fbpx
Wikipedia

Timeline of scientific computing

The following is a timeline of scientific computing, also known as computational science.

Before modern computers edit

18th century edit

19th century edit

1900s (decade) edit

1910s (decade) edit

1920s edit

1930s edit

This decade marks the first major strides to a modern computer, and hence the start of the modern era.

1940s edit

  • 1947 – Metropolis algorithm for Monte Carlo simulation (named one of the top-10 algorithms of the 20th century)[25] invented at Los Alamos by von Neumann, Ulam and Metropolis.[26][27][28]
  • George Dantzig introduces the simplex method (named one of the top 10 algorithms of the 20th century)[25] in 1947.[29]
  • Ulam and von Neumann introduce the notion of cellular automata.[30]
  • Turing formulated the LU decomposition method.[31]
  • A. W. H. Phillips invents the MONIAC hydraulic computer at LSE, better known as "Phillips Hydraulic Computer".[32][33]
  • First hydro simulations occurred at Los Alamos.[34][35]

1950s edit

1960s edit

1970s edit

1980s edit

1990s edit

2000s edit

2010s edit


See also edit

References edit

  1. ^ Buffon, G. Editor's note concerning a lecture given 1733 by Mr. Le Clerc de Buffon to the Royal Academy of Sciences in Paris. Histoire de l'Acad. Roy. des Sci., pp. 43-45, 1733; according to Weisstein, Eric W. "Buffon's Needle Problem." From MathWorld--A Wolfram Web Resource. 20 Dec 2012 20 Dec 2012.
  2. ^ Buffon, G. "Essai d'arithmétique morale." Histoire naturelle, générale er particulière, Supplément 4, 46-123, 1777; according to Weisstein, Eric W. "Buffon's Needle Problem." From MathWorld--A Wolfram Web Resource. 20 Dec 2012
  3. ^ Euler, L. Institutionum calculi integralis. Impensis Academiae Imperialis Scientiarum, 1768.
  4. ^ Butcher, John C. (2003), Numerical Methods for Ordinary Differential Equations, New York: John Wiley & Sons, ISBN 978-0-471-96758-3.
  5. ^ Hairer, Ernst; Nørsett, Syvert Paul; Wanner, Gerhard (1993), Solving ordinary differential equations I: Nonstiff problems, Berlin, New York: Springer-Verlag, ISBN 978-3-540-56670-0.
  6. ^ Laplace, PS. (1816). Théorie Analytique des Probabilités :First Supplement, p. 497ff.
  7. ^ Gram, J. P. (1883). "Ueber die Entwickelung reeler Funtionen in Reihen mittelst der Methode der kleinsten Quadrate". JRNL. Für die reine und angewandte Math. 94: 71–73.
  8. ^ Schmidt, E. "Zur Theorie der linearen und nichtlinearen Integralgleichungen. I. Teil: Entwicklung willkürlicher Funktionen nach Systemen vorgeschriebener". Math. Ann. 63: 1907.
  9. ^ Earliest Known Uses of Some of the Words of Mathematics (G). As of Aug 2017.
  10. ^ Farebrother, RW (1988). Linear Least Squares Computations. CRC Press. ISBN 9780824776619. Retrieved 19 August 2017.
  11. ^ Simonite, Tom (24 March 2009). "Short Sharp Science: Celebrating Ada Lovelace: the 'world's first programmer'". New Scientist. Retrieved 14 April 2012.
  12. ^ Tom Stoppard’s “Arcadia,” at Twenty. By Brad Leithauser. The New Yorker, August 8, 2013.
  13. ^ Kim, Eugene Eric; Toole, Betty Alexandra (May 1999). "Ada and the first computer". Scientific American. 280 (5): 70–71. Bibcode:1999SciAm.280e..76E. doi:10.1038/scientificamerican0599-76.
  14. ^ Bashforth, Francis (1883), An Attempt to test the Theories of Capillary Action by comparing the theoretical and measured forms of drops of fluid. With an explanation of the method of integration employed in constructing the tables which give the theoretical forms of such drops, by J. C. Adams, Cambridge.
  15. ^ Jacobi’s Ideas on Eigenvalue Computation in a modern context, Henk van der Vorst.
  16. ^ Jacobi method, Encyclopedia of Mathematics.
  17. ^ The Early History of Matrix Iterations: With a Focus on the Italian Contribution, Michele Benzi, 26 October 2009. SIAM Conference on Applied Linear Algebra, Monterey Bay – Seaside, California.
  18. ^ MW Kutta. "Beiträge zur näherungsweisen Integration totaler Differentialgleichungen" [Contributions to the approximate integration of total differential equations] (in German). Thesis, University of Munich.
    • 1901 – "Reprinted", Z. Math. Phys., 46: 435–453, 1901 and in B.G Teubner, 1901.
  19. ^ Runge, C., "Über die numerische Auflösung von Differentialgleichungen" [About the numerical solution of differential equations](in German), Math. Ann. 46 (1895) 167-178.
  20. ^ Commandant Benoit (1924). "Note sur une méthode de résolution des équations normales provenant de l'application de la méthode des moindres carrés à un système d'équations linéaires en nombre inférieur à celui des inconnues (Procédé du Commandant Cholesky)". Bulletin Géodésique 2: 67–77.
  21. ^ Cholesky (1910). Sur la résolution numérique des systèmes d'équations linéaires. (manuscript).
  22. ^ L F Richardson, Weather Prediction by Numerical Process. Cambridge University Press (1922).
  23. ^ Lynch, Peter (March 2008). (PDF). Journal of Computational Physics. University of Miami. 227 (7): 3431–44. Bibcode:2008JCoPh.227.3431L. doi:10.1016/j.jcp.2007.02.034. Archived from the original (PDF) on 2010-07-08. Retrieved 2010-12-23.
  24. ^ Grete Hermann (1926). . Mathematische Annalen. 95: 736–788. doi:10.1007/bf01206635. S2CID 115897210. Archived from the original on 2016-10-09. Retrieved 2017-05-05.
  25. ^ a b c Dongarra, J.; Sullivan, F. (January 2000). "Guest Editors Introduction: the Top 10 Algorithms". Computing in Science & Engineering. 2 (1): 22–23. Bibcode:2000CSE.....2a..22D. doi:10.1109/MCISE.2000.814652. ISSN 1521-9615.
  26. ^ Metropolis, N. (1987). "The Beginning of the Monte Carlo method" (PDF). Los Alamos Science. No. 15, Page 125.. Accessed 5 May 2012.
  27. ^ S. Ulam, R. D. Richtmyer, and J. von Neumann(1947). Statistical methods in neutron diffusion. Los Alamos Scientific Laboratory report LAMS–551.
  28. ^ Metropolis, N.; Ulam, S. (1949). "The Monte Carlo method". Journal of the American Statistical Association. 44 (247): 335–341. doi:10.1080/01621459.1949.10483310. PMID 18139350.
  29. ^ . Archived from the original on 16 April 2009. Retrieved 6 June 2012. Systems Optimization Laboratory, Stanford University Huang Engineering Center (site host/mirror).
  30. ^ Von Neumann, J., Theory of Self-Reproduiing Automata, Univ. of Illinois Press, Urbana, 1966.
  31. ^ A. M. Turing, Rounding-off errors in matrix processes. Quart. J Mech. Appl. Math. 1 (1948), 287–308 (according to Poole, David (2006), Linear Algebra: A Modern Introduction (2nd ed.), Canada: Thomson Brooks/Cole, ISBN 0-534-99845-3.) .
  32. ^ The computer model that once explained the British economy. Larry Elliott, The Guardian, Thursday 8 May 2008.
  33. ^ Phillip's Economic Computer, 1949. 2014-10-03 at the Wayback Machine Exhibit at London Science Museum.
  34. ^ Richtmyer, R. D. (1948). Proposed Numerical Method for Calculation of Shocks. Los Alamos, NM: Los Alamos Scientific Laboratory LA-671.
  35. ^ Von Neumann, J.; Richtmyer, R. D. (1950). "A Method for the Numerical Calculation of Hydrodynamic Shocks". Journal of Applied Physics. 21 (3): 232–237. Bibcode:1950JAP....21..232V. doi:10.1063/1.1699639.
  36. ^ Charney, J.; Fjørtoft, R.; von Neumann, J. (1950). "Numerical Integration of the Barotropic Vorticity Equation". Tellus. 2 (4): 237–254. doi:10.1111/j.2153-3490.1950.tb00336.x.
  37. ^ See the review article:- Smagorinsky, J (1983). "The Beginnings of Numerical Weather Prediction and General Circulation Modelling: Early Recollections" (PDF). Advances in Geophysics. 25: 3–37. Bibcode:1983AdGeo..25....3S. doi:10.1016/S0065-2687(08)60170-3. ISBN 9780120188253. Retrieved 6 June 2012.
  38. ^ Magnus R. Hestenes and Eduard Stiefel, Methods of Conjugate Gradients for Solving Linear Systems, J. Res. Natl. Bur. Stand. 49, 409-436 (1952).
  39. ^ Eduard Stiefel,U¨ ber einige Methoden der Relaxationsrechnung (in German), Z. Angew. Math. Phys. 3, 1-33 (1952).
  40. ^ Cornelius Lanczos, Solution of Systems of Linear Equations by Minimized Iterations, J. Res. Natl. Bur. Stand. 49, 33-53 (1952).
  41. ^ Cornelius Lanczos, An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators, J. Res. Natl. Bur. Stand. 45, 255-282 (1950).
  42. ^ Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. (1953). "Equations of State Calculations by Fast Computing Machines" (PDF). Journal of Chemical Physics. 21 (6): 1087–1092. Bibcode:1953JChPh..21.1087M. doi:10.1063/1.1699114. OSTI 4390578. S2CID 1046577.
  43. ^ Alder, B. J.; Wainwright, T. E. (1957). "Phase Transition for a Hard Sphere System". J. Chem. Phys. 27 (5): 1208. Bibcode:1957JChPh..27.1208A. doi:10.1063/1.1743957. S2CID 10791650.
  44. ^ Alder, B. J.; Wainwright, T. E. (1962). "Phase Transition in Elastic Disks". Phys. Rev. 127 (2): 359–361. Bibcode:1962PhRv..127..359A. doi:10.1103/PhysRev.127.359.
  45. ^ Householder, A. S. (1958). "Unitary Triangularization of a Nonsymmetric Matrix" (PDF). Journal of the ACM. 5 (4): 339–342. doi:10.1145/320941.320947. MR 0111128. S2CID 9858625.
  46. ^ Fermi, E. (posthumously); Pasta, J.; Ulam, S. (1955) : Studies of Nonlinear Problems (accessed 25 Sep 2012). Los Alamos Laboratory Document LA-1940. Also appeared in 'Collected Works of Enrico Fermi', E. Segre ed. , University of Chicago Press, Vol.II,978–988,1965. Recovered 21 Dec 2012
  47. ^ W.W. McDowell Award citation: . Archived from the original on September 29, 2007. Retrieved April 15, 2008.
  48. ^ National Medal of Science citation: "The President's National Medal of Science: John Backus". National Science Foundation. Retrieved March 21, 2007.
  49. ^ . Association for Computing Machinery. Archived from the original on February 4, 2007. Retrieved March 22, 2007.
  50. ^ RW Clough, "The Finite Element Method in Plane Stress Analysis," Proceedings of 2nd ASCE Conference on Electronic Computation, Pittsburgh, PA, Sept. 8, 9, 1960.
  51. ^ Francis, J.G.F. (1961). "The QR Transformation, I". The Computer Journal. 4 (3): 265–271. doi:10.1093/comjnl/4.3.265.
  52. ^ Francis, J.G.F. (1962). "The QR Transformation, II". The Computer Journal. 4 (4): 332–345. doi:10.1093/comjnl/4.4.332.
  53. ^ Kublanovskaya, Vera N. (1961). "On some algorithms for the solution of the complete eigenvalue problem". USSR Computational Mathematics and Mathematical Physics. 1 (3): 637–657. doi:10.1016/0041-5553(63)90168-X. Also published in: Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki [Journal of Computational Mathematics and Mathematical Physics], 1(4), pages 555–570 (1961).
  54. ^ Lorenz, Edward N. (1963). "Deterministic Nonperiodic Flow" (PDF). Journal of the Atmospheric Sciences. 20 (2): 130–141. Bibcode:1963JAtS...20..130L. doi:10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2.
  55. ^ Minovitch, Michael: "A method for determining interplanetary free-fall reconnaissance trajectories," Jet Propulsion Laboratory Technical Memo TM-312-130, pages 38-44 (23 August 1961).
  56. ^ Christopher Riley and Dallas Campbell, Oct 22, 2012. "The maths that made Voyager possible". BBC News Science and Environment. Recovered 16 Jun 2013.
  57. ^ Rahman, A (1964). "Correlations in the Motion of Atoms in Liquid Argon". Phys Rev. 136 (2A): A405–A41. Bibcode:1964PhRv..136..405R. doi:10.1103/PhysRev.136.A405.
  58. ^ Cooley, James W.; Tukey, John W. (1965). "An algorithm for the machine calculation of complex Fourier series" (PDF). Math. Comput. 19 (90): 297–301. doi:10.1090/s0025-5718-1965-0178586-1.[permanent dead link]
  59. ^ Kohn, Walter; Hohenberg, Pierre (1964). "Inhomogeneous Electron Gas". Physical Review. 136 (3B): B864–B871. Bibcode:1964PhRv..136..864H. doi:10.1103/PhysRev.136.B864.
  60. ^ Kohn, Walter; Sham, Lu Jeu (1965). "Self-Consistent Equations Including Exchange and Correlation Effects". Physical Review. 140 (4A): A1133–A1138. Bibcode:1965PhRv..140.1133K. doi:10.1103/PHYSREV.140.A1133.
  61. ^ "The Nobel Prize in Chemistry 1998". Nobelprize.org. Retrieved 2008-10-06.
  62. ^ B. Mandelbrot; Les objets fractals, forme, hasard et dimension (in French). Publisher: Flammarion (1975), ISBN 9782082106474 ; English translation Fractals: Form, Chance and Dimension. Publisher: Freeman, W. H & Company. (1977). ISBN 9780716704737.
  63. ^ Appel, Kenneth; Haken, Wolfgang (1977). "Every planar map is four colorable, Part I: Discharging". Illinois Journal of Mathematics. 21 (3): 429–490. doi:10.1215/ijm/1256049011.
  64. ^ Appel, K.; Haken, W. (1977). "Every Planar Map is Four-Colorable, II: Reducibility". Illinois J. Math. 21: 491–567. doi:10.1215/ijm/1256049012.
  65. ^ Appel, K.; Haken, W. (1977). "The Solution of the Four-Color Map Problem". Sci. Am. 237 (4): 108–121. Bibcode:1977SciAm.237d.108A. doi:10.1038/scientificamerican1077-108.
  66. ^ L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems, MIT, Cambridge, (1987).
  67. ^ Rokhlin, Vladimir (1985). "Rapid Solution of Integral Equations of Classic Potential Theory." J. Computational Physics Vol. 60, pp. 187-207.
  68. ^ Greengard, L.; Rokhlin, V. (1987). "A fast algorithm for particle simulations". J. Comput. Phys. 73 (2): 325–348. Bibcode:1987JCoPh..73..325G. doi:10.1016/0021-9991(87)90140-9.

External links edit

  • SIAM (Society for Industrial and Applied Mathematics) News. Top 10 Algorithms of the 20th Century.
  • Ruttimann, Jacqueline (2006). "2020 computing: Milestones in scientific computing". Nature. 440 (7083): 399–405. Bibcode:2006Natur.440..399R. doi:10.1038/440399a. PMID 16554772. S2CID 21967804.
  • Anderson, H. L. (1986). "Scientific Uses of the MANIAC". Journal of Statistical Physics. 43 (5–6): 731–748. Bibcode:1986JSP....43..731A. doi:10.1007/BF02628301. S2CID 122676398.
  • IEEE Milestones

timeline, scientific, computing, this, article, multiple, issues, please, help, improve, discuss, these, issues, talk, page, learn, when, remove, these, template, messages, this, article, needs, additional, citations, verification, please, help, improve, this,. This article has multiple issues Please help improve it or discuss these issues on the talk page Learn how and when to remove these template messages This article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources Timeline of scientific computing news newspapers books scholar JSTOR May 2017 Learn how and when to remove this template message The examples and perspective in this article may not include all significant viewpoints Please improve the article or discuss the issue May 2017 Learn how and when to remove this template message Learn how and when to remove this template message The following is a timeline of scientific computing also known as computational science Contents 1 Before modern computers 1 1 18th century 1 2 19th century 1 3 1900s decade 1 4 1910s decade 1 5 1920s 2 1930s 3 1940s 4 1950s 5 1960s 6 1970s 7 1980s 8 1990s 9 2000s 10 2010s 11 See also 12 References 13 External linksBefore modern computers edit18th century edit Simpson rediscovers Simpson s rule a century after Johannes Kepler who derived it in 1615 after seeing it used for wine barrels 1733 The French naturalist Comte de Buffon poses his needle problem 1 2 Euler comes up with a simple numerical method for integrands 3 4 5 19th century edit First formulation of Gram Schmidt orthogonalisation by Laplace 6 to be further improved decades later 7 8 9 10 Babbage in 1822 began work on a machine made to compute calculate values of polynomial functions automatically by using the method of finite differences This was eventually called the Difference engine Lovelace s note G on the Analytical Engine 1842 describes an algorithm for generating Bernoulli numbers It is considered the first algorithm ever specifically tailored for implementation on a computer and thus the first ever computer programme 11 12 The engine was never completed however so her code was never tested 13 Adams Bashforth method published 14 In applied mathematics Jacobi develops technique for solving numerical equations 15 16 17 Gauss Seidel first published To help with computing tides Harmonic Analyser is built in 1886 1900s decade edit 1900 Runge s work followed by Martin Kutta to invent the Runge Kutta method for approximating integration for differential equations 18 19 1910s decade edit 1910 A M Cholesky creates a matrix decomposition scheme 20 21 Richardson extrapolation introduced 1920s edit 1922 Lewis Fry Richardson introduces numerical weather forecasting by manual calculation using methods originally developed by Vilhelm Bjerknes as early as 1895 22 23 1926 Grete Hermann publishes foundational paper for computer algebra which established the existence of algorithms including complexity bounds for many of the basic problems of abstract algebra such as ideal membership for polynomial rings 24 1926 Adams Moulton method 1927 Douglas Hartree creates what is later known as the Hartree Fock method the first ab initio quantum chemistry methods However manual solutions of the Hartree Fock equations for a medium sized atom were laborious and small molecules required computational resources far beyond what was available before 1950 1930s editThis decade marks the first major strides to a modern computer and hence the start of the modern era Fermi s Rome physics research group informal name I ragazzi di Via Panisperna develop statistical algorithms based on Comte de Buffon s work that would later become the foundation of the Monte Carlo method See also FERMIAC Shannon explains how to use electric circuits to do Boolean algebra in A Symbolic Analysis of Relay and Switching Circuits John Vincent Atanasoff and Clifford Berry create the first electronic non programmable digital computing device the Atanasoff Berry Computer from 1937 42 Complex number calculator created by Stibitz 1940s edit1947 Metropolis algorithm for Monte Carlo simulation named one of the top 10 algorithms of the 20th century 25 invented at Los Alamos by von Neumann Ulam and Metropolis 26 27 28 George Dantzig introduces the simplex method named one of the top 10 algorithms of the 20th century 25 in 1947 29 Ulam and von Neumann introduce the notion of cellular automata 30 Turing formulated the LU decomposition method 31 A W H Phillips invents the MONIAC hydraulic computer at LSE better known as Phillips Hydraulic Computer 32 33 First hydro simulations occurred at Los Alamos 34 35 1950s editFirst successful weather predictions on a computer occurred 36 37 Hestenes Stiefel and Lanczos all from the Institute for Numerical Analysis at the National Bureau of Standards initiate the development of Krylov subspace iteration methods 38 39 40 41 Named one of the top 10 algorithms of the 20th century 25 Equations of State Calculations by Fast Computing Machines introduces the Metropolis Hastings algorithm 42 Molecular dynamics invented by Bernie Alder and Wainwright 43 44 A S Householder invents his eponymous matrices and transformation method voted one of the top 10 algorithms of the 20th century 45 1953 Enrico Fermi John Pasta Stanislaw Ulam and Mary Tsingou discover the Fermi Pasta Ulam Tsingou problem through computer simulations of a vibrating string 46 A team led by John Backus develops the FORTRAN compiler and programming language at IBM s research centre in San Jose California This sped the adoption of scientific programming 47 48 49 and is one of the oldest extant programming languages as well as one of the most popular in science and engineering 1960s edit1960 First recorded use of the term finite element method by Ray Clough to describe the earlier methods of Richard Courant Alexander Hrennikoff and Olgierd Zienkiewicz in structural analysis 50 1961 John G F Francis 51 52 and Vera Kublanovskaya 53 invent QR factorization voted one of the top 10 algorithms of the 20th century 1963 Edward Lorenz discovers the butterfly effect on a computer attracting interest in chaos theory 54 1961 Using computational investigations of the 3 body problem Michael Minovitch formulates the gravity assist method 55 56 1964 Molecular dynamics invented independently by Aneesur Rahman 57 1965 fast Fourier transform developed by James W Cooley and John W Tukey 58 1964 Walter Kohn with Lu Jeu Sham and Pierre Hohenberg instigates the development of density functional theory 59 60 for which he shares the 1998 Nobel Chemistry Prize with John Pople 61 This contribution is arguably the earliest work to which Nobels were given for a computer program or computational technique First regression calculations in economics 1970s edit1975 Benoit Mandelbrot coins the term fractal to describe the self similarity found in the Fatou Julia and Mandelbrot sets Fractals become the first mathematical visualization tool extensively explored with computing 62 1977 Kenneth Appel and Wolfgang Haken prove the four colour theorem the first theorem to be proved by computer 63 64 65 1980s editFast multipole method voted one of the top 10 algorithms of the 20th century invented by Vladimir Rokhlin and Leslie Greengard 66 67 68 Car Parrinello molecular dynamics developed by Roberto Car and Michele Parrinello1990s edit1990 In computational genomics and sequence analysis the Human Genome Project an endeavour to sequence the entire human genome begins 1998 Kepler conjecture is almost all but certainly proved algorithmically by Thomas Hales The appearance of the first research grids using volunteer computing GIMPS 1996 distributed net 1997 and Seti Home 1999 2000s edit2000 The Human Genome Project completes a rough draft of human genome 2003 The Human Genome Project completed 2002 The BOINC architecture is launched in 2002 2010s editFoldit players solve virus structure one of the first cases of a game solving a scientific question Further information Timeline of computing 2020 2029 and List of years in science 2020sSee also editComputational science History of computing History of mathematics Timeline of mathematics Timeline of algorithms Timeline of computational physics Timeline of computational mathematics Timeline of numerical analysis after 1945 History of computing hardwareReferences edit Buffon G Editor s note concerning a lecture given 1733 by Mr Le Clerc de Buffon to the Royal Academy of Sciences in Paris Histoire de l Acad Roy des Sci pp 43 45 1733 according to Weisstein Eric W Buffon s Needle Problem From MathWorld A Wolfram Web Resource 20 Dec 2012 20 Dec 2012 Buffon G Essai d arithmetique morale Histoire naturelle generale er particuliere Supplement 4 46 123 1777 according to Weisstein Eric W Buffon s Needle Problem From MathWorld A Wolfram Web Resource 20 Dec 2012 Euler L Institutionum calculi integralis Impensis Academiae Imperialis Scientiarum 1768 Butcher John C 2003 Numerical Methods for Ordinary Differential Equations New York John Wiley amp Sons ISBN 978 0 471 96758 3 Hairer Ernst Norsett Syvert Paul Wanner Gerhard 1993 Solving ordinary differential equations I Nonstiff problems Berlin New York Springer Verlag ISBN 978 3 540 56670 0 Laplace PS 1816 Theorie Analytique des Probabilites First Supplement p 497ff Gram J P 1883 Ueber die Entwickelung reeler Funtionen in Reihen mittelst der Methode der kleinsten Quadrate JRNL Fur die reine und angewandte Math 94 71 73 Schmidt E Zur Theorie der linearen und nichtlinearen Integralgleichungen I Teil Entwicklung willkurlicher Funktionen nach Systemen vorgeschriebener Math Ann 63 1907 Earliest Known Uses of Some of the Words of Mathematics G As of Aug 2017 Farebrother RW 1988 Linear Least Squares Computations CRC Press ISBN 9780824776619 Retrieved 19 August 2017 Simonite Tom 24 March 2009 Short Sharp Science Celebrating Ada Lovelace the world s first programmer New Scientist Retrieved 14 April 2012 Tom Stoppard s Arcadia at Twenty By Brad Leithauser The New Yorker August 8 2013 Kim Eugene Eric Toole Betty Alexandra May 1999 Ada and the first computer Scientific American 280 5 70 71 Bibcode 1999SciAm 280e 76E doi 10 1038 scientificamerican0599 76 Bashforth Francis 1883 An Attempt to test the Theories of Capillary Action by comparing the theoretical and measured forms of drops of fluid With an explanation of the method of integration employed in constructing the tables which give the theoretical forms of such drops by J C Adams Cambridge Jacobi s Ideas on Eigenvalue Computation in a modern context Henk van der Vorst Jacobi method Encyclopedia of Mathematics The Early History of Matrix Iterations With a Focus on the Italian Contribution Michele Benzi 26 October 2009 SIAM Conference on Applied Linear Algebra Monterey Bay Seaside California MW Kutta Beitrage zur naherungsweisen Integration totaler Differentialgleichungen Contributions to the approximate integration of total differential equations in German Thesis University of Munich 1901 Reprinted Z Math Phys 46 435 453 1901 and in B G Teubner 1901 Runge C Uber die numerische Auflosung von Differentialgleichungen About the numerical solution of differential equations in German Math Ann 46 1895 167 178 Commandant Benoit 1924 Note sur une methode de resolution des equations normales provenant de l application de la methode des moindres carres a un systeme d equations lineaires en nombre inferieur a celui des inconnues Procede du Commandant Cholesky Bulletin Geodesique 2 67 77 Cholesky 1910 Sur la resolution numerique des systemes d equations lineaires manuscript L F Richardson Weather Prediction by Numerical Process Cambridge University Press 1922 Lynch Peter March 2008 The origins of computer weather prediction and climate modeling PDF Journal of Computational Physics University of Miami 227 7 3431 44 Bibcode 2008JCoPh 227 3431L doi 10 1016 j jcp 2007 02 034 Archived from the original PDF on 2010 07 08 Retrieved 2010 12 23 Grete Hermann 1926 Die Frage der endlich vielen Schritte in der Theorie der Polynomideale Mathematische Annalen 95 736 788 doi 10 1007 bf01206635 S2CID 115897210 Archived from the original on 2016 10 09 Retrieved 2017 05 05 a b c Dongarra J Sullivan F January 2000 Guest Editors Introduction the Top 10 Algorithms Computing in Science amp Engineering 2 1 22 23 Bibcode 2000CSE 2a 22D doi 10 1109 MCISE 2000 814652 ISSN 1521 9615 Metropolis N 1987 The Beginning of the Monte Carlo method PDF Los Alamos Science No 15 Page 125 Accessed 5 May 2012 S Ulam R D Richtmyer and J von Neumann 1947 Statistical methods in neutron diffusion Los Alamos Scientific Laboratory report LAMS 551 Metropolis N Ulam S 1949 The Monte Carlo method Journal of the American Statistical Association 44 247 335 341 doi 10 1080 01621459 1949 10483310 PMID 18139350 SIAM News November 1994 Archived from the original on 16 April 2009 Retrieved 6 June 2012 Systems Optimization Laboratory Stanford University Huang Engineering Center site host mirror Von Neumann J Theory of Self Reproduiing Automata Univ of Illinois Press Urbana 1966 A M Turing Rounding off errors in matrix processes Quart J Mech Appl Math 1 1948 287 308 according to Poole David 2006 Linear Algebra A Modern Introduction 2nd ed Canada Thomson Brooks Cole ISBN 0 534 99845 3 The computer model that once explained the British economy Larry Elliott The Guardian Thursday 8 May 2008 Phillip s Economic Computer 1949 Archived 2014 10 03 at the Wayback Machine Exhibit at London Science Museum Richtmyer R D 1948 Proposed Numerical Method for Calculation of Shocks Los Alamos NM Los Alamos Scientific Laboratory LA 671 Von Neumann J Richtmyer R D 1950 A Method for the Numerical Calculation of Hydrodynamic Shocks Journal of Applied Physics 21 3 232 237 Bibcode 1950JAP 21 232V doi 10 1063 1 1699639 Charney J Fjortoft R von Neumann J 1950 Numerical Integration of the Barotropic Vorticity Equation Tellus 2 4 237 254 doi 10 1111 j 2153 3490 1950 tb00336 x See the review article Smagorinsky J 1983 The Beginnings of Numerical Weather Prediction and General Circulation Modelling Early Recollections PDF Advances in Geophysics 25 3 37 Bibcode 1983AdGeo 25 3S doi 10 1016 S0065 2687 08 60170 3 ISBN 9780120188253 Retrieved 6 June 2012 Magnus R Hestenes and Eduard Stiefel Methods of Conjugate Gradients for Solving Linear Systems J Res Natl Bur Stand 49 409 436 1952 Eduard Stiefel U ber einige Methoden der Relaxationsrechnung in German Z Angew Math Phys 3 1 33 1952 Cornelius Lanczos Solution of Systems of Linear Equations by Minimized Iterations J Res Natl Bur Stand 49 33 53 1952 Cornelius Lanczos An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators J Res Natl Bur Stand 45 255 282 1950 Metropolis N Rosenbluth A W Rosenbluth M N Teller A H Teller E 1953 Equations of State Calculations by Fast Computing Machines PDF Journal of Chemical Physics 21 6 1087 1092 Bibcode 1953JChPh 21 1087M doi 10 1063 1 1699114 OSTI 4390578 S2CID 1046577 Alder B J Wainwright T E 1957 Phase Transition for a Hard Sphere System J Chem Phys 27 5 1208 Bibcode 1957JChPh 27 1208A doi 10 1063 1 1743957 S2CID 10791650 Alder B J Wainwright T E 1962 Phase Transition in Elastic Disks Phys Rev 127 2 359 361 Bibcode 1962PhRv 127 359A doi 10 1103 PhysRev 127 359 Householder A S 1958 Unitary Triangularization of a Nonsymmetric Matrix PDF Journal of the ACM 5 4 339 342 doi 10 1145 320941 320947 MR 0111128 S2CID 9858625 Fermi E posthumously Pasta J Ulam S 1955 Studies of Nonlinear Problems accessed 25 Sep 2012 Los Alamos Laboratory Document LA 1940 Also appeared in Collected Works of Enrico Fermi E Segre ed University of Chicago Press Vol II 978 988 1965 Recovered 21 Dec 2012 W W McDowell Award citation W Wallace McDowell Award Archived from the original on September 29 2007 Retrieved April 15 2008 National Medal of Science citation The President s National Medal of Science John Backus National Science Foundation Retrieved March 21 2007 ACM Turing Award Citation John Backus Association for Computing Machinery Archived from the original on February 4 2007 Retrieved March 22 2007 RW Clough The Finite Element Method in Plane Stress Analysis Proceedings of 2nd ASCE Conference on Electronic Computation Pittsburgh PA Sept 8 9 1960 Francis J G F 1961 The QR Transformation I The Computer Journal 4 3 265 271 doi 10 1093 comjnl 4 3 265 Francis J G F 1962 The QR Transformation II The Computer Journal 4 4 332 345 doi 10 1093 comjnl 4 4 332 Kublanovskaya Vera N 1961 On some algorithms for the solution of the complete eigenvalue problem USSR Computational Mathematics and Mathematical Physics 1 3 637 657 doi 10 1016 0041 5553 63 90168 X Also published in Zhurnal Vychislitel noi Matematiki i Matematicheskoi Fiziki Journal of Computational Mathematics and Mathematical Physics 1 4 pages 555 570 1961 Lorenz Edward N 1963 Deterministic Nonperiodic Flow PDF Journal of the Atmospheric Sciences 20 2 130 141 Bibcode 1963JAtS 20 130L doi 10 1175 1520 0469 1963 020 lt 0130 dnf gt 2 0 co 2 Minovitch Michael A method for determining interplanetary free fall reconnaissance trajectories Jet Propulsion Laboratory Technical Memo TM 312 130 pages 38 44 23 August 1961 Christopher Riley and Dallas Campbell Oct 22 2012 The maths that made Voyager possible BBC News Science and Environment Recovered 16 Jun 2013 Rahman A 1964 Correlations in the Motion of Atoms in Liquid Argon Phys Rev 136 2A A405 A41 Bibcode 1964PhRv 136 405R doi 10 1103 PhysRev 136 A405 Cooley James W Tukey John W 1965 An algorithm for the machine calculation of complex Fourier series PDF Math Comput 19 90 297 301 doi 10 1090 s0025 5718 1965 0178586 1 permanent dead link Kohn Walter Hohenberg Pierre 1964 Inhomogeneous Electron Gas Physical Review 136 3B B864 B871 Bibcode 1964PhRv 136 864H doi 10 1103 PhysRev 136 B864 Kohn Walter Sham Lu Jeu 1965 Self Consistent Equations Including Exchange and Correlation Effects Physical Review 140 4A A1133 A1138 Bibcode 1965PhRv 140 1133K doi 10 1103 PHYSREV 140 A1133 The Nobel Prize in Chemistry 1998 Nobelprize org Retrieved 2008 10 06 B Mandelbrot Les objets fractals forme hasard et dimension in French Publisher Flammarion 1975 ISBN 9782082106474 English translation Fractals Form Chance and Dimension Publisher Freeman W H amp Company 1977 ISBN 9780716704737 Appel Kenneth Haken Wolfgang 1977 Every planar map is four colorable Part I Discharging Illinois Journal of Mathematics 21 3 429 490 doi 10 1215 ijm 1256049011 Appel K Haken W 1977 Every Planar Map is Four Colorable II Reducibility Illinois J Math 21 491 567 doi 10 1215 ijm 1256049012 Appel K Haken W 1977 The Solution of the Four Color Map Problem Sci Am 237 4 108 121 Bibcode 1977SciAm 237d 108A doi 10 1038 scientificamerican1077 108 L Greengard The Rapid Evaluation of Potential Fields in Particle Systems MIT Cambridge 1987 Rokhlin Vladimir 1985 Rapid Solution of Integral Equations of Classic Potential Theory J Computational Physics Vol 60 pp 187 207 Greengard L Rokhlin V 1987 A fast algorithm for particle simulations J Comput Phys 73 2 325 348 Bibcode 1987JCoPh 73 325G doi 10 1016 0021 9991 87 90140 9 External links editSIAM Society for Industrial and Applied Mathematics News Top 10 Algorithms of the 20th Century The History of Numerical Analysis and Scientific Computing SIAM Society for Industrial and Applied Mathematics Ruttimann Jacqueline 2006 2020 computing Milestones in scientific computing Nature 440 7083 399 405 Bibcode 2006Natur 440 399R doi 10 1038 440399a PMID 16554772 S2CID 21967804 Anderson H L 1986 Scientific Uses of the MANIAC Journal of Statistical Physics 43 5 6 731 748 Bibcode 1986JSP 43 731A doi 10 1007 BF02628301 S2CID 122676398 IEEE Milestones Portals nbsp Science nbsp Mathematics Retrieved from https en wikipedia org w index php title Timeline of scientific computing amp oldid 1181948383, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.