fbpx
Wikipedia

Zernike polynomials

In mathematics, the Zernike polynomials are a sequence of polynomials that are orthogonal on the unit disk. Named after optical physicist Frits Zernike, laureate of the 1953 Nobel Prize in Physics and the inventor of phase-contrast microscopy, they play important roles in various optics branches such as beam optics and imaging.[1][2]

The first 21 Zernike polynomials, ordered vertically by radial degree and horizontally by azimuthal degree

Definitions edit

There are even and odd Zernike polynomials. The even Zernike polynomials are defined as

 

(even function over the azimuthal angle  ), and the odd Zernike polynomials are defined as

 

(odd function over the azimuthal angle  ) where m and n are nonnegative integers with n ≥ m ≥ 0 (m = 0 for spherical Zernike polynomials),   is the azimuthal angle, ρ is the radial distance  , and   are the radial polynomials defined below. Zernike polynomials have the property of being limited to a range of −1 to +1, i.e.  . The radial polynomials   are defined as

 

for an even number of nm, while it is 0 for an odd number of nm. A special value is

 

Other representations edit

Rewriting the ratios of factorials in the radial part as products of binomials shows that the coefficients are integer numbers:

 .

A notation as terminating Gaussian hypergeometric functions is useful to reveal recurrences, to demonstrate that they are special cases of Jacobi polynomials, to write down the differential equations, etc.:

 

for nm even.

The inverse relation expands   for fixed   into  

 

with rational coefficients  [3]

 

for even  .

The factor   in the radial polynomial   may be expanded in a Bernstein basis of   for even   or   times a function of   for odd   in the range  . The radial polynomial may therefore be expressed by a finite number of Bernstein Polynomials with rational coefficients:

 

Noll's sequential indices edit

Applications often involve linear algebra, where an integral over a product of Zernike polynomials and some other factor builds a matrix elements. To enumerate the rows and columns of these matrices by a single index, a conventional mapping of the two indices n and l to a single index j has been introduced by Noll.[4] The table of this association   starts as follows (sequence A176988 in the OEIS).  

n,l 0,0 1,1 1,−1 2,0 2,−2 2,2 3,−1 3,1 3,−3 3,3
j 1 2 3 4 5 6 7 8 9 10
n,l 4,0 4,2 4,−2 4,4 4,−4 5,1 5,−1 5,3 5,−3 5,5
j 11 12 13 14 15 16 17 18 19 20

The rule is the following.

  • The even Zernike polynomials Z (with even azimuthal parts  , where   as   is a positive number) obtain even indices j.
  • The odd Z obtains (with odd azimuthal parts  , where   as   is a negative number) odd indices j.
  • Within a given n, a lower   results in a lower j.

OSA/ANSI standard indices edit

OSA [5] and ANSI single-index Zernike polynomials using:

 
n,l 0,0 1,-1 1,1 2,-2 2,0 2,2 3,-3 3,-1 3,1 3,3
j 0 1 2 3 4 5 6 7 8 9
n,l 4,-4 4,-2 4,0 4,2 4,4 5,-5 5,-3 5,-1 5,1 5,3
j 10 11 12 13 14 15 16 17 18 19

Fringe/University of Arizona indices edit

The Fringe indexing scheme is used in commercial optical design software and optical testing in, e.g., photolithography.[6][7]

 

where   is the sign or signum function. The first 20 fringe numbers are listed below.

n,l 0,0 1,1 1,−1 2,0 2,2 2,-2 3,1 3,-1 4,0 3,3
j 1 2 3 4 5 6 7 8 9 10
n,l 3,-3 4,2 4,−2 5,1 5,−1 6,0 4,4 4,-4 5,3 5,-3
j 11 12 13 14 15 16 17 18 19 20

Wyant indices edit

James C. Wyant uses the "Fringe" indexing scheme except it starts at 0 instead of 1 (subtract 1).[8] This method is commonly used including interferogram analysis software in Zygo interferometers and the open source software DFTFringe.

Properties edit

Orthogonality edit

The orthogonality in the radial part reads[9]

 

or

 

Orthogonality in the angular part is represented by the elementary

 
 
 

where   (sometimes called the Neumann factor because it frequently appears in conjunction with Bessel functions) is defined as 2 if   and 1 if  . The product of the angular and radial parts establishes the orthogonality of the Zernike functions with respect to both indices if integrated over the unit disk,

 

where   is the Jacobian of the circular coordinate system, and where   and   are both even.

Zernike transform edit

Any sufficiently smooth real-valued phase field over the unit disk   can be represented in terms of its Zernike coefficients (odd and even), just as periodic functions find an orthogonal representation with the Fourier series. We have

 

where the coefficients can be calculated using inner products. On the space of   functions on the unit disk, there is an inner product defined by

 

The Zernike coefficients can then be expressed as follows:

 

Alternatively, one can use the known values of phase function G on the circular grid to form a system of equations. The phase function is retrieved by the unknown-coefficient weighted product with (known values) of Zernike polynomial across the unit grid. Hence, coefficients can also be found by solving a linear system, for instance by matrix inversion. Fast algorithms to calculate the forward and inverse Zernike transform use symmetry properties of trigonometric functions, separability of radial and azimuthal parts of Zernike polynomials, and their rotational symmetries.

Symmetries edit

The reflections of trigonometric functions result that the parity with respect to reflection along the x axis is

  for l ≥ 0,
  for l < 0.

The π shifts of trigonometric functions result that the parity with respect to point reflection at the center of coordinates is

 

where   could as well be written   because   as even numbers are only cases to get non-vanishing Zernike polynomials. (If n is even then l is also even. If n is odd, then l is also odd.) This property is sometimes used to categorize Zernike polynomials into even and odd polynomials in terms of their angular dependence. (it is also possible to add another category with l = 0 since it has a special property of no angular dependence.)

  • Angularly even Zernike polynomials: Zernike polynomials with even l so that  
  • Angularly odd Zernike polynomials: Zernike polynomials with odd l so that  

The radial polynomials are also either even or odd, depending on order n or m:

 

These equalities are easily seen since   with an odd (even) m contains only odd (even) powers to ρ (see examples of   below).

The periodicity of the trigonometric functions results in invariance if rotated by multiples of   radian around the center:

 

Recurrence relations edit

The Zernike polynomials satisfy the following recurrence relation which depends neither on the degree nor on the azimuthal order of the radial polynomials:[10]

 

From the definition of   it can be seen that   and  . The following three-term recurrence relation[11] then allows to calculate all other  :

 

The above relation is especially useful since the derivative of   can be calculated from two radial Zernike polynomials of adjacent degree:[11]

 

The differential equation of the Gaussian Hypergeometric Function is equivalent to

 

Examples edit

Radial polynomials edit

The first few radial polynomials are:

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Zernike polynomials edit

The first few Zernike modes, at various indices, are shown below. They are normalized such that:  , which is equivalent to  .

  OSA/ANSI
index
( )
Noll
index
( )
Wyant
index
( )
Fringe/UA
index
( )
Radial
degree
( )
Azimuthal
degree
( )
  Classical name
  00 01 00 01 0 00   Piston (see, Wigner semicircle distribution)
  01 03 02 03 1 −1   Tilt (Y-Tilt, vertical tilt)
  02 02 01 02 1 +1   Tilt (X-Tilt, horizontal tilt)
  03 05 05 06 2 −2   Oblique astigmatism
  04 04 03 04 2 00   Defocus (longitudinal position)
  05 06 04 05 2 +2   Vertical astigmatism
  06 09 10 11 3 −3   Vertical trefoil
  07 07 07 08 3 −1   Vertical coma
  08 08 06 07 3 +1   Horizontal coma
  09 10 09 10 3 +3   Oblique trefoil
  10 15 17 18 4 −4   Oblique quadrafoil
  11 13 12 13 4 −2   Oblique secondary astigmatism
  12 11 08 09 4 00   Primary spherical
  13 12 11 12 4 +2   Vertical secondary astigmatism
  14 14 16 17 4 +4   Vertical quadrafoil

Applications edit

 
Result of the first 21 Zernike polynomials (as above) introduced as aberrations on a flat-top beam. The beam is imaged by a lens, effecting a Fourier transform, whose intensity is represented in this picture

The functions are a basis defined over the circular support area, typically the pupil planes in classical optical imaging at visible and infrared wavelengths through systems of lenses and mirrors of finite diameter. Their advantages are the simple analytical properties inherited from the simplicity of the radial functions and the factorization in radial and azimuthal functions; this leads, for example, to closed-form expressions of the two-dimensional Fourier transform in terms of Bessel functions.[12][13] Their disadvantage, in particular if high n are involved, is the unequal distribution of nodal lines over the unit disk, which introduces ringing effects near the perimeter  , which often leads attempts to define other orthogonal functions over the circular disk.[14][15][16]

In precision optical manufacturing, Zernike polynomials are used to characterize higher-order errors observed in interferometric analyses. In wavefront slope sensors like the Shack-Hartmann, Zernike coefficients of the wavefront can be obtained by fitting measured slopes with Zernike polynomial derivatives averaged over the sampling subapertures.[17] In optometry and ophthalmology, Zernike polynomials are used to describe wavefront aberrations of the cornea or lens from an ideal spherical shape, which result in refraction errors. They are also commonly used in adaptive optics, where they can be used to characterize atmospheric distortion. Obvious applications for this are IR or visual astronomy and satellite imagery.

Another application of the Zernike polynomials is found in the Extended Nijboer–Zernike theory of diffraction and aberrations.

Zernike polynomials are widely used as basis functions of image moments. Since Zernike polynomials are orthogonal to each other, Zernike moments can represent properties of an image with no redundancy or overlap of information between the moments. Although Zernike moments are significantly dependent on the scaling and the translation of the object in a region of interest (ROI), their magnitudes are independent of the rotation angle of the object.[18] Thus, they can be utilized to extract features from images that describe the shape characteristics of an object. For instance, Zernike moments are utilized as shape descriptors to classify benign and malignant breast masses[19] or the surface of vibrating disks.[20] Zernike Moments also have been used to quantify shape of osteosarcoma cancer cell lines in single cell level.[21] Moreover, Zernike Moments have been used for early detection of Alzheimer's disease by extracting discriminative information from the MR images of Alzheimer's disease, Mild cognitive impairment, and Healthy groups.[22]

Higher dimensions edit

The concept translates to higher dimensions D if multinomials   in Cartesian coordinates are converted to hyperspherical coordinates,  , multiplied by a product of Jacobi polynomials of the angular variables. In   dimensions, the angular variables are spherical harmonics, for example. Linear combinations of the powers   define an orthogonal basis   satisfying

 .

(Note that a factor   is absorbed in the definition of R here, whereas in   the normalization is chosen slightly differently. This is largely a matter of taste, depending on whether one wishes to maintain an integer set of coefficients or prefers tighter formulas if the orthogonalization is involved.) The explicit representation is[3]

 

for even  , else identical to zero.

See also edit

References edit

  1. ^ Zernike, F. (1934). "Beugungstheorie des Schneidenverfahrens und Seiner Verbesserten Form, der Phasenkontrastmethode". Physica. 1 (8): 689–704. Bibcode:1934Phy.....1..689Z. doi:10.1016/S0031-8914(34)80259-5.
  2. ^ Born, Max & Wolf, Emil (1999). Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7th ed.). Cambridge, UK: Cambridge University Press. p. 986. ISBN 9780521642224. (see also at Google Books)
  3. ^ a b Mathar, R. J. (2009). "Zernike Basis to Cartesian Transformations". Serbian Astronomical Journal. 179 (179): 107–120. arXiv:0809.2368. Bibcode:2009SerAJ.179..107M. doi:10.2298/SAJ0979107M. S2CID 115159231.
  4. ^ Noll, R. J. (1976). "Zernike polynomials and atmospheric turbulence" (PDF). J. Opt. Soc. Am. 66 (3): 207. Bibcode:1976JOSA...66..207N. doi:10.1364/JOSA.66.000207.
  5. ^ Thibos, L. N.; Applegate, R. A.; Schwiegerling, J. T.; Webb, R. (2002). "Standards for reporting the optical aberrations of eyes" (PDF). Journal of Refractive Surgery. 18 (5): S652-60. doi:10.3928/1081-597X-20020901-30. PMID 12361175.
  6. ^ Loomis, J., "A Computer Program for Analysis of Interferometric Data," Optical Interferograms, Reduction and Interpretation, ASTM STP 666, A. H. Guenther and D. H. Liebenberg, Eds., American Society for Testing and Materials, 1978, pp. 71–86.
  7. ^ Genberg, V. L.; Michels, G. J.; Doyle, K. B. (2002). "Orthogonality of Zernike polynomials". Optomechanical design and Engineering 2002. Proc SPIE. Vol. 4771. pp. 276–286. doi:10.1117/12.482169.
  8. ^ Eric P. Goodwin; James C. Wyant (2006). Field Guide to Interferometric Optical Testing. p. 25. ISBN 0-8194-6510-0.
  9. ^ Lakshminarayanan, V.; Fleck, Andre (2011). "Zernike polynomials: a guide". J. Mod. Opt. 58 (7): 545–561. Bibcode:2011JMOp...58..545L. doi:10.1080/09500340.2011.554896. S2CID 120905947.
  10. ^ Honarvar Shakibaei, Barmak (2013). "Recursive formula to compute Zernike radial polynomials". Opt. Lett. 38 (14): 2487–2489. Bibcode:2013OptL...38.2487H. doi:10.1364/OL.38.002487. PMID 23939089.
  11. ^ a b Kintner, E. C. (1976). "On the mathematical properties of the Zernike Polynomials". Opt. Acta. 23 (8): 679–680. Bibcode:1976AcOpt..23..679K. doi:10.1080/713819334.
  12. ^ Tatulli, E. (2013). "Transformation of Zernike coefficients: a Fourier-based method for scaled, translated, and rotated wavefront apertures". J. Opt. Soc. Am. A. 30 (4): 726–32. arXiv:1302.7106. Bibcode:2013JOSAA..30..726T. doi:10.1364/JOSAA.30.000726. PMID 23595334. S2CID 23491106.
  13. ^ Janssen, A. J. E. M. (2011). "New analytic results for the Zernike Circle Polynomials from a basic result in the Nijboer-Zernike diffraction theory". Journal of the European Optical Society: Rapid Publications. 6: 11028. Bibcode:2011JEOS....6E1028J. doi:10.2971/jeos.2011.11028.
  14. ^ Barakat, Richard (1980). "Optimum balanced wave-front aberrations for radially symmetric amplitude distributions: Generalizations of Zernike polynomials". J. Opt. Soc. Am. 70 (6): 739–742. Bibcode:1980JOSA...70..739B. doi:10.1364/JOSA.70.000739.
  15. ^ Janssen, A. J. E. M. (2011). "A generalization of the Zernike circle polynomials for forward and inverse problems in diffraction theory". arXiv:1110.2369 [math-ph].
  16. ^ Mathar, R. J. (2018). "Orthogonal basis function over the unit circle with the minimax property". arXiv:1802.09518 [math.NA].
  17. ^ Akondi, Vyas; Dubra, Alfredo (22 June 2020). "Average gradient of Zernike polynomials over polygons". Optics Express. 28 (13): 18876–18886. Bibcode:2020OExpr..2818876A. doi:10.1364/OE.393223. ISSN 1094-4087. PMC 7340383. PMID 32672177.
  18. ^ Tahmasbi, A. (2010). An Effective Breast Mass Diagnosis System using Zernike Moments. 17th Iranian Conf. on Biomedical Engineering (ICBME'2010). Isfahan, Iran: IEEE. pp. 1–4. doi:10.1109/ICBME.2010.5704941.
  19. ^ Tahmasbi, A.; Saki, F.; Shokouhi, S.B. (2011). "Classification of Benign and Malignant Masses Based on Zernike Moments". Computers in Biology and Medicine. 41 (8): 726–735. doi:10.1016/j.compbiomed.2011.06.009. PMID 21722886.
  20. ^ Rdzanek, W. P. (2018). "Sound radiation of a vibrating elastically supported circular plate embedded into a flat screen revisited using the Zernike circle polynomials". J. Sound Vib. 434: 91–125. Bibcode:2018JSV...434...92R. doi:10.1016/j.jsv.2018.07.035. S2CID 125512636.
  21. ^ Alizadeh, Elaheh; Lyons, Samanthe M; Castle, Jordan M; Prasad, Ashok (2016). "Measuring systematic changes in invasive cancer cell shape using Zernike moments". Integrative Biology. 8 (11): 1183–1193. doi:10.1039/C6IB00100A. PMID 27735002.
  22. ^ Gorji, H. T., and J. Haddadnia. "A novel method for early diagnosis of Alzheimer’s disease based on pseudo Zernike moment from structural MRI." Neuroscience 305 (2015): 361-371.
  • Weisstein, Eric W. "Zernike Polynomial". MathWorld.
  • Andersen, Torben B. (2018). "Efficient and robust recurrence relations for the Zernike circle polynomials and their derivatives in Cartesian coordinates". Opt. Express. 26 (15): 18878–18896. Bibcode:2018OExpr..2618878A. doi:10.1364/OE.26.018878. PMID 30114148.
  • Bhatia, A. B.; Wolf, E. (1952). "The Zernike circle polynomials occurring in diffraction theory". Proc. Phys. Soc. B. 65 (11): 909–910. Bibcode:1952PPSB...65..909B. doi:10.1088/0370-1301/65/11/112.
  • Callahan, P. G.; De Graef, M. (2012). "Precipitate shape fitting and reconstruction by means of 3D Zernike functions". Modelling and Simulation in Materials Science and Engineering. 20 (1): 015003. Bibcode:2012MSMSE..20a5003C. doi:10.1088/0965-0393/20/1/015003. S2CID 121700658.
  • Campbell, C. E. (2003). "Matrix method to find a new set of Zernike coefficients form an original set when the aperture radius is changed". J. Opt. Soc. Am. A. 20 (2): 209–217. Bibcode:2003JOSAA..20..209C. doi:10.1364/JOSAA.20.000209. PMID 12570287.
  • Cerjan, C. (2007). "The Zernike-Bessel representation and its application to Hankel transforms". J. Opt. Soc. Am. A. 24 (6): 1609–16. Bibcode:2007JOSAA..24.1609C. doi:10.1364/JOSAA.24.001609. PMID 17491628.
  • Comastri, S. A.; Perez, L. I.; Perez, G. D.; Martin, G.; Bastida Cerjan, K. (2007). "Zernike expansion coefficients: rescaling and decentering for different pupils and evaluation of corneal aberrations". J. Opt. Soc. Am. A. 9 (3): 209–221. Bibcode:2007JOptA...9..209C. doi:10.1088/1464-4258/9/3/001.
  • Conforti, G. (1983). "Zernike aberration coefficients from Seidel and higher-order power-series coefficients". Opt. Lett. 8 (7): 407–408. Bibcode:1983OptL....8..407C. doi:10.1364/OL.8.000407. PMID 19718130.
  • Dai, G-m.; Mahajan, V. N. (2007). "Zernike annular polynomials and atmospheric turbulence". J. Opt. Soc. Am. A. 24 (1): 139–155. Bibcode:2007JOSAA..24..139D. doi:10.1364/JOSAA.24.000139. PMID 17164852.
  • Dai, G-m. (2006). "Scaling Zernike expansion coefficients to smaller pupil sizes: a simpler formula". J. Opt. Soc. Am. A. 23 (3): 539–543. Bibcode:2006JOSAA..23..539D. doi:10.1364/JOSAA.23.000539. PMID 16539048.
  • Díaz, J. A.; Fernández-Dorado, J.; Pizarro, C.; Arasa, J. (2009). "Zernike Coefficients for Concentric, Circular, Scaled Pupils: An Equivalent Expression". Journal of Modern Optics. 56 (1): 149–155. Bibcode:2009JMOp...56..131D. doi:10.1080/09500340802531224. S2CID 122620015.
  • Díaz, J. A.; Fernández-Dorado, J. "Zernike Coefficients for Concentric, Circular, Scaled Pupils". from The Wolfram Demonstrations Project.
  • Farokhi, Sajad; Shamsuddin, Siti Mariyam; Flusser, Jan; Sheikh, U.U.; Khansari, Mohammad; Jafari-Khouzani, Kourosh (2013). "Rotation and noise invariant near-infrared face recognition by means of Zernike moments and spectral regression discriminant analysis". Journal of Electronic Imaging. 22 (1): 013030. Bibcode:2013JEI....22a3030F. doi:10.1117/1.JEI.22.1.013030. S2CID 16758261.
  • Gu, J.; Shu, H. Z.; Toumoulin, C.; Luo, L. M. (2002). "A novel algorithm for fast computation of Zernike moments". Pattern Recognition. 35 (12): 2905–2911. Bibcode:2002PatRe..35.2905G. doi:10.1016/S0031-3203(01)00194-7.
  • Herrmann, J. (1981). "Cross coupling and aliasing in modal wave-front estimation". J. Opt. Soc. Am. 71 (8): 989. Bibcode:1981JOSA...71..989H. doi:10.1364/JOSA.71.000989.
  • Hu, P. H.; Stone, J.; Stanley, T. (1989). "Application of Zernike polynomials to atmospheric propagation problems". J. Opt. Soc. Am. A. 6 (10): 1595. Bibcode:1989JOSAA...6.1595H. doi:10.1364/JOSAA.6.001595.
  • Kintner, E. C. (1976). "On the mathematical properties of the Zernike Polynomials". Opt. Acta. 23 (8): 679–680. Bibcode:1976AcOpt..23..679K. doi:10.1080/713819334.
  • Lawrence, G. N.; Chow, W. W. (1984). "Wave-front tomography by Zernike Polynomial decomposition". Opt. Lett. 9 (7): 267–269. Bibcode:1984OptL....9..267L. doi:10.1364/OL.9.000267. PMID 19721566.
  • Liu, Haiguang; Morris, Richard J.; Hexemer, A.; Grandison, Scott; Zwart, Peter H. (2012). "Computation of small-angle scattering profiles with three-dimensional Zernike polynomials". Acta Crystallogr. A. 68 (2): 278–285. doi:10.1107/S010876731104788X. PMID 22338662.
  • Lundström, L.; Unsbo, P. (2007). "Transformation of Zernike coefficients: scaled, translated and rotated wavefronts with circular and elliptical pupils". J. Opt. Soc. Am. A. 24 (3): 569–77. Bibcode:2007JOSAA..24..569L. doi:10.1364/JOSAA.24.000569. PMID 17301846.
  • Mahajan, V. N. (1981). "Zernike annular polynomials for imaging systems with annular pupils". J. Opt. Soc. Am. 71: 75. Bibcode:1981JOSA...71...75M. doi:10.1364/JOSA.71.000075.
  • Prata Jr, A.; Rusch, W. V. T. (1989). "Algorithm for computation of Zernike polynomials expansion coefficients". Appl. Opt. 28 (4): 749–54. Bibcode:1989ApOpt..28..749P. doi:10.1364/AO.28.000749. PMID 20548554.
  • Schwiegerling, J. (2002). "Scaling Zernike expansion coefficients to different pupil sizes". J. Opt. Soc. Am. A. 19 (10): 1937–45. Bibcode:2002JOSAA..19.1937S. doi:10.1364/JOSAA.19.001937. PMID 12365613.
  • Sheppard, C. J. R.; Campbell, S.; Hirschhorn, M. D. (2004). "Zernike expansion of separable functions in Cartesian coordinates". Appl. Opt. 43 (20): 3963–6. Bibcode:2004ApOpt..43.3963S. doi:10.1364/AO.43.003963. PMID 15285082.
  • Shu, H.; Luo, L.; Han, G.; Coatrieux, J.-L. (2006). "General method to derive the relationship between two sets of Zernike coefficients corresponding to different aperture sizes". J. Opt. Soc. Am. A. 23 (8): 1960–1966. Bibcode:2006JOSAA..23.1960S. doi:10.1364/JOSAA.23.001960. PMC 1961626. PMID 16835654.
  • Swantner, W.; Chow, W. W. (1994). "Gram-Schmidt orthogonalization of Zernike polynomials for general aperture shapes". Appl. Opt. 33 (10): 1832–7. Bibcode:1994ApOpt..33.1832S. doi:10.1364/AO.33.001832. PMID 20885515.
  • Tango, W. J. (1977). "The circle polynomials of Zernike and their application in optics". Appl. Phys. A. 13 (4): 327–332. Bibcode:1977ApPhy..13..327T. doi:10.1007/BF00882606. S2CID 120469275.
  • Tyson, R. K. (1982). "Conversion of Zernike aberration coefficients to Seidel and higher-order power series aberration coefficients". Opt. Lett. 7 (6): 262–264. Bibcode:1982OptL....7..262T. doi:10.1364/OL.7.000262. PMID 19710893.
  • Wang, J. Y.; Silva, D. E. (1980). "Wave-front interpretation with Zernike Polynomials". Appl. Opt. 19 (9): 1510–8. Bibcode:1980ApOpt..19.1510W. doi:10.1364/AO.19.001510. PMID 20221066.
  • Barakat, R. (1980). "Optimum balanced wave-front aberrations for radially symmetric amplitude distributions: Generalizations of Zernike polynomials". J. Opt. Soc. Am. 70 (6): 739. Bibcode:1980JOSA...70..739B. doi:10.1364/JOSA.70.000739.
  • ten Brummelaar, T. A. (1996). "Modeling atmospheric wave aberrations and astronomical instrumentation using the polynomials of Zernike". Opt. Commun. 132 (3–4): 329–342. Bibcode:1996OptCo.132..329T. doi:10.1016/0030-4018(96)00407-5.
  • Novotni, M.; Klein, R. (2003). "3D zernike descriptors for content based shape retrieval". Proceedings of the eighth ACM symposium on Solid modeling and applications (PDF). pp. 216–225. CiteSeerX 10.1.1.14.4970. doi:10.1145/781606.781639. ISBN 978-1581137064. S2CID 10514681.
  • Novotni, M.; Klein, R. (2004). "Shape retrieval using 3D Zernike descriptors" (PDF). Computer-Aided Design. 36 (11): 1047–1062. CiteSeerX 10.1.1.71.8238. doi:10.1016/j.cad.2004.01.005.
  • Farokhi, Sajad; Shamsuddin, Siti Mariyam; Sheikh, U.U.; Flusser, Jan (2014). "Near Infrared Face Recognition: A Comparison of Moment-Based Approaches". The 8th International Conference on Robotic, Vision, Signal Processing & Power Applications. Lecture Notes in Electrical Engineering. Vol. 291. pp. 129–135. doi:10.1007/978-981-4585-42-2_15. ISBN 978-981-4585-41-5.
  • Farokhi, Sajad; Shamsuddin, Siti Mariyam; Flusser, Jan; Sheikh, U.U.; Khansari, Mohammad; Jafari-Khouzani, Kourosh (2014). "Near infrared face recognition by combining Zernike moments and undecimated discrete wavelet transform". Digital Signal Processing. 31 (1): 13–27. doi:10.1016/j.dsp.2014.04.008.

External links edit

  • The Extended Nijboer-Zernike website
  • MATLAB code for fast calculation of Zernike moments
  • Python/NumPy library for calculating Zernike polynomials
  • Zernike aberrations at Telescope Optics
  • Example: using WolframAlpha to plot Zernike Polynomials
  • orthopy, a Python package computing orthogonal polynomials (including Zernike polynomials)

zernike, polynomials, mathematics, sequence, polynomials, that, orthogonal, unit, disk, named, after, optical, physicist, frits, zernike, laureate, 1953, nobel, prize, physics, inventor, phase, contrast, microscopy, they, play, important, roles, various, optic. In mathematics the Zernike polynomials are a sequence of polynomials that are orthogonal on the unit disk Named after optical physicist Frits Zernike laureate of the 1953 Nobel Prize in Physics and the inventor of phase contrast microscopy they play important roles in various optics branches such as beam optics and imaging 1 2 The first 21 Zernike polynomials ordered vertically by radial degree and horizontally by azimuthal degree Contents 1 Definitions 1 1 Other representations 1 2 Noll s sequential indices 1 3 OSA ANSI standard indices 1 4 Fringe University of Arizona indices 1 5 Wyant indices 2 Properties 2 1 Orthogonality 2 2 Zernike transform 2 3 Symmetries 2 4 Recurrence relations 3 Examples 3 1 Radial polynomials 3 2 Zernike polynomials 4 Applications 5 Higher dimensions 6 See also 7 References 8 External linksDefinitions editThere are even and odd Zernike polynomials The even Zernike polynomials are defined as Znm r f Rnm r cos mf displaystyle Z n m rho varphi R n m rho cos m varphi nbsp even function over the azimuthal angle f displaystyle varphi nbsp and the odd Zernike polynomials are defined as Zn m r f Rnm r sin mf displaystyle Z n m rho varphi R n m rho sin m varphi nbsp odd function over the azimuthal angle f displaystyle varphi nbsp where m and n are nonnegative integers with n m 0 m 0 for spherical Zernike polynomials f displaystyle varphi nbsp is the azimuthal angle r is the radial distance 0 r 1 displaystyle 0 leq rho leq 1 nbsp and Rnm displaystyle R n m nbsp are the radial polynomials defined below Zernike polynomials have the property of being limited to a range of 1 to 1 i e Znm r f 1 displaystyle Z n m rho varphi leq 1 nbsp The radial polynomials Rnm displaystyle R n m nbsp are defined as Rnm r k 0n m2 1 k n k k n m2 k n m2 k rn 2k displaystyle R n m rho sum k 0 tfrac n m 2 frac 1 k n k k left tfrac n m 2 k right left tfrac n m 2 k right rho n 2k nbsp for an even number of n m while it is 0 for an odd number of n m A special value is Rnm 1 1 displaystyle R n m 1 1 nbsp Other representations edit Rewriting the ratios of factorials in the radial part as products of binomials shows that the coefficients are integer numbers Rnm r k 0n m2 1 k n kk n 2kn m2 k rn 2k displaystyle R n m rho sum k 0 tfrac n m 2 1 k binom n k k binom n 2k tfrac n m 2 k rho n 2k nbsp A notation as terminating Gaussian hypergeometric functions is useful to reveal recurrences to demonstrate that they are special cases of Jacobi polynomials to write down the differential equations etc Rnm r 1 n m 2rmP n m 2 m 0 1 2r2 nn m2 rn 2F1 n m2 n m2 n r 2 1 n m2 n m2m rm 2F1 1 n m2 n m2 1 m r2 displaystyle begin aligned R n m rho amp 1 n m 2 rho m P n m 2 m 0 1 2 rho 2 amp binom n tfrac n m 2 rho n 2 F 1 left tfrac n m 2 tfrac n m 2 n rho 2 right amp 1 tfrac n m 2 binom tfrac n m 2 m rho m 2 F 1 left 1 tfrac n m 2 tfrac n m 2 1 m rho 2 right end aligned nbsp for n m even The inverse relation expands rj displaystyle rho j nbsp for fixed m j displaystyle m leq j nbsp into Rnm r displaystyle R n m rho nbsp rj n m mod2 jhj n mRnm r displaystyle rho j sum n equiv m pmod 2 j h j n m R n m rho nbsp with rational coefficients hj n m displaystyle h j n m nbsp 3 hj n m n 11 j n2 j m 2 n m 2 j n 2 n m 2 displaystyle h j n m frac n 1 1 frac j n 2 frac binom j m 2 n m 2 binom j n 2 n m 2 nbsp for even j m 0 2 4 displaystyle j m 0 2 4 ldots nbsp The factor rn 2k displaystyle rho n 2k nbsp in the radial polynomial Rnm r displaystyle R n m rho nbsp may be expanded in a Bernstein basis of bs n 2 r2 displaystyle b s n 2 rho 2 nbsp for even n displaystyle n nbsp or r displaystyle rho nbsp times a function of bs n 1 2 r2 displaystyle b s n 1 2 rho 2 nbsp for odd n displaystyle n nbsp in the range n 2 k s n 2 displaystyle lfloor n 2 rfloor k leq s leq lfloor n 2 rfloor nbsp The radial polynomial may therefore be expressed by a finite number of Bernstein Polynomials with rational coefficients Rnm r 1 n 2 m 2 rnmod2 s m 2 n 2 1 n 2 s s m 2 n m 2s m 2 bs n 2 r2 displaystyle R n m rho frac 1 binom lfloor n 2 rfloor lfloor m 2 rfloor rho n mod 2 sum s lfloor m 2 rfloor lfloor n 2 rfloor 1 lfloor n 2 rfloor s binom s lfloor m 2 rfloor binom n m 2 s lceil m 2 rceil b s lfloor n 2 rfloor rho 2 nbsp Noll s sequential indices edit Applications often involve linear algebra where an integral over a product of Zernike polynomials and some other factor builds a matrix elements To enumerate the rows and columns of these matrices by a single index a conventional mapping of the two indices n and l to a single index j has been introduced by Noll 4 The table of this association Znl Zj displaystyle Z n l rightarrow Z j nbsp starts as follows sequence A176988 in the OEIS j n n 1 2 l 0 l gt 0 n 0 1 mod4 0 l lt 0 n 2 3 mod4 1 l 0 n 2 3 mod4 1 l 0 n 0 1 mod4 displaystyle j frac n n 1 2 l left begin array ll 0 amp l gt 0 land n equiv 0 1 pmod 4 0 amp l lt 0 land n equiv 2 3 pmod 4 1 amp l geq 0 land n equiv 2 3 pmod 4 1 amp l leq 0 land n equiv 0 1 pmod 4 end array right nbsp n l 0 0 1 1 1 1 2 0 2 2 2 2 3 1 3 1 3 3 3 3j 1 2 3 4 5 6 7 8 9 10n l 4 0 4 2 4 2 4 4 4 4 5 1 5 1 5 3 5 3 5 5j 11 12 13 14 15 16 17 18 19 20The rule is the following The even Zernike polynomials Z with even azimuthal parts cos mf displaystyle cos m varphi nbsp where m l displaystyle m l nbsp as l displaystyle l nbsp is a positive number obtain even indices j The odd Z obtains with odd azimuthal parts sin mf displaystyle sin m varphi nbsp where m l displaystyle m left vert l right vert nbsp as l displaystyle l nbsp is a negative number odd indices j Within a given n a lower l displaystyle left vert l right vert nbsp results in a lower j OSA ANSI standard indices edit OSA 5 and ANSI single index Zernike polynomials using j n n 2 l2 displaystyle j frac n n 2 l 2 nbsp n l 0 0 1 1 1 1 2 2 2 0 2 2 3 3 3 1 3 1 3 3j 0 1 2 3 4 5 6 7 8 9n l 4 4 4 2 4 0 4 2 4 4 5 5 5 3 5 1 5 1 5 3j 10 11 12 13 14 15 16 17 18 19Fringe University of Arizona indices edit The Fringe indexing scheme is used in commercial optical design software and optical testing in e g photolithography 6 7 j 1 n l 2 2 2 l 1 sgn l2 displaystyle j left 1 frac n l 2 right 2 2 l frac 1 operatorname sgn l 2 nbsp where sgn l displaystyle operatorname sgn l nbsp is the sign or signum function The first 20 fringe numbers are listed below n l 0 0 1 1 1 1 2 0 2 2 2 2 3 1 3 1 4 0 3 3j 1 2 3 4 5 6 7 8 9 10n l 3 3 4 2 4 2 5 1 5 1 6 0 4 4 4 4 5 3 5 3j 11 12 13 14 15 16 17 18 19 20Wyant indices edit James C Wyant uses the Fringe indexing scheme except it starts at 0 instead of 1 subtract 1 8 This method is commonly used including interferogram analysis software in Zygo interferometers and the open source software DFTFringe Properties editOrthogonality edit The orthogonality in the radial part reads 9 012n 2Rnm r 2n 2Rn m r rdr dn n displaystyle int 0 1 sqrt 2n 2 R n m rho sqrt 2n 2 R n m rho rho d rho delta n n nbsp or 10Rnm r Rn m r rdr dn n 2n 2 displaystyle underset 0 overset 1 mathop int R n m rho R n m rho rho d rho frac delta n n 2n 2 nbsp Orthogonality in the angular part is represented by the elementary 02pcos mf cos m f df ϵmpdm m displaystyle int 0 2 pi cos m varphi cos m varphi d varphi epsilon m pi delta m m nbsp 02psin mf sin m f df pdm m m 0 displaystyle int 0 2 pi sin m varphi sin m varphi d varphi pi delta m m quad m neq 0 nbsp 02pcos mf sin m f df 0 displaystyle int 0 2 pi cos m varphi sin m varphi d varphi 0 nbsp where ϵm displaystyle epsilon m nbsp sometimes called the Neumann factor because it frequently appears in conjunction with Bessel functions is defined as 2 if m 0 displaystyle m 0 nbsp and 1 if m 0 displaystyle m neq 0 nbsp The product of the angular and radial parts establishes the orthogonality of the Zernike functions with respect to both indices if integrated over the unit disk Znl r f Zn l r f d2r ϵlp2n 2dn n dl l displaystyle int Z n l rho varphi Z n l rho varphi d 2 r frac epsilon l pi 2n 2 delta n n delta l l nbsp where d2r rdrdf displaystyle d 2 r rho d rho d varphi nbsp is the Jacobian of the circular coordinate system and where n l displaystyle n l nbsp and n l displaystyle n l nbsp are both even Zernike transform edit Any sufficiently smooth real valued phase field over the unit disk G r f displaystyle G rho varphi nbsp can be represented in terms of its Zernike coefficients odd and even just as periodic functions find an orthogonal representation with the Fourier series We have G r f m n am nZnm r f bm nZn m r f displaystyle G rho varphi sum m n left a m n Z n m rho varphi b m n Z n m rho varphi right nbsp where the coefficients can be calculated using inner products On the space of L2 displaystyle L 2 nbsp functions on the unit disk there is an inner product defined by F G F r f G r f rdrdf displaystyle langle F G rangle int F rho varphi G rho varphi rho d rho d varphi nbsp The Zernike coefficients can then be expressed as follows am n 2n 2ϵmp G r f Znm r f bm n 2n 2ϵmp G r f Zn m r f displaystyle begin aligned a m n amp frac 2n 2 epsilon m pi left langle G rho varphi Z n m rho varphi right rangle b m n amp frac 2n 2 epsilon m pi left langle G rho varphi Z n m rho varphi right rangle end aligned nbsp Alternatively one can use the known values of phase function G on the circular grid to form a system of equations The phase function is retrieved by the unknown coefficient weighted product with known values of Zernike polynomial across the unit grid Hence coefficients can also be found by solving a linear system for instance by matrix inversion Fast algorithms to calculate the forward and inverse Zernike transform use symmetry properties of trigonometric functions separability of radial and azimuthal parts of Zernike polynomials and their rotational symmetries Symmetries edit The reflections of trigonometric functions result that the parity with respect to reflection along the x axis is Znl r f Znl r f displaystyle Z n l rho varphi Z n l rho varphi nbsp for l 0 Znl r f Znl r f displaystyle Z n l rho varphi Z n l rho varphi nbsp for l lt 0 The p shifts of trigonometric functions result that the parity with respect to point reflection at the center of coordinates is Znl r f 1 lZnl r f p displaystyle Z n l rho varphi 1 l Z n l rho varphi pi nbsp where 1 l displaystyle 1 l nbsp could as well be written 1 n displaystyle 1 n nbsp because n l displaystyle n l nbsp as even numbers are only cases to get non vanishing Zernike polynomials If n is even then l is also even If n is odd then l is also odd This property is sometimes used to categorize Zernike polynomials into even and odd polynomials in terms of their angular dependence it is also possible to add another category with l 0 since it has a special property of no angular dependence Angularly even Zernike polynomials Zernike polynomials with even l so that Znl r f Znl r f p displaystyle Z n l rho varphi Z n l rho varphi pi nbsp Angularly odd Zernike polynomials Zernike polynomials with odd l so that Znl r f Znl r f p displaystyle Z n l rho varphi Z n l rho varphi pi nbsp The radial polynomials are also either even or odd depending on order n or m Rnm r 1 nRnm r 1 mRnm r displaystyle R n m rho 1 n R n m rho 1 m R n m rho nbsp These equalities are easily seen since Rnm r displaystyle R n m rho nbsp with an odd even m contains only odd even powers to r see examples of Rnm r displaystyle R n m rho nbsp below The periodicity of the trigonometric functions results in invariance if rotated by multiples of 2p l displaystyle 2 pi l nbsp radian around the center Znl r f 2pkl Znl r f k 0 1 2 displaystyle Z n l left rho varphi tfrac 2 pi k l right Z n l rho varphi qquad k 0 pm 1 pm 2 cdots nbsp Recurrence relations edit The Zernike polynomials satisfy the following recurrence relation which depends neither on the degree nor on the azimuthal order of the radial polynomials 10 Rnm r Rn 2m r r Rn 1 m 1 r Rn 1m 1 r displaystyle begin aligned R n m rho R n 2 m rho rho left R n 1 left m 1 right rho R n 1 m 1 rho right text end aligned nbsp From the definition of Rnm displaystyle R n m nbsp it can be seen that Rmm r rm displaystyle R m m rho rho m nbsp and Rm 2m r m 2 r2 m 1 rm displaystyle R m 2 m rho m 2 rho 2 m 1 rho m nbsp The following three term recurrence relation 11 then allows to calculate all other Rnm r displaystyle R n m rho nbsp Rnm r 2 n 1 2n n 2 r2 m2 n n 2 Rn 2m r n n m 2 n m 2 Rn 4m r n m n m n 2 displaystyle R n m rho frac 2 n 1 2n n 2 rho 2 m 2 n n 2 R n 2 m rho n n m 2 n m 2 R n 4 m rho n m n m n 2 text nbsp The above relation is especially useful since the derivative of Rnm displaystyle R n m nbsp can be calculated from two radial Zernike polynomials of adjacent degree 11 ddrRnm r 2nm r2 1 n m m n 2r2 1 Rnm r n m n m Rn 2m r 2nr r2 1 displaystyle frac operatorname d operatorname d rho R n m rho frac 2nm rho 2 1 n m m n 2 rho 2 1 R n m rho n m n m R n 2 m rho 2n rho rho 2 1 text nbsp The differential equation of the Gaussian Hypergeometric Function is equivalent to r2 r2 1 d2dr2Rnm r n n 2 r2 m2 Rnm r r 1 3r2 ddrRnm r displaystyle rho 2 rho 2 1 frac d 2 d rho 2 R n m rho n n 2 rho 2 m 2 R n m rho rho 1 3 rho 2 frac d d rho R n m rho nbsp Examples editRadial polynomials edit The first few radial polynomials are R00 r 1 displaystyle R 0 0 rho 1 nbsp R11 r r displaystyle R 1 1 rho rho nbsp R20 r 2r2 1 displaystyle R 2 0 rho 2 rho 2 1 nbsp R22 r r2 displaystyle R 2 2 rho rho 2 nbsp R31 r 3r3 2r displaystyle R 3 1 rho 3 rho 3 2 rho nbsp R33 r r3 displaystyle R 3 3 rho rho 3 nbsp R40 r 6r4 6r2 1 displaystyle R 4 0 rho 6 rho 4 6 rho 2 1 nbsp R42 r 4r4 3r2 displaystyle R 4 2 rho 4 rho 4 3 rho 2 nbsp R44 r r4 displaystyle R 4 4 rho rho 4 nbsp R51 r 10r5 12r3 3r displaystyle R 5 1 rho 10 rho 5 12 rho 3 3 rho nbsp R53 r 5r5 4r3 displaystyle R 5 3 rho 5 rho 5 4 rho 3 nbsp R55 r r5 displaystyle R 5 5 rho rho 5 nbsp R60 r 20r6 30r4 12r2 1 displaystyle R 6 0 rho 20 rho 6 30 rho 4 12 rho 2 1 nbsp R62 r 15r6 20r4 6r2 displaystyle R 6 2 rho 15 rho 6 20 rho 4 6 rho 2 nbsp R64 r 6r6 5r4 displaystyle R 6 4 rho 6 rho 6 5 rho 4 nbsp R66 r r6 displaystyle R 6 6 rho rho 6 nbsp Zernike polynomials edit The first few Zernike modes at various indices are shown below They are normalized such that 02p 01Z2 rdrdϕ p displaystyle int 0 2 pi int 0 1 Z 2 cdot rho d rho d phi pi nbsp which is equivalent to Var Z unit circle 1 displaystyle operatorname Var Z text unit circle 1 nbsp Znl displaystyle Z n l nbsp OSA ANSIindex j displaystyle j nbsp Nollindex j displaystyle j nbsp Wyantindex j displaystyle j nbsp Fringe UAindex j displaystyle j nbsp Radialdegree n displaystyle n nbsp Azimuthaldegree l displaystyle l nbsp Zj displaystyle Z j nbsp Classical nameZ00 displaystyle Z 0 0 nbsp 0 0 0 1 0 0 0 1 0 0 0 1 displaystyle 1 nbsp Piston see Wigner semicircle distribution Z1 1 displaystyle Z 1 1 nbsp 0 1 0 3 0 2 0 3 1 1 2rsin ϕ displaystyle 2 rho sin phi nbsp Tilt Y Tilt vertical tilt Z11 displaystyle Z 1 1 nbsp 0 2 0 2 0 1 0 2 1 1 2rcos ϕ displaystyle 2 rho cos phi nbsp Tilt X Tilt horizontal tilt Z2 2 displaystyle Z 2 2 nbsp 0 3 0 5 0 5 0 6 2 2 6r2sin 2ϕ displaystyle sqrt 6 rho 2 sin 2 phi nbsp Oblique astigmatismZ20 displaystyle Z 2 0 nbsp 0 4 0 4 0 3 0 4 2 0 0 3 2r2 1 displaystyle sqrt 3 2 rho 2 1 nbsp Defocus longitudinal position Z22 displaystyle Z 2 2 nbsp 0 5 0 6 0 4 0 5 2 2 6r2cos 2ϕ displaystyle sqrt 6 rho 2 cos 2 phi nbsp Vertical astigmatismZ3 3 displaystyle Z 3 3 nbsp 0 6 0 9 10 11 3 3 8r3sin 3ϕ displaystyle sqrt 8 rho 3 sin 3 phi nbsp Vertical trefoilZ3 1 displaystyle Z 3 1 nbsp 0 7 0 7 0 7 0 8 3 1 8 3r3 2r sin ϕ displaystyle sqrt 8 3 rho 3 2 rho sin phi nbsp Vertical comaZ31 displaystyle Z 3 1 nbsp 0 8 0 8 0 6 0 7 3 1 8 3r3 2r cos ϕ displaystyle sqrt 8 3 rho 3 2 rho cos phi nbsp Horizontal comaZ33 displaystyle Z 3 3 nbsp 0 9 10 0 9 10 3 3 8r3cos 3ϕ displaystyle sqrt 8 rho 3 cos 3 phi nbsp Oblique trefoilZ4 4 displaystyle Z 4 4 nbsp 10 15 17 18 4 4 10r4sin 4ϕ displaystyle sqrt 10 rho 4 sin 4 phi nbsp Oblique quadrafoilZ4 2 displaystyle Z 4 2 nbsp 11 13 12 13 4 2 10 4r4 3r2 sin 2ϕ displaystyle sqrt 10 4 rho 4 3 rho 2 sin 2 phi nbsp Oblique secondary astigmatismZ40 displaystyle Z 4 0 nbsp 12 11 0 8 0 9 4 0 0 5 6r4 6r2 1 displaystyle sqrt 5 6 rho 4 6 rho 2 1 nbsp Primary sphericalZ42 displaystyle Z 4 2 nbsp 13 12 11 12 4 2 10 4r4 3r2 cos 2ϕ displaystyle sqrt 10 4 rho 4 3 rho 2 cos 2 phi nbsp Vertical secondary astigmatismZ44 displaystyle Z 4 4 nbsp 14 14 16 17 4 4 10r4cos 4ϕ displaystyle sqrt 10 rho 4 cos 4 phi nbsp Vertical quadrafoilApplications editFurther information Optical aberration Zernike model of aberrations nbsp Result of the first 21 Zernike polynomials as above introduced as aberrations on a flat top beam The beam is imaged by a lens effecting a Fourier transform whose intensity is represented in this pictureThe functions are a basis defined over the circular support area typically the pupil planes in classical optical imaging at visible and infrared wavelengths through systems of lenses and mirrors of finite diameter Their advantages are the simple analytical properties inherited from the simplicity of the radial functions and the factorization in radial and azimuthal functions this leads for example to closed form expressions of the two dimensional Fourier transform in terms of Bessel functions 12 13 Their disadvantage in particular if high n are involved is the unequal distribution of nodal lines over the unit disk which introduces ringing effects near the perimeter r 1 displaystyle rho approx 1 nbsp which often leads attempts to define other orthogonal functions over the circular disk 14 15 16 In precision optical manufacturing Zernike polynomials are used to characterize higher order errors observed in interferometric analyses In wavefront slope sensors like the Shack Hartmann Zernike coefficients of the wavefront can be obtained by fitting measured slopes with Zernike polynomial derivatives averaged over the sampling subapertures 17 In optometry and ophthalmology Zernike polynomials are used to describe wavefront aberrations of the cornea or lens from an ideal spherical shape which result in refraction errors They are also commonly used in adaptive optics where they can be used to characterize atmospheric distortion Obvious applications for this are IR or visual astronomy and satellite imagery Another application of the Zernike polynomials is found in the Extended Nijboer Zernike theory of diffraction and aberrations Zernike polynomials are widely used as basis functions of image moments Since Zernike polynomials are orthogonal to each other Zernike moments can represent properties of an image with no redundancy or overlap of information between the moments Although Zernike moments are significantly dependent on the scaling and the translation of the object in a region of interest ROI their magnitudes are independent of the rotation angle of the object 18 Thus they can be utilized to extract features from images that describe the shape characteristics of an object For instance Zernike moments are utilized as shape descriptors to classify benign and malignant breast masses 19 or the surface of vibrating disks 20 Zernike Moments also have been used to quantify shape of osteosarcoma cancer cell lines in single cell level 21 Moreover Zernike Moments have been used for early detection of Alzheimer s disease by extracting discriminative information from the MR images of Alzheimer s disease Mild cognitive impairment and Healthy groups 22 Higher dimensions editThe concept translates to higher dimensions D if multinomials x1ix2j xDk displaystyle x 1 i x 2 j cdots x D k nbsp in Cartesian coordinates are converted to hyperspherical coordinates rs s D displaystyle rho s s leq D nbsp multiplied by a product of Jacobi polynomials of the angular variables In D 3 displaystyle D 3 nbsp dimensions the angular variables are spherical harmonics for example Linear combinations of the powers rs displaystyle rho s nbsp define an orthogonal basis Rn l r displaystyle R n l rho nbsp satisfying 01rD 1Rn l r Rn l r dr dn n displaystyle int 0 1 rho D 1 R n l rho R n l rho d rho delta n n nbsp Note that a factor 2n D displaystyle sqrt 2n D nbsp is absorbed in the definition of R here whereas in D 2 displaystyle D 2 nbsp the normalization is chosen slightly differently This is largely a matter of taste depending on whether one wishes to maintain an integer set of coefficients or prefers tighter formulas if the orthogonalization is involved The explicit representation is 3 Rn l r 2n D s 0n l2 1 s n l2s n s 1 D2n l2 rn 2s 1 n l22n D s 0n l2 1 s n l2s s 1 n l D2n l2 r2s l 1 n l22n D n l D2 1n l2 rl 2F1 n l2 n l D2 l D2 r2 displaystyle begin aligned R n l rho amp sqrt 2n D sum s 0 tfrac n l 2 1 s tfrac n l 2 choose s n s 1 tfrac D 2 choose tfrac n l 2 rho n 2s amp 1 tfrac n l 2 sqrt 2n D sum s 0 tfrac n l 2 1 s tfrac n l 2 choose s s 1 tfrac n l D 2 choose tfrac n l 2 rho 2s l amp 1 tfrac n l 2 sqrt 2n D tfrac n l D 2 1 choose tfrac n l 2 rho l 2 F 1 left tfrac n l 2 tfrac n l D 2 l tfrac D 2 rho 2 right end aligned nbsp for even n l 0 displaystyle n l geq 0 nbsp else identical to zero See also edit nbsp Wikimedia Commons has media related to Zernike polynomials Jacobi polynomials Nijboer Zernike theory Pseudo Zernike polynomialsReferences edit Zernike F 1934 Beugungstheorie des Schneidenverfahrens und Seiner Verbesserten Form der Phasenkontrastmethode Physica 1 8 689 704 Bibcode 1934Phy 1 689Z doi 10 1016 S0031 8914 34 80259 5 Born Max amp Wolf Emil 1999 Principles of Optics Electromagnetic Theory of Propagation Interference and Diffraction of Light 7th ed Cambridge UK Cambridge University Press p 986 ISBN 9780521642224 see also at Google Books a b Mathar R J 2009 Zernike Basis to Cartesian Transformations Serbian Astronomical Journal 179 179 107 120 arXiv 0809 2368 Bibcode 2009SerAJ 179 107M doi 10 2298 SAJ0979107M S2CID 115159231 Noll R J 1976 Zernike polynomials and atmospheric turbulence PDF J Opt Soc Am 66 3 207 Bibcode 1976JOSA 66 207N doi 10 1364 JOSA 66 000207 Thibos L N Applegate R A Schwiegerling J T Webb R 2002 Standards for reporting the optical aberrations of eyes PDF Journal of Refractive Surgery 18 5 S652 60 doi 10 3928 1081 597X 20020901 30 PMID 12361175 Loomis J A Computer Program for Analysis of Interferometric Data Optical Interferograms Reduction and Interpretation ASTM STP 666 A H Guenther and D H Liebenberg Eds American Society for Testing and Materials 1978 pp 71 86 Genberg V L Michels G J Doyle K B 2002 Orthogonality of Zernike polynomials Optomechanical design and Engineering 2002 Proc SPIE Vol 4771 pp 276 286 doi 10 1117 12 482169 Eric P Goodwin James C Wyant 2006 Field Guide to Interferometric Optical Testing p 25 ISBN 0 8194 6510 0 Lakshminarayanan V Fleck Andre 2011 Zernike polynomials a guide J Mod Opt 58 7 545 561 Bibcode 2011JMOp 58 545L doi 10 1080 09500340 2011 554896 S2CID 120905947 Honarvar Shakibaei Barmak 2013 Recursive formula to compute Zernike radial polynomials Opt Lett 38 14 2487 2489 Bibcode 2013OptL 38 2487H doi 10 1364 OL 38 002487 PMID 23939089 a b Kintner E C 1976 On the mathematical properties of the Zernike Polynomials Opt Acta 23 8 679 680 Bibcode 1976AcOpt 23 679K doi 10 1080 713819334 Tatulli E 2013 Transformation of Zernike coefficients a Fourier based method for scaled translated and rotated wavefront apertures J Opt Soc Am A 30 4 726 32 arXiv 1302 7106 Bibcode 2013JOSAA 30 726T doi 10 1364 JOSAA 30 000726 PMID 23595334 S2CID 23491106 Janssen A J E M 2011 New analytic results for the Zernike Circle Polynomials from a basic result in the Nijboer Zernike diffraction theory Journal of the European Optical Society Rapid Publications 6 11028 Bibcode 2011JEOS 6E1028J doi 10 2971 jeos 2011 11028 Barakat Richard 1980 Optimum balanced wave front aberrations for radially symmetric amplitude distributions Generalizations of Zernike polynomials J Opt Soc Am 70 6 739 742 Bibcode 1980JOSA 70 739B doi 10 1364 JOSA 70 000739 Janssen A J E M 2011 A generalization of the Zernike circle polynomials for forward and inverse problems in diffraction theory arXiv 1110 2369 math ph Mathar R J 2018 Orthogonal basis function over the unit circle with the minimax property arXiv 1802 09518 math NA Akondi Vyas Dubra Alfredo 22 June 2020 Average gradient of Zernike polynomials over polygons Optics Express 28 13 18876 18886 Bibcode 2020OExpr 2818876A doi 10 1364 OE 393223 ISSN 1094 4087 PMC 7340383 PMID 32672177 Tahmasbi A 2010 An Effective Breast Mass Diagnosis System using Zernike Moments 17th Iranian Conf on Biomedical Engineering ICBME 2010 Isfahan Iran IEEE pp 1 4 doi 10 1109 ICBME 2010 5704941 Tahmasbi A Saki F Shokouhi S B 2011 Classification of Benign and Malignant Masses Based on Zernike Moments Computers in Biology and Medicine 41 8 726 735 doi 10 1016 j compbiomed 2011 06 009 PMID 21722886 Rdzanek W P 2018 Sound radiation of a vibrating elastically supported circular plate embedded into a flat screen revisited using the Zernike circle polynomials J Sound Vib 434 91 125 Bibcode 2018JSV 434 92R doi 10 1016 j jsv 2018 07 035 S2CID 125512636 Alizadeh Elaheh Lyons Samanthe M Castle Jordan M Prasad Ashok 2016 Measuring systematic changes in invasive cancer cell shape using Zernike moments Integrative Biology 8 11 1183 1193 doi 10 1039 C6IB00100A PMID 27735002 Gorji H T and J Haddadnia A novel method for early diagnosis of Alzheimer s disease based on pseudo Zernike moment from structural MRI Neuroscience 305 2015 361 371 Weisstein Eric W Zernike Polynomial MathWorld Andersen Torben B 2018 Efficient and robust recurrence relations for the Zernike circle polynomials and their derivatives in Cartesian coordinates Opt Express 26 15 18878 18896 Bibcode 2018OExpr 2618878A doi 10 1364 OE 26 018878 PMID 30114148 Bhatia A B Wolf E 1952 The Zernike circle polynomials occurring in diffraction theory Proc Phys Soc B 65 11 909 910 Bibcode 1952PPSB 65 909B doi 10 1088 0370 1301 65 11 112 Callahan P G De Graef M 2012 Precipitate shape fitting and reconstruction by means of 3D Zernike functions Modelling and Simulation in Materials Science and Engineering 20 1 015003 Bibcode 2012MSMSE 20a5003C doi 10 1088 0965 0393 20 1 015003 S2CID 121700658 Campbell C E 2003 Matrix method to find a new set of Zernike coefficients form an original set when the aperture radius is changed J Opt Soc Am A 20 2 209 217 Bibcode 2003JOSAA 20 209C doi 10 1364 JOSAA 20 000209 PMID 12570287 Cerjan C 2007 The Zernike Bessel representation and its application to Hankel transforms J Opt Soc Am A 24 6 1609 16 Bibcode 2007JOSAA 24 1609C doi 10 1364 JOSAA 24 001609 PMID 17491628 Comastri S A Perez L I Perez G D Martin G Bastida Cerjan K 2007 Zernike expansion coefficients rescaling and decentering for different pupils and evaluation of corneal aberrations J Opt Soc Am A 9 3 209 221 Bibcode 2007JOptA 9 209C doi 10 1088 1464 4258 9 3 001 Conforti G 1983 Zernike aberration coefficients from Seidel and higher order power series coefficients Opt Lett 8 7 407 408 Bibcode 1983OptL 8 407C doi 10 1364 OL 8 000407 PMID 19718130 Dai G m Mahajan V N 2007 Zernike annular polynomials and atmospheric turbulence J Opt Soc Am A 24 1 139 155 Bibcode 2007JOSAA 24 139D doi 10 1364 JOSAA 24 000139 PMID 17164852 Dai G m 2006 Scaling Zernike expansion coefficients to smaller pupil sizes a simpler formula J Opt Soc Am A 23 3 539 543 Bibcode 2006JOSAA 23 539D doi 10 1364 JOSAA 23 000539 PMID 16539048 Diaz J A Fernandez Dorado J Pizarro C Arasa J 2009 Zernike Coefficients for Concentric Circular Scaled Pupils An Equivalent Expression Journal of Modern Optics 56 1 149 155 Bibcode 2009JMOp 56 131D doi 10 1080 09500340802531224 S2CID 122620015 Diaz J A Fernandez Dorado J Zernike Coefficients for Concentric Circular Scaled Pupils from The Wolfram Demonstrations Project Farokhi Sajad Shamsuddin Siti Mariyam Flusser Jan Sheikh U U Khansari Mohammad Jafari Khouzani Kourosh 2013 Rotation and noise invariant near infrared face recognition by means of Zernike moments and spectral regression discriminant analysis Journal of Electronic Imaging 22 1 013030 Bibcode 2013JEI 22a3030F doi 10 1117 1 JEI 22 1 013030 S2CID 16758261 Gu J Shu H Z Toumoulin C Luo L M 2002 A novel algorithm for fast computation of Zernike moments Pattern Recognition 35 12 2905 2911 Bibcode 2002PatRe 35 2905G doi 10 1016 S0031 3203 01 00194 7 Herrmann J 1981 Cross coupling and aliasing in modal wave front estimation J Opt Soc Am 71 8 989 Bibcode 1981JOSA 71 989H doi 10 1364 JOSA 71 000989 Hu P H Stone J Stanley T 1989 Application of Zernike polynomials to atmospheric propagation problems J Opt Soc Am A 6 10 1595 Bibcode 1989JOSAA 6 1595H doi 10 1364 JOSAA 6 001595 Kintner E C 1976 On the mathematical properties of the Zernike Polynomials Opt Acta 23 8 679 680 Bibcode 1976AcOpt 23 679K doi 10 1080 713819334 Lawrence G N Chow W W 1984 Wave front tomography by Zernike Polynomial decomposition Opt Lett 9 7 267 269 Bibcode 1984OptL 9 267L doi 10 1364 OL 9 000267 PMID 19721566 Liu Haiguang Morris Richard J Hexemer A Grandison Scott Zwart Peter H 2012 Computation of small angle scattering profiles with three dimensional Zernike polynomials Acta Crystallogr A 68 2 278 285 doi 10 1107 S010876731104788X PMID 22338662 Lundstrom L Unsbo P 2007 Transformation of Zernike coefficients scaled translated and rotated wavefronts with circular and elliptical pupils J Opt Soc Am A 24 3 569 77 Bibcode 2007JOSAA 24 569L doi 10 1364 JOSAA 24 000569 PMID 17301846 Mahajan V N 1981 Zernike annular polynomials for imaging systems with annular pupils J Opt Soc Am 71 75 Bibcode 1981JOSA 71 75M doi 10 1364 JOSA 71 000075 Prata Jr A Rusch W V T 1989 Algorithm for computation of Zernike polynomials expansion coefficients Appl Opt 28 4 749 54 Bibcode 1989ApOpt 28 749P doi 10 1364 AO 28 000749 PMID 20548554 Schwiegerling J 2002 Scaling Zernike expansion coefficients to different pupil sizes J Opt Soc Am A 19 10 1937 45 Bibcode 2002JOSAA 19 1937S doi 10 1364 JOSAA 19 001937 PMID 12365613 Sheppard C J R Campbell S Hirschhorn M D 2004 Zernike expansion of separable functions in Cartesian coordinates Appl Opt 43 20 3963 6 Bibcode 2004ApOpt 43 3963S doi 10 1364 AO 43 003963 PMID 15285082 Shu H Luo L Han G Coatrieux J L 2006 General method to derive the relationship between two sets of Zernike coefficients corresponding to different aperture sizes J Opt Soc Am A 23 8 1960 1966 Bibcode 2006JOSAA 23 1960S doi 10 1364 JOSAA 23 001960 PMC 1961626 PMID 16835654 Swantner W Chow W W 1994 Gram Schmidt orthogonalization of Zernike polynomials for general aperture shapes Appl Opt 33 10 1832 7 Bibcode 1994ApOpt 33 1832S doi 10 1364 AO 33 001832 PMID 20885515 Tango W J 1977 The circle polynomials of Zernike and their application in optics Appl Phys A 13 4 327 332 Bibcode 1977ApPhy 13 327T doi 10 1007 BF00882606 S2CID 120469275 Tyson R K 1982 Conversion of Zernike aberration coefficients to Seidel and higher order power series aberration coefficients Opt Lett 7 6 262 264 Bibcode 1982OptL 7 262T doi 10 1364 OL 7 000262 PMID 19710893 Wang J Y Silva D E 1980 Wave front interpretation with Zernike Polynomials Appl Opt 19 9 1510 8 Bibcode 1980ApOpt 19 1510W doi 10 1364 AO 19 001510 PMID 20221066 Barakat R 1980 Optimum balanced wave front aberrations for radially symmetric amplitude distributions Generalizations of Zernike polynomials J Opt Soc Am 70 6 739 Bibcode 1980JOSA 70 739B doi 10 1364 JOSA 70 000739 ten Brummelaar T A 1996 Modeling atmospheric wave aberrations and astronomical instrumentation using the polynomials of Zernike Opt Commun 132 3 4 329 342 Bibcode 1996OptCo 132 329T doi 10 1016 0030 4018 96 00407 5 Novotni M Klein R 2003 3D zernike descriptors for content based shape retrieval Proceedings of the eighth ACM symposium on Solid modeling and applications PDF pp 216 225 CiteSeerX 10 1 1 14 4970 doi 10 1145 781606 781639 ISBN 978 1581137064 S2CID 10514681 Novotni M Klein R 2004 Shape retrieval using 3D Zernike descriptors PDF Computer Aided Design 36 11 1047 1062 CiteSeerX 10 1 1 71 8238 doi 10 1016 j cad 2004 01 005 Farokhi Sajad Shamsuddin Siti Mariyam Sheikh U U Flusser Jan 2014 Near Infrared Face Recognition A Comparison of Moment Based Approaches The 8th International Conference on Robotic Vision Signal Processing amp Power Applications Lecture Notes in Electrical Engineering Vol 291 pp 129 135 doi 10 1007 978 981 4585 42 2 15 ISBN 978 981 4585 41 5 Farokhi Sajad Shamsuddin Siti Mariyam Flusser Jan Sheikh U U Khansari Mohammad Jafari Khouzani Kourosh 2014 Near infrared face recognition by combining Zernike moments and undecimated discrete wavelet transform Digital Signal Processing 31 1 13 27 doi 10 1016 j dsp 2014 04 008 External links editThe Extended Nijboer Zernike website MATLAB code for fast calculation of Zernike moments Python NumPy library for calculating Zernike polynomials Zernike aberrations at Telescope Optics Example using WolframAlpha to plot Zernike Polynomials orthopy a Python package computing orthogonal polynomials including Zernike polynomials Retrieved from https en wikipedia org w index php title Zernike polynomials amp oldid 1218125673, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.