Particle Hydrodynamics and Stochastic Parametric Evaluation permanent dead link Journal of Aircraft Vol 49 pp 1513 1520 2012 Stephen Trimble 6 July 2018 Regulators propose new rule for engine bird ingestion Flightglobal a b c d e f g h i j k l T L DeVault B F Blackwell and J L Belant editors 2013 Wildlife in airport environments preventing animal aircraft collisions through science based management Johns Hopkins University Press Baltimore Maryland USA a b c d e Commander Naval Installations Command Air Operations Program Director 2010 Bird animal aircraft strike hazard BASH manual Department of the Navy Washington D C USA a b c U S Air Force 2004 Air Force pamphlet 91 212 Bird wildlife aircraft strike hazard BASH management techniques Washington D C USA Federal Aviation Administration 2013 Wildlife strikes to civil aircraft in the United States 1990 2012 National Wildlife Strike Database Serial Report Number 19 Washington D C USA International Civil Aviation Organization 1991 Bird control and reduction Airport services manual Document 9137 AN 898 Part 3 Montreal Quebec Canada a b Seamans T W 2001 A review of deer control devices intended for use on airports Proceedings of the 3rd joint annual meeting Bird Strike Committee USA Canada 27 30 August 2001 Calgary Alberta Canada Belant J L T W Seamans and C P Dwyer 1998 Cattle guards reduce white tailed deer crossings through fence openings International Journal of Pest Management 44 247 249 Cook A S Rushton J Allen and A Baxter 2008 An evaluation of techniques to control problem bird species on landfill sites Environmental Management 41 834 843 Seamans T W C R Hicks and J P Kenneth 2007 Dead bird effigies a nightmare for gulls Proceedings of the 9th joint annual meeting Bird Strike Committee USA Canada Kingston Ontario Canada a b c Airport Cooperative Research Program 2011 Bird harassment repellent and deterrent techniques for use on and near airports Transportation Research Board Washington D C USA FAA Order JO 7400 2L Procedures for Handling Airspace Matters effective 2017 10 12 with changes accessed 2017 12 04 Southampton Airport 2014 Southampton Airport brings in the next generation of bird control lasers lt http www southamptonairport com news news press 2014 07 09 southampton airport brings in next generation of bird control lasers Archived 2016 10 14 at the Wayback Machine gt Accessed 11 Oct 2016 Wildlife Control Supplies 2013 M4 Single Bang Propane Cannon lt http www wildlifecontrolsupplies com animal NWS2501 WCSRJM4 html gt Accessed 26 Oct 2013 Baxter A T and J R Allan 2008 Use of lethal control to reduce habituation to blank rounds by scavenging birds Journal of Wildlife Management 72 1653 1657 Tina Turner scares birds at Gloucestershire Airport ITV News 3 November 2012 Retrieved 3 January 2020 Engeman R M J Peterla and B Constantin 2002 Methyl anthranilate aerosol for dispersing birds from the flight lines at Homestead Air Reserve Station USDA National Wildlife Research Center Staff Publications Izhaki I 2002 Emodin a secondary metabolite with multiple ecological functions in higher plants New Phytologist 155 2 205 217 doi 10 1046 j 1469 8137 2002 00459 x Dolbeer R A Belant J L Sillings J 1993 Shooting gulls reduces strikes with aircraft at John F Kennedy International Airport Wildlife Society Bulletin 21 442 450 Dolbeer R A R B Chipman A L Gosser and S C Barras 2003 Does shooting alter flight patterns of gulls a case study at John F Kennedy International Airport Proceedings of the International Bird Strike Committee 26 49 67 AIP Bird Hazards Transport Canada Archived from the original on 2008 06 06 Retrieved 2009 03 24 Determination of body density for twelve bird species Ibis 137 3 424 428 1995 doi 10 1111 j 1474 919X 1995 tb08046 x Beason Robert C et al Beware the Boojum caveats and strengths of avian radar Archived 2015 04 02 at the Wayback Machine Human Wildlife Interactions Spring 2013 Accipiter Radar Bird Strike Prevention Applications Airport Avian Radar Systems Program Guidance Letter 12 04 Archived 2016 03 03 at the Wayback Machine Part 139 Airport Certification Validation and Integration of Networked Avian Radars RC 200723 Archived 2015 04 02 at the Wayback Machine Sea Tac Airport s Comprehensive Program for Wildlife Management Archived from the original on 2015 02 25 Retrieved 2015 03 03 Nohara Tim J Reducing Bird Strikes new Radar Networks Can Help Make Skies Safer permanent dead link Journal of Air Traffic Control Summer 2009 Klope Matthew W et al Role of near miss bird strikes in assessing hazards Human Wildlife Interactions Fall 2009 Nohara Tim J et al Avian Stakeholder Management of Bird Strike Risks Enhancing Communication Processes To Pilots and Air Traffic Controllers for Information Derived From Avian RadarArchived 2015 04 02 at the Wayback Machine Summer 2012 Accipiter Radar Avian Scientific Papers Archived 2015 04 02 at the Wayback Machine John Ostrom Bird Strike Committee USA statistics on birdstrikes Retrieved 2009 12 13 The Pathfinders c 1980 by David Nevin for Time Life books La Domenica del Corriere cover painting depicting Gilbert s encounter with an eagle 4 July 1911 Howard Fred 1998 Wilbur and Orville A Biography of the Wright Brothers Courier Dover p 375 ISBN 0 486 40297 5 The Buzzard Bar Mercecdes PDF Autoweek 1987 08 31 MB Revisits Carrera Panamericana Rally 50 Years Ago Page 2 Worldcarfans Retrieved 2009 06 24 Thomas O Keefe Clark and Gurney The Best of Both Worlds Atlas F1 Volume 7 Issue 5 a b Major bird strike incidents The Daily Telegraph 17 June 2011 Retrieved 23 June 2013 Burgess Colin Doolan Kate Vis Bert 2008 Fallen Astronauts Heroes Who Died Reaching the Moon Lincoln Nebraska University of Nebraska p 20 ISBN 978 0 8032 1332 6 a b c d e f Lessons Learned lessonslearned faa gov Retrieved 2021 11 30 Ranter Harro ASN Aircraft accident Boeing 737 260 ET AJA Bahar Dar Airport BJR aviation safety net Retrieved 2022 09 17 Transport Canada Wildlife strike Costs and Legal Liability CVR transcript Boeing E 3 USAF Yukla 27 22 SEP 1995 Accident investigation Aviation Safety Network 22 September 1995 Retrieved 2009 01 16 Fabio Survives Goose Encounter but Take a Gander at His Honker Los Angeles Times 1999 04 09 Retrieved 2019 08 17 Accident description at the Aviation Safety Network Young Kelly 2006 04 28 The Space Vulture Squadron Retrieved 2009 01 17 Milmo Dan 10 November 2008 Bird strike forces Ryanair jet into emergency landing in Italy guardian co uk Retrieved 2009 01 16 Brief of accident Sikorsky S 76C aircraft registration N748P PDF National Transportation Safety Board 2010 11 24 Retrieved May 2 2012 permanent dead link US Airways Plane Crashes Into Hudson River Archived April 16 2009 at the Wayback Machine CREW Actions and Safety Equipment Credited with Saving Lives in US Airways 1549 Hudson River Ditching NTSB Says NTSB 2010 05 04 Retrieved 17 Nov 2019 Chislo postradavshih pri posadke A321 v pole vozroslo do 74 chelovek RIA Novosti in Russian 2019 08 15 Retrieved 2022 01 30 North Central Airlines Inc Convair 580 N46345 Home Airmotive Inc Cessna 150 N8742S Midair Collision near Milwaukee Wisconsin August 4 1968 PDF National Transportation Safety Board 8 July 1969 Archived from the original PDF on 19 April 2021 Retrieved 29 April 2022 Turek Raymond March 2002 Low level locusts Think through the potential consequences of any plan Combat Edge The US Department of the Air Force Retrieved May 2 2012 Orreal Jorja September 27 2010 Aircraft warned to avoid flying in locust plague areas The Courier Mail Brisbane Retrieved May 2 2012 Gray Darren 28 September 2010 Flying pests locust threat to aircraft The Land Archived from the original on 6 April 2012 Retrieved May 2 2012 Could a bug strike be fatal Oh what a way to go Facebook December 1 2010 Archived from the original on 2022 02 26 Retrieved September 19 2014 External links Edit Wikimedia Commons has media related to Bird strikes Wildlife Hazard Mitigation Federal Aviation Administration Avian Hazard Advisory System Australian Aviation Wildlife Hazard Group Bird Strike Committee USA Reza Hedayati Mojtaba Sadighi 2015 Bird Strike An Experimental Theoretical and Numerical Investigation Woodhead Publishing p 258 ISBN 978 0 08 100093 9 Video of the Thomsonfly 757 bird strike and emergency landing on YouTube International Bird Strike Committee Bomben Andrea 2022 Wildlife strike A guide for airline pilot IBN Editore Roma Italy 1 Bomben Andrea 2022 Wildlife Strike Handbook WSH First edition 2 World Birdstrike Association 3 Retrieved from https en wikipedia org w index php title Bird strike amp oldid 1128908736, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.