fbpx
Wikipedia

Antiviral drug

Antiviral drugs are a class of medication used for treating viral infections.[1] Most antivirals target specific viruses, while a broad-spectrum antiviral is effective against a wide range of viruses.[2] Antiviral drugs are one class of antimicrobials, a larger group which also includes antibiotic (also termed antibacterial), antifungal and antiparasitic drugs,[3] or antiviral drugs based on monoclonal antibodies.[4] Most antivirals are considered relatively harmless to the host, and therefore can be used to treat infections. They should be distinguished from viricides, which are not medication but deactivate or destroy virus particles, either inside or outside the body. Natural viricides are produced by some plants such as eucalyptus and Australian tea trees.[5]

Antiretroviral drugs for HIV

Medical uses

Most of the antiviral drugs now available are designed to help deal with HIV, herpes viruses, the hepatitis B and C viruses, and influenza A and B viruses.[6]

Viruses use the host's cells to replicate and this makes it difficult to find targets for the drug that would interfere with the virus without also harming the host organism's cells. Moreover, the major difficulty in developing vaccines and anti-viral drugs is due to viral variation.[7]

The emergence of antivirals is the product of a greatly expanded knowledge of the genetic and molecular function of organisms, allowing biomedical researchers to understand the structure and function of viruses, major advances in the techniques for finding new drugs, and the pressure placed on the medical profession to deal with the human immunodeficiency virus (HIV), the cause of acquired immunodeficiency syndrome (AIDS).[citation needed]

The first experimental antivirals were developed in the 1960s, mostly to deal with herpes viruses, and were found using traditional trial-and-error drug discovery methods. Researchers grew cultures of cells and infected them with the target virus. They then introduced into the cultures chemicals which they thought might inhibit viral activity and observed whether the level of virus in the cultures rose or fell. Chemicals that seemed to have an effect were selected for closer study.[citation needed]

This was a very time-consuming, hit-or-miss procedure, and in the absence of a good knowledge of how the target virus worked, it was not efficient in discovering effective antivirals which had few side effects. Only in the 1980s, when the full genetic sequences of viruses began to be unraveled, did researchers begin to learn how viruses worked in detail, and exactly what chemicals were needed to thwart their reproductive cycle.[8]

Antiviral drug design

Anti-viral targeting

The general idea behind modern antiviral drug design is to identify viral proteins, or parts of proteins, that can be disabled. These "targets" should generally be as unlike any proteins or parts of proteins in humans as possible, to reduce the likelihood of side effects. The targets should also be common across many strains of a virus, or even among different species of virus in the same family, so a single drug will have broad effectiveness. For example, a researcher might target a critical enzyme synthesized by the virus, but not by the patient, that is common across strains, and see what can be done to interfere with its operation.[citation needed]

Once targets are identified, candidate drugs can be selected, either from drugs already known to have appropriate effects or by actually designing the candidate at the molecular level with a computer-aided design program.[citation needed]

The target proteins can be manufactured in the lab for testing with candidate treatments by inserting the gene that synthesizes the target protein into bacteria or other kinds of cells. The cells are then cultured for mass production of the protein, which can then be exposed to various treatment candidates and evaluated with "rapid screening" technologies.[citation needed]

Approaches by virus life cycle stage

Viruses consist of a genome and sometimes a few enzymes stored in a capsule made of protein (called a capsid), and sometimes covered with a lipid layer (sometimes called an 'envelope'). Viruses cannot reproduce on their own and instead propagate by subjugating a host cell to produce copies of themselves, thus producing the next generation.[citation needed]

Researchers working on such "rational drug design" strategies for developing antivirals have tried to attack viruses at every stage of their life cycles. Some species of mushrooms have been found to contain multiple antiviral chemicals with similar synergistic effects.[9] Compounds isolated from fruiting bodies and filtrates of various mushrooms have broad-spectrum antiviral activities, but successful production and availability of such compounds as frontline antiviral is a long way away.[10] Viral life cycles vary in their precise details depending on the type of virus, but they all share a general pattern:[citation needed]

  1. Attachment to a host cell.
  2. Release of viral genes and possibly enzymes into the host cell.
  3. Replication of viral components using host-cell machinery.
  4. Assembly of viral components into complete viral particles.
  5. Release of viral particles to infect new host cells.

Before cell entry

One anti-viral strategy is to interfere with the ability of a virus to infiltrate a target cell. The virus must go through a sequence of steps to do this, beginning with binding to a specific "receptor" molecule on the surface of the host cell and ending with the virus "uncoating" inside the cell and releasing its contents. Viruses that have a lipid envelope must also fuse their envelope with the target cell, or with a vesicle that transports them into the cell before they can uncoat.[citation needed]

This stage of viral replication can be inhibited in two ways:

  1. Using agents which mimic the virus-associated protein (VAP) and bind to the cellular receptors. This may include VAP anti-idiotypic antibodies, natural ligands of the receptor and anti-receptor antibodies.[clarification needed]
  2. Using agents which mimic the cellular receptor and bind to the VAP. This includes anti-VAP antibodies, receptor anti-idiotypic antibodies, extraneous receptor and synthetic receptor mimics.

This strategy of designing drugs can be very expensive, and since the process of generating anti-idiotypic antibodies is partly trial and error, it can be a relatively slow process until an adequate molecule is produced.[citation needed]

Entry inhibitor

A very early stage of viral infection is viral entry, when the virus attaches to and enters the host cell. A number of "entry-inhibiting" or "entry-blocking" drugs are being developed to fight HIV. HIV most heavily targets a specific type of lymphocyte known as "helper T cells", and identifies these target cells through T-cell surface receptors designated "CD4" and "CCR5". Attempts to interfere with the binding of HIV with the CD4 receptor have failed to stop HIV from infecting helper T cells, but research continues on trying to interfere with the binding of HIV to the CCR5 receptor in hopes that it will be more effective.[citation needed]

HIV infects a cell through fusion with the cell membrane, which requires two different cellular molecular participants, CD4 and a chemokine receptor (differing depending on the cell type). Approaches to blocking this virus/cell fusion have shown some promise in preventing entry of the virus into a cell. At least one of these entry inhibitors—a biomimetic peptide called Enfuvirtide, or the brand name Fuzeon—has received FDA approval and has been in use for some time. Potentially, one of the benefits from the use of an effective entry-blocking or entry-inhibiting agent is that it potentially may not only prevent the spread of the virus within an infected individual but also the spread from an infected to an uninfected individual.[citation needed]

One possible advantage of the therapeutic approach of blocking viral entry (as opposed to the currently dominant approach of viral enzyme inhibition) is that it may prove more difficult for the virus to develop resistance to this therapy than for the virus to mutate or evolve its enzymatic protocols.[citation needed]

Uncoating inhibitors

Inhibitors of uncoating have also been investigated.[11][12]

Amantadine and rimantadine have been introduced to combat influenza. These agents act on penetration and uncoating.[13]

Pleconaril works against rhinoviruses, which cause the common cold, by blocking a pocket on the surface of the virus that controls the uncoating process. This pocket is similar in most strains of rhinoviruses and enteroviruses, which can cause diarrhea, meningitis, conjunctivitis, and encephalitis.[14]

Some scientists are making the case that a vaccine against rhinoviruses, the predominant cause of the common cold, is achievable. Vaccines that combine dozens of varieties of rhinovirus at once are effective in stimulating antiviral antibodies in mice and monkeys, researchers reported in Nature Communications in 2016.[15]

Rhinoviruses are the most common cause of the common cold; other viruses such as respiratory syncytial virus, parainfluenza virus and adenoviruses can cause them too.[16] Rhinoviruses also exacerbate asthma attacks. Although rhinoviruses come in many varieties, they do not drift to the same degree that influenza viruses do. A mixture of 50 inactivated rhinovirus types should be able to stimulate neutralizing antibodies against all of them to some degree.[17]

During viral synthesis

A second approach is to target the processes that synthesize virus components after a virus invades a cell.[citation needed]

Reverse transcription

One way of doing this is to develop nucleotide or nucleoside analogues that look like the building blocks of RNA or DNA, but deactivate the enzymes that synthesize the RNA or DNA once the analogue is incorporated. This approach is more commonly associated with the inhibition of reverse transcriptase (RNA to DNA) than with "normal" transcriptase (DNA to RNA).[citation needed]

The first successful antiviral, aciclovir, is a nucleoside analogue, and is effective against herpesvirus infections. The first antiviral drug to be approved for treating HIV, zidovudine (AZT), is also a nucleoside analogue.[citation needed]

An improved knowledge of the action of reverse transcriptase has led to better nucleoside analogues to treat HIV infections. One of these drugs, lamivudine, has been approved to treat hepatitis B, which uses reverse transcriptase as part of its replication process. Researchers have gone further and developed inhibitors that do not look like nucleosides, but can still block reverse transcriptase.[citation needed]

Another target being considered for HIV antivirals include RNase H—which is a component of reverse transcriptase that splits the synthesized DNA from the original viral RNA.[citation needed]

Integrase

Another target is integrase, which integrate the synthesized DNA into the host cell genome. Examples of integrase inhibitors include raltegravir, elvitegravir, and dolutegravir.[citation needed]

Transcription

Once a virus genome becomes operational in a host cell, it then generates messenger RNA (mRNA) molecules that direct the synthesis of viral proteins. Production of mRNA is initiated by proteins known as transcription factors. Several antivirals are now being designed to block attachment of transcription factors to viral DNA.[citation needed]

Translation/antisense

Genomics has not only helped find targets for many antivirals, it has provided the basis for an entirely new type of drug, based on "antisense" molecules. These are segments of DNA or RNA that are designed as complementary molecule to critical sections of viral genomes, and the binding of these antisense segments to these target sections blocks the operation of those genomes. A phosphorothioate antisense drug named fomivirsen has been introduced, used to treat opportunistic eye infections in AIDS patients caused by cytomegalovirus, and other antisense antivirals are in development. An antisense structural type that has proven especially valuable in research is morpholino antisense.

Morpholino oligos have been used to experimentally suppress many viral types:

Translation/ribozymes

Yet another antiviral technique inspired by genomics is a set of drugs based on ribozymes, which are enzymes that will cut apart viral RNA or DNA at selected sites. In their natural course, ribozymes are used as part of the viral manufacturing sequence, but these synthetic ribozymes are designed to cut RNA and DNA at sites that will disable them.

A ribozyme antiviral to deal with hepatitis C has been suggested,[23] and ribozyme antivirals are being developed to deal with HIV.[24] An interesting variation of this idea is the use of genetically modified cells that can produce custom-tailored ribozymes. This is part of a broader effort to create genetically modified cells that can be injected into a host to attack pathogens by generating specialized proteins that block viral replication at various phases of the viral life cycle.[citation needed]

Protein processing and targeting

Interference with post translational modifications or with targeting of viral proteins in the cell is also possible.[25]

Protease inhibitors

Some viruses include an enzyme known as a protease that cuts viral protein chains apart so they can be assembled into their final configuration. HIV includes a protease, and so considerable research has been performed to find "protease inhibitors" to attack HIV at that phase of its life cycle.[26] Protease inhibitors became available in the 1990s and have proven effective, though they can have unusual side effects, for example causing fat to build up in unusual places.[27] Improved protease inhibitors are now in development.

Protease inhibitors have also been seen in nature. A protease inhibitor was isolated from the shiitake mushroom (Lentinus edodes).[28] The presence of this may explain the Shiitake mushroom's noted antiviral activity in vitro.[29]

Long dsRNA helix targeting

Most viruses produce long dsRNA helices during transcription and replication. In contrast, uninfected mammalian cells generally produce dsRNA helices of fewer than 24 base pairs during transcription. DRACO (double-stranded RNA activated caspase oligomerizer) is a group of experimental antiviral drugs initially developed at the Massachusetts Institute of Technology. In cell culture, DRACO was reported to have broad-spectrum efficacy against many infectious viruses, including dengue flavivirus, Amapari and Tacaribe arenavirus, Guama bunyavirus, H1N1 influenza and rhinovirus, and was additionally found effective against influenza in vivo in weanling mice. It was reported to induce rapid apoptosis selectively in virus-infected mammalian cells, while leaving uninfected cells unharmed.[30] DRACO effects cell death via one of the last steps in the apoptosis pathway in which complexes containing intracellular apoptosis signalling molecules simultaneously bind multiple procaspases. The procaspases transactivate via cleavage, activate additional caspases in the cascade, and cleave a variety of cellular proteins, thereby killing the cell.[citation needed]

Assembly

Rifampicin acts at the assembly phase.[31]

Release phase

The final stage in the life cycle of a virus is the release of completed viruses from the host cell, and this step has also been targeted by antiviral drug developers. Two drugs named zanamivir (Relenza) and oseltamivir (Tamiflu) that have been recently introduced to treat influenza prevent the release of viral particles by blocking a molecule named neuraminidase that is found on the surface of flu viruses, and also seems to be constant across a wide range of flu strains.

Immune system stimulation

Rather than attacking viruses directly, a second category of tactics for fighting viruses involves encouraging the body's immune system to attack them. Some antivirals of this sort do not focus on a specific pathogen, instead stimulating the immune system to attack a range of pathogens.

One of the best-known of this class of drugs are interferons, which inhibit viral synthesis in infected cells.[32] One form of human interferon named "interferon alpha" is well-established as part of the standard treatment for hepatitis B and C,[33] and other interferons are also being investigated as treatments for various diseases.

A more specific approach is to synthesize antibodies, protein molecules that can bind to a pathogen and mark it for attack by other elements of the immune system. Once researchers identify a particular target on the pathogen, they can synthesize quantities of identical "monoclonal" antibodies to link up that target. A monoclonal drug is now being sold to help fight respiratory syncytial virus in babies,[34] and antibodies purified from infected individuals are also used as a treatment for hepatitis B.[35]

Antiviral drug resistance

Antiviral resistance can be defined by a decreased susceptibility to a drug caused by changes in viral genotypes. In cases of antiviral resistance, drugs have either diminished or no effectiveness against their target virus.[36] The issue inevitably remains a major obstacle to antiviral therapy as it has developed to almost all specific and effective antimicrobials, including antiviral agents.[37]

The Centers for Disease Control and Prevention (CDC) inclusively recommends anyone six months and older to get a yearly vaccination to protect them from influenza A viruses (H1N1) and (H3N2) and up to two influenza B viruses (depending on the vaccination).[36] Comprehensive protection starts by ensuring vaccinations are current and complete. However, vaccines are preventative and are not generally used once a patient has been infected with a virus. Additionally, the availability of these vaccines can be limited based on financial or locational reasons which can prevent the effectiveness of herd immunity, making effective antivirals a necessity.[36]

The three FDA-approved neuraminidase antiviral flu drugs available in the United States, recommended by the CDC, include: oseltamivir (Tamiflu), zanamivir (Relenza), and peramivir (Rapivab).[36] Influenza antiviral resistance often results from changes occurring in neuraminidase and hemagglutinin proteins on the viral surface. Currently, neuraminidase inhibitors (NAIs) are the most frequently prescribed antivirals because they are effective against both influenza A and B. However, antiviral resistance is known to develop if mutations to the neuraminidase proteins prevent NAI binding.[38] This was seen in the H257Y mutation, which was responsible for oseltamivir resistance to H1N1 strains in 2009.[36] The inability of NA inhibitors to bind to the virus allowed this strain of virus with the resistance mutation to spread due to natural selection. Furthermore, a study published in 2009 in Nature Biotechnology emphasized the urgent need for augmentation of oseltamivir stockpiles with additional antiviral drugs including zanamivir. This finding was based on a performance evaluation of these drugs supposing the 2009 H1N1 'Swine Flu' neuraminidase (NA) were to acquire the oseltamivir-resistance (His274Tyr) mutation, which is currently widespread in seasonal H1N1 strains.[39]

Origin of antiviral resistance

The genetic makeup of viruses is constantly changing, which can cause a virus to become resistant to currently available treatments.[40] Viruses can become resistant through spontaneous or intermittent mechanisms throughout the course of an antiviral treatment.[36] Immunocompromised patients, more often than immunocompetent patients, hospitalized with pneumonia are at the highest risk of developing oseltamivir resistance during treatment.[36] Subsequent to exposure to someone else with the flu, those who received oseltamivir for "post-exposure prophylaxis" are also at higher risk of resistance.[41]

The mechanisms for antiviral resistance development depend on the type of virus in question. RNA viruses such as hepatitis C and influenza A have high error rates during genome replication because RNA polymerases lack proofreading activity.[42] RNA viruses also have small genome sizes that are typically less than 30 kb, which allow them to sustain a high frequency of mutations.[43] DNA viruses, such as HPV and herpesvirus, hijack host cell replication machinery, which gives them proofreading capabilities during replication. DNA viruses are therefore less error prone, are generally less diverse, and are more slowly evolving than RNA viruses.[42] In both cases, the likelihood of mutations is exacerbated by the speed with which viruses reproduce, which provides more opportunities for mutations to occur in successive replications. Billions of viruses are produced every day during the course of an infection, with each replication giving another chance for mutations that encode for resistance to occur.[44]

Multiple strains of one virus can be present in the body at one time, and some of these strains may contain mutations that cause antiviral resistance.[37] This effect, called the quasispecies model, results in immense variation in any given sample of virus, and gives the opportunity for natural selection to favor viral strains with the highest fitness every time the virus is spread to a new host.[45] Also, recombination, the joining of two different viral variants, and reassortment, the swapping of viral gene segments among viruses in the same cell, play a role in resistance, especially in influenza.[43]

Antiviral resistance has been reported in antivirals for herpes, HIV, hepatitis B and C, and influenza, but antiviral resistance is a possibility for all viruses.[37] Mechanisms of antiviral resistance vary between virus types.

Detection of antiviral resistance

National and international surveillance is performed by the CDC to determine effectiveness of the current FDA-approved antiviral flu drugs.[36] Public health officials use this information to make current recommendations about the use of flu antiviral medications. WHO further recommends in-depth epidemiological investigations to control potential transmission of the resistant virus and prevent future progression.[46] As novel treatments and detection techniques to antiviral resistance are enhanced so can the establishment of strategies to combat the inevitable emergence of antiviral resistance.[47]

Treatment options for antiviral resistant pathogens

If a virus is not fully wiped out during a regimen of antivirals, treatment creates a bottleneck in the viral population that selects for resistance, and there is a chance that a resistant strain may repopulate the host.[48] Viral treatment mechanisms must therefore account for the selection of resistant viruses.

The most commonly used method for treating resistant viruses is combination therapy, which uses multiple antivirals in one treatment regimen. This is thought to decrease the likelihood that one mutation could cause antiviral resistance, as the antivirals in the cocktail target different stages of the viral life cycle.[49] This is frequently used in retroviruses like HIV, but a number of studies have demonstrated its effectiveness against influenza A, as well.[50] Viruses can also be screened for resistance to drugs before treatment is started. This minimizes exposure to unnecessary antivirals and ensures that an effective medication is being used. This may improve patient outcomes and could help detect new resistance mutations during routine scanning for known mutants.[48] However, this has not been consistently implemented in treatment facilities at this time.

Vaccinations

While most antivirals treat viral infection, vaccines are a preemptive first line of defense against pathogens. Vaccination involves the introduction (i.e. via injection) of a small amount of typically inactivated or attenuated antigenic material to stimulate an individual's immune system. The immune system responds by developing white blood cells to specifically combat the introduced pathogen, resulting in adaptive immunity.[51] Vaccination in a population results in herd immunity and greatly improved population health, with significant reductions in viral infection and disease.[52]

Vaccination policy

Vaccination policy in the United States consists of public and private vaccination requirements. For instance, public schools require students to receive vaccinations (termed "vaccination schedule") for viruses and bacteria such as diphtheria, pertussis, and tetanus (DTaP), measles, mumps, rubella (MMR), varicella (chickenpox), hepatitis B, rotavirus, polio, and more. Private institutions might require annual influenza vaccination. The Center for Disease Control and Prevention has estimated that routine immunization of newborns prevents about 42,000 deaths and 20 million cases of disease each year, saving about $13.6 billion.[53]

Vaccination controversy

Despite their successes, in the United States there exists plenty of stigma surrounding vaccines that cause people to be incompletely vaccinated. These "gaps" in vaccination result in unnecessary infection, death, and costs.[54] There are two major reasons for incomplete vaccination:

  1. Vaccines, like other medical treatments, have a risk of causing complications in some individuals (allergic reactions). Vaccines do not cause autism; this has been confirmed by national health agencies, such as the US Centers for Disease Control and Prevention,[55] the US Institute of Medicine,[56] and the UK National Health Service[57]
  2. Low rates of vaccine-preventable disease, as a result of herd immunity, also make vaccines seem unnecessary and leave many unvaccinated.[58][59]

Although the American Academy of Pediatrics endorses universal immunization,[60] they note that physicians should respect parents' refusal to vaccinate their children after sufficient advising and provided the child does not face a significant risk of infection. Parents can also cite religious reasons to avoid public school vaccination mandates, but this reduces herd immunity and increases risk of viral infection.[52]

Limitations of vaccines

Vaccines boosts the body's immune system to better attack viruses in the "complete particle" stage, outside of the organism's cells. Traditional approaches to vaccine development include an attenuated (a live weakened) or inactivated (killed) version of the virus. Attenuated pathogens, in very rare cases, can revert to a pathogenic form. Inactivated vaccines have no possibility of introducing the disease they are given against; on the other hand, the immune response may not always occur or it may be short lived, requiring several doses. Recently, "subunit" vaccines have been devised containing only the antigenic parts of the pathogen. This makes the vaccine "more precise" but without guarantee that immunological memory will be formed in the correct manner.[61]

Vaccines are very effective on stable viruses but are of limited use in treating a patient who has already been infected. They are also difficult to successfully deploy against rapidly mutating viruses, such as influenza (the vaccine for which is updated every year) and HIV. Antiviral drugs are particularly useful in these cases.

Antiretroviral therapy as HIV prevention

Following the HPTN 052 study and PARTNER study, there is significant evidence to demonstrate that antiretroviral drugs inhibit transmission when the HIV virus in the person living with HIV has been undetectable for 6 months or longer.[62][63]

Public policy

Use and distribution

Guidelines regarding viral diagnoses and treatments change frequently and limit quality care.[64] Even when physicians diagnose older patients with influenza, use of antiviral treatment can be low.[65] Provider knowledge of antiviral therapies can improve patient care, especially in geriatric medicine. Furthermore, in local health departments (LHDs) with access to antivirals, guidelines may be unclear, causing delays in treatment.[66] With time-sensitive therapies, delays could lead to lack of treatment. Overall, national guidelines, regarding infection control and management, standardize care and improve healthcare worker and patient safety. Guidelines, such as those provided by the Centers for Disease Control and Prevention (CDC) during the 2009 flu pandemic caused by the H1N1 virus, recommend, among other things, antiviral treatment regimens, clinical assessment algorithms for coordination of care, and antiviral chemoprophylaxis guidelines for exposed persons.[67] Roles of pharmacists and pharmacies have also expanded to meet the needs of public during public health emergencies.[68]

Stockpiling

Public Health Emergency Preparedness initiatives are managed by the CDC via the Office of Public Health Preparedness and Response.[69] Funds aim to support communities in preparing for public health emergencies, including pandemic influenza. Also managed by the CDC, the Strategic National Stockpile (SNS) consists of bulk quantities of medicines and supplies for use during such emergencies.[70] Antiviral stockpiles prepare for shortages of antiviral medications in cases of public health emergencies. During the H1N1 pandemic in 2009–2010, guidelines for SNS use by local health departments was unclear, revealing gaps in antiviral planning.[66] For example, local health departments that received antivirals from the SNS did not have transparent guidance on the use of the treatments. The gap made it difficult to create plans and policies for their use and future availabilities, causing delays in treatment.

See also

References

  1. ^ LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012–. Antiviral Agents. 2022 Dec 2. PMID: 31643973.
  2. ^ Rossignol JF (2014). "Nitazoxanide: a first-in-class broad-spectrum antiviral agent". Antiviral Res. 110: 94–103. doi:10.1016/j.antiviral.2014.07.014. PMC 7113776. PMID 25108173.
  3. ^ Rick Daniels; Leslie H. Nicoll. "Pharmacology – Nursing Management". Contemporary Medical-Surgical Nursing. Cengage Learning, 2011. p. 397.
  4. ^ Kisung Ko, Yoram Tekoah, Pauline M. Rudd, David J. Harvey, Raymond A. Dwek, Sergei Spitsin, Cathleen A. Hanlon, Charles Rupprecht, Bernhard Dietzschold, Maxim Golovkin, and Hilary Koprowski (2003). "Function and glycosylation of plant-derived antiviral monoclonal antibody". PNAS. 100 (13): 8013–18. Bibcode:2003PNAS..100.8013K. doi:10.1073/pnas.0832472100. PMC 164704. PMID 12799460.{{cite journal}}: CS1 maint: uses authors parameter (link)
  5. ^ Schnitzler, P; Schön, K; Reichling, J (2001). "Antiviral activity of Australian tea tree oil and eucalyptus oil against herpes simplex virus in cell culture". Die Pharmazie. 56 (4): 343–47. PMID 11338678.
  6. ^ Kausar S, Said Khan F, Ishaq Mujeeb Ur Rehman M, Akram M, Riaz M, Rasool G, Hamid Khan A, Saleem I, Shamim S, Malik A (2021). "A review: Mechanism of action of antiviral drugs". International Journal of Immunopathology and Pharmacology. 35: 20587384211002621. doi:10.1177/20587384211002621. PMC 7975490. PMID 33726557.
  7. ^ Yin H, Jiang N, Shi W, Chi X, Liu S, Chen JL, Wang S (February 2021). "Development and Effects of Influenza Antiviral Drugs". Molecules (Basel, Switzerland). 26 (4): 810. doi:10.3390/molecules26040810. PMC 7913928. PMID 33557246.
  8. ^ Bobrowski T, Melo-Filho CC, Korn D, Alves VM, Popov KI, Auerbach S, Schmitt C, Moorman NJ, Muratov EN, Tropsha A (September 2020). "Learning from history: do not flatten the curve of antiviral research!". Drug Discovery Today. 25 (9): 1604–1613. doi:10.1016/j.drudis.2020.07.008. PMC 7361119. PMID 32679173.
  9. ^ Lindequist, Ulrike; Niedermeyer, Timo H. J.; Jülich, Wolf-Dieter (2005). "The Pharmacological Potential of Mushrooms". Evidence-Based Complementary and Alternative Medicine. 2 (3): 285–99. doi:10.1093/ecam/neh107. PMC 1193547. PMID 16136207.
  10. ^ Pradeep, Prabin; Manju, Vidya; Ahsan, Mohammad Feraz (2019), Agrawal, Dinesh Chandra; Dhanasekaran, Muralikrishnan (eds.), "Antiviral Potency of Mushroom Constituents", Medicinal Mushrooms: Recent Progress in Research and Development, Springer Singapore, pp. 275–97, doi:10.1007/978-981-13-6382-5_10, ISBN 9789811363825, S2CID 181538245
  11. ^ Bishop NE (1998). "Examination of potential inhibitors of hepatitis A virus uncoating". Intervirology. 41 (6): 261–71. doi:10.1159/000024948. PMID 10325536. S2CID 21222121.
  12. ^ Almela MJ, González ME, Carrasco L (May 1991). "Inhibitors of poliovirus uncoating efficiently block the early membrane permeabilization induced by virus particles". J. Virol. 65 (5): 2572–77. doi:10.1128/JVI.65.5.2572-2577.1991. PMC 240614. PMID 1850030.
  13. ^ Beringer, Paul; Troy, David A.; Remington, Joseph P. (2006). Remington, the science and practice of pharmacy. Hagerstwon, MD: Lippincott Williams & Wilkins. p. 1419. ISBN 978-0-7817-4673-1.
  14. ^ Daniel C. Pevear; Tina M. Tull; Martin E. Seipel (1999). "Activity of Pleconaril against Enteroviruses". Antimicrobial Agents and Chemotherapy. 43 (9): 2109–2115. doi:10.1128/AAC.43.9.2109. PMC 89431. PMID 10471549.
  15. ^ Lee, S.; Nguyen, M.; Currier, M. (2016). "A polyvalent inactivated rhinovirus vaccine is broadly immunogenic in rhesus macaques". Nature Communications.
  16. ^ "Common Cold Causes: Rhinoviruses and More".
  17. ^ Tang, Roderick; Moore, Martin (2017). "Development of polyvalent inactivated rhinovirus vaccine".
  18. ^ Stein DA, Skilling DE, Iversen PL, Smith AW (2001). "Inhibition of Vesivirus infections in mammalian tissue culture with antisense morpholino oligomers". Antisense Nucleic Acid Drug Dev. 11 (5): 317–25. doi:10.1089/108729001753231696. PMID 11763348.
  19. ^ Deas, T. S.; Binduga-Gajewska, I.; Tilgner, M.; Ren, P.; Stein, D. A.; Moulton, H. M.; Iversen, P. L.; Kauffman, E. B.; Kramer, L. D.; Shi, P. -Y. (2005). "Inhibition of Flavivirus Infections by Antisense Oligomers Specifically Suppressing Viral Translation and RNA Replication". Journal of Virology. 79 (8): 4599–4609. doi:10.1128/JVI.79.8.4599-4609.2005. PMC 1069577. PMID 15795246.
  20. ^ Kinney, R. M.; Huang, C. Y.-H.; Rose, B. C.; Kroeker, A. D.; Dreher, T. W.; Iversen, P. L.; Stein, D. A. (2005). "Inhibition of Dengue Virus Serotypes 1 to 4 in Vero Cell Cultures with Morpholino Oligomers". J. Virol. 79 (8): 5116–28. doi:10.1128/JVI.79.8.5116-5128.2005. PMC 1069583. PMID 15795296.
  21. ^ McCaffrey AP, Meuse L, Karimi M, Contag CH, Kay MA (2003). "A potent and specific morpholino antisense inhibitor of hepatitis C translation in mice". Hepatology. 38 (2): 503–08. doi:10.1053/jhep.2003.50330. PMID 12883495. S2CID 1612244.
  22. ^ Neuman, B. W.; Stein, D. A.; Kroeker, A. D.; Paulino, A. D.; Moulton, H. M.; Iversen, P. L.; Buchmeier, M. J. (June 2004). "Antisense Morpholino-Oligomers Directed against the 5' End of the Genome Inhibit Coronavirus Proliferation and Growth†". J. Virol. 78 (11): 5891–99. doi:10.1128/JVI.78.11.5891-5899.2004. PMC 415795. PMID 15140987.
  23. ^ Ryu KJ, Lee SW (2003). "Identification of the most accessible sites to ribozymes on the hepatitis C virus internal ribosome entry site". J. Biochem. Mol. Biol. 36 (6): 538–44. doi:10.5483/BMBRep.2003.36.6.538. PMID 14659071.
  24. ^ Bai J, Rossi J, Akkina R (March 2001). "Multivalent anti-CCR ribozymes for stem cell-based HIV type 1 gene therapy". AIDS Res. Hum. Retroviruses. 17 (5): 385–99. doi:10.1089/088922201750102427. PMID 11282007.
  25. ^ Alarcón B, González ME, Carrasco L (1988). "Megalomycin C, a macrolide antibiotic that blocks protein glycosylation and shows antiviral activity". FEBS Lett. 231 (1): 207–11. doi:10.1016/0014-5793(88)80732-4. PMID 2834223. S2CID 43114821.
  26. ^ Anderson J, Schiffer C, Lee SK, Swanstrom R (2009). "Viral protease inhibitors". Antiviral Strategies. Handb Exp Pharmacol. Handbook of Experimental Pharmacology. Vol. 189. pp. 85–110. doi:10.1007/978-3-540-79086-0_4. ISBN 978-3-540-79085-3. PMC 7120715. PMID 19048198.
  27. ^ Flint, O. P.; Noor, M. A.; Hruz, P. W.; Hylemon, P. B.; Yarasheski, K.; Kotler, D. P.; Parker, R. A.; Bellamine, A. (2009). "The Role of Protease Inhibitors in the Pathogenesis of HIV-Associated Lipodystrophy: Cellular Mechanisms and Clinical Implications". Toxicol Pathol. 37 (1): 65–77. doi:10.1177/0192623308327119. PMC 3170409. PMID 19171928.
  28. ^ Odani S, Tominaga K, Kondou S (1999). "The inhibitory properties and primary structure of a novel serine proteinase inhibitor from the fruiting body of the basidiomycete, Lentinus edodes". European Journal of Biochemistry. 262 (3): 915–23. doi:10.1046/j.1432-1327.1999.00463.x. PMID 10411656.
  29. ^ Suzuki H, Okubo A, Yamazaki S, Suzuki K, Mitsuya H, Toda S (1989). "Inhibition of the infectivity and cytopathic effect of human immunodeficiency virus by water-soluble lignin in an extract of the culture medium of Lentinus edodes mycelia (LEM)". Biochemical and Biophysical Research Communications. 160 (1): 367–73. doi:10.1016/0006-291X(89)91665-3. PMID 2469420.
  30. ^ Rider TH, Zook CE, Boettcher TL, Wick ST, Pancoast JS, Zusman BD (2011). "Broad-spectrum antiviral therapeutics". PLOS ONE. 6 (7): e22572. Bibcode:2011PLoSO...622572R. doi:10.1371/journal.pone.0022572. PMC 3144912. PMID 21818340.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  31. ^ Sodeik B; Griffiths G; Ericsson M; Moss B; Doms RW (1994). "Assembly of vaccinia virus: effects of rifampin on the intracellular distribution of viral protein p65". J. Virol. 68 (2): 1103–14. doi:10.1128/JVI.68.2.1103-1114.1994. PMC 236549. PMID 8289340.
  32. ^ Samuel CE (October 2001). "Antiviral Actions of Interferons". Clin. Microbiol. Rev. 14 (4): 778–809. doi:10.1128/CMR.14.4.778-809.2001. PMC 89003. PMID 11585785.
  33. ^ Burra P (2009). "Hepatitis C". Semin. Liver Dis. 29 (1): 53–65. doi:10.1055/s-0029-1192055. PMID 19235659.
  34. ^ Nokes JD, Cane PA (December 2008). "New strategies for control of respiratory syncytial virus infection". Curr. Opin. Infect. Dis. 21 (6): 639–43. doi:10.1097/QCO.0b013e3283184245. PMID 18978532. S2CID 3065481.
  35. ^ Akay S, Karasu Z (November 2008). "Hepatitis B immune globulin and HBV-related liver transplantation". Expert Opin Biol Ther (Submitted manuscript). 8 (11): 1815–22. doi:10.1517/14712598.8.11.1815. PMID 18847315. S2CID 71595650.
  36. ^ a b c d e f g h "Influenza Antiviral Drug Resistance| Seasonal Influenza (Flu) | CDC". www.cdc.gov. 25 October 2018.
  37. ^ a b c Pillay, D; Zambon, M (1998). "Antiviral Drug Resistance". BMJ. 317 (7159): 660–62. doi:10.1136/bmj.317.7159.660. PMC 1113839. PMID 9728000.
  38. ^ Moss, Ronald; Davey, Richard; Steigbigel, Roy; Fang, Fang (June 2010). "Targeting pandemic influenza: a primer on influenza antivirals and drug resistance". Journal of Antimicrobial Chemotherapy. 65 (6): 1086–93. doi:10.1093/jac/dkq100. PMID 20375034. Retrieved 30 October 2018.
  39. ^ Soundararajan, V; Tharakaraman, K; Raman, R; Raguram, S; Shriver, Z; Sasisekharan, V; Sasisekharan, R (June 2009). "Extrapolating from sequence--the 2009 H1N1 'swine' influenza virus". Nature Biotechnology. 27 (6): 510–13. doi:10.1038/nbt0609-510. PMID 19513050. S2CID 22710439.
  40. ^ Nijhuis, M; van Maarseveen, NM; Boucher, CA (2009). Antiviral resistance and impact on viral replication capacity: evolution of viruses under antiviral pressure occurs in three phases. Handbook of Experimental Pharmacology. Vol. 189. pp. 299–320. doi:10.1007/978-3-540-79086-0_11. ISBN 978-3-540-79085-3. PMID 19048205.
  41. ^ . www.who.int. Archived from the original on 1 September 2014.
  42. ^ a b Lodish, H; Berk, A; Zipursky, S (2000). Molecular Cell Biology: Viruses – Structure, Function, and Uses. New York, New York: W. H. Freeman and Company. Retrieved 1 December 2018.
  43. ^ a b Racaniello, Vincent. "The error-prone ways of RNA synthesis". Virology Blog. Retrieved 1 December 2018.
  44. ^ Thebaud, G; Chadeouf, J; Morelli, M; McCauley, J; Haydon, D (2010). "The relationship between mutation frequency and replication strategy in positive sense single-stranded RNA viruses". Proc. Biol. Sci. 277 (1682): 809–17. doi:10.1098/rspb.2009.1247. PMC 2842737. PMID 19906671.
  45. ^ "Viruses are models for embracing diversity". Nature Microbiology. 3 (4): 389. 2018. doi:10.1038/s41564-018-0145-3. PMID 29588540.
  46. ^ Hayden, FG; de Jong, MD (1 January 2011). "Emerging influenza antiviral resistance threats". The Journal of Infectious Diseases. 203 (1): 6–10. doi:10.1093/infdis/jiq012. PMC 3086431. PMID 21148489.
  47. ^ Kimberlin, DW; Whitley, RJ (March 1996). "Antiviral resistance: mechanisms, clinical significance, and future implications". The Journal of Antimicrobial Chemotherapy. 37 (3): 403–21. doi:10.1093/jac/37.3.403. PMID 9182098.
  48. ^ a b Irwin, K; Renzette, N; Kowalik, T; Jensen, J (2016). "Antiviral drug resistance as an adaptive process". Virus Evolution. 2 (1): vew014. doi:10.1093/ve/vew014. PMC 5499642. PMID 28694997.
  49. ^ Moscona, A (2009). "Global transmission of oseltamivir-resistant influenza". New England Journal of Medicine. 360 (10): 953–56. doi:10.1056/NEJMp0900648. PMID 19258250. S2CID 205104988.
  50. ^ Strasfeld, L; Chou, S (2010). "Antiviral Drug Resistance: Mechanisms and Clinical Implications". Infectious Disease Clinics of North America. 24 (2): 413–37. doi:10.1016/j.idc.2010.01.001. PMC 2871161. PMID 20466277.
  51. ^ "Understanding How Vaccines Work". Center for Disease Control. 17 August 2021. Retrieved 11 October 2021.
  52. ^ a b Heymann, D. L.; Aylward, R. B. (2006). Mass vaccination: When and why. Current Topics in Microbiology and Immunology. Vol. 304. pp. 1–16. doi:10.1007/3-540-36583-4_1. ISBN 978-3-540-29382-8. PMID 16989261. S2CID 25259803.
  53. ^ Seither, R.; Masalovich, S.; Knighton, C. L.; Mellerson, J.; Singleton, J. A.; Greby, S. M.; Centers for Disease Control Prevention (CDC) (2014). "Vaccination Coverage Among Children in Kindergarten—United States, 2013–14 School Year". MMWR. 63 (41): 913–920. PMC 4584748. PMID 25321068.
  54. ^ Omer, SB; Salmon, DA; Orenstein, WA; deHart, MP; Halsey, N (May 2009). "Vaccine Refusal, Mandatory Immunization, and the Risks of Vaccine-Preventable Diseases". New England Journal of Medicine. 360 (19): 1981–88. doi:10.1056/NEJMsa0806477. PMID 19420367.
  55. ^ "Vaccines Do Not Cause Autism". Centers for Disease Control and Prevention. 23 November 2015. Retrieved 20 October 2016.
  56. ^ Immunization Safety Review Committee (2004).Immunization Safety Review: Vaccines and Autism. The National Academies Press. ISBN 0-309-09237-X.
  57. ^ "MMR vaccine". National Health Service. Retrieved 20 October 2016.
  58. ^ Hendriksz T, Malouf PH, Sarmiento S, Foy JE. "Overcoming patient barriers to immunizations". AOA Health Watch. 2013: 9–14.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  59. ^ "Barriers and Strategies to Improving Influenza Vaccination among Health Care Personnel". Centers for Disease Control and Prevention. 7 September 2016. Retrieved 17 September 2016.
  60. ^ Diekema DS (2005). "Responding to parental refusals of immunization of children". Pediatrics. 115 (5): 1428–31. doi:10.1542/peds.2005-0316. PMID 15867060.
  61. ^ "Types of vaccine and adverse reactions" (PDF).
  62. ^ "HPTN 052". HPTN. Retrieved 29 September 2017.
  63. ^ Rodger AJ, Cambiano V, Bruun T, Vernazza P, Collins S, van Lunzen J, Corbelli GM, Estrada V, Geretti AM, Beloukas A, Asboe D, Viciana P, Gutiérrez F, Clotet B, Pradier C, Gerstoft J, Weber R, Westling K, Wandeler G, Prins JM, Rieger A, Stoeckle M, Kümmerle T, Bini T, Ammassari A, Gilson R, Krznaric I, Ristola M, Zangerle R, Handberg P, Antela A, Allan S, Phillips AN, Lundgren J (12 July 2016). "Sexual Activity Without Condoms and Risk of HIV Transmission in Serodifferent Couples When the HIV-Positive Partner Is Using Suppressive Antiretroviral Therapy". JAMA. 316 (2): 171–181. doi:10.1001/jama.2016.5148. PMID 27404185.
  64. ^ Kunin, Marina; Engelhard, Dan; Thomas, Shane; Ashworth, Mark; Piterman, Leon (15 October 2015). "Challenges of the Pandemic Response in Primary Care during Pre-Vaccination Period: A Qualitative Study". Israel Journal of Health Policy Research. 4 (1): 32. doi:10.1186/s13584-015-0028-5. PMC 4606524. PMID 26473026.
  65. ^ Lindegren, Mary Louise; Griffin, Marie R.; Williams, John V.; Edwards, Kathryn M.; Zhu, Yuwei; Mitchel, Ed; Fry, Alicia M.; Schaffner, William; Talbot, H. Keipp; Pyrc, Krzysztof (25 March 2015). "Antiviral Treatment among Older Adults Hospitalized with Influenza, 2006–2012". PLOS ONE. 10 (3): e0121952. Bibcode:2015PLoSO..1021952L. doi:10.1371/journal.pone.0121952. PMC 4373943. PMID 25807314.
  66. ^ a b NACCHO (December 2010). (PDF) (Report). Archived from the original (PDF) on 22 October 2016. Retrieved 21 October 2016.
  67. ^ Centers for Disease Control and Prevention. "H1N1 Flu".
  68. ^ Hodge, J G; Orenstein, D G. "Antiviral Distribution and Dispensing A Review of Legal and Policy Issues". Association of State and Territorial Health Officials (ASTHO).
  69. ^ "Funding and Guidance for State and Local Health Departments". Centers for Disease Control and Prevention. Retrieved 21 October 2016.
  70. ^ "Strategic National Stockpile (SNS)". Centers for Disease Control and Prevention. Retrieved 21 October 2016.

antiviral, drug, antiviral, redirects, here, other, uses, antiviral, disambiguation, class, medication, used, treating, viral, infections, most, antivirals, target, specific, viruses, while, broad, spectrum, antiviral, effective, against, wide, range, viruses,. Antiviral redirects here For other uses see Antiviral disambiguation Antiviral drugs are a class of medication used for treating viral infections 1 Most antivirals target specific viruses while a broad spectrum antiviral is effective against a wide range of viruses 2 Antiviral drugs are one class of antimicrobials a larger group which also includes antibiotic also termed antibacterial antifungal and antiparasitic drugs 3 or antiviral drugs based on monoclonal antibodies 4 Most antivirals are considered relatively harmless to the host and therefore can be used to treat infections They should be distinguished from viricides which are not medication but deactivate or destroy virus particles either inside or outside the body Natural viricides are produced by some plants such as eucalyptus and Australian tea trees 5 Antiretroviral drugs for HIV Contents 1 Medical uses 2 Antiviral drug design 2 1 Anti viral targeting 2 2 Approaches by virus life cycle stage 2 2 1 Before cell entry 2 2 1 1 Entry inhibitor 2 2 1 2 Uncoating inhibitors 2 2 2 During viral synthesis 2 2 2 1 Reverse transcription 2 2 2 2 Integrase 2 2 2 3 Transcription 2 2 2 4 Translation antisense 2 2 2 5 Translation ribozymes 2 2 2 6 Protein processing and targeting 2 2 3 Protease inhibitors 2 2 3 1 Long dsRNA helix targeting 2 2 4 Assembly 2 2 5 Release phase 2 3 Immune system stimulation 3 Antiviral drug resistance 3 1 Origin of antiviral resistance 3 2 Detection of antiviral resistance 3 3 Treatment options for antiviral resistant pathogens 4 Vaccinations 4 1 Vaccination policy 4 2 Vaccination controversy 4 3 Limitations of vaccines 4 4 Antiretroviral therapy as HIV prevention 5 Public policy 5 1 Use and distribution 5 2 Stockpiling 6 See also 7 ReferencesMedical uses EditMost of the antiviral drugs now available are designed to help deal with HIV herpes viruses the hepatitis B and C viruses and influenza A and B viruses 6 Viruses use the host s cells to replicate and this makes it difficult to find targets for the drug that would interfere with the virus without also harming the host organism s cells Moreover the major difficulty in developing vaccines and anti viral drugs is due to viral variation 7 The emergence of antivirals is the product of a greatly expanded knowledge of the genetic and molecular function of organisms allowing biomedical researchers to understand the structure and function of viruses major advances in the techniques for finding new drugs and the pressure placed on the medical profession to deal with the human immunodeficiency virus HIV the cause of acquired immunodeficiency syndrome AIDS citation needed The first experimental antivirals were developed in the 1960s mostly to deal with herpes viruses and were found using traditional trial and error drug discovery methods Researchers grew cultures of cells and infected them with the target virus They then introduced into the cultures chemicals which they thought might inhibit viral activity and observed whether the level of virus in the cultures rose or fell Chemicals that seemed to have an effect were selected for closer study citation needed This was a very time consuming hit or miss procedure and in the absence of a good knowledge of how the target virus worked it was not efficient in discovering effective antivirals which had few side effects Only in the 1980s when the full genetic sequences of viruses began to be unraveled did researchers begin to learn how viruses worked in detail and exactly what chemicals were needed to thwart their reproductive cycle 8 Antiviral drug design EditAnti viral targeting Edit The general idea behind modern antiviral drug design is to identify viral proteins or parts of proteins that can be disabled These targets should generally be as unlike any proteins or parts of proteins in humans as possible to reduce the likelihood of side effects The targets should also be common across many strains of a virus or even among different species of virus in the same family so a single drug will have broad effectiveness For example a researcher might target a critical enzyme synthesized by the virus but not by the patient that is common across strains and see what can be done to interfere with its operation citation needed Once targets are identified candidate drugs can be selected either from drugs already known to have appropriate effects or by actually designing the candidate at the molecular level with a computer aided design program citation needed The target proteins can be manufactured in the lab for testing with candidate treatments by inserting the gene that synthesizes the target protein into bacteria or other kinds of cells The cells are then cultured for mass production of the protein which can then be exposed to various treatment candidates and evaluated with rapid screening technologies citation needed Approaches by virus life cycle stage Edit Viruses consist of a genome and sometimes a few enzymes stored in a capsule made of protein called a capsid and sometimes covered with a lipid layer sometimes called an envelope Viruses cannot reproduce on their own and instead propagate by subjugating a host cell to produce copies of themselves thus producing the next generation citation needed Researchers working on such rational drug design strategies for developing antivirals have tried to attack viruses at every stage of their life cycles Some species of mushrooms have been found to contain multiple antiviral chemicals with similar synergistic effects 9 Compounds isolated from fruiting bodies and filtrates of various mushrooms have broad spectrum antiviral activities but successful production and availability of such compounds as frontline antiviral is a long way away 10 Viral life cycles vary in their precise details depending on the type of virus but they all share a general pattern citation needed Attachment to a host cell Release of viral genes and possibly enzymes into the host cell Replication of viral components using host cell machinery Assembly of viral components into complete viral particles Release of viral particles to infect new host cells Before cell entry Edit One anti viral strategy is to interfere with the ability of a virus to infiltrate a target cell The virus must go through a sequence of steps to do this beginning with binding to a specific receptor molecule on the surface of the host cell and ending with the virus uncoating inside the cell and releasing its contents Viruses that have a lipid envelope must also fuse their envelope with the target cell or with a vesicle that transports them into the cell before they can uncoat citation needed This stage of viral replication can be inhibited in two ways Using agents which mimic the virus associated protein VAP and bind to the cellular receptors This may include VAP anti idiotypic antibodies natural ligands of the receptor and anti receptor antibodies clarification needed Using agents which mimic the cellular receptor and bind to the VAP This includes anti VAP antibodies receptor anti idiotypic antibodies extraneous receptor and synthetic receptor mimics This strategy of designing drugs can be very expensive and since the process of generating anti idiotypic antibodies is partly trial and error it can be a relatively slow process until an adequate molecule is produced citation needed Entry inhibitor Edit Main article Entry inhibitor A very early stage of viral infection is viral entry when the virus attaches to and enters the host cell A number of entry inhibiting or entry blocking drugs are being developed to fight HIV HIV most heavily targets a specific type of lymphocyte known as helper T cells and identifies these target cells through T cell surface receptors designated CD4 and CCR5 Attempts to interfere with the binding of HIV with the CD4 receptor have failed to stop HIV from infecting helper T cells but research continues on trying to interfere with the binding of HIV to the CCR5 receptor in hopes that it will be more effective citation needed HIV infects a cell through fusion with the cell membrane which requires two different cellular molecular participants CD4 and a chemokine receptor differing depending on the cell type Approaches to blocking this virus cell fusion have shown some promise in preventing entry of the virus into a cell At least one of these entry inhibitors a biomimetic peptide called Enfuvirtide or the brand name Fuzeon has received FDA approval and has been in use for some time Potentially one of the benefits from the use of an effective entry blocking or entry inhibiting agent is that it potentially may not only prevent the spread of the virus within an infected individual but also the spread from an infected to an uninfected individual citation needed One possible advantage of the therapeutic approach of blocking viral entry as opposed to the currently dominant approach of viral enzyme inhibition is that it may prove more difficult for the virus to develop resistance to this therapy than for the virus to mutate or evolve its enzymatic protocols citation needed Uncoating inhibitors Edit Inhibitors of uncoating have also been investigated 11 12 Amantadine and rimantadine have been introduced to combat influenza These agents act on penetration and uncoating 13 Pleconaril works against rhinoviruses which cause the common cold by blocking a pocket on the surface of the virus that controls the uncoating process This pocket is similar in most strains of rhinoviruses and enteroviruses which can cause diarrhea meningitis conjunctivitis and encephalitis 14 Some scientists are making the case that a vaccine against rhinoviruses the predominant cause of the common cold is achievable Vaccines that combine dozens of varieties of rhinovirus at once are effective in stimulating antiviral antibodies in mice and monkeys researchers reported in Nature Communications in 2016 15 Rhinoviruses are the most common cause of the common cold other viruses such as respiratory syncytial virus parainfluenza virus and adenoviruses can cause them too 16 Rhinoviruses also exacerbate asthma attacks Although rhinoviruses come in many varieties they do not drift to the same degree that influenza viruses do A mixture of 50 inactivated rhinovirus types should be able to stimulate neutralizing antibodies against all of them to some degree 17 During viral synthesis Edit A second approach is to target the processes that synthesize virus components after a virus invades a cell citation needed Reverse transcription Edit One way of doing this is to develop nucleotide or nucleoside analogues that look like the building blocks of RNA or DNA but deactivate the enzymes that synthesize the RNA or DNA once the analogue is incorporated This approach is more commonly associated with the inhibition of reverse transcriptase RNA to DNA than with normal transcriptase DNA to RNA citation needed The first successful antiviral aciclovir is a nucleoside analogue and is effective against herpesvirus infections The first antiviral drug to be approved for treating HIV zidovudine AZT is also a nucleoside analogue citation needed An improved knowledge of the action of reverse transcriptase has led to better nucleoside analogues to treat HIV infections One of these drugs lamivudine has been approved to treat hepatitis B which uses reverse transcriptase as part of its replication process Researchers have gone further and developed inhibitors that do not look like nucleosides but can still block reverse transcriptase citation needed Another target being considered for HIV antivirals include RNase H which is a component of reverse transcriptase that splits the synthesized DNA from the original viral RNA citation needed Integrase Edit Another target is integrase which integrate the synthesized DNA into the host cell genome Examples of integrase inhibitors include raltegravir elvitegravir and dolutegravir citation needed Transcription Edit Once a virus genome becomes operational in a host cell it then generates messenger RNA mRNA molecules that direct the synthesis of viral proteins Production of mRNA is initiated by proteins known as transcription factors Several antivirals are now being designed to block attachment of transcription factors to viral DNA citation needed Translation antisense Edit Genomics has not only helped find targets for many antivirals it has provided the basis for an entirely new type of drug based on antisense molecules These are segments of DNA or RNA that are designed as complementary molecule to critical sections of viral genomes and the binding of these antisense segments to these target sections blocks the operation of those genomes A phosphorothioate antisense drug named fomivirsen has been introduced used to treat opportunistic eye infections in AIDS patients caused by cytomegalovirus and other antisense antivirals are in development An antisense structural type that has proven especially valuable in research is morpholino antisense Morpholino oligos have been used to experimentally suppress many viral types caliciviruses 18 flaviviruses including West Nile virus 19 dengue 20 HCV 21 coronaviruses 22 Translation ribozymes Edit Yet another antiviral technique inspired by genomics is a set of drugs based on ribozymes which are enzymes that will cut apart viral RNA or DNA at selected sites In their natural course ribozymes are used as part of the viral manufacturing sequence but these synthetic ribozymes are designed to cut RNA and DNA at sites that will disable them A ribozyme antiviral to deal with hepatitis C has been suggested 23 and ribozyme antivirals are being developed to deal with HIV 24 An interesting variation of this idea is the use of genetically modified cells that can produce custom tailored ribozymes This is part of a broader effort to create genetically modified cells that can be injected into a host to attack pathogens by generating specialized proteins that block viral replication at various phases of the viral life cycle citation needed Protein processing and targeting Edit Interference with post translational modifications or with targeting of viral proteins in the cell is also possible 25 Protease inhibitors Edit Some viruses include an enzyme known as a protease that cuts viral protein chains apart so they can be assembled into their final configuration HIV includes a protease and so considerable research has been performed to find protease inhibitors to attack HIV at that phase of its life cycle 26 Protease inhibitors became available in the 1990s and have proven effective though they can have unusual side effects for example causing fat to build up in unusual places 27 Improved protease inhibitors are now in development Protease inhibitors have also been seen in nature A protease inhibitor was isolated from the shiitake mushroom Lentinus edodes 28 The presence of this may explain the Shiitake mushroom s noted antiviral activity in vitro 29 Long dsRNA helix targeting Edit Most viruses produce long dsRNA helices during transcription and replication In contrast uninfected mammalian cells generally produce dsRNA helices of fewer than 24 base pairs during transcription DRACO double stranded RNA activated caspase oligomerizer is a group of experimental antiviral drugs initially developed at the Massachusetts Institute of Technology In cell culture DRACO was reported to have broad spectrum efficacy against many infectious viruses including dengue flavivirus Amapari and Tacaribe arenavirus Guama bunyavirus H1N1 influenza and rhinovirus and was additionally found effective against influenza in vivo in weanling mice It was reported to induce rapid apoptosis selectively in virus infected mammalian cells while leaving uninfected cells unharmed 30 DRACO effects cell death via one of the last steps in the apoptosis pathway in which complexes containing intracellular apoptosis signalling molecules simultaneously bind multiple procaspases The procaspases transactivate via cleavage activate additional caspases in the cascade and cleave a variety of cellular proteins thereby killing the cell citation needed Assembly Edit Rifampicin acts at the assembly phase 31 Release phase Edit The final stage in the life cycle of a virus is the release of completed viruses from the host cell and this step has also been targeted by antiviral drug developers Two drugs named zanamivir Relenza and oseltamivir Tamiflu that have been recently introduced to treat influenza prevent the release of viral particles by blocking a molecule named neuraminidase that is found on the surface of flu viruses and also seems to be constant across a wide range of flu strains Immune system stimulation Edit Main article immunostimulant Rather than attacking viruses directly a second category of tactics for fighting viruses involves encouraging the body s immune system to attack them Some antivirals of this sort do not focus on a specific pathogen instead stimulating the immune system to attack a range of pathogens One of the best known of this class of drugs are interferons which inhibit viral synthesis in infected cells 32 One form of human interferon named interferon alpha is well established as part of the standard treatment for hepatitis B and C 33 and other interferons are also being investigated as treatments for various diseases A more specific approach is to synthesize antibodies protein molecules that can bind to a pathogen and mark it for attack by other elements of the immune system Once researchers identify a particular target on the pathogen they can synthesize quantities of identical monoclonal antibodies to link up that target A monoclonal drug is now being sold to help fight respiratory syncytial virus in babies 34 and antibodies purified from infected individuals are also used as a treatment for hepatitis B 35 Antiviral drug resistance EditAntiviral resistance can be defined by a decreased susceptibility to a drug caused by changes in viral genotypes In cases of antiviral resistance drugs have either diminished or no effectiveness against their target virus 36 The issue inevitably remains a major obstacle to antiviral therapy as it has developed to almost all specific and effective antimicrobials including antiviral agents 37 The Centers for Disease Control and Prevention CDC inclusively recommends anyone six months and older to get a yearly vaccination to protect them from influenza A viruses H1N1 and H3N2 and up to two influenza B viruses depending on the vaccination 36 Comprehensive protection starts by ensuring vaccinations are current and complete However vaccines are preventative and are not generally used once a patient has been infected with a virus Additionally the availability of these vaccines can be limited based on financial or locational reasons which can prevent the effectiveness of herd immunity making effective antivirals a necessity 36 The three FDA approved neuraminidase antiviral flu drugs available in the United States recommended by the CDC include oseltamivir Tamiflu zanamivir Relenza and peramivir Rapivab 36 Influenza antiviral resistance often results from changes occurring in neuraminidase and hemagglutinin proteins on the viral surface Currently neuraminidase inhibitors NAIs are the most frequently prescribed antivirals because they are effective against both influenza A and B However antiviral resistance is known to develop if mutations to the neuraminidase proteins prevent NAI binding 38 This was seen in the H257Y mutation which was responsible for oseltamivir resistance to H1N1 strains in 2009 36 The inability of NA inhibitors to bind to the virus allowed this strain of virus with the resistance mutation to spread due to natural selection Furthermore a study published in 2009 in Nature Biotechnology emphasized the urgent need for augmentation of oseltamivir stockpiles with additional antiviral drugs including zanamivir This finding was based on a performance evaluation of these drugs supposing the 2009 H1N1 Swine Flu neuraminidase NA were to acquire the oseltamivir resistance His274Tyr mutation which is currently widespread in seasonal H1N1 strains 39 Origin of antiviral resistance Edit The genetic makeup of viruses is constantly changing which can cause a virus to become resistant to currently available treatments 40 Viruses can become resistant through spontaneous or intermittent mechanisms throughout the course of an antiviral treatment 36 Immunocompromised patients more often than immunocompetent patients hospitalized with pneumonia are at the highest risk of developing oseltamivir resistance during treatment 36 Subsequent to exposure to someone else with the flu those who received oseltamivir for post exposure prophylaxis are also at higher risk of resistance 41 The mechanisms for antiviral resistance development depend on the type of virus in question RNA viruses such as hepatitis C and influenza A have high error rates during genome replication because RNA polymerases lack proofreading activity 42 RNA viruses also have small genome sizes that are typically less than 30 kb which allow them to sustain a high frequency of mutations 43 DNA viruses such as HPV and herpesvirus hijack host cell replication machinery which gives them proofreading capabilities during replication DNA viruses are therefore less error prone are generally less diverse and are more slowly evolving than RNA viruses 42 In both cases the likelihood of mutations is exacerbated by the speed with which viruses reproduce which provides more opportunities for mutations to occur in successive replications Billions of viruses are produced every day during the course of an infection with each replication giving another chance for mutations that encode for resistance to occur 44 Multiple strains of one virus can be present in the body at one time and some of these strains may contain mutations that cause antiviral resistance 37 This effect called the quasispecies model results in immense variation in any given sample of virus and gives the opportunity for natural selection to favor viral strains with the highest fitness every time the virus is spread to a new host 45 Also recombination the joining of two different viral variants and reassortment the swapping of viral gene segments among viruses in the same cell play a role in resistance especially in influenza 43 Antiviral resistance has been reported in antivirals for herpes HIV hepatitis B and C and influenza but antiviral resistance is a possibility for all viruses 37 Mechanisms of antiviral resistance vary between virus types Detection of antiviral resistance Edit National and international surveillance is performed by the CDC to determine effectiveness of the current FDA approved antiviral flu drugs 36 Public health officials use this information to make current recommendations about the use of flu antiviral medications WHO further recommends in depth epidemiological investigations to control potential transmission of the resistant virus and prevent future progression 46 As novel treatments and detection techniques to antiviral resistance are enhanced so can the establishment of strategies to combat the inevitable emergence of antiviral resistance 47 Treatment options for antiviral resistant pathogens Edit If a virus is not fully wiped out during a regimen of antivirals treatment creates a bottleneck in the viral population that selects for resistance and there is a chance that a resistant strain may repopulate the host 48 Viral treatment mechanisms must therefore account for the selection of resistant viruses The most commonly used method for treating resistant viruses is combination therapy which uses multiple antivirals in one treatment regimen This is thought to decrease the likelihood that one mutation could cause antiviral resistance as the antivirals in the cocktail target different stages of the viral life cycle 49 This is frequently used in retroviruses like HIV but a number of studies have demonstrated its effectiveness against influenza A as well 50 Viruses can also be screened for resistance to drugs before treatment is started This minimizes exposure to unnecessary antivirals and ensures that an effective medication is being used This may improve patient outcomes and could help detect new resistance mutations during routine scanning for known mutants 48 However this has not been consistently implemented in treatment facilities at this time Vaccinations EditThe examples and perspective in this article deal primarily with the United States and do not represent a worldwide view of the subject You may improve this article discuss the issue on the talk page or create a new article as appropriate February 2022 Learn how and when to remove this template message Main article Vaccination While most antivirals treat viral infection vaccines are a preemptive first line of defense against pathogens Vaccination involves the introduction i e via injection of a small amount of typically inactivated or attenuated antigenic material to stimulate an individual s immune system The immune system responds by developing white blood cells to specifically combat the introduced pathogen resulting in adaptive immunity 51 Vaccination in a population results in herd immunity and greatly improved population health with significant reductions in viral infection and disease 52 Vaccination policy Edit Main article Vaccination policy United States Vaccination policy in the United States consists of public and private vaccination requirements For instance public schools require students to receive vaccinations termed vaccination schedule for viruses and bacteria such as diphtheria pertussis and tetanus DTaP measles mumps rubella MMR varicella chickenpox hepatitis B rotavirus polio and more Private institutions might require annual influenza vaccination The Center for Disease Control and Prevention has estimated that routine immunization of newborns prevents about 42 000 deaths and 20 million cases of disease each year saving about 13 6 billion 53 Vaccination controversy Edit Main article Vaccination schedule United States Despite their successes in the United States there exists plenty of stigma surrounding vaccines that cause people to be incompletely vaccinated These gaps in vaccination result in unnecessary infection death and costs 54 There are two major reasons for incomplete vaccination Vaccines like other medical treatments have a risk of causing complications in some individuals allergic reactions Vaccines do not cause autism this has been confirmed by national health agencies such as the US Centers for Disease Control and Prevention 55 the US Institute of Medicine 56 and the UK National Health Service 57 Low rates of vaccine preventable disease as a result of herd immunity also make vaccines seem unnecessary and leave many unvaccinated 58 59 Although the American Academy of Pediatrics endorses universal immunization 60 they note that physicians should respect parents refusal to vaccinate their children after sufficient advising and provided the child does not face a significant risk of infection Parents can also cite religious reasons to avoid public school vaccination mandates but this reduces herd immunity and increases risk of viral infection 52 Limitations of vaccines Edit Vaccines boosts the body s immune system to better attack viruses in the complete particle stage outside of the organism s cells Traditional approaches to vaccine development include an attenuated a live weakened or inactivated killed version of the virus Attenuated pathogens in very rare cases can revert to a pathogenic form Inactivated vaccines have no possibility of introducing the disease they are given against on the other hand the immune response may not always occur or it may be short lived requiring several doses Recently subunit vaccines have been devised containing only the antigenic parts of the pathogen This makes the vaccine more precise but without guarantee that immunological memory will be formed in the correct manner 61 Vaccines are very effective on stable viruses but are of limited use in treating a patient who has already been infected They are also difficult to successfully deploy against rapidly mutating viruses such as influenza the vaccine for which is updated every year and HIV Antiviral drugs are particularly useful in these cases Antiretroviral therapy as HIV prevention Edit Following the HPTN 052 study and PARTNER study there is significant evidence to demonstrate that antiretroviral drugs inhibit transmission when the HIV virus in the person living with HIV has been undetectable for 6 months or longer 62 63 Public policy EditUse and distribution Edit Guidelines regarding viral diagnoses and treatments change frequently and limit quality care 64 Even when physicians diagnose older patients with influenza use of antiviral treatment can be low 65 Provider knowledge of antiviral therapies can improve patient care especially in geriatric medicine Furthermore in local health departments LHDs with access to antivirals guidelines may be unclear causing delays in treatment 66 With time sensitive therapies delays could lead to lack of treatment Overall national guidelines regarding infection control and management standardize care and improve healthcare worker and patient safety Guidelines such as those provided by the Centers for Disease Control and Prevention CDC during the 2009 flu pandemic caused by the H1N1 virus recommend among other things antiviral treatment regimens clinical assessment algorithms for coordination of care and antiviral chemoprophylaxis guidelines for exposed persons 67 Roles of pharmacists and pharmacies have also expanded to meet the needs of public during public health emergencies 68 Stockpiling Edit Main article Strategic National Stockpile Public Health Emergency Preparedness initiatives are managed by the CDC via the Office of Public Health Preparedness and Response 69 Funds aim to support communities in preparing for public health emergencies including pandemic influenza Also managed by the CDC the Strategic National Stockpile SNS consists of bulk quantities of medicines and supplies for use during such emergencies 70 Antiviral stockpiles prepare for shortages of antiviral medications in cases of public health emergencies During the H1N1 pandemic in 2009 2010 guidelines for SNS use by local health departments was unclear revealing gaps in antiviral planning 66 For example local health departments that received antivirals from the SNS did not have transparent guidance on the use of the treatments The gap made it difficult to create plans and policies for their use and future availabilities causing delays in treatment See also Edit Viruses portalAntiretroviral drug especially HAART for HIV CRISPR Cas13 Discovery and development of CCR5 receptor antagonists for HIV Monoclonal antibody Nonsteroidal anti inflammatory drug List of antiviral drugs Virucide Antiprion drugs and Astemizole Discovery and development of NS5A inhibitors COVID 19 drug repurposing researchReferences Edit LiverTox Clinical and Research Information on Drug Induced Liver Injury Internet Bethesda MD National Institute of Diabetes and Digestive and Kidney Diseases 2012 Antiviral Agents 2022 Dec 2 PMID 31643973 Rossignol JF 2014 Nitazoxanide a first in class broad spectrum antiviral agent Antiviral Res 110 94 103 doi 10 1016 j antiviral 2014 07 014 PMC 7113776 PMID 25108173 Rick Daniels Leslie H Nicoll Pharmacology Nursing Management Contemporary Medical Surgical Nursing Cengage Learning 2011 p 397 Kisung Ko Yoram Tekoah Pauline M Rudd David J Harvey Raymond A Dwek Sergei Spitsin Cathleen A Hanlon Charles Rupprecht Bernhard Dietzschold Maxim Golovkin and Hilary Koprowski 2003 Function and glycosylation of plant derived antiviral monoclonal antibody PNAS 100 13 8013 18 Bibcode 2003PNAS 100 8013K doi 10 1073 pnas 0832472100 PMC 164704 PMID 12799460 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint uses authors parameter link Schnitzler P Schon K Reichling J 2001 Antiviral activity of Australian tea tree oil and eucalyptus oil against herpes simplex virus in cell culture Die Pharmazie 56 4 343 47 PMID 11338678 Kausar S Said Khan F Ishaq Mujeeb Ur Rehman M Akram M Riaz M Rasool G Hamid Khan A Saleem I Shamim S Malik A 2021 A review Mechanism of action of antiviral drugs International Journal of Immunopathology and Pharmacology 35 20587384211002621 doi 10 1177 20587384211002621 PMC 7975490 PMID 33726557 Yin H Jiang N Shi W Chi X Liu S Chen JL Wang S February 2021 Development and Effects of Influenza Antiviral Drugs Molecules Basel Switzerland 26 4 810 doi 10 3390 molecules26040810 PMC 7913928 PMID 33557246 Bobrowski T Melo Filho CC Korn D Alves VM Popov KI Auerbach S Schmitt C Moorman NJ Muratov EN Tropsha A September 2020 Learning from history do not flatten the curve of antiviral research Drug Discovery Today 25 9 1604 1613 doi 10 1016 j drudis 2020 07 008 PMC 7361119 PMID 32679173 Lindequist Ulrike Niedermeyer Timo H J Julich Wolf Dieter 2005 The Pharmacological Potential of Mushrooms Evidence Based Complementary and Alternative Medicine 2 3 285 99 doi 10 1093 ecam neh107 PMC 1193547 PMID 16136207 Pradeep Prabin Manju Vidya Ahsan Mohammad Feraz 2019 Agrawal Dinesh Chandra Dhanasekaran Muralikrishnan eds Antiviral Potency of Mushroom Constituents Medicinal Mushrooms Recent Progress in Research and Development Springer Singapore pp 275 97 doi 10 1007 978 981 13 6382 5 10 ISBN 9789811363825 S2CID 181538245 Bishop NE 1998 Examination of potential inhibitors of hepatitis A virus uncoating Intervirology 41 6 261 71 doi 10 1159 000024948 PMID 10325536 S2CID 21222121 Almela MJ Gonzalez ME Carrasco L May 1991 Inhibitors of poliovirus uncoating efficiently block the early membrane permeabilization induced by virus particles J Virol 65 5 2572 77 doi 10 1128 JVI 65 5 2572 2577 1991 PMC 240614 PMID 1850030 Beringer Paul Troy David A Remington Joseph P 2006 Remington the science and practice of pharmacy Hagerstwon MD Lippincott Williams amp Wilkins p 1419 ISBN 978 0 7817 4673 1 Daniel C Pevear Tina M Tull Martin E Seipel 1999 Activity of Pleconaril against Enteroviruses Antimicrobial Agents and Chemotherapy 43 9 2109 2115 doi 10 1128 AAC 43 9 2109 PMC 89431 PMID 10471549 Lee S Nguyen M Currier M 2016 A polyvalent inactivated rhinovirus vaccine is broadly immunogenic in rhesus macaques Nature Communications Common Cold Causes Rhinoviruses and More Tang Roderick Moore Martin 2017 Development of polyvalent inactivated rhinovirus vaccine Stein DA Skilling DE Iversen PL Smith AW 2001 Inhibition of Vesivirus infections in mammalian tissue culture with antisense morpholino oligomers Antisense Nucleic Acid Drug Dev 11 5 317 25 doi 10 1089 108729001753231696 PMID 11763348 Deas T S Binduga Gajewska I Tilgner M Ren P Stein D A Moulton H M Iversen P L Kauffman E B Kramer L D Shi P Y 2005 Inhibition of Flavivirus Infections by Antisense Oligomers Specifically Suppressing Viral Translation and RNA Replication Journal of Virology 79 8 4599 4609 doi 10 1128 JVI 79 8 4599 4609 2005 PMC 1069577 PMID 15795246 Kinney R M Huang C Y H Rose B C Kroeker A D Dreher T W Iversen P L Stein D A 2005 Inhibition of Dengue Virus Serotypes 1 to 4 in Vero Cell Cultures with Morpholino Oligomers J Virol 79 8 5116 28 doi 10 1128 JVI 79 8 5116 5128 2005 PMC 1069583 PMID 15795296 McCaffrey AP Meuse L Karimi M Contag CH Kay MA 2003 A potent and specific morpholino antisense inhibitor of hepatitis C translation in mice Hepatology 38 2 503 08 doi 10 1053 jhep 2003 50330 PMID 12883495 S2CID 1612244 Neuman B W Stein D A Kroeker A D Paulino A D Moulton H M Iversen P L Buchmeier M J June 2004 Antisense Morpholino Oligomers Directed against the 5 End of the Genome Inhibit Coronavirus Proliferation and Growth J Virol 78 11 5891 99 doi 10 1128 JVI 78 11 5891 5899 2004 PMC 415795 PMID 15140987 Ryu KJ Lee SW 2003 Identification of the most accessible sites to ribozymes on the hepatitis C virus internal ribosome entry site J Biochem Mol Biol 36 6 538 44 doi 10 5483 BMBRep 2003 36 6 538 PMID 14659071 Bai J Rossi J Akkina R March 2001 Multivalent anti CCR ribozymes for stem cell based HIV type 1 gene therapy AIDS Res Hum Retroviruses 17 5 385 99 doi 10 1089 088922201750102427 PMID 11282007 Alarcon B Gonzalez ME Carrasco L 1988 Megalomycin C a macrolide antibiotic that blocks protein glycosylation and shows antiviral activity FEBS Lett 231 1 207 11 doi 10 1016 0014 5793 88 80732 4 PMID 2834223 S2CID 43114821 Anderson J Schiffer C Lee SK Swanstrom R 2009 Viral protease inhibitors Antiviral Strategies Handb Exp Pharmacol Handbook of Experimental Pharmacology Vol 189 pp 85 110 doi 10 1007 978 3 540 79086 0 4 ISBN 978 3 540 79085 3 PMC 7120715 PMID 19048198 Flint O P Noor M A Hruz P W Hylemon P B Yarasheski K Kotler D P Parker R A Bellamine A 2009 The Role of Protease Inhibitors in the Pathogenesis of HIV Associated Lipodystrophy Cellular Mechanisms and Clinical Implications Toxicol Pathol 37 1 65 77 doi 10 1177 0192623308327119 PMC 3170409 PMID 19171928 Odani S Tominaga K Kondou S 1999 The inhibitory properties and primary structure of a novel serine proteinase inhibitor from the fruiting body of the basidiomycete Lentinus edodes European Journal of Biochemistry 262 3 915 23 doi 10 1046 j 1432 1327 1999 00463 x PMID 10411656 Suzuki H Okubo A Yamazaki S Suzuki K Mitsuya H Toda S 1989 Inhibition of the infectivity and cytopathic effect of human immunodeficiency virus by water soluble lignin in an extract of the culture medium of Lentinus edodes mycelia LEM Biochemical and Biophysical Research Communications 160 1 367 73 doi 10 1016 0006 291X 89 91665 3 PMID 2469420 Rider TH Zook CE Boettcher TL Wick ST Pancoast JS Zusman BD 2011 Broad spectrum antiviral therapeutics PLOS ONE 6 7 e22572 Bibcode 2011PLoSO 622572R doi 10 1371 journal pone 0022572 PMC 3144912 PMID 21818340 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link Sodeik B Griffiths G Ericsson M Moss B Doms RW 1994 Assembly of vaccinia virus effects of rifampin on the intracellular distribution of viral protein p65 J Virol 68 2 1103 14 doi 10 1128 JVI 68 2 1103 1114 1994 PMC 236549 PMID 8289340 Samuel CE October 2001 Antiviral Actions of Interferons Clin Microbiol Rev 14 4 778 809 doi 10 1128 CMR 14 4 778 809 2001 PMC 89003 PMID 11585785 Burra P 2009 Hepatitis C Semin Liver Dis 29 1 53 65 doi 10 1055 s 0029 1192055 PMID 19235659 Nokes JD Cane PA December 2008 New strategies for control of respiratory syncytial virus infection Curr Opin Infect Dis 21 6 639 43 doi 10 1097 QCO 0b013e3283184245 PMID 18978532 S2CID 3065481 Akay S Karasu Z November 2008 Hepatitis B immune globulin and HBV related liver transplantation Expert Opin Biol Ther Submitted manuscript 8 11 1815 22 doi 10 1517 14712598 8 11 1815 PMID 18847315 S2CID 71595650 a b c d e f g h Influenza Antiviral Drug Resistance Seasonal Influenza Flu CDC www cdc gov 25 October 2018 a b c Pillay D Zambon M 1998 Antiviral Drug Resistance BMJ 317 7159 660 62 doi 10 1136 bmj 317 7159 660 PMC 1113839 PMID 9728000 Moss Ronald Davey Richard Steigbigel Roy Fang Fang June 2010 Targeting pandemic influenza a primer on influenza antivirals and drug resistance Journal of Antimicrobial Chemotherapy 65 6 1086 93 doi 10 1093 jac dkq100 PMID 20375034 Retrieved 30 October 2018 Soundararajan V Tharakaraman K Raman R Raguram S Shriver Z Sasisekharan V Sasisekharan R June 2009 Extrapolating from sequence the 2009 H1N1 swine influenza virus Nature Biotechnology 27 6 510 13 doi 10 1038 nbt0609 510 PMID 19513050 S2CID 22710439 Nijhuis M van Maarseveen NM Boucher CA 2009 Antiviral resistance and impact on viral replication capacity evolution of viruses under antiviral pressure occurs in three phases Handbook of Experimental Pharmacology Vol 189 pp 299 320 doi 10 1007 978 3 540 79086 0 11 ISBN 978 3 540 79085 3 PMID 19048205 WHO Antiviral use and the risk of drug resistance www who int Archived from the original on 1 September 2014 a b Lodish H Berk A Zipursky S 2000 Molecular Cell Biology Viruses Structure Function and Uses New York New York W H Freeman and Company Retrieved 1 December 2018 a b Racaniello Vincent The error prone ways of RNA synthesis Virology Blog Retrieved 1 December 2018 Thebaud G Chadeouf J Morelli M McCauley J Haydon D 2010 The relationship between mutation frequency and replication strategy in positive sense single stranded RNA viruses Proc Biol Sci 277 1682 809 17 doi 10 1098 rspb 2009 1247 PMC 2842737 PMID 19906671 Viruses are models for embracing diversity Nature Microbiology 3 4 389 2018 doi 10 1038 s41564 018 0145 3 PMID 29588540 Hayden FG de Jong MD 1 January 2011 Emerging influenza antiviral resistance threats The Journal of Infectious Diseases 203 1 6 10 doi 10 1093 infdis jiq012 PMC 3086431 PMID 21148489 Kimberlin DW Whitley RJ March 1996 Antiviral resistance mechanisms clinical significance and future implications The Journal of Antimicrobial Chemotherapy 37 3 403 21 doi 10 1093 jac 37 3 403 PMID 9182098 a b Irwin K Renzette N Kowalik T Jensen J 2016 Antiviral drug resistance as an adaptive process Virus Evolution 2 1 vew014 doi 10 1093 ve vew014 PMC 5499642 PMID 28694997 Moscona A 2009 Global transmission of oseltamivir resistant influenza New England Journal of Medicine 360 10 953 56 doi 10 1056 NEJMp0900648 PMID 19258250 S2CID 205104988 Strasfeld L Chou S 2010 Antiviral Drug Resistance Mechanisms and Clinical Implications Infectious Disease Clinics of North America 24 2 413 37 doi 10 1016 j idc 2010 01 001 PMC 2871161 PMID 20466277 Understanding How Vaccines Work Center for Disease Control 17 August 2021 Retrieved 11 October 2021 a b Heymann D L Aylward R B 2006 Mass vaccination When and why Current Topics in Microbiology and Immunology Vol 304 pp 1 16 doi 10 1007 3 540 36583 4 1 ISBN 978 3 540 29382 8 PMID 16989261 S2CID 25259803 Seither R Masalovich S Knighton C L Mellerson J Singleton J A Greby S M Centers for Disease Control Prevention CDC 2014 Vaccination Coverage Among Children in Kindergarten United States 2013 14 School Year MMWR 63 41 913 920 PMC 4584748 PMID 25321068 Omer SB Salmon DA Orenstein WA deHart MP Halsey N May 2009 Vaccine Refusal Mandatory Immunization and the Risks of Vaccine Preventable Diseases New England Journal of Medicine 360 19 1981 88 doi 10 1056 NEJMsa0806477 PMID 19420367 Vaccines Do Not Cause Autism Centers for Disease Control and Prevention 23 November 2015 Retrieved 20 October 2016 Immunization Safety Review Committee 2004 Immunization Safety Review Vaccines and Autism The National Academies Press ISBN 0 309 09237 X MMR vaccine National Health Service Retrieved 20 October 2016 Hendriksz T Malouf PH Sarmiento S Foy JE Overcoming patient barriers to immunizations AOA Health Watch 2013 9 14 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link Barriers and Strategies to Improving Influenza Vaccination among Health Care Personnel Centers for Disease Control and Prevention 7 September 2016 Retrieved 17 September 2016 Diekema DS 2005 Responding to parental refusals of immunization of children Pediatrics 115 5 1428 31 doi 10 1542 peds 2005 0316 PMID 15867060 Types of vaccine and adverse reactions PDF HPTN 052 HPTN Retrieved 29 September 2017 Rodger AJ Cambiano V Bruun T Vernazza P Collins S van Lunzen J Corbelli GM Estrada V Geretti AM Beloukas A Asboe D Viciana P Gutierrez F Clotet B Pradier C Gerstoft J Weber R Westling K Wandeler G Prins JM Rieger A Stoeckle M Kummerle T Bini T Ammassari A Gilson R Krznaric I Ristola M Zangerle R Handberg P Antela A Allan S Phillips AN Lundgren J 12 July 2016 Sexual Activity Without Condoms and Risk of HIV Transmission in Serodifferent Couples When the HIV Positive Partner Is Using Suppressive Antiretroviral Therapy JAMA 316 2 171 181 doi 10 1001 jama 2016 5148 PMID 27404185 Kunin Marina Engelhard Dan Thomas Shane Ashworth Mark Piterman Leon 15 October 2015 Challenges of the Pandemic Response in Primary Care during Pre Vaccination Period A Qualitative Study Israel Journal of Health Policy Research 4 1 32 doi 10 1186 s13584 015 0028 5 PMC 4606524 PMID 26473026 Lindegren Mary Louise Griffin Marie R Williams John V Edwards Kathryn M Zhu Yuwei Mitchel Ed Fry Alicia M Schaffner William Talbot H Keipp Pyrc Krzysztof 25 March 2015 Antiviral Treatment among Older Adults Hospitalized with Influenza 2006 2012 PLOS ONE 10 3 e0121952 Bibcode 2015PLoSO 1021952L doi 10 1371 journal pone 0121952 PMC 4373943 PMID 25807314 a b NACCHO December 2010 Public Health Use and Distribution of Antivirals NACCHO Think Tank Meeting Report PDF Report Archived from the original PDF on 22 October 2016 Retrieved 21 October 2016 Centers for Disease Control and Prevention H1N1 Flu Hodge J G Orenstein D G Antiviral Distribution and Dispensing A Review of Legal and Policy Issues Association of State and Territorial Health Officials ASTHO Funding and Guidance for State and Local Health Departments Centers for Disease Control and Prevention Retrieved 21 October 2016 Strategic National Stockpile SNS Centers for Disease Control and Prevention Retrieved 21 October 2016 Retrieved from https en wikipedia org w index php title Antiviral drug amp oldid 1137219481, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.