fbpx
Wikipedia

Weierstrass elliptic function

In mathematics, the Weierstrass elliptic functions are elliptic functions that take a particularly simple form. They are named for Karl Weierstrass. This class of functions are also referred to as ℘-functions and they are usually denoted by the symbol ℘, a uniquely fancy script p. They play an important role in the theory of elliptic functions. A ℘-function together with its derivative can be used to parameterize elliptic curves and they generate the field of elliptic functions with respect to a given period lattice.

Symbol for Weierstrass -function

Model of Weierstrass -function

Definition

 
Visualization of the  -function with invariants   and   in which white corresponds to a pole, black to a zero.

Let   be two complex numbers that are linearly independent over   and let   be the lattice generated by those numbers. Then the  -function is defined as follows:

 

This series converges locally uniformly absolutely in  . Oftentimes instead of   only   is written.

The Weierstrass  -function is constructed exactly in such a way that it has a pole of the order two at each lattice point.

Because the sum   alone would not converge it is necessary to add the term  .[1]

It is common to use   and   in the upper half-plane   as generators of the lattice. Dividing by   maps the lattice   isomorphically onto the lattice   with  . Because   can be substituted for  , without loss of generality we can assume  , and then define  .

Motivation

A cubic of the form  , where   are complex numbers with  , can not be rationally parameterized.[2] Yet one still wants to find a way to parameterize it.

For the quadric  , the unit circle, there exists a (non-rational) parameterization using the sine function and its derivative the cosine function:

 

Because of the periodicity of the sine and cosine   is chosen to be the domain, so the function is bijective.

In a similar way one can get a parameterization of   by means of the doubly periodic  -function (see in the section "Relation to elliptic curves"). This parameterization has the domain  , which is topologically equivalent to a torus.[3]

There is another analogy to the trigonometric functions. Consider the integral function

 

It can be simplified by substituting   and  :

 

That means  . So the sine function is an inverse function of an integral function.[4]

Elliptic functions are also inverse functions of integral functions, namely of elliptic integrals. In particular the  -function is obtained in the following way:

Let

 

Then   can be extended to the complex plane and this extension equals the  -function.[5]

Properties

  • ℘ is an even function. That means   for all  , which can be seen in the following way:
     
    The second last equality holds because  . Since the sum converges absolutely this rearrangement does not change the limit.
  • ℘ is meromorphic and its derivative is[6]
     
  •   and   are doubly periodic with the periods  and  .[6] This means:
     

It follows that   and   for all  . Functions which are meromorphic and doubly periodic are also called elliptic functions.

Laurent expansion

Let  . Then for   the  -function has the following Laurent expansion

 
where
 
for   are so called Eisenstein series.[6]

Differential equation

Set   and  . Then the  -function satisfies the differential equation[6]

 

This relation can be verified by forming a linear combination of powers of   and   to eliminate the pole at  . This yields an entire elliptic function that has to be constant by Liouville's theorem.[6]

Invariants

 
The real part of the invariant g3 as a function of the square of the nome q on the unit disk.
 
The imaginary part of the invariant g3 as a function of the square of the nome q on the unit disk.

The coefficients of the above differential equation g2 and g3 are known as the invariants. Because they depend on the lattice   they can be viewed as functions in  and  .

The series expansion suggests that g2 and g3 are homogeneous functions of degree −4 and −6. That is[7]

 
 
for  .

If  and   are chosen in such a way that  , g2 and g3 can be interpreted as functions on the upper half-plane  .

Let  . One has:[8]

 
 
That means g2 and g3 are only scaled by doing this. Set
 
and
 

As functions of     are so called modular forms.

The Fourier series for   and   are given as follows:[9]

 
 
where
 
is the divisor function and   is the nome.

Modular discriminant

 
The real part of the discriminant as a function of the square of the nome q on the unit disk.

The modular discriminant Δ is defined as the discriminant of the polynomial on the right-hand side of the above differential equation:

 

The discriminant is a modular form of weight 12. That is, under the action of the modular group, it transforms as

 
where   with ad − bc = 1.[10]

Note that   where   is the Dedekind eta function.[11]

For the Fourier coefficients of  , see Ramanujan tau function.

The constants e1, e2 and e3

 ,   and   are usually used to denote the values of the  -function at the half-periods.

 
 
 

They are pairwise distinct and only depend on the lattice   and not on its generators.[12]

 ,   and   are the roots of the cubic polynomial   and are related by the equation:

 

Because those roots are distinct the discriminant   does not vanish on the upper half plane.[13] Now we can rewrite the differential equation:

 

That means the half-periods are zeros of  .

The invariants   and   can be expressed in terms of these constants in the following way:[14]

 
 

 ,   and   are related to the modular lambda function:

 

Relation to Jacobi's elliptic functions

For numerical work, it is often convenient to calculate the Weierstrass elliptic function in terms of Jacobi's elliptic functions.

The basic relations are:[15]

 
where  and   are the three roots described above and where the modulus k of the Jacobi functions equals
 
and their argument w equals
 

Relation to Jacobi's theta functions

The function   can be represented by Jacobi's theta functions:

 
where   is the nome and   is the period ratio  .[16] This also provides a very rapid algorithm for computing  .

Relation to elliptic curves

Consider the projective cubic curve

 

For this cubic, also called Weierstrass cubic, there exists no rational parameterization, if  .[2] In this case it is also called an elliptic curve. Nevertheless there is a parameterization that uses the  -function and its derivative  :[17]

 

Now the map   is bijective and parameterizes the elliptic curve  .

  is an abelian group and a topological space, equipped with the quotient topology.

It can be shown that every Weierstrass cubic is given in such a way. That is to say that for every pair   with   there exists a lattice  , such that

  and  .[18]

The statement that elliptic curves over   can be parameterized over  , is known as the modularity theorem. This is an important theorem in number theory. It was part of Andrew Wiles' proof (1995) of Fermat's Last Theorem.

Addition theorems

Let  , so that  . Then one has:[19]

 

As well as the duplication formula:[19]

 

These formulas also have a geometric interpretation, if one looks at the elliptic curve   together with the mapping   as in the previous section.

The group structure of   translates to the curve  and can be geometrically interpreted there:

The sum of three pairwise different points  is zero if and only if they lie on the same line in  .[20]

This is equivalent to:

 
where  ,   and  .[21]

Typography

The Weierstrass's elliptic function is usually written with a rather special, lower case script letter ℘.[footnote 1]

In computing, the letter ℘ is available as \wp in TeX. In Unicode the code point is U+2118 SCRIPT CAPITAL P (℘, ℘), with the more correct alias weierstrass elliptic function.[footnote 2] In HTML, it can be escaped as ℘.

Character information
Preview
Unicode name SCRIPT CAPITAL P / WEIERSTRASS ELLIPTIC FUNCTION
Encodings decimal hex
Unicode 8472 U+2118
UTF-8 226 132 152 E2 84 98
Numeric character reference ℘ ℘
Named character reference ℘, ℘

See also

Footnotes

  1. ^ This symbol was used already at least in 1890. The first edition of A Course of Modern Analysis by E. T. Whittaker in 1902 also used it.[22]
  2. ^ The Unicode Consortium has acknowledged two problems with the letter's name: the letter is in fact lowercase, and it is not a "script" class letter, like U+1D4C5 𝓅 MATHEMATICAL SCRIPT SMALL P, but the letter for Weierstrass's elliptic function. Unicode added the alias as a correction.[23][24]

References

  1. ^ Apostol, Tom M. (1976). Modular functions and Dirichlet series in number theory. New York: Springer-Verlag. p. 9. ISBN 0-387-90185-X. OCLC 2121639.
  2. ^ a b Hulek, Klaus. (2012), Elementare Algebraische Geometrie : Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen (in German) (2., überarb. u. erw. Aufl. 2012 ed.), Wiesbaden: Vieweg+Teubner Verlag, p. 8, ISBN 978-3-8348-2348-9
  3. ^ Rolf Busam (2006), Funktionentheorie 1 (in German) (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 259, ISBN 978-3-540-32058-6
  4. ^ Jeremy Gray (2015), Real and the complex: a history of analysis in the 19th century (in German), Cham, p. 71, ISBN 978-3-319-23715-2
  5. ^ Rolf Busam (2006), Funktionentheorie 1 (in German) (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 294, ISBN 978-3-540-32058-6
  6. ^ a b c d e Apostol, Tom M. (1976), Modular functions and Dirichlet series in number theory (in German), New York: Springer-Verlag, p. 11, ISBN 0-387-90185-X
  7. ^ Apostol, Tom M. (1976). Modular functions and Dirichlet series in number theory. New York: Springer-Verlag. p. 14. ISBN 0-387-90185-X. OCLC 2121639.
  8. ^ Apostol, Tom M. (1976), Modular functions and Dirichlet series in number theory (in German), New York: Springer-Verlag, p. 14, ISBN 0-387-90185-X
  9. ^ Apostol, Tom M. (1990). Modular functions and Dirichlet series in number theory (2nd ed.). New York: Springer-Verlag. p. 20. ISBN 0-387-97127-0. OCLC 20262861.
  10. ^ Apostol, Tom M. (1976). Modular functions and Dirichlet series in number theory. New York: Springer-Verlag. p. 50. ISBN 0-387-90185-X. OCLC 2121639.
  11. ^ Chandrasekharan, K. (Komaravolu), 1920- (1985). Elliptic functions. Berlin: Springer-Verlag. p. 122. ISBN 0-387-15295-4. OCLC 12053023.{{cite book}}: CS1 maint: multiple names: authors list (link)
  12. ^ Busam, Rolf (2006), Funktionentheorie 1 (in German) (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 270, ISBN 978-3-540-32058-6
  13. ^ Apostol, Tom M. (1976), Modular functions and Dirichlet series in number theory (in German), New York: Springer-Verlag, p. 13, ISBN 0-387-90185-X
  14. ^ K. Chandrasekharan (1985), Elliptic functions (in German), Berlin: Springer-Verlag, p. 33, ISBN 0-387-15295-4
  15. ^ Korn GA, Korn TM (1961). Mathematical Handbook for Scientists and Engineers. New York: McGraw–Hill. p. 721. LCCN 59014456.
  16. ^ Reinhardt, W. P.; Walker, P. L. (2010), "Weierstrass Elliptic and Modular Functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248
  17. ^ Hulek, Klaus. (2012), Elementare Algebraische Geometrie : Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen (in German) (2., überarb. u. erw. Aufl. 2012 ed.), Wiesbaden: Vieweg+Teubner Verlag, p. 12, ISBN 978-3-8348-2348-9
  18. ^ Hulek, Klaus. (2012), Elementare Algebraische Geometrie : Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen (in German) (2., überarb. u. erw. Aufl. 2012 ed.), Wiesbaden: Vieweg+Teubner Verlag, p. 111, ISBN 978-3-8348-2348-9
  19. ^ a b Rolf Busam (2006), Funktionentheorie 1 (in German) (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 286, ISBN 978-3-540-32058-6
  20. ^ Rolf Busam (2006), Funktionentheorie 1 (in German) (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 287, ISBN 978-3-540-32058-6
  21. ^ Rolf Busam (2006), Funktionentheorie 1 (in German) (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 288, ISBN 978-3-540-32058-6
  22. ^ teika kazura (2017-08-17), The letter ℘ Name & origin?, MathOverflow, retrieved 2018-08-30
  23. ^ "Known Anomalies in Unicode Character Names". Unicode Technical Note #27. version 4. Unicode, Inc. 2017-04-10. Retrieved 2017-07-20.
  24. ^ "NameAliases-10.0.0.txt". Unicode, Inc. 2017-05-06. Retrieved 2017-07-20.

External links

weierstrass, elliptic, function, function, redirects, here, phase, space, function, representing, quantum, state, glauber, sudarshan, representation, redirects, here, symbol, also, used, denote, power, mathematics, elliptic, functions, that, take, particularly. P function redirects here For the phase space function representing a quantum state see Glauber Sudarshan P representation redirects here the symbol can also be used to denote a power set In mathematics the Weierstrass elliptic functions are elliptic functions that take a particularly simple form They are named for Karl Weierstrass This class of functions are also referred to as functions and they are usually denoted by the symbol a uniquely fancy script p They play an important role in the theory of elliptic functions A function together with its derivative can be used to parameterize elliptic curves and they generate the field of elliptic functions with respect to a given period lattice Symbol for Weierstrass displaystyle wp function Model of Weierstrass displaystyle wp function Contents 1 Definition 2 Motivation 3 Properties 4 Laurent expansion 5 Differential equation 6 Invariants 7 Modular discriminant 8 The constants e1 e2 and e3 9 Relation to Jacobi s elliptic functions 10 Relation to Jacobi s theta functions 11 Relation to elliptic curves 12 Addition theorems 13 Typography 14 See also 15 Footnotes 16 References 17 External linksDefinition Edit Visualization of the displaystyle wp function with invariants g 2 1 i displaystyle g 2 1 i and g 3 2 3 i displaystyle g 3 2 3i in which white corresponds to a pole black to a zero Let w 1 w 2 C displaystyle omega 1 omega 2 in mathbb C be two complex numbers that are linearly independent over R displaystyle mathbb R and let L Z w 1 Z w 2 m w 1 n w 2 m n Z displaystyle Lambda mathbb Z omega 1 mathbb Z omega 2 m omega 1 n omega 2 m n in mathbb Z be the lattice generated by those numbers Then the displaystyle wp function is defined as follows z w 1 w 2 z L 1 z 2 l L 0 1 z l 2 1 l 2 displaystyle wp z omega 1 omega 2 wp z Lambda frac 1 z 2 sum lambda in Lambda setminus 0 left frac 1 z lambda 2 frac 1 lambda 2 right This series converges locally uniformly absolutely in C L displaystyle mathbb C setminus Lambda Oftentimes instead of z w 1 w 2 displaystyle wp z omega 1 omega 2 only z displaystyle wp z is written The Weierstrass displaystyle wp function is constructed exactly in such a way that it has a pole of the order two at each lattice point Because the sum l L 1 z l 2 textstyle sum lambda in Lambda frac 1 z lambda 2 alone would not converge it is necessary to add the term 1 l 2 textstyle frac 1 lambda 2 1 It is common to use 1 displaystyle 1 and t displaystyle tau in the upper half plane H z C Im z gt 0 displaystyle H z in mathbb C operatorname Im z gt 0 as generators of the lattice Dividing by w 1 textstyle omega 1 maps the lattice Z w 1 Z w 2 displaystyle mathbb Z omega 1 mathbb Z omega 2 isomorphically onto the lattice Z Z t displaystyle mathbb Z mathbb Z tau with t w 2 w 1 textstyle tau tfrac omega 2 omega 1 Because t displaystyle tau can be substituted for t displaystyle tau without loss of generality we can assume t H displaystyle tau in mathbb H and then define z t z 1 t displaystyle wp z tau wp z 1 tau Motivation EditA cubic of the form C g 2 g 3 C x y C 2 y 2 4 x 3 g 2 x g 3 displaystyle C g 2 g 3 mathbb C x y in mathbb C 2 y 2 4x 3 g 2 x g 3 where g 2 g 3 C displaystyle g 2 g 3 in mathbb C are complex numbers with g 2 3 27 g 3 2 0 displaystyle g 2 3 27g 3 2 neq 0 can not be rationally parameterized 2 Yet one still wants to find a way to parameterize it For the quadric K x y R 2 x 2 y 2 1 displaystyle K left x y in mathbb R 2 x 2 y 2 1 right the unit circle there exists a non rational parameterization using the sine function and its derivative the cosine function ps R 2 p Z K t sin t cos t displaystyle psi mathbb R 2 pi mathbb Z to K quad t mapsto sin t cos t Because of the periodicity of the sine and cosine R 2 p Z displaystyle mathbb R 2 pi mathbb Z is chosen to be the domain so the function is bijective In a similar way one can get a parameterization of C g 2 g 3 C displaystyle C g 2 g 3 mathbb C by means of the doubly periodic displaystyle wp function see in the section Relation to elliptic curves This parameterization has the domain C L displaystyle mathbb C Lambda which is topologically equivalent to a torus 3 There is another analogy to the trigonometric functions Consider the integral functiona x 0 x d y 1 y 2 displaystyle a x int 0 x frac dy sqrt 1 y 2 It can be simplified by substituting y sin t displaystyle y sin t and s arcsin x displaystyle s arcsin x a x 0 s d t s arcsin x displaystyle a x int 0 s dt s arcsin x That means a 1 x sin x displaystyle a 1 x sin x So the sine function is an inverse function of an integral function 4 Elliptic functions are also inverse functions of integral functions namely of elliptic integrals In particular the displaystyle wp function is obtained in the following way Letu z z d s 4 s 3 g 2 s g 3 displaystyle u z int z infty frac ds sqrt 4s 3 g 2 s g 3 Then u 1 displaystyle u 1 can be extended to the complex plane and this extension equals the displaystyle wp function 5 Properties Edit is an even function That means z z displaystyle wp z wp z for all z C L displaystyle z in mathbb C setminus Lambda which can be seen in the following way z 1 z 2 l L 0 1 z l 2 1 l 2 1 z 2 l L 0 1 z l 2 1 l 2 1 z 2 l L 0 1 z l 2 1 l 2 z displaystyle begin aligned wp z amp frac 1 z 2 sum lambda in Lambda setminus 0 left frac 1 z lambda 2 frac 1 lambda 2 right 4pt amp frac 1 z 2 sum lambda in Lambda setminus 0 left frac 1 z lambda 2 frac 1 lambda 2 right 4pt amp frac 1 z 2 sum lambda in Lambda setminus 0 left frac 1 z lambda 2 frac 1 lambda 2 right wp z end aligned The second last equality holds because l l L L displaystyle lambda lambda in Lambda Lambda Since the sum converges absolutely this rearrangement does not change the limit is meromorphic and its derivative is 6 z 2 l L 1 z l 3 displaystyle wp z 2 sum lambda in Lambda frac 1 z lambda 3 displaystyle wp and displaystyle wp are doubly periodic with the periods w 1 displaystyle omega 1 and w 2 displaystyle omega 2 6 This means z w 1 z z w 2 and z w 1 z z w 2 displaystyle begin aligned wp z omega 1 amp wp z wp z omega 2 textrm and 3mu wp z omega 1 amp wp z wp z omega 2 end aligned It follows that z l z displaystyle wp z lambda wp z and z l z displaystyle wp z lambda wp z for all l L displaystyle lambda in Lambda Functions which are meromorphic and doubly periodic are also called elliptic functions Laurent expansion EditLet r min l 0 l L displaystyle r min lambda 0 neq lambda in Lambda Then for 0 lt z lt r displaystyle 0 lt z lt r the displaystyle wp function has the following Laurent expansion z 1 z 2 n 1 2 n 1 G 2 n 2 z 2 n displaystyle wp z frac 1 z 2 sum n 1 infty 2n 1 G 2n 2 z 2n where G n 0 l L l n displaystyle G n sum 0 neq lambda in Lambda lambda n for n 3 displaystyle n geq 3 are so called Eisenstein series 6 Differential equation EditSet g 2 60 G 4 displaystyle g 2 60G 4 and g 3 140 G 6 displaystyle g 3 140G 6 Then the displaystyle wp function satisfies the differential equation 6 2 z 4 3 z g 2 z g 3 displaystyle wp 2 z 4 wp 3 z g 2 wp z g 3 This relation can be verified by forming a linear combination of powers of displaystyle wp and displaystyle wp to eliminate the pole at z 0 displaystyle z 0 This yields an entire elliptic function that has to be constant by Liouville s theorem 6 Invariants Edit The real part of the invariant g3 as a function of the square of the nome q on the unit disk The imaginary part of the invariant g3 as a function of the square of the nome q on the unit disk The coefficients of the above differential equation g2 and g3 are known as the invariants Because they depend on the lattice L displaystyle Lambda they can be viewed as functions in w 1 displaystyle omega 1 and w 2 displaystyle omega 2 The series expansion suggests that g2 and g3 are homogeneous functions of degree 4 and 6 That is 7 g 2 l w 1 l w 2 l 4 g 2 w 1 w 2 displaystyle g 2 lambda omega 1 lambda omega 2 lambda 4 g 2 omega 1 omega 2 g 3 l w 1 l w 2 l 6 g 3 w 1 w 2 displaystyle g 3 lambda omega 1 lambda omega 2 lambda 6 g 3 omega 1 omega 2 for l 0 displaystyle lambda neq 0 If w 1 displaystyle omega 1 and w 2 displaystyle omega 2 are chosen in such a way that Im w 2 w 1 gt 0 displaystyle operatorname Im left tfrac omega 2 omega 1 right gt 0 g2 and g3 can be interpreted as functions on the upper half plane H z C Im z gt 0 displaystyle mathbb H z in mathbb C operatorname Im z gt 0 Let t w 2 w 1 displaystyle tau tfrac omega 2 omega 1 One has 8 g 2 1 t w 1 4 g 2 w 1 w 2 displaystyle g 2 1 tau omega 1 4 g 2 omega 1 omega 2 g 3 1 t w 1 6 g 3 w 1 w 2 displaystyle g 3 1 tau omega 1 6 g 3 omega 1 omega 2 That means g2 and g3 are only scaled by doing this Set g 2 t g 2 1 t displaystyle g 2 tau g 2 1 tau and g 3 t g 3 1 t displaystyle g 3 tau g 3 1 tau As functions of t H displaystyle tau in mathbb H g 2 g 3 displaystyle g 2 g 3 are so called modular forms The Fourier series for g 2 displaystyle g 2 and g 3 displaystyle g 3 are given as follows 9 g 2 t 4 3 p 4 1 240 k 1 s 3 k q 2 k displaystyle g 2 tau frac 4 3 pi 4 left 1 240 sum k 1 infty sigma 3 k q 2k right g 3 t 8 27 p 6 1 504 k 1 s 5 k q 2 k displaystyle g 3 tau frac 8 27 pi 6 left 1 504 sum k 1 infty sigma 5 k q 2k right where s a k d k d a displaystyle sigma a k sum d mid k d alpha is the divisor function and q e p i t displaystyle q e pi i tau is the nome Modular discriminant Edit The real part of the discriminant as a function of the square of the nome q on the unit disk The modular discriminant D is defined as the discriminant of the polynomial on the right hand side of the above differential equation D g 2 3 27 g 3 2 displaystyle Delta g 2 3 27g 3 2 The discriminant is a modular form of weight 12 That is under the action of the modular group it transforms asD a t b c t d c t d 12 D t displaystyle Delta left frac a tau b c tau d right left c tau d right 12 Delta tau where a b d c Z displaystyle a b d c in mathbb Z with ad bc 1 10 Note that D 2 p 12 h 24 displaystyle Delta 2 pi 12 eta 24 where h displaystyle eta is the Dedekind eta function 11 For the Fourier coefficients of D displaystyle Delta see Ramanujan tau function The constants e1 e2 and e3 Edite 1 displaystyle e 1 e 2 displaystyle e 2 and e 3 displaystyle e 3 are usually used to denote the values of the displaystyle wp function at the half periods e 1 w 1 2 displaystyle e 1 equiv wp left frac omega 1 2 right e 2 w 2 2 displaystyle e 2 equiv wp left frac omega 2 2 right e 3 w 1 w 2 2 displaystyle e 3 equiv wp left frac omega 1 omega 2 2 right They are pairwise distinct and only depend on the lattice L displaystyle Lambda and not on its generators 12 e 1 displaystyle e 1 e 2 displaystyle e 2 and e 3 displaystyle e 3 are the roots of the cubic polynomial 4 z 3 g 2 z g 3 displaystyle 4 wp z 3 g 2 wp z g 3 and are related by the equation e 1 e 2 e 3 0 displaystyle e 1 e 2 e 3 0 Because those roots are distinct the discriminant D displaystyle Delta does not vanish on the upper half plane 13 Now we can rewrite the differential equation 2 z 4 z e 1 z e 2 z e 3 displaystyle wp 2 z 4 wp z e 1 wp z e 2 wp z e 3 That means the half periods are zeros of displaystyle wp The invariants g 2 displaystyle g 2 and g 3 displaystyle g 3 can be expressed in terms of these constants in the following way 14 g 2 4 e 1 e 2 e 1 e 3 e 2 e 3 displaystyle g 2 4 e 1 e 2 e 1 e 3 e 2 e 3 g 3 4 e 1 e 2 e 3 displaystyle g 3 4e 1 e 2 e 3 e 1 displaystyle e 1 e 2 displaystyle e 2 and e 3 displaystyle e 3 are related to the modular lambda function l t e 3 e 2 e 1 e 2 t w 2 w 1 displaystyle lambda tau frac e 3 e 2 e 1 e 2 quad tau frac omega 2 omega 1 Relation to Jacobi s elliptic functions EditFor numerical work it is often convenient to calculate the Weierstrass elliptic function in terms of Jacobi s elliptic functions The basic relations are 15 z e 3 e 1 e 3 sn 2 w e 2 e 1 e 3 dn 2 w sn 2 w e 1 e 1 e 3 cn 2 w sn 2 w displaystyle wp z e 3 frac e 1 e 3 operatorname sn 2 w e 2 e 1 e 3 frac operatorname dn 2 w operatorname sn 2 w e 1 e 1 e 3 frac operatorname cn 2 w operatorname sn 2 w where e 1 e 2 displaystyle e 1 e 2 and e 3 displaystyle e 3 are the three roots described above and where the modulus k of the Jacobi functions equals k e 2 e 3 e 1 e 3 displaystyle k sqrt frac e 2 e 3 e 1 e 3 and their argument w equals w z e 1 e 3 displaystyle w z sqrt e 1 e 3 Relation to Jacobi s theta functions EditThe function z t z 1 w 2 w 1 displaystyle wp z tau wp z 1 omega 2 omega 1 can be represented by Jacobi s theta functions z t p 8 2 0 q 8 3 0 q 8 4 p z q 8 1 p z q 2 p 2 3 8 2 4 0 q 8 3 4 0 q displaystyle wp z tau left pi theta 2 0 q theta 3 0 q frac theta 4 pi z q theta 1 pi z q right 2 frac pi 2 3 left theta 2 4 0 q theta 3 4 0 q right where q e p i t displaystyle q e pi i tau is the nome and t displaystyle tau is the period ratio t H displaystyle tau in mathbb H 16 This also provides a very rapid algorithm for computing z t displaystyle wp z tau Relation to elliptic curves EditConsider the projective cubic curveC g 2 g 3 C x y C 2 y 2 4 x 3 g 2 x g 3 P C 2 displaystyle bar C g 2 g 3 mathbb C x y in mathbb C 2 y 2 4x 3 g 2 x g 3 cup infty subset mathbb P mathbb C 2 For this cubic also called Weierstrass cubic there exists no rational parameterization if D 0 displaystyle Delta neq 0 2 In this case it is also called an elliptic curve Nevertheless there is a parameterization that uses the displaystyle wp function and its derivative displaystyle wp 17 f C L C g 2 g 3 C z z z 1 z 0 z 0 displaystyle varphi mathbb C Lambda to bar C g 2 g 3 mathbb C quad bar z mapsto begin cases wp z wp z 1 amp bar z neq 0 infty quad amp bar z 0 end cases Now the map f displaystyle varphi is bijective and parameterizes the elliptic curve C g 2 g 3 C displaystyle bar C g 2 g 3 mathbb C C L displaystyle mathbb C Lambda is an abelian group and a topological space equipped with the quotient topology It can be shown that every Weierstrass cubic is given in such a way That is to say that for every pair g 2 g 3 C displaystyle g 2 g 3 in mathbb C with D g 2 3 27 g 3 2 0 displaystyle Delta g 2 3 27g 3 2 neq 0 there exists a lattice Z w 1 Z w 2 displaystyle mathbb Z omega 1 mathbb Z omega 2 such thatg 2 g 2 w 1 w 2 displaystyle g 2 g 2 omega 1 omega 2 and g 3 g 3 w 1 w 2 displaystyle g 3 g 3 omega 1 omega 2 18 The statement that elliptic curves over Q displaystyle mathbb Q can be parameterized over Q displaystyle mathbb Q is known as the modularity theorem This is an important theorem in number theory It was part of Andrew Wiles proof 1995 of Fermat s Last Theorem Addition theorems EditLet z w C displaystyle z w in mathbb C so that z w z w z w L displaystyle z w z w z w notin Lambda Then one has 19 z w 1 4 z w z w 2 z w displaystyle wp z w frac 1 4 left frac wp z wp w wp z wp w right 2 wp z wp w As well as the duplication formula 19 2 z 1 4 z z 2 2 z displaystyle wp 2z frac 1 4 left frac wp z wp z right 2 2 wp z These formulas also have a geometric interpretation if one looks at the elliptic curve C g 2 g 3 C displaystyle bar C g 2 g 3 mathbb C together with the mapping f C L C g 2 g 3 C displaystyle varphi mathbb C Lambda to bar C g 2 g 3 mathbb C as in the previous section The group structure of C L displaystyle mathbb C Lambda translates to the curve C g 2 g 3 C displaystyle bar C g 2 g 3 mathbb C and can be geometrically interpreted there The sum of three pairwise different points a b c C g 2 g 3 C displaystyle a b c in bar C g 2 g 3 mathbb C is zero if and only if they lie on the same line in P C 2 displaystyle mathbb P mathbb C 2 20 This is equivalent to det 1 u v u v 1 v v 1 u u 0 displaystyle det left begin array rrr 1 amp wp u v amp wp u v 1 amp wp v amp wp v 1 amp wp u amp wp u end array right 0 where u a displaystyle wp u a v b displaystyle wp v b and u v L displaystyle u v notin Lambda 21 Typography EditThe Weierstrass s elliptic function is usually written with a rather special lower case script letter footnote 1 In computing the letter is available as wp in TeX In Unicode the code point is U 2118 SCRIPT CAPITAL P amp weierp amp wp with the more correct alias weierstrass elliptic function footnote 2 In HTML it can be escaped as amp weierp Character information Preview Unicode name SCRIPT CAPITAL P WEIERSTRASS ELLIPTIC FUNCTIONEncodings decimal hexUnicode 8472 U 2118UTF 8 226 132 152 E2 84 98Numeric character reference amp 8472 wbr amp x2118 wbr Named character reference amp weierp amp wp See also EditWeierstrass functions Jacobi elliptic functions Lemniscate elliptic functionsFootnotes Edit This symbol was used already at least in 1890 The first edition of A Course of Modern Analysis by E T Whittaker in 1902 also used it 22 The Unicode Consortium has acknowledged two problems with the letter s name the letter is in fact lowercase and it is not a script class letter like U 1D4C5 𝓅 MATHEMATICAL SCRIPT SMALL P but the letter for Weierstrass s elliptic function Unicode added the alias as a correction 23 24 References Edit Apostol Tom M 1976 Modular functions and Dirichlet series in number theory New York Springer Verlag p 9 ISBN 0 387 90185 X OCLC 2121639 a b Hulek Klaus 2012 Elementare Algebraische Geometrie Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen in German 2 uberarb u erw Aufl 2012 ed Wiesbaden Vieweg Teubner Verlag p 8 ISBN 978 3 8348 2348 9 Rolf Busam 2006 Funktionentheorie 1 in German 4 korr und erw Aufl ed Berlin Springer p 259 ISBN 978 3 540 32058 6 Jeremy Gray 2015 Real and the complex a history of analysis in the 19th century in German Cham p 71 ISBN 978 3 319 23715 2 Rolf Busam 2006 Funktionentheorie 1 in German 4 korr und erw Aufl ed Berlin Springer p 294 ISBN 978 3 540 32058 6 a b c d e Apostol Tom M 1976 Modular functions and Dirichlet series in number theory in German New York Springer Verlag p 11 ISBN 0 387 90185 X Apostol Tom M 1976 Modular functions and Dirichlet series in number theory New York Springer Verlag p 14 ISBN 0 387 90185 X OCLC 2121639 Apostol Tom M 1976 Modular functions and Dirichlet series in number theory in German New York Springer Verlag p 14 ISBN 0 387 90185 X Apostol Tom M 1990 Modular functions and Dirichlet series in number theory 2nd ed New York Springer Verlag p 20 ISBN 0 387 97127 0 OCLC 20262861 Apostol Tom M 1976 Modular functions and Dirichlet series in number theory New York Springer Verlag p 50 ISBN 0 387 90185 X OCLC 2121639 Chandrasekharan K Komaravolu 1920 1985 Elliptic functions Berlin Springer Verlag p 122 ISBN 0 387 15295 4 OCLC 12053023 a href Template Cite book html title Template Cite book cite book a CS1 maint multiple names authors list link Busam Rolf 2006 Funktionentheorie 1 in German 4 korr und erw Aufl ed Berlin Springer p 270 ISBN 978 3 540 32058 6 Apostol Tom M 1976 Modular functions and Dirichlet series in number theory in German New York Springer Verlag p 13 ISBN 0 387 90185 X K Chandrasekharan 1985 Elliptic functions in German Berlin Springer Verlag p 33 ISBN 0 387 15295 4 Korn GA Korn TM 1961 Mathematical Handbook for Scientists and Engineers New York McGraw Hill p 721 LCCN 59014456 Reinhardt W P Walker P L 2010 Weierstrass Elliptic and Modular Functions in Olver Frank W J Lozier Daniel M Boisvert Ronald F Clark Charles W eds NIST Handbook of Mathematical Functions Cambridge University Press ISBN 978 0 521 19225 5 MR 2723248 Hulek Klaus 2012 Elementare Algebraische Geometrie Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen in German 2 uberarb u erw Aufl 2012 ed Wiesbaden Vieweg Teubner Verlag p 12 ISBN 978 3 8348 2348 9 Hulek Klaus 2012 Elementare Algebraische Geometrie Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen in German 2 uberarb u erw Aufl 2012 ed Wiesbaden Vieweg Teubner Verlag p 111 ISBN 978 3 8348 2348 9 a b Rolf Busam 2006 Funktionentheorie 1 in German 4 korr und erw Aufl ed Berlin Springer p 286 ISBN 978 3 540 32058 6 Rolf Busam 2006 Funktionentheorie 1 in German 4 korr und erw Aufl ed Berlin Springer p 287 ISBN 978 3 540 32058 6 Rolf Busam 2006 Funktionentheorie 1 in German 4 korr und erw Aufl ed Berlin Springer p 288 ISBN 978 3 540 32058 6 teika kazura 2017 08 17 The letter Name amp origin MathOverflow retrieved 2018 08 30 Known Anomalies in Unicode Character Names Unicode Technical Note 27 version 4 Unicode Inc 2017 04 10 Retrieved 2017 07 20 NameAliases 10 0 0 txt Unicode Inc 2017 05 06 Retrieved 2017 07 20 Abramowitz Milton Stegun Irene Ann eds 1983 June 1964 Chapter 18 Handbook of Mathematical Functions with Formulas Graphs and Mathematical Tables Applied Mathematics Series Vol 55 Ninth reprint with additional corrections of tenth original printing with corrections December 1972 first ed Washington D C New York United States Department of Commerce National Bureau of Standards Dover Publications p 627 ISBN 978 0 486 61272 0 LCCN 64 60036 MR 0167642 LCCN 65 12253 N I Akhiezer Elements of the Theory of Elliptic Functions 1970 Moscow translated into English as AMS Translations of Mathematical Monographs Volume 79 1990 AMS Rhode Island ISBN 0 8218 4532 2 Tom M Apostol Modular Functions and Dirichlet Series in Number Theory Second Edition 1990 Springer New York ISBN 0 387 97127 0 See chapter 1 K Chandrasekharan Elliptic functions 1980 Springer Verlag ISBN 0 387 15295 4 Konrad Knopp Funktionentheorie II 1947 Dover Publications Republished in English translation as Theory of Functions 1996 Dover Publications ISBN 0 486 69219 1 Serge Lang Elliptic Functions 1973 Addison Wesley ISBN 0 201 04162 6 E T Whittaker and G N Watson A Course of Modern Analysis Cambridge University Press 1952 chapters 20 and 21External links Edit Wikimedia Commons has media related to Weierstrass s elliptic functions Weierstrass elliptic functions Encyclopedia of Mathematics EMS Press 2001 1994 Weierstrass s elliptic functions on Mathworld Chapter 23 Weierstrass Elliptic and Modular Functions in DLMF Digital Library of Mathematical Functions by W P Reinhardt and P L Walker Weierstrass P function and its derivative implemented in C by David Dumas Retrieved from https en wikipedia org w index php title Weierstrass elliptic function amp oldid 1140720980, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.