fbpx
Wikipedia

Weierstrass elliptic function

In mathematics, the Weierstrass elliptic functions are elliptic functions that take a particularly simple form. They are named for Karl Weierstrass. This class of functions are also referred to as ℘-functions and they are usually denoted by the symbol ℘, a uniquely fancy script p. They play an important role in the theory of elliptic functions, i.e., meromorphic functions that are doubly periodic. A ℘-function together with its derivative can be used to parameterize elliptic curves and they generate the field of elliptic functions with respect to a given period lattice.

Symbol for Weierstrass -function

Model of Weierstrass -function

Motivation edit

A cubic of the form  , where   are complex numbers with  , cannot be rationally parameterized.[1] Yet one still wants to find a way to parameterize it.

For the quadric  ; the unit circle, there exists a (non-rational) parameterization using the sine function and its derivative the cosine function:

 
Because of the periodicity of the sine and cosine   is chosen to be the domain, so the function is bijective.

In a similar way one can get a parameterization of   by means of the doubly periodic  -function (see in the section "Relation to elliptic curves"). This parameterization has the domain  , which is topologically equivalent to a torus.[2]

There is another analogy to the trigonometric functions. Consider the integral function

 
It can be simplified by substituting   and  :
 
That means  . So the sine function is an inverse function of an integral function.[3]

Elliptic functions are the inverse functions of elliptic integrals. In particular, let:

 
Then the extension of   to the complex plane equals the  -function.[4] This invertibility is used in complex analysis to provide a solution to certain nonlinear differential equations satisfying the Painlevé property, i.e., those equations that admit poles as their only movable singularities.[5]

Definition edit

 
Visualization of the  -function with invariants   and   in which white corresponds to a pole, black to a zero.

Let   be two complex numbers that are linearly independent over   and let   be the period lattice generated by those numbers. Then the  -function is defined as follows:

 

This series converges locally uniformly absolutely in the complex torus  .

It is common to use   and   in the upper half-plane   as generators of the lattice. Dividing by   maps the lattice   isomorphically onto the lattice   with  . Because   can be substituted for  , without loss of generality we can assume  , and then define  .

Properties edit

  •   is a meromorphic function with a pole of order 2 at each period   in  .
  •   is an even function. That means   for all  , which can be seen in the following way:
 
The second last equality holds because  . Since the sum converges absolutely this rearrangement does not change the limit.
  • The derivative of   is given by:[6]
     
  •   and   are doubly periodic with the periods   and  .[6] This means:
     
    It follows that   and   for all  .

Laurent expansion edit

Let  . Then for   the  -function has the following Laurent expansion

 
where
 
for   are so called Eisenstein series.[6]

Differential equation edit

Set   and  . Then the  -function satisfies the differential equation[6]

 
This relation can be verified by forming a linear combination of powers of   and   to eliminate the pole at  . This yields an entire elliptic function that has to be constant by Liouville's theorem.[6]

Invariants edit

 
The real part of the invariant g3 as a function of the square of the nome q on the unit disk.
 
The imaginary part of the invariant g3 as a function of the square of the nome q on the unit disk.

The coefficients of the above differential equation g2 and g3 are known as the invariants. Because they depend on the lattice   they can be viewed as functions in  and  .

The series expansion suggests that g2 and g3 are homogeneous functions of degree −4 and −6. That is[7]

 
 
for  .

If  and   are chosen in such a way that  , g2 and g3 can be interpreted as functions on the upper half-plane  .

Let  . One has:[8]

 
 
That means g2 and g3 are only scaled by doing this. Set
 
and
 
As functions of     are so called modular forms.

The Fourier series for   and   are given as follows:[9]

 
 
where
 
is the divisor function and   is the nome.

Modular discriminant edit

 
The real part of the discriminant as a function of the square of the nome q on the unit disk.

The modular discriminant Δ is defined as the discriminant of the polynomial on the right-hand side of the above differential equation:

 
The discriminant is a modular form of weight 12. That is, under the action of the modular group, it transforms as
 
where   with ad − bc = 1.[10]

Note that   where   is the Dedekind eta function.[11]

For the Fourier coefficients of  , see Ramanujan tau function.

The constants e1, e2 and e3 edit

 ,   and   are usually used to denote the values of the  -function at the half-periods.

 
 
 
They are pairwise distinct and only depend on the lattice   and not on its generators.[12]

 ,   and   are the roots of the cubic polynomial   and are related by the equation:

 
Because those roots are distinct the discriminant   does not vanish on the upper half plane.[13] Now we can rewrite the differential equation:
 
That means the half-periods are zeros of  .

The invariants   and   can be expressed in terms of these constants in the following way:[14]

 
 
 ,   and   are related to the modular lambda function:
 

Relation to Jacobi's elliptic functions edit

For numerical work, it is often convenient to calculate the Weierstrass elliptic function in terms of Jacobi's elliptic functions.

The basic relations are:[15]

 
where  and   are the three roots described above and where the modulus k of the Jacobi functions equals
 
and their argument w equals
 

Relation to Jacobi's theta functions edit

The function   can be represented by Jacobi's theta functions:

 
where   is the nome and   is the period ratio  .[16] This also provides a very rapid algorithm for computing  .

Relation to elliptic curves edit

Consider the embedding of the cubic curve in the complex projective plane

 

For this cubic there exists no rational parameterization, if  .[1] In this case it is also called an elliptic curve. Nevertheless there is a parameterization in homogeneous coordinates that uses the  -function and its derivative  :[17]

 

Now the map   is bijective and parameterizes the elliptic curve  .

  is an abelian group and a topological space, equipped with the quotient topology.

It can be shown that every Weierstrass cubic is given in such a way. That is to say that for every pair   with   there exists a lattice  , such that

  and  .[18]

The statement that elliptic curves over   can be parameterized over  , is known as the modularity theorem. This is an important theorem in number theory. It was part of Andrew Wiles' proof (1995) of Fermat's Last Theorem.

Addition theorems edit

Let  , so that  . Then one has:[19]

 

As well as the duplication formula:[19]

 

These formulas also have a geometric interpretation, if one looks at the elliptic curve   together with the mapping   as in the previous section.

The group structure of   translates to the curve  and can be geometrically interpreted there:

The sum of three pairwise different points  is zero if and only if they lie on the same line in  .[20]

This is equivalent to:

 
where  ,   and  .[21]

Typography edit

The Weierstrass's elliptic function is usually written with a rather special, lower case script letter ℘, which was Weierstrass's own notation introduced in his lectures of 1862–1863.[footnote 1]

In computing, the letter ℘ is available as \wp in TeX. In Unicode the code point is U+2118 SCRIPT CAPITAL P (℘, ℘), with the more correct alias weierstrass elliptic function.[footnote 2] In HTML, it can be escaped as ℘.

Character information
Preview
Unicode name SCRIPT CAPITAL P / WEIERSTRASS ELLIPTIC FUNCTION
Encodings decimal hex
Unicode 8472 U+2118
UTF-8 226 132 152 E2 84 98
Numeric character reference ℘ ℘
Named character reference ℘, ℘

See also edit

Footnotes edit

  1. ^ This symbol was also used in the version of Weierstrass's lectures published by Schwarz in the 1880s. The first edition of A Course of Modern Analysis by E. T. Whittaker in 1902 also used it.[22]
  2. ^ The Unicode Consortium has acknowledged two problems with the letter's name: the letter is in fact lowercase, and it is not a "script" class letter, like U+1D4C5 𝓅 MATHEMATICAL SCRIPT SMALL P, but the letter for Weierstrass's elliptic function. Unicode added the alias as a correction.[23][24]

References edit

  1. ^ a b Hulek, Klaus. (2012), Elementare Algebraische Geometrie : Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen (in German) (2., überarb. u. erw. Aufl. 2012 ed.), Wiesbaden: Vieweg+Teubner Verlag, p. 8, ISBN 978-3-8348-2348-9
  2. ^ Rolf Busam (2006), Funktionentheorie 1 (in German) (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 259, ISBN 978-3-540-32058-6
  3. ^ Jeremy Gray (2015), Real and the complex: a history of analysis in the 19th century (in German), Cham, p. 71, ISBN 978-3-319-23715-2{{citation}}: CS1 maint: location missing publisher (link)
  4. ^ Rolf Busam (2006), Funktionentheorie 1 (in German) (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 294, ISBN 978-3-540-32058-6
  5. ^ Ablowitz, Mark J.; Fokas, Athanassios S. (2003). Complex Variables: Introduction and Applications. Cambridge University Press. p. 185. doi:10.1017/cbo9780511791246. ISBN 978-0-521-53429-1.
  6. ^ a b c d e Apostol, Tom M. (1976), Modular functions and Dirichlet series in number theory (in German), New York: Springer-Verlag, p. 11, ISBN 0-387-90185-X
  7. ^ Apostol, Tom M. (1976). Modular functions and Dirichlet series in number theory. New York: Springer-Verlag. p. 14. ISBN 0-387-90185-X. OCLC 2121639.
  8. ^ Apostol, Tom M. (1976), Modular functions and Dirichlet series in number theory (in German), New York: Springer-Verlag, p. 14, ISBN 0-387-90185-X
  9. ^ Apostol, Tom M. (1990). Modular functions and Dirichlet series in number theory (2nd ed.). New York: Springer-Verlag. p. 20. ISBN 0-387-97127-0. OCLC 20262861.
  10. ^ Apostol, Tom M. (1976). Modular functions and Dirichlet series in number theory. New York: Springer-Verlag. p. 50. ISBN 0-387-90185-X. OCLC 2121639.
  11. ^ Chandrasekharan, K. (Komaravolu), 1920- (1985). Elliptic functions. Berlin: Springer-Verlag. p. 122. ISBN 0-387-15295-4. OCLC 12053023.{{cite book}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  12. ^ Busam, Rolf (2006), Funktionentheorie 1 (in German) (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 270, ISBN 978-3-540-32058-6
  13. ^ Apostol, Tom M. (1976), Modular functions and Dirichlet series in number theory (in German), New York: Springer-Verlag, p. 13, ISBN 0-387-90185-X
  14. ^ K. Chandrasekharan (1985), Elliptic functions (in German), Berlin: Springer-Verlag, p. 33, ISBN 0-387-15295-4
  15. ^ Korn GA, Korn TM (1961). Mathematical Handbook for Scientists and Engineers. New York: McGraw–Hill. p. 721. LCCN 59014456.
  16. ^ Reinhardt, W. P.; Walker, P. L. (2010), "Weierstrass Elliptic and Modular Functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
  17. ^ Hulek, Klaus. (2012), Elementare Algebraische Geometrie : Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen (in German) (2., überarb. u. erw. Aufl. 2012 ed.), Wiesbaden: Vieweg+Teubner Verlag, p. 12, ISBN 978-3-8348-2348-9
  18. ^ Hulek, Klaus. (2012), Elementare Algebraische Geometrie : Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen (in German) (2., überarb. u. erw. Aufl. 2012 ed.), Wiesbaden: Vieweg+Teubner Verlag, p. 111, ISBN 978-3-8348-2348-9
  19. ^ a b Rolf Busam (2006), Funktionentheorie 1 (in German) (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 286, ISBN 978-3-540-32058-6
  20. ^ Rolf Busam (2006), Funktionentheorie 1 (in German) (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 287, ISBN 978-3-540-32058-6
  21. ^ Rolf Busam (2006), Funktionentheorie 1 (in German) (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 288, ISBN 978-3-540-32058-6
  22. ^ teika kazura (2017-08-17), The letter ℘ Name & origin?, MathOverflow, retrieved 2018-08-30
  23. ^ "Known Anomalies in Unicode Character Names". Unicode Technical Note #27. version 4. Unicode, Inc. 2017-04-10. Retrieved 2017-07-20.
  24. ^ "NameAliases-10.0.0.txt". Unicode, Inc. 2017-05-06. Retrieved 2017-07-20.

External links edit

weierstrass, elliptic, function, function, redirects, here, phase, space, function, representing, quantum, state, glauber, sudarshan, representation, redirects, here, symbol, also, used, denote, power, mathematics, elliptic, functions, that, take, particularly. P function redirects here For the phase space function representing a quantum state see Glauber Sudarshan P representation redirects here the symbol can also be used to denote a power set In mathematics the Weierstrass elliptic functions are elliptic functions that take a particularly simple form They are named for Karl Weierstrass This class of functions are also referred to as functions and they are usually denoted by the symbol a uniquely fancy script p They play an important role in the theory of elliptic functions i e meromorphic functions that are doubly periodic A function together with its derivative can be used to parameterize elliptic curves and they generate the field of elliptic functions with respect to a given period lattice Symbol for Weierstrass displaystyle wp function Model of Weierstrass displaystyle wp functionContents 1 Motivation 2 Definition 3 Properties 4 Laurent expansion 5 Differential equation 5 1 Invariants 5 2 Modular discriminant 5 3 The constants e1 e2 and e3 6 Relation to Jacobi s elliptic functions 7 Relation to Jacobi s theta functions 8 Relation to elliptic curves 9 Addition theorems 10 Typography 11 See also 12 Footnotes 13 References 14 External linksMotivation editA cubic of the form Cg2 g3C x y C2 y2 4x3 g2x g3 displaystyle C g 2 g 3 mathbb C x y in mathbb C 2 y 2 4x 3 g 2 x g 3 nbsp where g2 g3 C displaystyle g 2 g 3 in mathbb C nbsp are complex numbers with g23 27g32 0 displaystyle g 2 3 27g 3 2 neq 0 nbsp cannot be rationally parameterized 1 Yet one still wants to find a way to parameterize it For the quadric K x y R2 x2 y2 1 displaystyle K left x y in mathbb R 2 x 2 y 2 1 right nbsp the unit circle there exists a non rational parameterization using the sine function and its derivative the cosine function ps R 2pZ K t sin t cos t displaystyle psi mathbb R 2 pi mathbb Z to K quad t mapsto sin t cos t nbsp Because of the periodicity of the sine and cosine R 2pZ displaystyle mathbb R 2 pi mathbb Z nbsp is chosen to be the domain so the function is bijective In a similar way one can get a parameterization of Cg2 g3C displaystyle C g 2 g 3 mathbb C nbsp by means of the doubly periodic displaystyle wp nbsp function see in the section Relation to elliptic curves This parameterization has the domain C L displaystyle mathbb C Lambda nbsp which is topologically equivalent to a torus 2 There is another analogy to the trigonometric functions Consider the integral functiona x 0xdy1 y2 displaystyle a x int 0 x frac dy sqrt 1 y 2 nbsp It can be simplified by substituting y sin t displaystyle y sin t nbsp and s arcsin x displaystyle s arcsin x nbsp a x 0sdt s arcsin x displaystyle a x int 0 s dt s arcsin x nbsp That means a 1 x sin x displaystyle a 1 x sin x nbsp So the sine function is an inverse function of an integral function 3 Elliptic functions are the inverse functions of elliptic integrals In particular let u z z ds4s3 g2s g3 displaystyle u z int z infty frac ds sqrt 4s 3 g 2 s g 3 nbsp Then the extension of u 1 displaystyle u 1 nbsp to the complex plane equals the displaystyle wp nbsp function 4 This invertibility is used in complex analysis to provide a solution to certain nonlinear differential equations satisfying the Painleve property i e those equations that admit poles as their only movable singularities 5 Definition edit nbsp Visualization of the displaystyle wp nbsp function with invariants g2 1 i displaystyle g 2 1 i nbsp and g3 2 3i displaystyle g 3 2 3i nbsp in which white corresponds to a pole black to a zero Let w1 w2 C displaystyle omega 1 omega 2 in mathbb C nbsp be two complex numbers that are linearly independent over R displaystyle mathbb R nbsp and let L Zw1 Zw2 mw1 nw2 m n Z displaystyle Lambda mathbb Z omega 1 mathbb Z omega 2 m omega 1 n omega 2 m n in mathbb Z nbsp be the period lattice generated by those numbers Then the displaystyle wp nbsp function is defined as follows z w1 w2 z 1z2 l L 0 1 z l 2 1l2 displaystyle wp z omega 1 omega 2 wp z frac 1 z 2 sum lambda in Lambda setminus 0 left frac 1 z lambda 2 frac 1 lambda 2 right nbsp This series converges locally uniformly absolutely in the complex torus C L displaystyle mathbb C setminus Lambda nbsp It is common to use 1 displaystyle 1 nbsp and t displaystyle tau nbsp in the upper half plane H z C Im z gt 0 displaystyle mathbb H z in mathbb C operatorname Im z gt 0 nbsp as generators of the lattice Dividing by w1 textstyle omega 1 nbsp maps the lattice Zw1 Zw2 displaystyle mathbb Z omega 1 mathbb Z omega 2 nbsp isomorphically onto the lattice Z Zt displaystyle mathbb Z mathbb Z tau nbsp with t w2w1 textstyle tau tfrac omega 2 omega 1 nbsp Because t displaystyle tau nbsp can be substituted for t displaystyle tau nbsp without loss of generality we can assume t H displaystyle tau in mathbb H nbsp and then define z t z 1 t displaystyle wp z tau wp z 1 tau nbsp Properties edit displaystyle wp nbsp is a meromorphic function with a pole of order 2 at each period l displaystyle lambda nbsp in L displaystyle Lambda nbsp displaystyle wp nbsp is an even function That means z z displaystyle wp z wp z nbsp for all z C L displaystyle z in mathbb C setminus Lambda nbsp which can be seen in the following way z 1 z 2 l L 0 1 z l 2 1l2 1z2 l L 0 1 z l 2 1l2 1z2 l L 0 1 z l 2 1l2 z displaystyle begin aligned wp z amp frac 1 z 2 sum lambda in Lambda setminus 0 left frac 1 z lambda 2 frac 1 lambda 2 right amp frac 1 z 2 sum lambda in Lambda setminus 0 left frac 1 z lambda 2 frac 1 lambda 2 right amp frac 1 z 2 sum lambda in Lambda setminus 0 left frac 1 z lambda 2 frac 1 lambda 2 right wp z end aligned nbsp dd The second last equality holds because l l L L displaystyle lambda lambda in Lambda Lambda nbsp Since the sum converges absolutely this rearrangement does not change the limit The derivative of displaystyle wp nbsp is given by 6 z 2 l L1 z l 3 displaystyle wp z 2 sum lambda in Lambda frac 1 z lambda 3 nbsp displaystyle wp nbsp and displaystyle wp nbsp are doubly periodic with the periods w1 displaystyle omega 1 nbsp and w2 displaystyle omega 2 nbsp 6 This means z w1 z z w2 and z w1 z z w2 displaystyle begin aligned wp z omega 1 amp wp z wp z omega 2 textrm and 3mu wp z omega 1 amp wp z wp z omega 2 end aligned nbsp It follows that z l z displaystyle wp z lambda wp z nbsp and z l z displaystyle wp z lambda wp z nbsp for all l L displaystyle lambda in Lambda nbsp Laurent expansion editLet r min l 0 l L displaystyle r min lambda 0 neq lambda in Lambda nbsp Then for 0 lt z lt r displaystyle 0 lt z lt r nbsp the displaystyle wp nbsp function has the following Laurent expansion z 1z2 n 1 2n 1 G2n 2z2n displaystyle wp z frac 1 z 2 sum n 1 infty 2n 1 G 2n 2 z 2n nbsp where Gn 0 l Ll n displaystyle G n sum 0 neq lambda in Lambda lambda n nbsp for n 3 displaystyle n geq 3 nbsp are so called Eisenstein series 6 Differential equation editSet g2 60G4 displaystyle g 2 60G 4 nbsp and g3 140G6 displaystyle g 3 140G 6 nbsp Then the displaystyle wp nbsp function satisfies the differential equation 6 2 z 4 3 z g2 z g3 displaystyle wp 2 z 4 wp 3 z g 2 wp z g 3 nbsp This relation can be verified by forming a linear combination of powers of displaystyle wp nbsp and displaystyle wp nbsp to eliminate the pole at z 0 displaystyle z 0 nbsp This yields an entire elliptic function that has to be constant by Liouville s theorem 6 Invariants edit nbsp The real part of the invariant g3 as a function of the square of the nome q on the unit disk nbsp The imaginary part of the invariant g3 as a function of the square of the nome q on the unit disk The coefficients of the above differential equation g2 and g3 are known as the invariants Because they depend on the lattice L displaystyle Lambda nbsp they can be viewed as functions in w1 displaystyle omega 1 nbsp and w2 displaystyle omega 2 nbsp The series expansion suggests that g2 and g3 are homogeneous functions of degree 4 and 6 That is 7 g2 lw1 lw2 l 4g2 w1 w2 displaystyle g 2 lambda omega 1 lambda omega 2 lambda 4 g 2 omega 1 omega 2 nbsp g3 lw1 lw2 l 6g3 w1 w2 displaystyle g 3 lambda omega 1 lambda omega 2 lambda 6 g 3 omega 1 omega 2 nbsp for l 0 displaystyle lambda neq 0 nbsp If w1 displaystyle omega 1 nbsp and w2 displaystyle omega 2 nbsp are chosen in such a way that Im w2w1 gt 0 displaystyle operatorname Im left tfrac omega 2 omega 1 right gt 0 nbsp g2 and g3 can be interpreted as functions on the upper half plane H z C Im z gt 0 displaystyle mathbb H z in mathbb C operatorname Im z gt 0 nbsp Let t w2w1 displaystyle tau tfrac omega 2 omega 1 nbsp One has 8 g2 1 t w14g2 w1 w2 displaystyle g 2 1 tau omega 1 4 g 2 omega 1 omega 2 nbsp g3 1 t w16g3 w1 w2 displaystyle g 3 1 tau omega 1 6 g 3 omega 1 omega 2 nbsp That means g2 and g3 are only scaled by doing this Set g2 t g2 1 t displaystyle g 2 tau g 2 1 tau nbsp and g3 t g3 1 t displaystyle g 3 tau g 3 1 tau nbsp As functions of t H displaystyle tau in mathbb H nbsp g2 g3 displaystyle g 2 g 3 nbsp are so called modular forms The Fourier series for g2 displaystyle g 2 nbsp and g3 displaystyle g 3 nbsp are given as follows 9 g2 t 43p4 1 240 k 1 s3 k q2k displaystyle g 2 tau frac 4 3 pi 4 left 1 240 sum k 1 infty sigma 3 k q 2k right nbsp g3 t 827p6 1 504 k 1 s5 k q2k displaystyle g 3 tau frac 8 27 pi 6 left 1 504 sum k 1 infty sigma 5 k q 2k right nbsp where sa k d kda displaystyle sigma a k sum d mid k d alpha nbsp is the divisor function and q epit displaystyle q e pi i tau nbsp is the nome Modular discriminant edit nbsp The real part of the discriminant as a function of the square of the nome q on the unit disk The modular discriminant D is defined as the discriminant of the polynomial on the right hand side of the above differential equation D g23 27g32 displaystyle Delta g 2 3 27g 3 2 nbsp The discriminant is a modular form of weight 12 That is under the action of the modular group it transforms as D at bct d ct d 12D t displaystyle Delta left frac a tau b c tau d right left c tau d right 12 Delta tau nbsp where a b d c Z displaystyle a b d c in mathbb Z nbsp with ad bc 1 10 Note that D 2p 12h24 displaystyle Delta 2 pi 12 eta 24 nbsp where h displaystyle eta nbsp is the Dedekind eta function 11 For the Fourier coefficients of D displaystyle Delta nbsp see Ramanujan tau function The constants e1 e2 and e3 edit e1 displaystyle e 1 nbsp e2 displaystyle e 2 nbsp and e3 displaystyle e 3 nbsp are usually used to denote the values of the displaystyle wp nbsp function at the half periods e1 w12 displaystyle e 1 equiv wp left frac omega 1 2 right nbsp e2 w22 displaystyle e 2 equiv wp left frac omega 2 2 right nbsp e3 w1 w22 displaystyle e 3 equiv wp left frac omega 1 omega 2 2 right nbsp They are pairwise distinct and only depend on the lattice L displaystyle Lambda nbsp and not on its generators 12 e1 displaystyle e 1 nbsp e2 displaystyle e 2 nbsp and e3 displaystyle e 3 nbsp are the roots of the cubic polynomial 4 z 3 g2 z g3 displaystyle 4 wp z 3 g 2 wp z g 3 nbsp and are related by the equation e1 e2 e3 0 displaystyle e 1 e 2 e 3 0 nbsp Because those roots are distinct the discriminant D displaystyle Delta nbsp does not vanish on the upper half plane 13 Now we can rewrite the differential equation 2 z 4 z e1 z e2 z e3 displaystyle wp 2 z 4 wp z e 1 wp z e 2 wp z e 3 nbsp That means the half periods are zeros of displaystyle wp nbsp The invariants g2 displaystyle g 2 nbsp and g3 displaystyle g 3 nbsp can be expressed in terms of these constants in the following way 14 g2 4 e1e2 e1e3 e2e3 displaystyle g 2 4 e 1 e 2 e 1 e 3 e 2 e 3 nbsp g3 4e1e2e3 displaystyle g 3 4e 1 e 2 e 3 nbsp e1 displaystyle e 1 nbsp e2 displaystyle e 2 nbsp and e3 displaystyle e 3 nbsp are related to the modular lambda function l t e3 e2e1 e2 t w2w1 displaystyle lambda tau frac e 3 e 2 e 1 e 2 quad tau frac omega 2 omega 1 nbsp Relation to Jacobi s elliptic functions editFor numerical work it is often convenient to calculate the Weierstrass elliptic function in terms of Jacobi s elliptic functions The basic relations are 15 z e3 e1 e3sn2 w e2 e1 e3 dn2 wsn2 w e1 e1 e3 cn2 wsn2 w displaystyle wp z e 3 frac e 1 e 3 operatorname sn 2 w e 2 e 1 e 3 frac operatorname dn 2 w operatorname sn 2 w e 1 e 1 e 3 frac operatorname cn 2 w operatorname sn 2 w nbsp where e1 e2 displaystyle e 1 e 2 nbsp and e3 displaystyle e 3 nbsp are the three roots described above and where the modulus k of the Jacobi functions equals k e2 e3e1 e3 displaystyle k sqrt frac e 2 e 3 e 1 e 3 nbsp and their argument w equals w ze1 e3 displaystyle w z sqrt e 1 e 3 nbsp Relation to Jacobi s theta functions editThe function z t z 1 w2 w1 displaystyle wp z tau wp z 1 omega 2 omega 1 nbsp can be represented by Jacobi s theta functions z t p82 0 q 83 0 q 84 pz q 81 pz q 2 p23 824 0 q 834 0 q displaystyle wp z tau left pi theta 2 0 q theta 3 0 q frac theta 4 pi z q theta 1 pi z q right 2 frac pi 2 3 left theta 2 4 0 q theta 3 4 0 q right nbsp where q epit displaystyle q e pi i tau nbsp is the nome and t displaystyle tau nbsp is the period ratio t H displaystyle tau in mathbb H nbsp 16 This also provides a very rapid algorithm for computing z t displaystyle wp z tau nbsp Relation to elliptic curves editSee also Elliptic curve Elliptic curves over the complex numbers Consider the embedding of the cubic curve in the complex projective plane C g2 g3C x y C2 y2 4x3 g2x g3 C2 P2 C displaystyle bar C g 2 g 3 mathbb C x y in mathbb C 2 y 2 4x 3 g 2 x g 3 cup infty subset mathbb C 2 cup infty mathbb P 2 mathbb C nbsp For this cubic there exists no rational parameterization if D 0 displaystyle Delta neq 0 nbsp 1 In this case it is also called an elliptic curve Nevertheless there is a parameterization in homogeneous coordinates that uses the displaystyle wp nbsp function and its derivative displaystyle wp nbsp 17 f C L C g2 g3C z z z 1 z L 0 1 0 z L displaystyle varphi wp wp mathbb C Lambda to bar C g 2 g 3 mathbb C quad z mapsto begin cases left wp z wp z 1 right amp z notin Lambda left 0 1 0 right quad amp z in Lambda end cases nbsp Now the map f displaystyle varphi nbsp is bijective and parameterizes the elliptic curve C g2 g3C displaystyle bar C g 2 g 3 mathbb C nbsp C L displaystyle mathbb C Lambda nbsp is an abelian group and a topological space equipped with the quotient topology It can be shown that every Weierstrass cubic is given in such a way That is to say that for every pair g2 g3 C displaystyle g 2 g 3 in mathbb C nbsp with D g23 27g32 0 displaystyle Delta g 2 3 27g 3 2 neq 0 nbsp there exists a lattice Zw1 Zw2 displaystyle mathbb Z omega 1 mathbb Z omega 2 nbsp such thatg2 g2 w1 w2 displaystyle g 2 g 2 omega 1 omega 2 nbsp and g3 g3 w1 w2 displaystyle g 3 g 3 omega 1 omega 2 nbsp 18 The statement that elliptic curves over Q displaystyle mathbb Q nbsp can be parameterized over Q displaystyle mathbb Q nbsp is known as the modularity theorem This is an important theorem in number theory It was part of Andrew Wiles proof 1995 of Fermat s Last Theorem Addition theorems editLet z w C displaystyle z w in mathbb C nbsp so that z w z w z w L displaystyle z w z w z w notin Lambda nbsp Then one has 19 z w 14 z w z w 2 z w displaystyle wp z w frac 1 4 left frac wp z wp w wp z wp w right 2 wp z wp w nbsp As well as the duplication formula 19 2z 14 z z 2 2 z displaystyle wp 2z frac 1 4 left frac wp z wp z right 2 2 wp z nbsp These formulas also have a geometric interpretation if one looks at the elliptic curve C g2 g3C displaystyle bar C g 2 g 3 mathbb C nbsp together with the mapping f C L C g2 g3C displaystyle varphi mathbb C Lambda to bar C g 2 g 3 mathbb C nbsp as in the previous section The group structure of C L displaystyle mathbb C Lambda nbsp translates to the curve C g2 g3C displaystyle bar C g 2 g 3 mathbb C nbsp and can be geometrically interpreted there The sum of three pairwise different points a b c C g2 g3C displaystyle a b c in bar C g 2 g 3 mathbb C nbsp is zero if and only if they lie on the same line in PC2 displaystyle mathbb P mathbb C 2 nbsp 20 This is equivalent to det 1 u v u v 1 v v 1 u u 0 displaystyle det left begin array rrr 1 amp wp u v amp wp u v 1 amp wp v amp wp v 1 amp wp u amp wp u end array right 0 nbsp where u a displaystyle wp u a nbsp v b displaystyle wp v b nbsp and u v L displaystyle u v notin Lambda nbsp 21 Typography editThe Weierstrass s elliptic function is usually written with a rather special lower case script letter which was Weierstrass s own notation introduced in his lectures of 1862 1863 footnote 1 In computing the letter is available as wp in TeX In Unicode the code point is U 2118 SCRIPT CAPITAL P amp weierp amp wp with the more correct alias weierstrass elliptic function footnote 2 In HTML it can be escaped as amp weierp Character information Preview Unicode name SCRIPT CAPITAL P WEIERSTRASS ELLIPTIC FUNCTIONEncodings decimal hexUnicode 8472 U 2118UTF 8 226 132 152 E2 84 98Numeric character reference amp 8472 wbr amp x2118 wbr Named character reference amp weierp amp wp See also editWeierstrass functions Jacobi elliptic functions Lemniscate elliptic functionsFootnotes edit This symbol was also used in the version of Weierstrass s lectures published by Schwarz in the 1880s The first edition of A Course of Modern Analysis by E T Whittaker in 1902 also used it 22 The Unicode Consortium has acknowledged two problems with the letter s name the letter is in fact lowercase and it is not a script class letter like U 1D4C5 𝓅 MATHEMATICAL SCRIPT SMALL P but the letter for Weierstrass s elliptic function Unicode added the alias as a correction 23 24 References edit a b Hulek Klaus 2012 Elementare Algebraische Geometrie Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen in German 2 uberarb u erw Aufl 2012 ed Wiesbaden Vieweg Teubner Verlag p 8 ISBN 978 3 8348 2348 9 Rolf Busam 2006 Funktionentheorie 1 in German 4 korr und erw Aufl ed Berlin Springer p 259 ISBN 978 3 540 32058 6 Jeremy Gray 2015 Real and the complex a history of analysis in the 19th century in German Cham p 71 ISBN 978 3 319 23715 2 a href Template Citation html title Template Citation citation a CS1 maint location missing publisher link Rolf Busam 2006 Funktionentheorie 1 in German 4 korr und erw Aufl ed Berlin Springer p 294 ISBN 978 3 540 32058 6 Ablowitz Mark J Fokas Athanassios S 2003 Complex Variables Introduction and Applications Cambridge University Press p 185 doi 10 1017 cbo9780511791246 ISBN 978 0 521 53429 1 a b c d e Apostol Tom M 1976 Modular functions and Dirichlet series in number theory in German New York Springer Verlag p 11 ISBN 0 387 90185 X Apostol Tom M 1976 Modular functions and Dirichlet series in number theory New York Springer Verlag p 14 ISBN 0 387 90185 X OCLC 2121639 Apostol Tom M 1976 Modular functions and Dirichlet series in number theory in German New York Springer Verlag p 14 ISBN 0 387 90185 X Apostol Tom M 1990 Modular functions and Dirichlet series in number theory 2nd ed New York Springer Verlag p 20 ISBN 0 387 97127 0 OCLC 20262861 Apostol Tom M 1976 Modular functions and Dirichlet series in number theory New York Springer Verlag p 50 ISBN 0 387 90185 X OCLC 2121639 Chandrasekharan K Komaravolu 1920 1985 Elliptic functions Berlin Springer Verlag p 122 ISBN 0 387 15295 4 OCLC 12053023 a href Template Cite book html title Template Cite book cite book a CS1 maint multiple names authors list link CS1 maint numeric names authors list link Busam Rolf 2006 Funktionentheorie 1 in German 4 korr und erw Aufl ed Berlin Springer p 270 ISBN 978 3 540 32058 6 Apostol Tom M 1976 Modular functions and Dirichlet series in number theory in German New York Springer Verlag p 13 ISBN 0 387 90185 X K Chandrasekharan 1985 Elliptic functions in German Berlin Springer Verlag p 33 ISBN 0 387 15295 4 Korn GA Korn TM 1961 Mathematical Handbook for Scientists and Engineers New York McGraw Hill p 721 LCCN 59014456 Reinhardt W P Walker P L 2010 Weierstrass Elliptic and Modular Functions in Olver Frank W J Lozier Daniel M Boisvert Ronald F Clark Charles W eds NIST Handbook of Mathematical Functions Cambridge University Press ISBN 978 0 521 19225 5 MR 2723248 Hulek Klaus 2012 Elementare Algebraische Geometrie Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen in German 2 uberarb u erw Aufl 2012 ed Wiesbaden Vieweg Teubner Verlag p 12 ISBN 978 3 8348 2348 9 Hulek Klaus 2012 Elementare Algebraische Geometrie Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen in German 2 uberarb u erw Aufl 2012 ed Wiesbaden Vieweg Teubner Verlag p 111 ISBN 978 3 8348 2348 9 a b Rolf Busam 2006 Funktionentheorie 1 in German 4 korr und erw Aufl ed Berlin Springer p 286 ISBN 978 3 540 32058 6 Rolf Busam 2006 Funktionentheorie 1 in German 4 korr und erw Aufl ed Berlin Springer p 287 ISBN 978 3 540 32058 6 Rolf Busam 2006 Funktionentheorie 1 in German 4 korr und erw Aufl ed Berlin Springer p 288 ISBN 978 3 540 32058 6 teika kazura 2017 08 17 The letter Name amp origin MathOverflow retrieved 2018 08 30 Known Anomalies in Unicode Character Names Unicode Technical Note 27 version 4 Unicode Inc 2017 04 10 Retrieved 2017 07 20 NameAliases 10 0 0 txt Unicode Inc 2017 05 06 Retrieved 2017 07 20 Abramowitz Milton Stegun Irene Ann eds 1983 June 1964 Chapter 18 Handbook of Mathematical Functions with Formulas Graphs and Mathematical Tables Applied Mathematics Series Vol 55 Ninth reprint with additional corrections of tenth original printing with corrections December 1972 first ed Washington D C New York United States Department of Commerce National Bureau of Standards Dover Publications p 627 ISBN 978 0 486 61272 0 LCCN 64 60036 MR 0167642 LCCN 65 12253 N I Akhiezer Elements of the Theory of Elliptic Functions 1970 Moscow translated into English as AMS Translations of Mathematical Monographs Volume 79 1990 AMS Rhode Island ISBN 0 8218 4532 2 Tom M Apostol Modular Functions and Dirichlet Series in Number Theory Second Edition 1990 Springer New York ISBN 0 387 97127 0 See chapter 1 K Chandrasekharan Elliptic functions 1980 Springer Verlag ISBN 0 387 15295 4 Konrad Knopp Funktionentheorie II 1947 Dover Publications Republished in English translation as Theory of Functions 1996 Dover Publications ISBN 0 486 69219 1 Serge Lang Elliptic Functions 1973 Addison Wesley ISBN 0 201 04162 6 E T Whittaker and G N Watson A Course of Modern Analysis Cambridge University Press 1952 chapters 20 and 21External links edit nbsp Wikimedia Commons has media related to Weierstrass s elliptic functions Weierstrass elliptic functions Encyclopedia of Mathematics EMS Press 2001 1994 Weierstrass s elliptic functions on Mathworld Chapter 23 Weierstrass Elliptic and Modular Functions in DLMF Digital Library of Mathematical Functions by W P Reinhardt and P L Walker Weierstrass P function and its derivative implemented in C by David Dumas Retrieved from https en wikipedia org w index php title Weierstrass elliptic function amp oldid 1217190909, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.