fbpx
Wikipedia

Orthogonal polynomials

In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonal to each other under some inner product.

The most widely used orthogonal polynomials are the classical orthogonal polynomials, consisting of the Hermite polynomials, the Laguerre polynomials and the Jacobi polynomials. The Gegenbauer polynomials form the most important class of Jacobi polynomials; they include the Chebyshev polynomials, and the Legendre polynomials as special cases.

The field of orthogonal polynomials developed in the late 19th century from a study of continued fractions by P. L. Chebyshev and was pursued by A. A. Markov and T. J. Stieltjes. They appear in a wide variety of fields: numerical analysis (quadrature rules), probability theory, representation theory (of Lie groups, quantum groups, and related objects), enumerative combinatorics, algebraic combinatorics, mathematical physics (the theory of random matrices, integrable systems, etc.), and number theory. Some of the mathematicians who have worked on orthogonal polynomials include Gábor Szegő, Sergei Bernstein, Naum Akhiezer, Arthur Erdélyi, Yakov Geronimus, Wolfgang Hahn, Theodore Seio Chihara, Mourad Ismail, Waleed Al-Salam, Richard Askey, and Rehuel Lobatto.

Definition for 1-variable case for a real measure edit

Given any non-decreasing function α on the real numbers, we can define the Lebesgue–Stieltjes integral

 
of a function f. If this integral is finite for all polynomials f, we can define an inner product on pairs of polynomials f and g by
 

This operation is a positive semidefinite inner product on the vector space of all polynomials, and is positive definite if the function α has an infinite number of points of growth. It induces a notion of orthogonality in the usual way, namely that two polynomials are orthogonal if their inner product is zero.

Then the sequence (Pn)
n=0
of orthogonal polynomials is defined by the relations

 

In other words, the sequence is obtained from the sequence of monomials 1, x, x2, … by the Gram–Schmidt process with respect to this inner product.

Usually the sequence is required to be orthonormal, namely,

 
however, other normalisations are sometimes used.

Absolutely continuous case edit

Sometimes we have

 
where
 
is a non-negative function with support on some interval [x1, x2] in the real line (where x1 = −∞ and x2 = ∞ are allowed). Such a W is called a weight function.[1] Then the inner product is given by
 
However, there are many examples of orthogonal polynomials where the measure (x) has points with non-zero measure where the function α is discontinuous, so cannot be given by a weight function W as above.

Examples of orthogonal polynomials edit

The most commonly used orthogonal polynomials are orthogonal for a measure with support in a real interval. This includes:

Discrete orthogonal polynomials are orthogonal with respect to some discrete measure. Sometimes the measure has finite support, in which case the family of orthogonal polynomials is finite, rather than an infinite sequence. The Racah polynomials are examples of discrete orthogonal polynomials, and include as special cases the Hahn polynomials and dual Hahn polynomials, which in turn include as special cases the Meixner polynomials, Krawtchouk polynomials, and Charlier polynomials.

Meixner classified all the orthogonal Sheffer sequences: there are only Hermite, Laguerre, Charlier, Meixner, and Meixner–Pollaczek. In some sense Krawtchouk should be on this list too, but they are a finite sequence. These six families correspond to the NEF-QVFs and are martingale polynomials for certain Lévy processes.

Sieved orthogonal polynomials, such as the sieved ultraspherical polynomials, sieved Jacobi polynomials, and sieved Pollaczek polynomials, have modified recurrence relations.

One can also consider orthogonal polynomials for some curve in the complex plane. The most important case (other than real intervals) is when the curve is the unit circle, giving orthogonal polynomials on the unit circle, such as the Rogers–Szegő polynomials.

There are some families of orthogonal polynomials that are orthogonal on plane regions such as triangles or disks. They can sometimes be written in terms of Jacobi polynomials. For example, Zernike polynomials are orthogonal on the unit disk.

The advantage of orthogonality between different orders of Hermite polynomials is applied to Generalized frequency division multiplexing (GFDM) structure. More than one symbol can be carried in each grid of time-frequency lattice.[2]

Properties edit

Orthogonal polynomials of one variable defined by a non-negative measure on the real line have the following properties.

Relation to moments edit

The orthogonal polynomials Pn can be expressed in terms of the moments

 

as follows:

 

where the constants cn are arbitrary (depend on the normalization of Pn).

This comes directly from applying the Gram–Schmidt process to the monomials, imposing each polynomial to be orthogonal with respect to the previous ones. For example, orthogonality with   prescribes that   must have the form

 
which can be seen to be consistent with the previously given expression with the determinant.

Recurrence relation edit

The polynomials Pn satisfy a recurrence relation of the form

 

where An is not 0. The converse is also true; see Favard's theorem.

Christoffel–Darboux formula edit

Zeros edit

If the measure dα is supported on an interval [ab], all the zeros of Pn lie in [ab]. Moreover, the zeros have the following interlacing property: if m < n, there is a zero of Pn between any two zeros of Pm. Electrostatic interpretations of the zeros can be given.[citation needed]

Combinatorial interpretation edit

From the 1980s, with the work of X. G. Viennot, J. Labelle, Y.-N. Yeh, D. Foata, and others, combinatorial interpretations were found for all the classical orthogonal polynomials. [3]

Other types of orthogonal polynomials edit

Multivariate orthogonal polynomials edit

The Macdonald polynomials are orthogonal polynomials in several variables, depending on the choice of an affine root system. They include many other families of multivariable orthogonal polynomials as special cases, including the Jack polynomials, the Hall–Littlewood polynomials, the Heckman–Opdam polynomials, and the Koornwinder polynomials. The Askey–Wilson polynomials are the special case of Macdonald polynomials for a certain non-reduced root system of rank 1.

Multiple orthogonal polynomials edit

Multiple orthogonal polynomials are polynomials in one variable that are orthogonal with respect to a finite family of measures.

Sobolev orthogonal polynomials edit

These are orthogonal polynomials with respect to a Sobolev inner product, i.e. an inner product with derivatives. Including derivatives has big consequences for the polynomials, in general they no longer share some of the nice features of the classical orthogonal polynomials.

Orthogonal polynomials with matrices edit

Orthogonal polynomials with matrices have either coefficients that are matrices or the indeterminate is a matrix.

See also edit

References edit

  1. ^ Demo of orthonormal polynomials obtained for different weight functions
  2. ^ Catak, E.; Durak-Ata, L. (2017). "An efficient transceiver design for superimposed waveforms with orthogonal polynomials". 2017 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom). pp. 1–5. doi:10.1109/BlackSeaCom.2017.8277657. ISBN 978-1-5090-5049-9. S2CID 22592277.
  3. ^ Viennot, Xavier (2017). "The Art of Bijective Combinatorics, Part IV, Combinatorial theory of orthogonal polynomials and continued fractions". Chennai: IMSc.
  • Abramowitz, Milton; Stegun, Irene Ann, eds. (1983) [June 1964]. "Chapter 22". Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 773. ISBN 978-0-486-61272-0. LCCN 64-60036. MR 0167642. LCCN 65-12253.
  • Chihara, Theodore Seio (1978). An Introduction to Orthogonal Polynomials. Gordon and Breach, New York. ISBN 0-677-04150-0.
  • Chihara, Theodore Seio (2001). "45 years of orthogonal polynomials: a view from the wings". Proceedings of the Fifth International Symposium on Orthogonal Polynomials, Special Functions and their Applications (Patras, 1999). Journal of Computational and Applied Mathematics. 133 (1): 13–21. Bibcode:2001JCoAM.133...13C. doi:10.1016/S0377-0427(00)00632-4. ISSN 0377-0427. MR 1858267.
  • Foncannon, J. J.; Foncannon, J. J.; Pekonen, Osmo (2008). "Review of Classical and quantum orthogonal polynomials in one variable by Mourad Ismail". The Mathematical Intelligencer. Springer New York. 30: 54–60. doi:10.1007/BF02985757. ISSN 0343-6993. S2CID 118133026.
  • Ismail, Mourad E. H. (2005). Classical and Quantum Orthogonal Polynomials in One Variable. Cambridge: Cambridge Univ. Press. ISBN 0-521-78201-5.
  • Jackson, Dunham (2004) [1941]. Fourier Series and Orthogonal Polynomials. New York: Dover. ISBN 0-486-43808-2.
  • Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Orthogonal Polynomials", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
  • "Orthogonal polynomials", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  • Szegő, Gábor (1939). Orthogonal Polynomials. Colloquium Publications. Vol. XXIII. American Mathematical Society. ISBN 978-0-8218-1023-1. MR 0372517.
  • Totik, Vilmos (2005). "Orthogonal Polynomials". Surveys in Approximation Theory. 1: 70–125. arXiv:math.CA/0512424.
  • C. Chan, A. Mironov, A. Morozov, A. Sleptsov, arXiv:1712.03155.

orthogonal, polynomials, mathematics, orthogonal, polynomial, sequence, family, polynomials, such, that, different, polynomials, sequence, orthogonal, each, other, under, some, inner, product, most, widely, used, orthogonal, polynomials, classical, orthogonal,. In mathematics an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonal to each other under some inner product The most widely used orthogonal polynomials are the classical orthogonal polynomials consisting of the Hermite polynomials the Laguerre polynomials and the Jacobi polynomials The Gegenbauer polynomials form the most important class of Jacobi polynomials they include the Chebyshev polynomials and the Legendre polynomials as special cases The field of orthogonal polynomials developed in the late 19th century from a study of continued fractions by P L Chebyshev and was pursued by A A Markov and T J Stieltjes They appear in a wide variety of fields numerical analysis quadrature rules probability theory representation theory of Lie groups quantum groups and related objects enumerative combinatorics algebraic combinatorics mathematical physics the theory of random matrices integrable systems etc and number theory Some of the mathematicians who have worked on orthogonal polynomials include Gabor Szego Sergei Bernstein Naum Akhiezer Arthur Erdelyi Yakov Geronimus Wolfgang Hahn Theodore Seio Chihara Mourad Ismail Waleed Al Salam Richard Askey and Rehuel Lobatto Contents 1 Definition for 1 variable case for a real measure 1 1 Absolutely continuous case 2 Examples of orthogonal polynomials 3 Properties 3 1 Relation to moments 3 2 Recurrence relation 3 3 Christoffel Darboux formula 3 4 Zeros 3 5 Combinatorial interpretation 4 Other types of orthogonal polynomials 4 1 Multivariate orthogonal polynomials 4 2 Multiple orthogonal polynomials 4 3 Sobolev orthogonal polynomials 4 4 Orthogonal polynomials with matrices 5 See also 6 ReferencesDefinition for 1 variable case for a real measure editGiven any non decreasing function a on the real numbers we can define the Lebesgue Stieltjes integral f x d a x displaystyle int f x d alpha x nbsp of a function f If this integral is finite for all polynomials f we can define an inner product on pairs of polynomials f and g by f g f x g x d a x displaystyle langle f g rangle int f x g x d alpha x nbsp This operation is a positive semidefinite inner product on the vector space of all polynomials and is positive definite if the function a has an infinite number of points of growth It induces a notion of orthogonality in the usual way namely that two polynomials are orthogonal if their inner product is zero Then the sequence Pn n 0 of orthogonal polynomials is defined by the relationsdeg P n n P m P n 0 for m n displaystyle deg P n n quad langle P m P n rangle 0 quad text for quad m neq n nbsp In other words the sequence is obtained from the sequence of monomials 1 x x2 by the Gram Schmidt process with respect to this inner product Usually the sequence is required to be orthonormal namely P n P n 1 displaystyle langle P n P n rangle 1 nbsp however other normalisations are sometimes used Absolutely continuous case edit Sometimes we haved a x W x d x displaystyle d alpha x W x dx nbsp where W x 1 x 2 R displaystyle W x 1 x 2 to mathbb R nbsp is a non negative function with support on some interval x1 x2 in the real line where x1 and x2 are allowed Such a W is called a weight function 1 Then the inner product is given by f g x 1 x 2 f x g x W x d x displaystyle langle f g rangle int x 1 x 2 f x g x W x dx nbsp However there are many examples of orthogonal polynomials where the measure da x has points with non zero measure where the function a is discontinuous so cannot be given by a weight function W as above Examples of orthogonal polynomials editThe most commonly used orthogonal polynomials are orthogonal for a measure with support in a real interval This includes The classical orthogonal polynomials Jacobi polynomials Laguerre polynomials Hermite polynomials and their special cases Gegenbauer polynomials Chebyshev polynomials and Legendre polynomials The Wilson polynomials which generalize the Jacobi polynomials They include many orthogonal polynomials as special cases such as the Meixner Pollaczek polynomials the continuous Hahn polynomials the continuous dual Hahn polynomials and the classical polynomials described by the Askey scheme The Askey Wilson polynomials introduce an extra parameter q into the Wilson polynomials Discrete orthogonal polynomials are orthogonal with respect to some discrete measure Sometimes the measure has finite support in which case the family of orthogonal polynomials is finite rather than an infinite sequence The Racah polynomials are examples of discrete orthogonal polynomials and include as special cases the Hahn polynomials and dual Hahn polynomials which in turn include as special cases the Meixner polynomials Krawtchouk polynomials and Charlier polynomials Meixner classified all the orthogonal Sheffer sequences there are only Hermite Laguerre Charlier Meixner and Meixner Pollaczek In some sense Krawtchouk should be on this list too but they are a finite sequence These six families correspond to the NEF QVFs and are martingale polynomials for certain Levy processes Sieved orthogonal polynomials such as the sieved ultraspherical polynomials sieved Jacobi polynomials and sieved Pollaczek polynomials have modified recurrence relations One can also consider orthogonal polynomials for some curve in the complex plane The most important case other than real intervals is when the curve is the unit circle giving orthogonal polynomials on the unit circle such as the Rogers Szego polynomials There are some families of orthogonal polynomials that are orthogonal on plane regions such as triangles or disks They can sometimes be written in terms of Jacobi polynomials For example Zernike polynomials are orthogonal on the unit disk The advantage of orthogonality between different orders of Hermite polynomials is applied to Generalized frequency division multiplexing GFDM structure More than one symbol can be carried in each grid of time frequency lattice 2 Properties editOrthogonal polynomials of one variable defined by a non negative measure on the real line have the following properties Relation to moments edit The orthogonal polynomials Pn can be expressed in terms of the moments m n x n d a x displaystyle m n int x n d alpha x nbsp as follows P n x c n det m 0 m 1 m 2 m n m 1 m 2 m 3 m n 1 m n 1 m n m n 1 m 2 n 1 1 x x 2 x n displaystyle P n x c n det begin bmatrix m 0 amp m 1 amp m 2 amp cdots amp m n m 1 amp m 2 amp m 3 amp cdots amp m n 1 vdots amp vdots amp vdots amp ddots amp vdots m n 1 amp m n amp m n 1 amp cdots amp m 2n 1 1 amp x amp x 2 amp cdots amp x n end bmatrix nbsp where the constants cn are arbitrary depend on the normalization of Pn This comes directly from applying the Gram Schmidt process to the monomials imposing each polynomial to be orthogonal with respect to the previous ones For example orthogonality with P 0 displaystyle P 0 nbsp prescribes that P 1 displaystyle P 1 nbsp must have the formP 1 x c 1 x P 0 x P 0 P 0 P 0 c 1 x m 1 displaystyle P 1 x c 1 left x frac langle P 0 x rangle P 0 langle P 0 P 0 rangle right c 1 x m 1 nbsp which can be seen to be consistent with the previously given expression with the determinant Recurrence relation edit The polynomials Pn satisfy a recurrence relation of the form P n x A n x B n P n 1 x C n P n 2 x displaystyle P n x A n x B n P n 1 x C n P n 2 x nbsp where An is not 0 The converse is also true see Favard s theorem Christoffel Darboux formula edit Main article Christoffel Darboux formula Zeros edit If the measure da is supported on an interval a b all the zeros of Pn lie in a b Moreover the zeros have the following interlacing property if m lt n there is a zero of Pn between any two zeros of Pm Electrostatic interpretations of the zeros can be given citation needed Combinatorial interpretation edit From the 1980s with the work of X G Viennot J Labelle Y N Yeh D Foata and others combinatorial interpretations were found for all the classical orthogonal polynomials 3 Other types of orthogonal polynomials editMultivariate orthogonal polynomials edit The Macdonald polynomials are orthogonal polynomials in several variables depending on the choice of an affine root system They include many other families of multivariable orthogonal polynomials as special cases including the Jack polynomials the Hall Littlewood polynomials the Heckman Opdam polynomials and the Koornwinder polynomials The Askey Wilson polynomials are the special case of Macdonald polynomials for a certain non reduced root system of rank 1 Multiple orthogonal polynomials edit Main article Multiple orthogonal polynomials Multiple orthogonal polynomials are polynomials in one variable that are orthogonal with respect to a finite family of measures Sobolev orthogonal polynomials edit Main article Sobolev orthogonal polynomials These are orthogonal polynomials with respect to a Sobolev inner product i e an inner product with derivatives Including derivatives has big consequences for the polynomials in general they no longer share some of the nice features of the classical orthogonal polynomials Orthogonal polynomials with matrices edit Orthogonal polynomials with matrices have either coefficients that are matrices or the indeterminate is a matrix See also editAppell sequence Askey scheme of hypergeometric orthogonal polynomials Favard s theorem Polynomial sequences of binomial type Biorthogonal polynomials Generalized Fourier series Secondary measure Sheffer sequence Sturm Liouville theory Umbral calculus Plancherel Rotach asymptoticsReferences edit Demo of orthonormal polynomials obtained for different weight functions Catak E Durak Ata L 2017 An efficient transceiver design for superimposed waveforms with orthogonal polynomials 2017 IEEE International Black Sea Conference on Communications and Networking BlackSeaCom pp 1 5 doi 10 1109 BlackSeaCom 2017 8277657 ISBN 978 1 5090 5049 9 S2CID 22592277 Viennot Xavier 2017 The Art of Bijective Combinatorics Part IV Combinatorial theory of orthogonal polynomials and continued fractions Chennai IMSc Abramowitz Milton Stegun Irene Ann eds 1983 June 1964 Chapter 22 Handbook of Mathematical Functions with Formulas Graphs and Mathematical Tables Applied Mathematics Series Vol 55 Ninth reprint with additional corrections of tenth original printing with corrections December 1972 first ed Washington D C New York United States Department of Commerce National Bureau of Standards Dover Publications p 773 ISBN 978 0 486 61272 0 LCCN 64 60036 MR 0167642 LCCN 65 12253 Chihara Theodore Seio 1978 An Introduction to Orthogonal Polynomials Gordon and Breach New York ISBN 0 677 04150 0 Chihara Theodore Seio 2001 45 years of orthogonal polynomials a view from the wings Proceedings of the Fifth International Symposium on Orthogonal Polynomials Special Functions and their Applications Patras 1999 Journal of Computational and Applied Mathematics 133 1 13 21 Bibcode 2001JCoAM 133 13C doi 10 1016 S0377 0427 00 00632 4 ISSN 0377 0427 MR 1858267 Foncannon J J Foncannon J J Pekonen Osmo 2008 Review of Classical and quantum orthogonal polynomials in one variable by Mourad Ismail The Mathematical Intelligencer Springer New York 30 54 60 doi 10 1007 BF02985757 ISSN 0343 6993 S2CID 118133026 Ismail Mourad E H 2005 Classical and Quantum Orthogonal Polynomials in One Variable Cambridge Cambridge Univ Press ISBN 0 521 78201 5 Jackson Dunham 2004 1941 Fourier Series and Orthogonal Polynomials New York Dover ISBN 0 486 43808 2 Koornwinder Tom H Wong Roderick S C Koekoek Roelof Swarttouw Rene F 2010 Orthogonal Polynomials in Olver Frank W J Lozier Daniel M Boisvert Ronald F Clark Charles W eds NIST Handbook of Mathematical Functions Cambridge University Press ISBN 978 0 521 19225 5 MR 2723248 Orthogonal polynomials Encyclopedia of Mathematics EMS Press 2001 1994 Szego Gabor 1939 Orthogonal Polynomials Colloquium Publications Vol XXIII American Mathematical Society ISBN 978 0 8218 1023 1 MR 0372517 Totik Vilmos 2005 Orthogonal Polynomials Surveys in Approximation Theory 1 70 125 arXiv math CA 0512424 C Chan A Mironov A Morozov A Sleptsov arXiv 1712 03155 Retrieved from https en wikipedia org w index php title Orthogonal polynomials amp oldid 1166969091, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.