fbpx
Wikipedia

Jacobi polynomials

In mathematics, Jacobi polynomials (occasionally called hypergeometric polynomials) are a class of classical orthogonal polynomials. They are orthogonal with respect to the weight on the interval . The Gegenbauer polynomials, and thus also the Legendre, Zernike and Chebyshev polynomials, are special cases of the Jacobi polynomials.[1]

Plot of the Jacobi polynomial function with and and in the complex plane from to with colors created with Mathematica 13.1 function ComplexPlot3D

The Jacobi polynomials were introduced by Carl Gustav Jacob Jacobi.

Definitions edit

Via the hypergeometric function edit

The Jacobi polynomials are defined via the hypergeometric function as follows:[2]

 

where   is Pochhammer's symbol (for the rising factorial). In this case, the series for the hypergeometric function is finite, therefore one obtains the following equivalent expression:

 

Rodrigues' formula edit

An equivalent definition is given by Rodrigues' formula:[1][3]

 

If  , then it reduces to the Legendre polynomials:

 

Alternate expression for real argument edit

For real   the Jacobi polynomial can alternatively be written as

 

and for integer  

 

where   is the gamma function.

In the special case that the four quantities  ,  ,  ,   are nonnegative integers, the Jacobi polynomial can be written as

 

(1)

The sum extends over all integer values of   for which the arguments of the factorials are nonnegative.

Special cases edit

 
 
 

Basic properties edit

Orthogonality edit

The Jacobi polynomials satisfy the orthogonality condition

 

As defined, they do not have unit norm with respect to the weight. This can be corrected by dividing by the square root of the right hand side of the equation above, when  .

Although it does not yield an orthonormal basis, an alternative normalization is sometimes preferred due to its simplicity:

 

Symmetry relation edit

The polynomials have the symmetry relation

 

thus the other terminal value is

 

Derivatives edit

The  th derivative of the explicit expression leads to

 

Differential equation edit

The Jacobi polynomial   is a solution of the second order linear homogeneous differential equation[1]

 

Recurrence relations edit

The recurrence relation for the Jacobi polynomials of fixed  ,   is:[1]

 

for  . Writing for brevity  ,   and  , this becomes in terms of  

 

Since the Jacobi polynomials can be described in terms of the hypergeometric function, recurrences of the hypergeometric function give equivalent recurrences of the Jacobi polynomials. In particular, Gauss' contiguous relations correspond to the identities

 

Generating function edit

The generating function of the Jacobi polynomials is given by

 

where

 

and the branch of square root is chosen so that  .[1]


Asymptotics of Jacobi polynomials edit

For   in the interior of  , the asymptotics of   for large   is given by the Darboux formula[1]

 

where

 

and the " " term is uniform on the interval   for every  .

The asymptotics of the Jacobi polynomials near the points   is given by the Mehler–Heine formula

 

where the limits are uniform for   in a bounded domain.

The asymptotics outside   is less explicit.

Applications edit

Wigner d-matrix edit

The expression (1) allows the expression of the Wigner d-matrix   (for  ) in terms of Jacobi polynomials:[4]

 

See also edit

Notes edit

  1. ^ a b c d e f Szegő, Gábor (1939). "IV. Jacobi polynomials.". Orthogonal Polynomials. Colloquium Publications. Vol. XXIII. American Mathematical Society. ISBN 978-0-8218-1023-1. MR 0372517. The definition is in IV.1; the differential equation – in IV.2; Rodrigues' formula is in IV.3; the generating function is in IV.4; the recurrent relation is in IV.5; the asymptotic behavior is in VIII.2
  2. ^ Abramowitz, Milton; Stegun, Irene Ann, eds. (1983) [June 1964]. "Chapter 22". Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 561. ISBN 978-0-486-61272-0. LCCN 64-60036. MR 0167642. LCCN 65-12253.
  3. ^ P.K. Suetin (2001) [1994], "Jacobi polynomials", Encyclopedia of Mathematics, EMS Press
  4. ^ Biedenharn, L.C.; Louck, J.D. (1981). Angular Momentum in Quantum Physics. Reading: Addison-Wesley.

Further reading edit

External links edit

jacobi, polynomials, several, variables, heckman, opdam, polynomials, mathematics, occasionally, called, hypergeometric, polynomials, displaystyle, alpha, beta, class, classical, orthogonal, polynomials, they, orthogonal, with, respect, weight, displaystyle, a. For Jacobi polynomials of several variables see Heckman Opdam polynomials In mathematics Jacobi polynomials occasionally called hypergeometric polynomials P n a b x displaystyle P n alpha beta x are a class of classical orthogonal polynomials They are orthogonal with respect to the weight 1 x a 1 x b displaystyle 1 x alpha 1 x beta on the interval 1 1 displaystyle 1 1 The Gegenbauer polynomials and thus also the Legendre Zernike and Chebyshev polynomials are special cases of the Jacobi polynomials 1 Plot of the Jacobi polynomial function P n a b displaystyle P n alpha beta with n 10 displaystyle n 10 and a 2 displaystyle alpha 2 and b 2 displaystyle beta 2 in the complex plane from 2 2 i displaystyle 2 2i to 2 2 i displaystyle 2 2i with colors created with Mathematica 13 1 function ComplexPlot3D The Jacobi polynomials were introduced by Carl Gustav Jacob Jacobi Contents 1 Definitions 1 1 Via the hypergeometric function 1 2 Rodrigues formula 1 3 Alternate expression for real argument 1 4 Special cases 2 Basic properties 2 1 Orthogonality 2 2 Symmetry relation 2 3 Derivatives 2 4 Differential equation 2 5 Recurrence relations 2 6 Generating function 3 Asymptotics of Jacobi polynomials 4 Applications 4 1 Wigner d matrix 5 See also 6 Notes 7 Further reading 8 External linksDefinitions editVia the hypergeometric function edit The Jacobi polynomials are defined via the hypergeometric function as follows 2 P n a b z a 1 n n 2 F 1 n 1 a b n a 1 1 2 1 z displaystyle P n alpha beta z frac alpha 1 n n 2 F 1 left n 1 alpha beta n alpha 1 tfrac 1 2 1 z right nbsp where a 1 n displaystyle alpha 1 n nbsp is Pochhammer s symbol for the rising factorial In this case the series for the hypergeometric function is finite therefore one obtains the following equivalent expression P n a b z G a n 1 n G a b n 1 m 0 n n m G a b n m 1 G a m 1 z 1 2 m displaystyle P n alpha beta z frac Gamma alpha n 1 n Gamma alpha beta n 1 sum m 0 n n choose m frac Gamma alpha beta n m 1 Gamma alpha m 1 left frac z 1 2 right m nbsp Rodrigues formula edit An equivalent definition is given by Rodrigues formula 1 3 P n a b z 1 n 2 n n 1 z a 1 z b d n d z n 1 z a 1 z b 1 z 2 n displaystyle P n alpha beta z frac 1 n 2 n n 1 z alpha 1 z beta frac d n dz n left 1 z alpha 1 z beta left 1 z 2 right n right nbsp If a b 0 displaystyle alpha beta 0 nbsp then it reduces to the Legendre polynomials P n z 1 2 n n d n d z n z 2 1 n displaystyle P n z frac 1 2 n n frac d n dz n z 2 1 n nbsp Alternate expression for real argument edit For real x displaystyle x nbsp the Jacobi polynomial can alternatively be written as P n a b x s 0 n n a n s n b s x 1 2 s x 1 2 n s displaystyle P n alpha beta x sum s 0 n n alpha choose n s n beta choose s left frac x 1 2 right s left frac x 1 2 right n s nbsp and for integer n displaystyle n nbsp z n G z 1 G n 1 G z n 1 n 0 0 n lt 0 displaystyle z choose n begin cases frac Gamma z 1 Gamma n 1 Gamma z n 1 amp n geq 0 0 amp n lt 0 end cases nbsp where G z displaystyle Gamma z nbsp is the gamma function In the special case that the four quantities n displaystyle n nbsp n a displaystyle n alpha nbsp n b displaystyle n beta nbsp n a b displaystyle n alpha beta nbsp are nonnegative integers the Jacobi polynomial can be written as P n a b x n a n b s 0 n 1 s n a s b s n s x 1 2 n s x 1 2 s displaystyle P n alpha beta x n alpha n beta sum s 0 n frac 1 s n alpha s beta s n s left frac x 1 2 right n s left frac x 1 2 right s nbsp 1 The sum extends over all integer values of s displaystyle s nbsp for which the arguments of the factorials are nonnegative Special cases edit P 0 a b z 1 displaystyle P 0 alpha beta z 1 nbsp P 1 a b z a 1 a b 2 z 1 2 displaystyle P 1 alpha beta z alpha 1 alpha beta 2 frac z 1 2 nbsp P 2 a b z a 1 a 2 2 a 2 a b 3 z 1 2 a b 3 a b 4 2 z 1 2 2 displaystyle P 2 alpha beta z frac alpha 1 alpha 2 2 alpha 2 alpha beta 3 frac z 1 2 frac alpha beta 3 alpha beta 4 2 left frac z 1 2 right 2 nbsp Basic properties editOrthogonality edit The Jacobi polynomials satisfy the orthogonality condition 1 1 1 x a 1 x b P m a b x P n a b x d x 2 a b 1 2 n a b 1 G n a 1 G n b 1 G n a b 1 n d n m a b gt 1 displaystyle int 1 1 1 x alpha 1 x beta P m alpha beta x P n alpha beta x dx frac 2 alpha beta 1 2n alpha beta 1 frac Gamma n alpha 1 Gamma n beta 1 Gamma n alpha beta 1 n delta nm qquad alpha beta gt 1 nbsp As defined they do not have unit norm with respect to the weight This can be corrected by dividing by the square root of the right hand side of the equation above when n m displaystyle n m nbsp Although it does not yield an orthonormal basis an alternative normalization is sometimes preferred due to its simplicity P n a b 1 n a n displaystyle P n alpha beta 1 n alpha choose n nbsp Symmetry relation edit The polynomials have the symmetry relation P n a b z 1 n P n b a z displaystyle P n alpha beta z 1 n P n beta alpha z nbsp thus the other terminal value is P n a b 1 1 n n b n displaystyle P n alpha beta 1 1 n n beta choose n nbsp Derivatives edit The k displaystyle k nbsp th derivative of the explicit expression leads to d k d z k P n a b z G a b n 1 k 2 k G a b n 1 P n k a k b k z displaystyle frac d k dz k P n alpha beta z frac Gamma alpha beta n 1 k 2 k Gamma alpha beta n 1 P n k alpha k beta k z nbsp Differential equation edit The Jacobi polynomial P n a b displaystyle P n alpha beta nbsp is a solution of the second order linear homogeneous differential equation 1 1 x 2 y b a a b 2 x y n n a b 1 y 0 displaystyle left 1 x 2 right y beta alpha alpha beta 2 x y n n alpha beta 1 y 0 nbsp Recurrence relations edit The recurrence relation for the Jacobi polynomials of fixed a displaystyle alpha nbsp b displaystyle beta nbsp is 1 2 n n a b 2 n a b 2 P n a b z 2 n a b 1 2 n a b 2 n a b 2 z a 2 b 2 P n 1 a b z 2 n a 1 n b 1 2 n a b P n 2 a b z displaystyle begin aligned amp 2n n alpha beta 2n alpha beta 2 P n alpha beta z amp qquad 2n alpha beta 1 Big 2n alpha beta 2n alpha beta 2 z alpha 2 beta 2 Big P n 1 alpha beta z 2 n alpha 1 n beta 1 2n alpha beta P n 2 alpha beta z end aligned nbsp for n 2 3 displaystyle n 2 3 ldots nbsp Writing for brevity a n a displaystyle a n alpha nbsp b n b displaystyle b n beta nbsp and c a b 2 n a b displaystyle c a b 2n alpha beta nbsp this becomes in terms of a b c displaystyle a b c nbsp 2 n c n c 2 P n a b z c 1 c c 2 z a b c 2 n P n 1 a b z 2 a 1 b 1 c P n 2 a b z displaystyle 2n c n c 2 P n alpha beta z c 1 Big c c 2 z a b c 2n Big P n 1 alpha beta z 2 a 1 b 1 c P n 2 alpha beta z nbsp Since the Jacobi polynomials can be described in terms of the hypergeometric function recurrences of the hypergeometric function give equivalent recurrences of the Jacobi polynomials In particular Gauss contiguous relations correspond to the identities z 1 d d z P n a b z 1 2 z 1 1 a b n P n 1 a 1 b 1 n P n a b a n P n 1 a b 1 1 a b n P n a b 1 P n a b a n P n a 1 b 1 a P n a b 2 n 1 P n 1 a b 1 z 1 a b n a 1 n b P n a b 1 z 2 b n n z P n a b 2 b n P n a b 1 1 z 1 z 1 z b P n a b b n P n a 1 b 1 displaystyle begin aligned z 1 frac d dz P n alpha beta z amp frac 1 2 z 1 1 alpha beta n P n 1 alpha 1 beta 1 amp nP n alpha beta alpha n P n 1 alpha beta 1 amp 1 alpha beta n left P n alpha beta 1 P n alpha beta right amp alpha n P n alpha 1 beta 1 alpha P n alpha beta amp frac 2 n 1 P n 1 alpha beta 1 left z 1 alpha beta n alpha 1 n beta right P n alpha beta 1 z amp frac 2 beta n nz P n alpha beta 2 beta n P n alpha beta 1 1 z amp frac 1 z 1 z left beta P n alpha beta beta n P n alpha 1 beta 1 right end aligned nbsp Generating function edit The generating function of the Jacobi polynomials is given by n 0 P n a b z t n 2 a b R 1 1 t R a 1 t R b displaystyle sum n 0 infty P n alpha beta z t n 2 alpha beta R 1 1 t R alpha 1 t R beta nbsp where R R z t 1 2 z t t 2 1 2 displaystyle R R z t left 1 2zt t 2 right frac 1 2 nbsp and the branch of square root is chosen so that R z 0 1 displaystyle R z 0 1 nbsp 1 Asymptotics of Jacobi polynomials editFor x displaystyle x nbsp in the interior of 1 1 displaystyle 1 1 nbsp the asymptotics of P n a b displaystyle P n alpha beta nbsp for large n displaystyle n nbsp is given by the Darboux formula 1 P n a b cos 8 n 1 2 k 8 cos N 8 g O n 3 2 displaystyle P n alpha beta cos theta n frac 1 2 k theta cos N theta gamma O left n frac 3 2 right nbsp where k 8 p 1 2 sin a 1 2 8 2 cos b 1 2 8 2 N n 1 2 a b 1 g p 2 a 1 2 0 lt 8 lt p displaystyle begin aligned k theta amp pi frac 1 2 sin alpha frac 1 2 tfrac theta 2 cos beta frac 1 2 tfrac theta 2 N amp n tfrac 1 2 alpha beta 1 gamma amp tfrac pi 2 left alpha tfrac 1 2 right 0 lt theta amp lt pi end aligned nbsp and the O displaystyle O nbsp term is uniform on the interval e p e displaystyle varepsilon pi varepsilon nbsp for every e gt 0 displaystyle varepsilon gt 0 nbsp The asymptotics of the Jacobi polynomials near the points 1 displaystyle pm 1 nbsp is given by the Mehler Heine formula lim n n a P n a b cos z n z 2 a J a z lim n n b P n a b cos p z n z 2 b J b z displaystyle begin aligned lim n to infty n alpha P n alpha beta left cos left tfrac z n right right amp left tfrac z 2 right alpha J alpha z lim n to infty n beta P n alpha beta left cos left pi tfrac z n right right amp left tfrac z 2 right beta J beta z end aligned nbsp where the limits are uniform for z displaystyle z nbsp in a bounded domain The asymptotics outside 1 1 displaystyle 1 1 nbsp is less explicit Applications editWigner d matrix edit The expression 1 allows the expression of the Wigner d matrix d m m j ϕ displaystyle d m m j phi nbsp for 0 ϕ 4 p displaystyle 0 leq phi leq 4 pi nbsp in terms of Jacobi polynomials 4 d m m j ϕ j m j m j m j m 1 2 sin ϕ 2 m m cos ϕ 2 m m P j m m m m m cos ϕ displaystyle d m m j phi left frac j m j m j m j m right frac 1 2 left sin tfrac phi 2 right m m left cos tfrac phi 2 right m m P j m m m m m cos phi nbsp See also editAskey Gasper inequality Big q Jacobi polynomials Continuous q Jacobi polynomials Little q Jacobi polynomials Pseudo Jacobi polynomials Jacobi process Gegenbauer polynomials Romanovski polynomialsNotes edit a b c d e f Szego Gabor 1939 IV Jacobi polynomials Orthogonal Polynomials Colloquium Publications Vol XXIII American Mathematical Society ISBN 978 0 8218 1023 1 MR 0372517 The definition is in IV 1 the differential equation in IV 2 Rodrigues formula is in IV 3 the generating function is in IV 4 the recurrent relation is in IV 5 the asymptotic behavior is in VIII 2 Abramowitz Milton Stegun Irene Ann eds 1983 June 1964 Chapter 22 Handbook of Mathematical Functions with Formulas Graphs and Mathematical Tables Applied Mathematics Series Vol 55 Ninth reprint with additional corrections of tenth original printing with corrections December 1972 first ed Washington D C New York United States Department of Commerce National Bureau of Standards Dover Publications p 561 ISBN 978 0 486 61272 0 LCCN 64 60036 MR 0167642 LCCN 65 12253 P K Suetin 2001 1994 Jacobi polynomials Encyclopedia of Mathematics EMS Press Biedenharn L C Louck J D 1981 Angular Momentum in Quantum Physics Reading Addison Wesley Further reading edit Andrews George E Askey Richard Roy Ranjan 1999 Special functions Encyclopedia of Mathematics and its Applications vol 71 Cambridge University Press ISBN 978 0 521 62321 6 MR 1688958 ISBN 978 0 521 78988 2 Koornwinder Tom H Wong Roderick S C Koekoek Roelof Swarttouw Rene F 2010 Orthogonal Polynomials in Olver Frank W J Lozier Daniel M Boisvert Ronald F Clark Charles W eds NIST Handbook of Mathematical Functions Cambridge University Press ISBN 978 0 521 19225 5 MR 2723248 External links edit Weisstein Eric W Jacobi Polynomial MathWorld Retrieved from https en wikipedia org w index php title Jacobi polynomials amp oldid 1219118998, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.