fbpx
Wikipedia

Zermelo–Fraenkel set theory

In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox. Today, Zermelo–Fraenkel set theory, with the historically controversial axiom of choice (AC) included, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics. Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated ZFC, where C stands for "choice",[1] and ZF refers to the axioms of Zermelo–Fraenkel set theory with the axiom of choice excluded.

Informally,[2] Zermelo–Fraenkel set theory is intended to formalize a single primitive notion, that of a hereditary well-founded set, so that all entities in the universe of discourse are such sets. Thus the axioms of Zermelo–Fraenkel set theory refer only to pure sets and prevent its models from containing urelements (elements of sets that are not themselves sets). Furthermore, proper classes (collections of mathematical objects defined by a property shared by their members where the collections are too big to be sets) can only be treated indirectly. Specifically, Zermelo–Fraenkel set theory does not allow for the existence of a universal set (a set containing all sets) nor for unrestricted comprehension, thereby avoiding Russell's paradox. Von Neumann–Bernays–Gödel set theory (NBG) is a commonly used conservative extension of Zermelo–Fraenkel set theory that does allow explicit treatment of proper classes.

There are many equivalent formulations of the axioms of Zermelo–Fraenkel set theory. Most of the axioms state the existence of particular sets defined from other sets. For example, the axiom of pairing says that given any two sets and there is a new set containing exactly and . Other axioms describe properties of set membership. A goal of the axioms is that each axiom should be true if interpreted as a statement about the collection of all sets in the von Neumann universe (also known as the cumulative hierarchy). Formally, ZFC is a one-sorted theory in first-order logic. The signature has equality and a single primitive binary relation, intended to formalize set membership, which is usually denoted . The formula means that the set is a member of the set (which is also read, " is an element of " or " is in ").

The metamathematics of Zermelo–Fraenkel set theory has been extensively studied. Landmark results in this area established the logical independence of the axiom of choice from the remaining Zermelo-Fraenkel axioms (see Axiom of choice § Independence) and of the continuum hypothesis from ZFC. The consistency of a theory such as ZFC cannot be proved within the theory itself, as shown by Gödel's second incompleteness theorem.

History Edit

The modern study of set theory was initiated by Georg Cantor and Richard Dedekind in the 1870s. However, the discovery of paradoxes in naive set theory, such as Russell's paradox, led to the desire for a more rigorous form of set theory that was free of these paradoxes.

In 1908, Ernst Zermelo proposed the first axiomatic set theory, Zermelo set theory. However, as first pointed out by Abraham Fraenkel in a 1921 letter to Zermelo, this theory was incapable of proving the existence of certain sets and cardinal numbers whose existence was taken for granted by most set theorists of the time, notably the cardinal number   and the set   where   is any infinite set and   is the power set operation.[3] Moreover, one of Zermelo's axioms invoked a concept, that of a "definite" property, whose operational meaning was not clear. In 1922, Fraenkel and Thoralf Skolem independently proposed operationalizing a "definite" property as one that could be formulated as a well-formed formula in a first-order logic whose atomic formulas were limited to set membership and identity. They also independently proposed replacing the axiom schema of specification with the axiom schema of replacement. Appending this schema, as well as the axiom of regularity (first proposed by John von Neumann),[4] to Zermelo set theory yields the theory denoted by ZF. Adding to ZF either the axiom of choice (AC) or a statement that is equivalent to it yields ZFC.

Axioms Edit

There are many equivalent formulations of the ZFC axioms; for a discussion of this, see Fraenkel, Bar-Hillel & Lévy 1973. The following particular axiom set is from Kunen (1980). The axioms per se are expressed in the symbolism of first order logic. The associated English prose is only intended to aid the intuition.

Axioms 1-8 form ZF, while the axiom 9 turns ZF into ZFC. Following Kunen (1980), we use the equivalent well-ordering theorem in place of the axiom of choice for axiom 9.

All formulations of ZFC imply that at least one set exists. Kunen includes an axiom that directly asserts the existence of a set, in addition to the axioms given below (although he notes that he does so only "for emphasis").[5] Its omission here can be justified in two ways. First, in the standard semantics of first-order logic in which ZFC is typically formalized, the domain of discourse must be nonempty. Hence, it is a logical theorem of first-order logic that something exists — usually expressed as the assertion that something is identical to itself,  . Consequently, it is a theorem of every first-order theory that something exists. However, as noted above, because in the intended semantics of ZFC, there are only sets, the interpretation of this logical theorem in the context of ZFC is that some set exists. Hence, there is no need for a separate axiom asserting that a set exists. Second, however, even if ZFC is formulated in so-called free logic, in which it is not provable from logic alone that something exists, the axiom of infinity (below) asserts that an infinite set exists. This implies that a set exists, and so, once again, it is superfluous to include an axiom asserting as much.

1. Axiom of extensionality Edit

Two sets are equal (are the same set) if they have the same elements.

 

The converse of this axiom follows from the substitution property of equality. ZFC is constructed in first-order logic. Some formulations of first-order logic include identity; others do not. If the variety of first-order logic in which you are constructing set theory does not include equality " ",   may be defined as an abbreviation for the following formula:[6]  

In this case, the axiom of extensionality can be reformulated as

 

which says that if   and   have the same elements, then they belong to the same sets.[7]

2. Axiom of regularity (also called the axiom of foundation) Edit

Every non-empty set   contains a member   such that   and   are disjoint sets.

 [8]

or in modern notation:  

This (along with the Axiom of Pairing) implies, for example, that no set is an element of itself and that every set has an ordinal rank.

3. Axiom schema of specification (or of separation, or of restricted comprehension) Edit

Subsets are commonly constructed using set builder notation. For example, the even integers can be constructed as the subset of the integers   satisfying the congruence modulo predicate  :

 

In general, the subset of a set   obeying a formula   with one free variable   may be written as:

 

The axiom schema of specification states that this subset always exists (it is an axiom schema because there is one axiom for each  ). Formally, let   be any formula in the language of ZFC with all free variables among   (  is not free in  ). Then:

 

Note that the axiom schema of specification can only construct subsets and does not allow the construction of entities of the more general form:

 

This restriction is necessary to avoid Russell's paradox (let   then  ) and its variants that accompany naive set theory with unrestricted comprehension.

In some other axiomatizations of ZF, this axiom is redundant in that it follows from the axiom schema of replacement and the axiom of the empty set.

On the other hand, the axiom schema of specification can be used to prove the existence of the empty set, denoted  , once at least one set is known to exist (see above). One way to do this is to use a property   which no set has. For example, if   is any existing set, the empty set can be constructed as

 

Thus, the axiom of the empty set is implied by the nine axioms presented here. The axiom of extensionality implies the empty set is unique (does not depend on  ). It is common to make a definitional extension that adds the symbol " " to the language of ZFC.

4. Axiom of pairing Edit

If   and   are sets, then there exists a set which contains   and   as elements, for example if x = {1,2} and y = {2,3} then z will be {{1,2},{2,3}}

 

The axiom schema of specification must be used to reduce this to a set with exactly these two elements. The axiom of pairing is part of Z, but is redundant in ZF because it follows from the axiom schema of replacement if we are given a set with at least two elements. The existence of a set with at least two elements is assured by either the axiom of infinity, or by the axiom schema of specification[dubious ] and the axiom of the power set applied twice to any set.

5. Axiom of union Edit

The union over the elements of a set exists. For example, the union over the elements of the set   is  

The axiom of union states that for any set of sets  , there is a set   containing every element that is a member of some member of  :

 

Although this formula doesn't directly assert the existence of  , the set   can be constructed from   in the above using the axiom schema of specification:

 

6. Axiom schema of replacement Edit

The axiom schema of replacement asserts that the image of a set under any definable function will also fall inside a set.

Formally, let   be any formula in the language of ZFC whose free variables are among   so that in particular   is not free in  . Then:

 

(The unique existential quantifier   denotes the existence of exactly one element such that it follows a given statement. For more, see uniqueness quantification.)

In other words, if the relation   represents a definable function  ,   represents its domain, and   is a set for every   then the range of   is a subset of some set  . The form stated here, in which   may be larger than strictly necessary, is sometimes called the axiom schema of collection.

7. Axiom of infinity Edit

First few von Neumann ordinals
0 = { } = ∅
1 = {0} = {∅}
2 = {0, 1} = {∅, {∅} }
3 = {0, 1, 2} = {∅, {∅}, {∅, {∅}} }
4 = {0, 1, 2, 3} = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}} }

Let   abbreviate   where   is some set. (We can see that   is a valid set by applying the Axiom of Pairing with   so that the set z is  ). Then there exists a set X such that the empty set  , defined axiomatically, is a member of X and, whenever a set y is a member of X then   is also a member of X.

 

More colloquially, there exists a set X having infinitely many members. (It must be established, however, that these members are all different because if two elements are the same, the sequence will loop around in a finite cycle of sets. The axiom of regularity prevents this from happening.) The minimal set X satisfying the axiom of infinity is the von Neumann ordinal ω which can also be thought of as the set of natural numbers  

8. Axiom of power set Edit

By definition, a set   is a subset of a set   if and only if every element of   is also an element of  :

 

The Axiom of Power Set states that for any set  , there is a set   that contains every subset of  :

 

The axiom schema of specification is then used to define the power set   as the subset of such a   containing the subsets of   exactly:

 

Axioms 1–8 define ZF. Alternative forms of these axioms are often encountered, some of which are listed in Jech (2003). Some ZF axiomatizations include an axiom asserting that the empty set exists. The axioms of pairing, union, replacement, and power set are often stated so that the members of the set   whose existence is being asserted are just those sets which the axiom asserts   must contain.

The following axiom is added to turn ZF into ZFC:

9. Axiom of well-ordering (choice) Edit

The last axiom, commonly known as the axiom of choice, is presented here as a property about well-orders, as in Kunen (1980). For any set  , there exists a binary relation   which well-orders  . This means   is a linear order on   such that every nonempty subset of   has a member which is minimal under  .

 

Given axioms 1 – 8, many statements are provably equivalent to axiom 9. The most common of these goes as follows. Let   be a set whose members are all nonempty. Then there exists a function   from   to the union of the members of  , called a "choice function", such that for all   one has  . A third version of the axiom, also equivalent, is Zorn's lemma.

Since the existence of a choice function when   is a finite set is easily proved from axioms 1–8, AC only matters for certain infinite sets. AC is characterized as nonconstructive because it asserts the existence of a choice function but says nothing about how this choice function is to be "constructed."

Motivation via the cumulative hierarchy Edit

One motivation for the ZFC axioms is the cumulative hierarchy of sets introduced by John von Neumann.[9] In this viewpoint, the universe of set theory is built up in stages, with one stage for each ordinal number. At stage 0, there are no sets yet. At each following stage, a set is added to the universe if all of its elements have been added at previous stages. Thus the empty set is added at stage 1, and the set containing the empty set is added at stage 2.[10] The collection of all sets that are obtained in this way, over all the stages, is known as V. The sets in V can be arranged into a hierarchy by assigning to each set the first stage at which that set was added to V.

It is provable that a set is in V if and only if the set is pure and well-founded. And V satisfies all the axioms of ZFC if the class of ordinals has appropriate reflection properties. For example, suppose that a set x is added at stage α, which means that every element of x was added at a stage earlier than α. Then, every subset of x is also added at (or before) stage α, because all elements of any subset of x were also added before stage α. This means that any subset of x which the axiom of separation can construct is added at (or before) stage α, and that the powerset of x will be added at the next stage after α. For a complete argument that V satisfies ZFC see Shoenfield (1977).

The picture of the universe of sets stratified into the cumulative hierarchy is characteristic of ZFC and related axiomatic set theories such as Von Neumann–Bernays–Gödel set theory (often called NBG) and Morse–Kelley set theory. The cumulative hierarchy is not compatible with other set theories such as New Foundations.

It is possible to change the definition of V so that at each stage, instead of adding all the subsets of the union of the previous stages, subsets are only added if they are definable in a certain sense. This results in a more "narrow" hierarchy, which gives the constructible universe L, which also satisfies all the axioms of ZFC, including the axiom of choice. It is independent from the ZFC axioms whether V = L. Although the structure of L is more regular and well behaved than that of V, few mathematicians argue that VL should be added to ZFC as an additional "axiom of constructibility".

Metamathematics Edit

Virtual classes Edit

As noted earlier, proper classes (collections of mathematical objects defined by a property shared by their members which are too big to be sets) can only be treated indirectly in ZF (and thus ZFC). An alternative to proper classes while staying within ZF and ZFC is the virtual class notational construct introduced by Quine (1969), where the entire construct y ∈ { x | Fx } is simply defined as Fy.[11] This provides a simple notation for classes that can contain sets but need not themselves be sets, while not committing to the ontology of classes (because the notation can be syntactically converted to one that only uses sets). Quine's approach built on the earlier approach of Bernays & Fraenkel (1958). Virtual classes are also used in Levy (2002), Takeuti & Zaring (1982), and in the Metamath implementation of ZFC.

Finite axiomatization Edit

The axiom schemata of replacement and separation each contain infinitely many instances. Montague (1961) included a result first proved in his 1957 Ph.D. thesis: if ZFC is consistent, it is impossible to axiomatize ZFC using only finitely many axioms. On the other hand, von Neumann–Bernays–Gödel set theory (NBG) can be finitely axiomatized. The ontology of NBG includes proper classes as well as sets; a set is any class that can be a member of another class. NBG and ZFC are equivalent set theories in the sense that any theorem not mentioning classes and provable in one theory can be proved in the other.

Consistency Edit

Gödel's second incompleteness theorem says that a recursively axiomatizable system that can interpret Robinson arithmetic can prove its own consistency only if it is inconsistent. Moreover, Robinson arithmetic can be interpreted in general set theory, a small fragment of ZFC. Hence the consistency of ZFC cannot be proved within ZFC itself (unless it is actually inconsistent). Thus, to the extent that ZFC is identified with ordinary mathematics, the consistency of ZFC cannot be demonstrated in ordinary mathematics. The consistency of ZFC does follow from the existence of a weakly inaccessible cardinal, which is unprovable in ZFC if ZFC is consistent. Nevertheless, it is deemed unlikely that ZFC harbors an unsuspected contradiction; it is widely believed that if ZFC were inconsistent, that fact would have been uncovered by now. This much is certain — ZFC is immune to the classic paradoxes of naive set theory: Russell's paradox, the Burali-Forti paradox, and Cantor's paradox.

Abian & LaMacchia (1978) studied a subtheory of ZFC consisting of the axioms of extensionality, union, powerset, replacement, and choice. Using models, they proved this subtheory consistent, and proved that each of the axioms of extensionality, replacement, and power set is independent of the four remaining axioms of this subtheory. If this subtheory is augmented with the axiom of infinity, each of the axioms of union, choice, and infinity is independent of the five remaining axioms. Because there are non-well-founded models that satisfy each axiom of ZFC except the axiom of regularity, that axiom is independent of the other ZFC axioms.

If consistent, ZFC cannot prove the existence of the inaccessible cardinals that category theory requires. Huge sets of this nature are possible if ZF is augmented with Tarski's axiom.[12] Assuming that axiom turns the axioms of infinity, power set, and choice (7 – 9 above) into theorems.

Independence Edit

Many important statements are independent of ZFC (see list of statements independent of ZFC). The independence is usually proved by forcing, whereby it is shown that every countable transitive model of ZFC (sometimes augmented with large cardinal axioms) can be expanded to satisfy the statement in question. A different expansion is then shown to satisfy the negation of the statement. An independence proof by forcing automatically proves independence from arithmetical statements, other concrete statements, and large cardinal axioms. Some statements independent of ZFC can be proven to hold in particular inner models, such as in the constructible universe. However, some statements that are true about constructible sets are not consistent with hypothesized large cardinal axioms.

Forcing proves that the following statements are independent of ZFC:

Remarks:

  • The consistency of V=L is provable by inner models but not forcing: every model of ZF can be trimmed to become a model of ZFC + V=L.
  • The Diamond Principle implies the Continuum Hypothesis and the negation of the Suslin Hypothesis.
  • Martin's axiom plus the negation of the Continuum Hypothesis implies the Suslin Hypothesis.
  • The constructible universe satisfies the Generalized Continuum Hypothesis, the Diamond Principle, Martin's Axiom and the Kurepa Hypothesis.
  • The failure of the Kurepa hypothesis is equiconsistent with the existence of a strongly inaccessible cardinal.

A variation on the method of forcing can also be used to demonstrate the consistency and unprovability of the axiom of choice, i.e., that the axiom of choice is independent of ZF. The consistency of choice can be (relatively) easily verified by proving that the inner model L satisfies choice. (Thus every model of ZF contains a submodel of ZFC, so that Con(ZF) implies Con(ZFC).) Since forcing preserves choice, we cannot directly produce a model contradicting choice from a model satisfying choice. However, we can use forcing to create a model which contains a suitable submodel, namely one satisfying ZF but not C.

Another method of proving independence results, one owing nothing to forcing, is based on Gödel's second incompleteness theorem. This approach employs the statement whose independence is being examined, to prove the existence of a set model of ZFC, in which case Con(ZFC) is true. Since ZFC satisfies the conditions of Gödel's second theorem, the consistency of ZFC is unprovable in ZFC (provided that ZFC is, in fact, consistent). Hence no statement allowing such a proof can be proved in ZFC. This method can prove that the existence of large cardinals is not provable in ZFC, but cannot prove that assuming such cardinals, given ZFC, is free of contradiction.

Proposed additions Edit

The project to unify set theorists behind additional axioms to resolve the Continuum Hypothesis or other meta-mathematical ambiguities is sometimes known as "Gödel's program".[13] Mathematicians currently debate which axioms are the most plausible or "self-evident", which axioms are the most useful in various domains, and about to what degree usefulness should be traded off with plausibility; some "multiverse" set theorists argue that usefulness should be the sole ultimate criterion in which axioms to customarily adopt. One school of thought leans on expanding the "iterative" concept of a set to produce a set-theoretic universe with an interesting and complex but reasonably tractable structure by adopting forcing axioms; another school advocates for a tidier, less cluttered universe, perhaps focused on a "core" inner model.[14]

Criticisms Edit

For criticism of set theory in general, see Objections to set theory

ZFC has been criticized both for being excessively strong and for being excessively weak, as well as for its failure to capture objects such as proper classes and the universal set.

Many mathematical theorems can be proven in much weaker systems than ZFC, such as Peano arithmetic and second-order arithmetic (as explored by the program of reverse mathematics). Saunders Mac Lane and Solomon Feferman have both made this point. Some of "mainstream mathematics" (mathematics not directly connected with axiomatic set theory) is beyond Peano arithmetic and second-order arithmetic, but still, all such mathematics can be carried out in ZC (Zermelo set theory with choice), another theory weaker than ZFC. Much of the power of ZFC, including the axiom of regularity and the axiom schema of replacement, is included primarily to facilitate the study of the set theory itself.

On the other hand, among axiomatic set theories, ZFC is comparatively weak. Unlike New Foundations, ZFC does not admit the existence of a universal set. Hence the universe of sets under ZFC is not closed under the elementary operations of the algebra of sets. Unlike von Neumann–Bernays–Gödel set theory (NBG) and Morse–Kelley set theory (MK), ZFC does not admit the existence of proper classes. A further comparative weakness of ZFC is that the axiom of choice included in ZFC is weaker than the axiom of global choice included in NBG and MK.

There are numerous mathematical statements independent of ZFC. These include the continuum hypothesis, the Whitehead problem, and the normal Moore space conjecture. Some of these conjectures are provable with the addition of axioms such as Martin's axiom or large cardinal axioms to ZFC. Some others are decided in ZF+AD where AD is the axiom of determinacy, a strong supposition incompatible with choice. One attraction of large cardinal axioms is that they enable many results from ZF+AD to be established in ZFC adjoined by some large cardinal axiom (see projective determinacy). The Mizar system and Metamath have adopted Tarski–Grothendieck set theory, an extension of ZFC, so that proofs involving Grothendieck universes (encountered in category theory and algebraic geometry) can be formalized.

See also Edit

Related axiomatic set theories:

Notes Edit

  1. ^ Ciesielski 1997. "Zermelo-Fraenkel axioms (abbreviated as ZFC where C stands for the axiom of Choice"
  2. ^ K. Kunen, The Foundations of Mathematics (p.10). Accessed 2022-04-26.
  3. ^ Ebbinghaus 2007, p. 136.
  4. ^ Halbeisen 2011, pp. 62–63.
  5. ^ Kunen (1980, p. 10).
  6. ^ Hatcher 1982, p. 138, def. 1.
  7. ^ Fraenkel, Bar-Hillel & Lévy 1973.
  8. ^ Shoenfield 2001, p. 239.
  9. ^ Shoenfield 1977, section 2.
  10. ^ Hinman 2005, p. 467.
  11. ^ (Link 2014)
  12. ^ Tarski 1939.
  13. ^ Feferman 1996.
  14. ^ Wolchover 2013.

Works cited Edit

  • Abian, Alexander (1965). The Theory of Sets and Transfinite Arithmetic. W B Saunders.
  • ———; LaMacchia, Samuel (1978). "On the Consistency and Independence of Some Set-Theoretical Axioms". Notre Dame Journal of Formal Logic. 19: 155–58. doi:10.1305/ndjfl/1093888220.
  • Bernays, Paul; Fraenkel, A.A. (1958). Axiomatic Set Theory. Amsterdam: North Holland.
  • Ciesielski, Krzysztof (1997). Set Theory for the Working Mathematician. Cambridge University Press. p. 4. ISBN 0-521-59441-3.
  • Devlin, Keith (1996) [First published 1984]. The Joy of Sets. Springer.
  • Ebbinghaus, Heinz-Dieter (2007). Ernst Zermelo: An Approach to His Life and Work. Springer. ISBN 978-3-540-49551-2.
  • Feferman, Solomon (1996). "Gödel's program for new axioms: why, where, how and what?". In Hájek, Petr (ed.). Gödel '96: Logical foundations of mathematics, computer science and physics–Kurt Gödel's legacy. Springer-Verlag. pp. 3–22. ISBN 3-540-61434-6..
  • Fraenkel, Abraham; Bar-Hillel, Yehoshua; Lévy, Azriel (1973) [First published 1958]. Foundations of Set Theory. North-Holland. Fraenkel's final word on ZF and ZFC.
  • Halbeisen, Lorenz J. (2011). Combinatorial Set Theory: With a Gentle Introduction to Forcing. Springer. pp. 62–63. ISBN 978-1-4471-2172-5.
  • Hatcher, William (1982) [First published 1968]. The Logical Foundations of Mathematics. Pergamon Press.
  • van Heijenoort, Jean (1967). From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931. Harvard University Press. Includes annotated English translations of the classic articles by Zermelo, Fraenkel, and Skolem bearing on ZFC.
  • Hinman, Peter (2005). Fundamentals of Mathematical Logic. A K Peters. ISBN 978-1-56881-262-5.
  • Jech, Thomas (2003). Set Theory: The Third Millennium Edition, Revised and Expanded. Springer. ISBN 3-540-44085-2.
  • Kunen, Kenneth (1980). Set Theory: An Introduction to Independence Proofs. Elsevier. ISBN 0-444-86839-9.
  • Levy, Azriel (2002). Basic Set Theory. Dover Publications. ISBN 048642079-5.
  • Link, Godehard (2014). Formalism and Beyond: On the Nature of Mathematical Discourse. Walter de Gruyter GmbH & Co KG. ISBN 978-1-61451-829-7.
  • Montague, Richard (1961). "Semantical closure and non-finite axiomatizability". Infinistic Methods. London: Pergamon Press. pp. 45–69.
  • Quine, Willard van Orman (1969). Set Theory and Its Logic (Revised ed.). Cambridge, Massachusetts and London, England: The Belknap Press of Harvard University Press. ISBN 0-674-80207-1.
  • Shoenfield, Joseph R. (1977). "Axioms of set theory". In Barwise, K. J. (ed.). Handbook of Mathematical Logic. North-Holland Publishing Company. ISBN 0-7204-2285-X.
  • Shoenfield, Joseph R. (2001) [First published 1967]. Mathematical Logic (2nd ed.). A K Peters. ISBN 978-1-56881-135-2.
  • Suppes, Patrick (1972) [First published 1960]. Axiomatic Set Theory. Dover reprint.Perhaps the best exposition of ZFC before the independence of AC and the Continuum hypothesis, and the emergence of large cardinals. Includes many theorems.
  • Takeuti, Gaisi; Zaring, W M (1971). Introduction to Axiomatic Set Theory. Springer-Verlag.
  • Takeuti, Gaisi; Zaring, W M (1982). Introduction to Axiomatic Set Theory. Springer. ISBN 9780387906836.
  • Tarski, Alfred (1939). "On well-ordered subsets of any set". Fundamenta Mathematicae. 32: 176–83. doi:10.4064/fm-32-1-176-783.
  • Tiles, Mary (1989). The Philosophy of Set Theory. Dover reprint.
  • Tourlakis, George (2003). Lectures in Logic and Set Theory, Vol. 2. Cambridge University Press.
  • Wolchover, Natalie (2013). "To Settle Infinity Dispute, a New Law of Logic". Quanta Magazine..
  • Zermelo, Ernst (1908). "Untersuchungen über die Grundlagen der Mengenlehre I". Mathematische Annalen. 65 (2): 261–281. doi:10.1007/BF01449999. S2CID 120085563. English translation in Heijenoort, Jean van (1967). "Investigations in the foundations of set theory". From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931. Source Books in the History of the Sciences. Harvard University Press. pp. 199–215. ISBN 978-0-674-32449-7.
  • Zermelo, Ernst (1930). "Über Grenzzahlen und Mengenbereiche". Fundamenta Mathematicae. 16: 29–47. doi:10.4064/fm-16-1-29-47. ISSN 0016-2736.

External links Edit

zermelo, fraenkel, theory, redirects, here, other, uses, disambiguation, theory, named, after, mathematicians, ernst, zermelo, abraham, fraenkel, axiomatic, system, that, proposed, early, twentieth, century, order, formulate, theory, sets, free, paradoxes, suc. ZFC redirects here For other uses see ZFC disambiguation In set theory Zermelo Fraenkel set theory named after mathematicians Ernst Zermelo and Abraham Fraenkel is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell s paradox Today Zermelo Fraenkel set theory with the historically controversial axiom of choice AC included is the standard form of axiomatic set theory and as such is the most common foundation of mathematics Zermelo Fraenkel set theory with the axiom of choice included is abbreviated ZFC where C stands for choice 1 and ZF refers to the axioms of Zermelo Fraenkel set theory with the axiom of choice excluded Informally 2 Zermelo Fraenkel set theory is intended to formalize a single primitive notion that of a hereditary well founded set so that all entities in the universe of discourse are such sets Thus the axioms of Zermelo Fraenkel set theory refer only to pure sets and prevent its models from containing urelements elements of sets that are not themselves sets Furthermore proper classes collections of mathematical objects defined by a property shared by their members where the collections are too big to be sets can only be treated indirectly Specifically Zermelo Fraenkel set theory does not allow for the existence of a universal set a set containing all sets nor for unrestricted comprehension thereby avoiding Russell s paradox Von Neumann Bernays Godel set theory NBG is a commonly used conservative extension of Zermelo Fraenkel set theory that does allow explicit treatment of proper classes There are many equivalent formulations of the axioms of Zermelo Fraenkel set theory Most of the axioms state the existence of particular sets defined from other sets For example the axiom of pairing says that given any two sets a displaystyle a and b displaystyle b there is a new set a b displaystyle a b containing exactly a displaystyle a and b displaystyle b Other axioms describe properties of set membership A goal of the axioms is that each axiom should be true if interpreted as a statement about the collection of all sets in the von Neumann universe also known as the cumulative hierarchy Formally ZFC is a one sorted theory in first order logic The signature has equality and a single primitive binary relation intended to formalize set membership which is usually denoted displaystyle in The formula a b displaystyle a in b means that the set a displaystyle a is a member of the set b displaystyle b which is also read a displaystyle a is an element of b displaystyle b or a displaystyle a is in b displaystyle b The metamathematics of Zermelo Fraenkel set theory has been extensively studied Landmark results in this area established the logical independence of the axiom of choice from the remaining Zermelo Fraenkel axioms see Axiom of choice Independence and of the continuum hypothesis from ZFC The consistency of a theory such as ZFC cannot be proved within the theory itself as shown by Godel s second incompleteness theorem Contents 1 History 2 Axioms 2 1 1 Axiom of extensionality 2 2 2 Axiom of regularity also called the axiom of foundation 2 3 3 Axiom schema of specification or of separation or of restricted comprehension 2 4 4 Axiom of pairing 2 5 5 Axiom of union 2 6 6 Axiom schema of replacement 2 7 7 Axiom of infinity 2 8 8 Axiom of power set 2 9 9 Axiom of well ordering choice 3 Motivation via the cumulative hierarchy 4 Metamathematics 4 1 Virtual classes 4 2 Finite axiomatization 4 3 Consistency 4 4 Independence 4 5 Proposed additions 5 Criticisms 6 See also 7 Notes 8 Works cited 9 External linksHistory EditMain article History of set theory The modern study of set theory was initiated by Georg Cantor and Richard Dedekind in the 1870s However the discovery of paradoxes in naive set theory such as Russell s paradox led to the desire for a more rigorous form of set theory that was free of these paradoxes In 1908 Ernst Zermelo proposed the first axiomatic set theory Zermelo set theory However as first pointed out by Abraham Fraenkel in a 1921 letter to Zermelo this theory was incapable of proving the existence of certain sets and cardinal numbers whose existence was taken for granted by most set theorists of the time notably the cardinal number ℵ w displaystyle aleph omega nbsp and the set Z 0 P Z 0 P P Z 0 P P P Z 0 displaystyle Z 0 mathcal P Z 0 mathcal P mathcal P Z 0 mathcal P mathcal P mathcal P Z 0 nbsp where Z 0 displaystyle Z 0 nbsp is any infinite set and P displaystyle mathcal P nbsp is the power set operation 3 Moreover one of Zermelo s axioms invoked a concept that of a definite property whose operational meaning was not clear In 1922 Fraenkel and Thoralf Skolem independently proposed operationalizing a definite property as one that could be formulated as a well formed formula in a first order logic whose atomic formulas were limited to set membership and identity They also independently proposed replacing the axiom schema of specification with the axiom schema of replacement Appending this schema as well as the axiom of regularity first proposed by John von Neumann 4 to Zermelo set theory yields the theory denoted by ZF Adding to ZF either the axiom of choice AC or a statement that is equivalent to it yields ZFC Axioms EditSee also Axiom There are many equivalent formulations of the ZFC axioms for a discussion of this see Fraenkel Bar Hillel amp Levy 1973 The following particular axiom set is from Kunen 1980 The axioms per se are expressed in the symbolism of first order logic The associated English prose is only intended to aid the intuition Axioms 1 8 form ZF while the axiom 9 turns ZF into ZFC Following Kunen 1980 we use the equivalent well ordering theorem in place of the axiom of choice for axiom 9 All formulations of ZFC imply that at least one set exists Kunen includes an axiom that directly asserts the existence of a set in addition to the axioms given below although he notes that he does so only for emphasis 5 Its omission here can be justified in two ways First in the standard semantics of first order logic in which ZFC is typically formalized the domain of discourse must be nonempty Hence it is a logical theorem of first order logic that something exists usually expressed as the assertion that something is identical to itself x x x displaystyle exists x x x nbsp Consequently it is a theorem of every first order theory that something exists However as noted above because in the intended semantics of ZFC there are only sets the interpretation of this logical theorem in the context of ZFC is that some set exists Hence there is no need for a separate axiom asserting that a set exists Second however even if ZFC is formulated in so called free logic in which it is not provable from logic alone that something exists the axiom of infinity below asserts that an infinite set exists This implies that a set exists and so once again it is superfluous to include an axiom asserting as much 1 Axiom of extensionality Edit Main article Axiom of extensionality Two sets are equal are the same set if they have the same elements x y z z x z y x y displaystyle forall x forall y forall z z in x Leftrightarrow z in y Rightarrow x y nbsp The converse of this axiom follows from the substitution property of equality ZFC is constructed in first order logic Some formulations of first order logic include identity others do not If the variety of first order logic in which you are constructing set theory does not include equality displaystyle nbsp x y displaystyle x y nbsp may be defined as an abbreviation for the following formula 6 z z x z y w x w y w displaystyle forall z z in x Leftrightarrow z in y land forall w x in w Leftrightarrow y in w nbsp In this case the axiom of extensionality can be reformulated as x y z z x z y w x w y w displaystyle forall x forall y forall z z in x Leftrightarrow z in y Rightarrow forall w x in w Leftrightarrow y in w nbsp which says that if x displaystyle x nbsp and y displaystyle y nbsp have the same elements then they belong to the same sets 7 2 Axiom of regularity also called the axiom of foundation Edit Main article Axiom of regularity Every non empty set x displaystyle x nbsp contains a member y displaystyle y nbsp such that x displaystyle x nbsp and y displaystyle y nbsp are disjoint sets x a a x y y x z z y z x displaystyle forall x exists a a in x Rightarrow exists y y in x land lnot exists z z in y land z in x nbsp 8 or in modern notation x x y y x y x displaystyle forall x x neq varnothing Rightarrow exists y y in x land y cap x varnothing nbsp This along with the Axiom of Pairing implies for example that no set is an element of itself and that every set has an ordinal rank 3 Axiom schema of specification or of separation or of restricted comprehension Edit Main article Axiom schema of specification Subsets are commonly constructed using set builder notation For example the even integers can be constructed as the subset of the integers Z displaystyle mathbb Z nbsp satisfying the congruence modulo predicate x 0 mod 2 displaystyle x equiv 0 pmod 2 nbsp x Z x 0 mod 2 displaystyle x in mathbb Z x equiv 0 pmod 2 nbsp In general the subset of a set z displaystyle z nbsp obeying a formula f x displaystyle varphi x nbsp with one free variable x displaystyle x nbsp may be written as x z f x displaystyle x in z varphi x nbsp The axiom schema of specification states that this subset always exists it is an axiom schema because there is one axiom for each f displaystyle varphi nbsp Formally let f displaystyle varphi nbsp be any formula in the language of ZFC with all free variables among x z w 1 w n displaystyle x z w 1 ldots w n nbsp y displaystyle y nbsp is not free in f displaystyle varphi nbsp Then z w 1 w 2 w n y x x y x z f x w 1 w 2 w n z displaystyle forall z forall w 1 forall w 2 ldots forall w n exists y forall x x in y Leftrightarrow x in z land varphi x w 1 w 2 w n z nbsp Note that the axiom schema of specification can only construct subsets and does not allow the construction of entities of the more general form x f x displaystyle x varphi x nbsp This restriction is necessary to avoid Russell s paradox let y x x x displaystyle y x x notin x nbsp then y y y y displaystyle y in y Leftrightarrow y notin y nbsp and its variants that accompany naive set theory with unrestricted comprehension In some other axiomatizations of ZF this axiom is redundant in that it follows from the axiom schema of replacement and the axiom of the empty set On the other hand the axiom schema of specification can be used to prove the existence of the empty set denoted displaystyle varnothing nbsp once at least one set is known to exist see above One way to do this is to use a property f displaystyle varphi nbsp which no set has For example if w displaystyle w nbsp is any existing set the empty set can be constructed as u w u u u u displaystyle varnothing u in w mid u in u land lnot u in u nbsp Thus the axiom of the empty set is implied by the nine axioms presented here The axiom of extensionality implies the empty set is unique does not depend on w displaystyle w nbsp It is common to make a definitional extension that adds the symbol displaystyle varnothing nbsp to the language of ZFC 4 Axiom of pairing Edit Main article Axiom of pairing If x displaystyle x nbsp and y displaystyle y nbsp are sets then there exists a set which contains x displaystyle x nbsp and y displaystyle y nbsp as elements for example if x 1 2 and y 2 3 then z will be 1 2 2 3 x y z x z y z displaystyle forall x forall y exists z x in z land y in z nbsp The axiom schema of specification must be used to reduce this to a set with exactly these two elements The axiom of pairing is part of Z but is redundant in ZF because it follows from the axiom schema of replacement if we are given a set with at least two elements The existence of a set with at least two elements is assured by either the axiom of infinity or by the axiom schema of specification dubious discuss and the axiom of the power set applied twice to any set 5 Axiom of union Edit Main article Axiom of union The union over the elements of a set exists For example the union over the elements of the set 1 2 2 3 displaystyle 1 2 2 3 nbsp is 1 2 3 displaystyle 1 2 3 nbsp The axiom of union states that for any set of sets F displaystyle mathcal F nbsp there is a set A displaystyle A nbsp containing every element that is a member of some member of F displaystyle mathcal F nbsp F A Y x x Y Y F x A displaystyle forall mathcal F exists A forall Y forall x x in Y land Y in mathcal F Rightarrow x in A nbsp Although this formula doesn t directly assert the existence of F displaystyle cup mathcal F nbsp the set F displaystyle cup mathcal F nbsp can be constructed from A displaystyle A nbsp in the above using the axiom schema of specification F x A Y x Y Y F displaystyle cup mathcal F x in A exists Y x in Y land Y in mathcal F nbsp 6 Axiom schema of replacement Edit Main article Axiom schema of replacement The axiom schema of replacement asserts that the image of a set under any definable function will also fall inside a set Formally let f displaystyle varphi nbsp be any formula in the language of ZFC whose free variables are among x y A w 1 w n displaystyle x y A w 1 dotsc w n nbsp so that in particular B displaystyle B nbsp is not free in f displaystyle varphi nbsp Then A w 1 w 2 w n x x A y f B x x A y y B f displaystyle forall A forall w 1 forall w 2 ldots forall w n bigl forall x x in A Rightarrow exists y varphi Rightarrow exists B forall x bigl x in A Rightarrow exists y y in B land varphi bigr bigr nbsp The unique existential quantifier displaystyle exists nbsp denotes the existence of exactly one element such that it follows a given statement For more see uniqueness quantification In other words if the relation f displaystyle varphi nbsp represents a definable function f displaystyle f nbsp A displaystyle A nbsp represents its domain and f x displaystyle f x nbsp is a set for every x A displaystyle x in A nbsp then the range of f displaystyle f nbsp is a subset of some set B displaystyle B nbsp The form stated here in which B displaystyle B nbsp may be larger than strictly necessary is sometimes called the axiom schema of collection 7 Axiom of infinity Edit Main article Axiom of infinity First few von Neumann ordinals0 1 0 2 0 1 3 0 1 2 4 0 1 2 3 Let S w displaystyle S w nbsp abbreviate w w displaystyle w cup w nbsp where w displaystyle w nbsp is some set We can see that w displaystyle w nbsp is a valid set by applying the Axiom of Pairing with x y w displaystyle x y w nbsp so that the set z is w displaystyle w nbsp Then there exists a set X such that the empty set displaystyle varnothing nbsp defined axiomatically is a member of X and whenever a set y is a member of X then S y displaystyle S y nbsp is also a member of X X e z z e e X y y X S y X displaystyle exists X left exists e forall z neg z in e land e in X land forall y y in X Rightarrow S y in X right nbsp More colloquially there exists a set X having infinitely many members It must be established however that these members are all different because if two elements are the same the sequence will loop around in a finite cycle of sets The axiom of regularity prevents this from happening The minimal set X satisfying the axiom of infinity is the von Neumann ordinal w which can also be thought of as the set of natural numbers N displaystyle mathbb N nbsp 8 Axiom of power set Edit Main article Axiom of power set By definition a set z displaystyle z nbsp is a subset of a set x displaystyle x nbsp if and only if every element of z displaystyle z nbsp is also an element of x displaystyle x nbsp z x q q z q x displaystyle z subseteq x Leftrightarrow forall q q in z Rightarrow q in x nbsp The Axiom of Power Set states that for any set x displaystyle x nbsp there is a set y displaystyle y nbsp that contains every subset of x displaystyle x nbsp x y z z x z y displaystyle forall x exists y forall z z subseteq x Rightarrow z in y nbsp The axiom schema of specification is then used to define the power set P x displaystyle mathcal P x nbsp as the subset of such a y displaystyle y nbsp containing the subsets of x displaystyle x nbsp exactly P x z y z x displaystyle mathcal P x z in y z subseteq x nbsp Axioms 1 8 define ZF Alternative forms of these axioms are often encountered some of which are listed in Jech 2003 Some ZF axiomatizations include an axiom asserting that the empty set exists The axioms of pairing union replacement and power set are often stated so that the members of the set x displaystyle x nbsp whose existence is being asserted are just those sets which the axiom asserts x displaystyle x nbsp must contain The following axiom is added to turn ZF into ZFC 9 Axiom of well ordering choice Edit Main article Axiom of choice Main article Well ordering theorem Main article Zorn s lemma The last axiom commonly known as the axiom of choice is presented here as a property about well orders as in Kunen 1980 For any set X displaystyle X nbsp there exists a binary relation R displaystyle R nbsp which well orders X displaystyle X nbsp This means R displaystyle R nbsp is a linear order on X displaystyle X nbsp such that every nonempty subset of X displaystyle X nbsp has a member which is minimal under R displaystyle R nbsp X R R well orders X displaystyle forall X exists R R mbox well orders X nbsp Given axioms 1 8 many statements are provably equivalent to axiom 9 The most common of these goes as follows Let X displaystyle X nbsp be a set whose members are all nonempty Then there exists a function f displaystyle f nbsp from X displaystyle X nbsp to the union of the members of X displaystyle X nbsp called a choice function such that for all Y X displaystyle Y in X nbsp one has f Y Y displaystyle f Y in Y nbsp A third version of the axiom also equivalent is Zorn s lemma Since the existence of a choice function when X displaystyle X nbsp is a finite set is easily proved from axioms 1 8 AC only matters for certain infinite sets AC is characterized as nonconstructive because it asserts the existence of a choice function but says nothing about how this choice function is to be constructed Motivation via the cumulative hierarchy EditFurther information Von Neumann universe One motivation for the ZFC axioms is the cumulative hierarchy of sets introduced by John von Neumann 9 In this viewpoint the universe of set theory is built up in stages with one stage for each ordinal number At stage 0 there are no sets yet At each following stage a set is added to the universe if all of its elements have been added at previous stages Thus the empty set is added at stage 1 and the set containing the empty set is added at stage 2 10 The collection of all sets that are obtained in this way over all the stages is known as V The sets in V can be arranged into a hierarchy by assigning to each set the first stage at which that set was added to V It is provable that a set is in V if and only if the set is pure and well founded And V satisfies all the axioms of ZFC if the class of ordinals has appropriate reflection properties For example suppose that a set x is added at stage a which means that every element of x was added at a stage earlier than a Then every subset of x is also added at or before stage a because all elements of any subset of x were also added before stage a This means that any subset of x which the axiom of separation can construct is added at or before stage a and that the powerset of x will be added at the next stage after a For a complete argument that V satisfies ZFC see Shoenfield 1977 The picture of the universe of sets stratified into the cumulative hierarchy is characteristic of ZFC and related axiomatic set theories such as Von Neumann Bernays Godel set theory often called NBG and Morse Kelley set theory The cumulative hierarchy is not compatible with other set theories such as New Foundations It is possible to change the definition of V so that at each stage instead of adding all the subsets of the union of the previous stages subsets are only added if they are definable in a certain sense This results in a more narrow hierarchy which gives the constructible universe L which also satisfies all the axioms of ZFC including the axiom of choice It is independent from the ZFC axioms whether V L Although the structure of L is more regular and well behaved than that of V few mathematicians argue that V L should be added to ZFC as an additional axiom of constructibility Metamathematics EditVirtual classes Edit As noted earlier proper classes collections of mathematical objects defined by a property shared by their members which are too big to be sets can only be treated indirectly in ZF and thus ZFC An alternative to proper classes while staying within ZF and ZFC is the virtual class notational construct introduced by Quine 1969 where the entire construct y x Fx is simply defined as Fy 11 This provides a simple notation for classes that can contain sets but need not themselves be sets while not committing to the ontology of classes because the notation can be syntactically converted to one that only uses sets Quine s approach built on the earlier approach of Bernays amp Fraenkel 1958 Virtual classes are also used in Levy 2002 Takeuti amp Zaring 1982 and in the Metamath implementation of ZFC Finite axiomatization Edit Main article Von Neumann Bernays Godel set theory The axiom schemata of replacement and separation each contain infinitely many instances Montague 1961 included a result first proved in his 1957 Ph D thesis if ZFC is consistent it is impossible to axiomatize ZFC using only finitely many axioms On the other hand von Neumann Bernays Godel set theory NBG can be finitely axiomatized The ontology of NBG includes proper classes as well as sets a set is any class that can be a member of another class NBG and ZFC are equivalent set theories in the sense that any theorem not mentioning classes and provable in one theory can be proved in the other Consistency Edit Godel s second incompleteness theorem says that a recursively axiomatizable system that can interpret Robinson arithmetic can prove its own consistency only if it is inconsistent Moreover Robinson arithmetic can be interpreted in general set theory a small fragment of ZFC Hence the consistency of ZFC cannot be proved within ZFC itself unless it is actually inconsistent Thus to the extent that ZFC is identified with ordinary mathematics the consistency of ZFC cannot be demonstrated in ordinary mathematics The consistency of ZFC does follow from the existence of a weakly inaccessible cardinal which is unprovable in ZFC if ZFC is consistent Nevertheless it is deemed unlikely that ZFC harbors an unsuspected contradiction it is widely believed that if ZFC were inconsistent that fact would have been uncovered by now This much is certain ZFC is immune to the classic paradoxes of naive set theory Russell s paradox the Burali Forti paradox and Cantor s paradox Abian amp LaMacchia 1978 studied a subtheory of ZFC consisting of the axioms of extensionality union powerset replacement and choice Using models they proved this subtheory consistent and proved that each of the axioms of extensionality replacement and power set is independent of the four remaining axioms of this subtheory If this subtheory is augmented with the axiom of infinity each of the axioms of union choice and infinity is independent of the five remaining axioms Because there are non well founded models that satisfy each axiom of ZFC except the axiom of regularity that axiom is independent of the other ZFC axioms If consistent ZFC cannot prove the existence of the inaccessible cardinals that category theory requires Huge sets of this nature are possible if ZF is augmented with Tarski s axiom 12 Assuming that axiom turns the axioms of infinity power set and choice 7 9 above into theorems Independence Edit Many important statements are independent of ZFC see list of statements independent of ZFC The independence is usually proved by forcing whereby it is shown that every countable transitive model of ZFC sometimes augmented with large cardinal axioms can be expanded to satisfy the statement in question A different expansion is then shown to satisfy the negation of the statement An independence proof by forcing automatically proves independence from arithmetical statements other concrete statements and large cardinal axioms Some statements independent of ZFC can be proven to hold in particular inner models such as in the constructible universe However some statements that are true about constructible sets are not consistent with hypothesized large cardinal axioms Forcing proves that the following statements are independent of ZFC Continuum hypothesis Diamond principle Suslin hypothesis Martin s axiom which is not a ZFC axiom Axiom of Constructibility V L which is also not a ZFC axiom Remarks The consistency of V L is provable by inner models but not forcing every model of ZF can be trimmed to become a model of ZFC V L The Diamond Principle implies the Continuum Hypothesis and the negation of the Suslin Hypothesis Martin s axiom plus the negation of the Continuum Hypothesis implies the Suslin Hypothesis The constructible universe satisfies the Generalized Continuum Hypothesis the Diamond Principle Martin s Axiom and the Kurepa Hypothesis The failure of the Kurepa hypothesis is equiconsistent with the existence of a strongly inaccessible cardinal A variation on the method of forcing can also be used to demonstrate the consistency and unprovability of the axiom of choice i e that the axiom of choice is independent of ZF The consistency of choice can be relatively easily verified by proving that the inner model L satisfies choice Thus every model of ZF contains a submodel of ZFC so that Con ZF implies Con ZFC Since forcing preserves choice we cannot directly produce a model contradicting choice from a model satisfying choice However we can use forcing to create a model which contains a suitable submodel namely one satisfying ZF but not C Another method of proving independence results one owing nothing to forcing is based on Godel s second incompleteness theorem This approach employs the statement whose independence is being examined to prove the existence of a set model of ZFC in which case Con ZFC is true Since ZFC satisfies the conditions of Godel s second theorem the consistency of ZFC is unprovable in ZFC provided that ZFC is in fact consistent Hence no statement allowing such a proof can be proved in ZFC This method can prove that the existence of large cardinals is not provable in ZFC but cannot prove that assuming such cardinals given ZFC is free of contradiction Proposed additions Edit The project to unify set theorists behind additional axioms to resolve the Continuum Hypothesis or other meta mathematical ambiguities is sometimes known as Godel s program 13 Mathematicians currently debate which axioms are the most plausible or self evident which axioms are the most useful in various domains and about to what degree usefulness should be traded off with plausibility some multiverse set theorists argue that usefulness should be the sole ultimate criterion in which axioms to customarily adopt One school of thought leans on expanding the iterative concept of a set to produce a set theoretic universe with an interesting and complex but reasonably tractable structure by adopting forcing axioms another school advocates for a tidier less cluttered universe perhaps focused on a core inner model 14 Criticisms EditFor criticism of set theory in general see Objections to set theoryZFC has been criticized both for being excessively strong and for being excessively weak as well as for its failure to capture objects such as proper classes and the universal set Many mathematical theorems can be proven in much weaker systems than ZFC such as Peano arithmetic and second order arithmetic as explored by the program of reverse mathematics Saunders Mac Lane and Solomon Feferman have both made this point Some of mainstream mathematics mathematics not directly connected with axiomatic set theory is beyond Peano arithmetic and second order arithmetic but still all such mathematics can be carried out in ZC Zermelo set theory with choice another theory weaker than ZFC Much of the power of ZFC including the axiom of regularity and the axiom schema of replacement is included primarily to facilitate the study of the set theory itself On the other hand among axiomatic set theories ZFC is comparatively weak Unlike New Foundations ZFC does not admit the existence of a universal set Hence the universe of sets under ZFC is not closed under the elementary operations of the algebra of sets Unlike von Neumann Bernays Godel set theory NBG and Morse Kelley set theory MK ZFC does not admit the existence of proper classes A further comparative weakness of ZFC is that the axiom of choice included in ZFC is weaker than the axiom of global choice included in NBG and MK There are numerous mathematical statements independent of ZFC These include the continuum hypothesis the Whitehead problem and the normal Moore space conjecture Some of these conjectures are provable with the addition of axioms such as Martin s axiom or large cardinal axioms to ZFC Some others are decided in ZF AD where AD is the axiom of determinacy a strong supposition incompatible with choice One attraction of large cardinal axioms is that they enable many results from ZF AD to be established in ZFC adjoined by some large cardinal axiom see projective determinacy The Mizar system and Metamath have adopted Tarski Grothendieck set theory an extension of ZFC so that proofs involving Grothendieck universes encountered in category theory and algebraic geometry can be formalized See also EditFoundations of mathematics Inner model Large cardinal axiomRelated axiomatic set theories Morse Kelley set theory Von Neumann Bernays Godel set theory Tarski Grothendieck set theory Constructive set theory Internal set theoryNotes Edit Ciesielski 1997 Zermelo Fraenkel axioms abbreviated as ZFC where C stands for the axiom of Choice K Kunen The Foundations of Mathematics p 10 Accessed 2022 04 26 Ebbinghaus 2007 p 136 Halbeisen 2011 pp 62 63 Kunen 1980 p 10 Hatcher 1982 p 138 def 1 Fraenkel Bar Hillel amp Levy 1973 Shoenfield 2001 p 239 Shoenfield 1977 section 2 Hinman 2005 p 467 Link 2014 Tarski 1939 Feferman 1996 Wolchover 2013 Works cited EditAbian Alexander 1965 The Theory of Sets and Transfinite Arithmetic W B Saunders LaMacchia Samuel 1978 On the Consistency and Independence of Some Set Theoretical Axioms Notre Dame Journal of Formal Logic 19 155 58 doi 10 1305 ndjfl 1093888220 Bernays Paul Fraenkel A A 1958 Axiomatic Set Theory Amsterdam North Holland Ciesielski Krzysztof 1997 Set Theory for the Working Mathematician Cambridge University Press p 4 ISBN 0 521 59441 3 Devlin Keith 1996 First published 1984 The Joy of Sets Springer Ebbinghaus Heinz Dieter 2007 Ernst Zermelo An Approach to His Life and Work Springer ISBN 978 3 540 49551 2 Feferman Solomon 1996 Godel s program for new axioms why where how and what In Hajek Petr ed Godel 96 Logical foundations of mathematics computer science and physics Kurt Godel s legacy Springer Verlag pp 3 22 ISBN 3 540 61434 6 Fraenkel Abraham Bar Hillel Yehoshua Levy Azriel 1973 First published 1958 Foundations of Set Theory North Holland Fraenkel s final word on ZF and ZFC Halbeisen Lorenz J 2011 Combinatorial Set Theory With a Gentle Introduction to Forcing Springer pp 62 63 ISBN 978 1 4471 2172 5 Hatcher William 1982 First published 1968 The Logical Foundations of Mathematics Pergamon Press van Heijenoort Jean 1967 From Frege to Godel A Source Book in Mathematical Logic 1879 1931 Harvard University Press Includes annotated English translations of the classic articles by Zermelo Fraenkel and Skolem bearing on ZFC Hinman Peter 2005 Fundamentals of Mathematical Logic A K Peters ISBN 978 1 56881 262 5 Jech Thomas 2003 Set Theory The Third Millennium Edition Revised and Expanded Springer ISBN 3 540 44085 2 Kunen Kenneth 1980 Set Theory An Introduction to Independence Proofs Elsevier ISBN 0 444 86839 9 Levy Azriel 2002 Basic Set Theory Dover Publications ISBN 048642079 5 Link Godehard 2014 Formalism and Beyond On the Nature of Mathematical Discourse Walter de Gruyter GmbH amp Co KG ISBN 978 1 61451 829 7 Montague Richard 1961 Semantical closure and non finite axiomatizability Infinistic Methods London Pergamon Press pp 45 69 Quine Willard van Orman 1969 Set Theory and Its Logic Revised ed Cambridge Massachusetts and London England The Belknap Press of Harvard University Press ISBN 0 674 80207 1 Shoenfield Joseph R 1977 Axioms of set theory In Barwise K J ed Handbook of Mathematical Logic North Holland Publishing Company ISBN 0 7204 2285 X Shoenfield Joseph R 2001 First published 1967 Mathematical Logic 2nd ed A K Peters ISBN 978 1 56881 135 2 Suppes Patrick 1972 First published 1960 Axiomatic Set Theory Dover reprint Perhaps the best exposition of ZFC before the independence of AC and the Continuum hypothesis and the emergence of large cardinals Includes many theorems Takeuti Gaisi Zaring W M 1971 Introduction to Axiomatic Set Theory Springer Verlag Takeuti Gaisi Zaring W M 1982 Introduction to Axiomatic Set Theory Springer ISBN 9780387906836 Tarski Alfred 1939 On well ordered subsets of any set Fundamenta Mathematicae 32 176 83 doi 10 4064 fm 32 1 176 783 Tiles Mary 1989 The Philosophy of Set Theory Dover reprint Tourlakis George 2003 Lectures in Logic and Set Theory Vol 2 Cambridge University Press Wolchover Natalie 2013 To Settle Infinity Dispute a New Law of Logic Quanta Magazine Zermelo Ernst 1908 Untersuchungen uber die Grundlagen der Mengenlehre I Mathematische Annalen 65 2 261 281 doi 10 1007 BF01449999 S2CID 120085563 English translation in Heijenoort Jean van 1967 Investigations in the foundations of set theory From Frege to Godel A Source Book in Mathematical Logic 1879 1931 Source Books in the History of the Sciences Harvard University Press pp 199 215 ISBN 978 0 674 32449 7 Zermelo Ernst 1930 Uber Grenzzahlen und Mengenbereiche Fundamenta Mathematicae 16 29 47 doi 10 4064 fm 16 1 29 47 ISSN 0016 2736 External links Edit ZFC Encyclopedia of Mathematics EMS Press 2001 1994 Stanford Encyclopedia of Philosophy articles by Thomas Jech Set Theory Axioms of Zermelo Fraenkel Set Theory Metamath version of the ZFC axioms A concise and nonredundant axiomatization The background first order logic is defined especially to facilitate machine verification of proofs A derivation in Metamath of a version of the separation schema from a version of the replacement schema Weisstein Eric W Zermelo Fraenkel Set Theory MathWorld Retrieved from https en wikipedia org w index php title Zermelo Fraenkel set theory amp oldid 1178616976, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.