fbpx
Wikipedia

Consistency

In classical deductive logic, a consistent theory is one that does not lead to a logical contradiction.[1] The lack of contradiction can be defined in either semantic or syntactic terms. The semantic definition states that a theory is consistent if it has a model, i.e., there exists an interpretation under which all formulas in the theory are true. This is the sense used in traditional Aristotelian logic, although in contemporary mathematical logic the term satisfiable is used instead. The syntactic definition states a theory is consistent if there is no formula such that both and its negation are elements of the set of consequences of . Let be a set of closed sentences (informally "axioms") and the set of closed sentences provable from under some (specified, possibly implicitly) formal deductive system. The set of axioms is consistent when for no formula .[2]

If there exists a deductive system for which these semantic and syntactic definitions are equivalent for any theory formulated in a particular deductive logic, the logic is called complete.[citation needed] The completeness of the sentential calculus was proved by Paul Bernays in 1918[citation needed][3] and Emil Post in 1921,[4] while the completeness of predicate calculus was proved by Kurt Gödel in 1930,[5] and consistency proofs for arithmetics restricted with respect to the induction axiom schema were proved by Ackermann (1924), von Neumann (1927) and Herbrand (1931).[6] Stronger logics, such as second-order logic, are not complete.

A consistency proof is a mathematical proof that a particular theory is consistent.[7] The early development of mathematical proof theory was driven by the desire to provide finitary consistency proofs for all of mathematics as part of Hilbert's program. Hilbert's program was strongly impacted by the incompleteness theorems, which showed that sufficiently strong proof theories cannot prove their consistency (provided that they are consistent).

Although consistency can be proved using model theory, it is often done in a purely syntactical way, without any need to reference some model of the logic. The cut-elimination (or equivalently the normalization of the underlying calculus if there is one) implies the consistency of the calculus: since there is no cut-free proof of falsity, there is no contradiction in general.

Consistency and completeness in arithmetic and set theory Edit

In theories of arithmetic, such as Peano arithmetic, there is an intricate relationship between the consistency of the theory and its completeness. A theory is complete if, for every formula φ in its language, at least one of φ or ¬φ is a logical consequence of the theory.

Presburger arithmetic is an axiom system for the natural numbers under addition. It is both consistent and complete.

Gödel's incompleteness theorems show that any sufficiently strong recursively enumerable theory of arithmetic cannot be both complete and consistent. Gödel's theorem applies to the theories of Peano arithmetic (PA) and primitive recursive arithmetic (PRA), but not to Presburger arithmetic.

Moreover, Gödel's second incompleteness theorem shows that the consistency of sufficiently strong recursively enumerable theories of arithmetic can be tested in a particular way. Such a theory is consistent if and only if it does not prove a particular sentence, called the Gödel sentence of the theory, which is a formalized statement of the claim that the theory is indeed consistent. Thus the consistency of a sufficiently strong, recursively enumerable, consistent theory of arithmetic can never be proven in that system itself. The same result is true for recursively enumerable theories that can describe a strong enough fragment of arithmetic—including set theories such as Zermelo–Fraenkel set theory (ZF). These set theories cannot prove their own Gödel sentence—provided that they are consistent, which is generally believed.

Because consistency of ZF is not provable in ZF, the weaker notion relative consistency is interesting in set theory (and in other sufficiently expressive axiomatic systems). If T is a theory and A is an additional axiom, T + A is said to be consistent relative to T (or simply that A is consistent with T) if it can be proved that if T is consistent then T + A is consistent. If both A and ¬A are consistent with T, then A is said to be independent of T.

First-order logic Edit

Notation Edit

In the following context of mathematical logic, the turnstile symbol   means "provable from". That is,   reads: b is provable from a (in some specified formal system).

Definition Edit

  • A set of formulas   in first-order logic is consistent (written  ) if there is no formula   such that   and  . Otherwise   is inconsistent (written  ).
  •   is said to be simply consistent if for no formula   of  , both   and the negation of   are theorems of  .[clarification needed]
  •   is said to be absolutely consistent or Post consistent if at least one formula in the language of   is not a theorem of  .
  •   is said to be maximally consistent if   is consistent and for every formula  ,   implies  .
  •   is said to contain witnesses if for every formula of the form   there exists a term   such that  , where   denotes the substitution of each   in   by a  ; see also First-order logic.[citation needed]

Basic results Edit

  1. The following are equivalent:
    1.  
    2. For all  
  2. Every satisfiable set of formulas is consistent, where a set of formulas   is satisfiable if and only if there exists a model   such that  .
  3. For all   and  :
    1. if not  , then  ;
    2. if   and  , then  ;
    3. if  , then   or  .
  4. Let   be a maximally consistent set of formulas and suppose it contains witnesses. For all   and  :
    1. if  , then  ,
    2. either   or  ,
    3.   if and only if   or  ,
    4. if   and  , then  ,
    5.   if and only if there is a term   such that  .[citation needed]

Henkin's theorem Edit

Let   be a set of symbols. Let   be a maximally consistent set of  -formulas containing witnesses.

Define an equivalence relation   on the set of  -terms by   if  , where   denotes equality. Let   denote the equivalence class of terms containing  ; and let   where   is the set of terms based on the set of symbols  .

Define the  -structure   over  , also called the term-structure corresponding to  , by:

  1. for each  -ary relation symbol  , define   if  [8]
  2. for each  -ary function symbol  , define  
  3. for each constant symbol  , define  

Define a variable assignment   by   for each variable  . Let   be the term interpretation associated with  .

Then for each  -formula  :

  if and only if  [citation needed]

Sketch of proof Edit

There are several things to verify. First, that   is in fact an equivalence relation. Then, it needs to be verified that (1), (2), and (3) are well defined. This falls out of the fact that   is an equivalence relation and also requires a proof that (1) and (2) are independent of the choice of   class representatives. Finally,   can be verified by induction on formulas.

Model theory Edit

In ZFC set theory with classical first-order logic,[9] an inconsistent theory   is one such that there exists a closed sentence   such that   contains both   and its negation  . A consistent theory is one such that the following logically equivalent conditions hold

  1.  [10]
  2.  

See also Edit

Footnotes Edit

  1. ^ Tarski 1946 states it this way: "A deductive theory is called consistent or non-contradictory if no two asserted statements of this theory contradict each other, or in other words, if of any two contradictory sentences … at least one cannot be proved," (p. 135) where Tarski defines contradictory as follows: "With the help of the word not one forms the negation of any sentence; two sentences, of which the first is a negation of the second, are called contradictory sentences" (p. 20). This definition requires a notion of "proof". Gödel 1931 defines the notion this way: "The class of provable formulas is defined to be the smallest class of formulas that contains the axioms and is closed under the relation "immediate consequence", i.e., formula c of a and b is defined as an immediate consequence in terms of modus ponens or substitution; cf Gödel 1931, van Heijenoort 1967, p. 601. Tarski defines "proof" informally as "statements follow one another in a definite order according to certain principles … and accompanied by considerations intended to establish their validity [true conclusion for all true premises – Reichenbach 1947, p. 68]" cf Tarski 1946, p. 3. Kleene 1952 defines the notion with respect to either an induction or as to paraphrase) a finite sequence of formulas such that each formula in the sequence is either an axiom or an "immediate consequence" of the preceding formulas; "A proof is said to be a proof of its last formula, and this formula is said to be (formally) provable or be a (formal) theorem" cf Kleene 1952, p. 83.
  2. ^ Hodges, Wilfrid (1997). A Shorter Model Theory. New York: Cambridge University Press. p. 37. Let   be a signature,   a theory in   and   a sentence in  . We say that   is a consequence of  , or that   entails  , in symbols  , if every model of   is a model of  . (In particular if   has no models then   entails  .)
    Warning: we don't require that if   then there is a proof of   from  . In any case, with infinitary languages, it's not always clear what would constitute proof. Some writers use   to mean that   is deducible from   in some particular formal proof calculus, and they write   for our notion of entailment (a notation which clashes with our  ). For first-order logic, the two kinds of entailment coincide by the completeness theorem for the proof calculus in question.
    We say that   is valid, or is a logical theorem, in symbols  , if   is true in every  -structure. We say that   is consistent if   is true in some  -structure. Likewise, we say that a theory   is consistent if it has a model.
    We say that two theories S and T in L infinity omega are equivalent if they have the same models, i.e. if Mod(S) = Mod(T).
    (Please note the definition of Mod(T) on p. 30 ...)
  3. ^ van Heijenoort 1967, p. 265 states that Bernays determined the independence of the axioms of Principia Mathematica, a result not published until 1926, but he says nothing about Bernays proving their consistency.
  4. ^ Post proves both consistency and completeness of the propositional calculus of PM, cf van Heijenoort's commentary and Post's 1931 Introduction to a general theory of elementary propositions in van Heijenoort 1967, pp. 264ff. Also Tarski 1946, pp. 134ff.
  5. ^ cf van Heijenoort's commentary and Gödel's 1930 The completeness of the axioms of the functional calculus of logic in van Heijenoort 1967, pp. 582ff.
  6. ^ cf van Heijenoort's commentary and Herbrand's 1930 On the consistency of arithmetic in van Heijenoort 1967, pp. 618ff.
  7. ^ Informally, Zermelo–Fraenkel set theory is ordinarily assumed; some dialects of informal mathematics customarily assume the axiom of choice in addition.
  8. ^ This definition is independent of the choice of   due to the substitutivity properties of   and the maximal consistency of  .
  9. ^ the common case in many applications to other areas of mathematics as well as the ordinary mode of reasoning of informal mathematics in calculus and applications to physics, chemistry, engineering
  10. ^ according to De Morgan's laws

References Edit

  • Gödel, Kurt (1 December 1931). "Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I". Monatshefte für Mathematik und Physik. 38 (1): 173–198. doi:10.1007/BF01700692.
  • Kleene, Stephen (1952). Introduction to Metamathematics. New York: North-Holland. ISBN 0-7204-2103-9. 10th impression 1991.
  • Reichenbach, Hans (1947). Elements of Symbolic Logic. New York: Dover. ISBN 0-486-24004-5.
  • Tarski, Alfred (1946). Introduction to Logic and to the Methodology of Deductive Sciences (Second ed.). New York: Dover. ISBN 0-486-28462-X.
  • van Heijenoort, Jean (1967). From Frege to Gödel: A Source Book in Mathematical Logic. Cambridge, MA: Harvard University Press. ISBN 0-674-32449-8. (pbk.)
  • "Consistency". The Cambridge Dictionary of Philosophy.
  • Ebbinghaus, H. D.; Flum, J.; Thomas, W. Mathematical Logic.
  • Jevons, W. S. (1870). Elementary Lessons in Logic.

External links Edit


consistency, other, uses, disambiguation, classical, deductive, logic, consistent, theory, that, does, lead, logical, contradiction, lack, contradiction, defined, either, semantic, syntactic, terms, semantic, definition, states, that, theory, consistent, model. For other uses see Consistency disambiguation In classical deductive logic a consistent theory is one that does not lead to a logical contradiction 1 The lack of contradiction can be defined in either semantic or syntactic terms The semantic definition states that a theory is consistent if it has a model i e there exists an interpretation under which all formulas in the theory are true This is the sense used in traditional Aristotelian logic although in contemporary mathematical logic the term satisfiable is used instead The syntactic definition states a theory T displaystyle T is consistent if there is no formula f displaystyle varphi such that both f displaystyle varphi and its negation f displaystyle lnot varphi are elements of the set of consequences of T displaystyle T Let A displaystyle A be a set of closed sentences informally axioms and A displaystyle langle A rangle the set of closed sentences provable from A displaystyle A under some specified possibly implicitly formal deductive system The set of axioms A displaystyle A is consistent when f f A displaystyle varphi lnot varphi in langle A rangle for no formula f displaystyle varphi 2 If there exists a deductive system for which these semantic and syntactic definitions are equivalent for any theory formulated in a particular deductive logic the logic is called complete citation needed The completeness of the sentential calculus was proved by Paul Bernays in 1918 citation needed 3 and Emil Post in 1921 4 while the completeness of predicate calculus was proved by Kurt Godel in 1930 5 and consistency proofs for arithmetics restricted with respect to the induction axiom schema were proved by Ackermann 1924 von Neumann 1927 and Herbrand 1931 6 Stronger logics such as second order logic are not complete A consistency proof is a mathematical proof that a particular theory is consistent 7 The early development of mathematical proof theory was driven by the desire to provide finitary consistency proofs for all of mathematics as part of Hilbert s program Hilbert s program was strongly impacted by the incompleteness theorems which showed that sufficiently strong proof theories cannot prove their consistency provided that they are consistent Although consistency can be proved using model theory it is often done in a purely syntactical way without any need to reference some model of the logic The cut elimination or equivalently the normalization of the underlying calculus if there is one implies the consistency of the calculus since there is no cut free proof of falsity there is no contradiction in general Contents 1 Consistency and completeness in arithmetic and set theory 2 First order logic 2 1 Notation 2 2 Definition 2 3 Basic results 2 4 Henkin s theorem 2 5 Sketch of proof 3 Model theory 4 See also 5 Footnotes 6 References 7 External linksConsistency and completeness in arithmetic and set theory EditIn theories of arithmetic such as Peano arithmetic there is an intricate relationship between the consistency of the theory and its completeness A theory is complete if for every formula f in its language at least one of f or f is a logical consequence of the theory Presburger arithmetic is an axiom system for the natural numbers under addition It is both consistent and complete Godel s incompleteness theorems show that any sufficiently strong recursively enumerable theory of arithmetic cannot be both complete and consistent Godel s theorem applies to the theories of Peano arithmetic PA and primitive recursive arithmetic PRA but not to Presburger arithmetic Moreover Godel s second incompleteness theorem shows that the consistency of sufficiently strong recursively enumerable theories of arithmetic can be tested in a particular way Such a theory is consistent if and only if it does not prove a particular sentence called the Godel sentence of the theory which is a formalized statement of the claim that the theory is indeed consistent Thus the consistency of a sufficiently strong recursively enumerable consistent theory of arithmetic can never be proven in that system itself The same result is true for recursively enumerable theories that can describe a strong enough fragment of arithmetic including set theories such as Zermelo Fraenkel set theory ZF These set theories cannot prove their own Godel sentence provided that they are consistent which is generally believed Because consistency of ZF is not provable in ZF the weaker notion relative consistency is interesting in set theory and in other sufficiently expressive axiomatic systems If T is a theory and A is an additional axiom T A is said to be consistent relative to T or simply that A is consistent with T if it can be proved that if T is consistent then T A is consistent If both A and A are consistent with T then A is said to be independent of T First order logic EditNotation Edit In the following context of mathematical logic the turnstile symbol displaystyle vdash nbsp means provable from That is a b displaystyle a vdash b nbsp reads b is provable from a in some specified formal system Definition Edit A set of formulas F displaystyle Phi nbsp in first order logic is consistent written Con F displaystyle operatorname Con Phi nbsp if there is no formula f displaystyle varphi nbsp such that F f displaystyle Phi vdash varphi nbsp and F f displaystyle Phi vdash lnot varphi nbsp Otherwise F displaystyle Phi nbsp is inconsistent written Inc F displaystyle operatorname Inc Phi nbsp F displaystyle Phi nbsp is said to be simply consistent if for no formula f displaystyle varphi nbsp of F displaystyle Phi nbsp both f displaystyle varphi nbsp and the negation of f displaystyle varphi nbsp are theorems of F displaystyle Phi nbsp clarification needed F displaystyle Phi nbsp is said to be absolutely consistent or Post consistent if at least one formula in the language of F displaystyle Phi nbsp is not a theorem of F displaystyle Phi nbsp F displaystyle Phi nbsp is said to be maximally consistent if F displaystyle Phi nbsp is consistent and for every formula f displaystyle varphi nbsp Con F f displaystyle operatorname Con Phi cup varphi nbsp implies f F displaystyle varphi in Phi nbsp F displaystyle Phi nbsp is said to contain witnesses if for every formula of the form x f displaystyle exists x varphi nbsp there exists a term t displaystyle t nbsp such that x f f t x F displaystyle exists x varphi to varphi t over x in Phi nbsp where f t x displaystyle varphi t over x nbsp denotes the substitution of each x displaystyle x nbsp in f displaystyle varphi nbsp by a t displaystyle t nbsp see also First order logic citation needed Basic results Edit The following are equivalent Inc F displaystyle operatorname Inc Phi nbsp For all f F f displaystyle varphi Phi vdash varphi nbsp Every satisfiable set of formulas is consistent where a set of formulas F displaystyle Phi nbsp is satisfiable if and only if there exists a model I displaystyle mathfrak I nbsp such that I F displaystyle mathfrak I vDash Phi nbsp For all F displaystyle Phi nbsp and f displaystyle varphi nbsp if not F f displaystyle Phi vdash varphi nbsp then Con F f displaystyle operatorname Con left Phi cup lnot varphi right nbsp if Con F displaystyle operatorname Con Phi nbsp and F f displaystyle Phi vdash varphi nbsp then Con F f displaystyle operatorname Con left Phi cup varphi right nbsp if Con F displaystyle operatorname Con Phi nbsp then Con F f displaystyle operatorname Con left Phi cup varphi right nbsp or Con F f displaystyle operatorname Con left Phi cup lnot varphi right nbsp Let F displaystyle Phi nbsp be a maximally consistent set of formulas and suppose it contains witnesses For all f displaystyle varphi nbsp and ps displaystyle psi nbsp if F f displaystyle Phi vdash varphi nbsp then f F displaystyle varphi in Phi nbsp either f F displaystyle varphi in Phi nbsp or f F displaystyle lnot varphi in Phi nbsp f ps F displaystyle varphi lor psi in Phi nbsp if and only if f F displaystyle varphi in Phi nbsp or ps F displaystyle psi in Phi nbsp if f ps F displaystyle varphi to psi in Phi nbsp and f F displaystyle varphi in Phi nbsp then ps F displaystyle psi in Phi nbsp x f F displaystyle exists x varphi in Phi nbsp if and only if there is a term t displaystyle t nbsp such that f t x F displaystyle varphi t over x in Phi nbsp citation needed Henkin s theorem Edit Let S displaystyle S nbsp be a set of symbols Let F displaystyle Phi nbsp be a maximally consistent set of S displaystyle S nbsp formulas containing witnesses Define an equivalence relation displaystyle sim nbsp on the set of S displaystyle S nbsp terms by t 0 t 1 displaystyle t 0 sim t 1 nbsp if t 0 t 1 F displaystyle t 0 equiv t 1 in Phi nbsp where displaystyle equiv nbsp denotes equality Let t displaystyle overline t nbsp denote the equivalence class of terms containing t displaystyle t nbsp and let T F t t T S displaystyle T Phi overline t mid t in T S nbsp where T S displaystyle T S nbsp is the set of terms based on the set of symbols S displaystyle S nbsp Define the S displaystyle S nbsp structure T F displaystyle mathfrak T Phi nbsp over T F displaystyle T Phi nbsp also called the term structure corresponding to F displaystyle Phi nbsp by for each n displaystyle n nbsp ary relation symbol R S displaystyle R in S nbsp define R T F t 0 t n 1 displaystyle R mathfrak T Phi overline t 0 ldots overline t n 1 nbsp if R t 0 t n 1 F displaystyle Rt 0 ldots t n 1 in Phi nbsp 8 for each n displaystyle n nbsp ary function symbol f S displaystyle f in S nbsp define f T F t 0 t n 1 f t 0 t n 1 displaystyle f mathfrak T Phi overline t 0 ldots overline t n 1 overline ft 0 ldots t n 1 nbsp for each constant symbol c S displaystyle c in S nbsp define c T F c displaystyle c mathfrak T Phi overline c nbsp Define a variable assignment b F displaystyle beta Phi nbsp by b F x x displaystyle beta Phi x bar x nbsp for each variable x displaystyle x nbsp Let I F T F b F displaystyle mathfrak I Phi mathfrak T Phi beta Phi nbsp be the term interpretation associated with F displaystyle Phi nbsp Then for each S displaystyle S nbsp formula f displaystyle varphi nbsp I F f displaystyle mathfrak I Phi vDash varphi nbsp if and only if f F displaystyle varphi in Phi nbsp citation needed Sketch of proof Edit There are several things to verify First that displaystyle sim nbsp is in fact an equivalence relation Then it needs to be verified that 1 2 and 3 are well defined This falls out of the fact that displaystyle sim nbsp is an equivalence relation and also requires a proof that 1 and 2 are independent of the choice of t 0 t n 1 displaystyle t 0 ldots t n 1 nbsp class representatives Finally I F f displaystyle mathfrak I Phi vDash varphi nbsp can be verified by induction on formulas Model theory EditIn ZFC set theory with classical first order logic 9 an inconsistent theory T displaystyle T nbsp is one such that there exists a closed sentence f displaystyle varphi nbsp such that T displaystyle T nbsp contains both f displaystyle varphi nbsp and its negation f displaystyle varphi nbsp A consistent theory is one such that the following logically equivalent conditions hold f f T displaystyle varphi varphi not subseteq T nbsp 10 f T f T displaystyle varphi not in T lor varphi not in T nbsp See also Edit nbsp Philosophy portal nbsp Wikiquote has quotations related to Consistency Cognitive dissonance Equiconsistency Hilbert s problems Hilbert s second problem Jan Lukasiewicz Paraconsistent logic w consistency Gentzen s consistency proof Proof by contradictionFootnotes Edit Tarski 1946 states it this way A deductive theory is called consistent or non contradictory if no two asserted statements of this theory contradict each other or in other words if of any two contradictory sentences at least one cannot be proved p 135 where Tarski defines contradictory as follows With the help of the word not one forms the negation of any sentence two sentences of which the first is a negation of the second are called contradictory sentences p 20 This definition requires a notion of proof Godel 1931 defines the notion this way The class of provable formulas is defined to be the smallest class of formulas that contains the axioms and is closed under the relation immediate consequence i e formula c of a and b is defined as an immediate consequence in terms of modus ponens or substitution cf Godel 1931 van Heijenoort 1967 p 601 Tarski defines proof informally as statements follow one another in a definite order according to certain principles and accompanied by considerations intended to establish their validity true conclusion for all true premises Reichenbach 1947 p 68 cf Tarski 1946 p 3 Kleene 1952 defines the notion with respect to either an induction or as to paraphrase a finite sequence of formulas such that each formula in the sequence is either an axiom or an immediate consequence of the preceding formulas A proof is said to be a proofofits last formula and this formula is said to be formally provableor be a formal theorem cf Kleene 1952 p 83 Hodges Wilfrid 1997 A Shorter Model Theory New York Cambridge University Press p 37 Let L displaystyle L nbsp be a signature T displaystyle T nbsp a theory in L w displaystyle L infty omega nbsp and f displaystyle varphi nbsp a sentence in L w displaystyle L infty omega nbsp We say that f displaystyle varphi nbsp is a consequence of T displaystyle T nbsp or that T displaystyle T nbsp entails f displaystyle varphi nbsp in symbols T f displaystyle T vdash varphi nbsp if every model of T displaystyle T nbsp is a model of f displaystyle varphi nbsp In particular if T displaystyle T nbsp has no models then T displaystyle T nbsp entails f displaystyle varphi nbsp Warning we don t require that if T f displaystyle T vdash varphi nbsp then there is a proof of f displaystyle varphi nbsp from T displaystyle T nbsp In any case with infinitary languages it s not always clear what would constitute proof Some writers use T f displaystyle T vdash varphi nbsp to mean that f displaystyle varphi nbsp is deducible from T displaystyle T nbsp in some particular formal proof calculus and they write T f displaystyle T models varphi nbsp for our notion of entailment a notation which clashes with our A f displaystyle A models varphi nbsp For first order logic the two kinds of entailment coincide by the completeness theorem for the proof calculus in question We say that f displaystyle varphi nbsp is valid or is a logical theorem in symbols f displaystyle vdash varphi nbsp if f displaystyle varphi nbsp is true in every L displaystyle L nbsp structure We say that f displaystyle varphi nbsp is consistent if f displaystyle varphi nbsp is true in some L displaystyle L nbsp structure Likewise we say that a theory T displaystyle T nbsp is consistent if it has a model We say that two theories S and T in L infinity omega are equivalent if they have the same models i e if Mod S Mod T Please note the definition of Mod T on p 30 van Heijenoort 1967 p 265 states that Bernays determined the independence of the axioms of Principia Mathematica a result not published until 1926 but he says nothing about Bernays proving their consistency Post proves both consistency and completeness of the propositional calculus of PM cf van Heijenoort s commentary and Post s 1931 Introduction to a general theory of elementary propositions in van Heijenoort 1967 pp 264ff Also Tarski 1946 pp 134ff cf van Heijenoort s commentary and Godel s 1930 The completeness of the axioms of the functional calculus of logic in van Heijenoort 1967 pp 582ff cf van Heijenoort s commentary and Herbrand s 1930 On the consistency of arithmetic in van Heijenoort 1967 pp 618ff Informally Zermelo Fraenkel set theory is ordinarily assumed some dialects of informal mathematics customarily assume the axiom of choice in addition This definition is independent of the choice of t i displaystyle t i nbsp due to the substitutivity properties of displaystyle equiv nbsp and the maximal consistency of F displaystyle Phi nbsp the common case in many applications to other areas of mathematics as well as the ordinary mode of reasoning of informal mathematics in calculus and applications to physics chemistry engineering according to De Morgan s lawsReferences EditGodel Kurt 1 December 1931 Uber formal unentscheidbare Satze der Principia Mathematica und verwandter Systeme I Monatshefte fur Mathematik und Physik 38 1 173 198 doi 10 1007 BF01700692 Kleene Stephen 1952 Introduction to Metamathematics New York North Holland ISBN 0 7204 2103 9 10th impression 1991 Reichenbach Hans 1947 Elements of Symbolic Logic New York Dover ISBN 0 486 24004 5 Tarski Alfred 1946 Introduction to Logic and to the Methodology of Deductive Sciences Second ed New York Dover ISBN 0 486 28462 X van Heijenoort Jean 1967 From Frege to Godel A Source Book in Mathematical Logic Cambridge MA Harvard University Press ISBN 0 674 32449 8 pbk Consistency The Cambridge Dictionary of Philosophy Ebbinghaus H D Flum J Thomas W Mathematical Logic Jevons W S 1870 Elementary Lessons in Logic External links Edit nbsp Look up consistency in Wiktionary the free dictionary Mortensen Chris 2017 Inconsistent Mathematics Stanford Encyclopedia of Philosophy Retrieved from https en wikipedia org w index php title Consistency amp oldid 1180704443, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.