fbpx
Wikipedia

Timeline of computational physics

The following timeline starts with the invention of the modern computer in the late interwar period.

1930s edit

1940s edit

1950s edit

1960s edit

1970s edit

1980s edit

See also edit

References edit

  1. ^ Ballistic Research Laboratory, Aberdeen Proving Grounds, Maryland.
  2. ^ "MATH 6140 - Top ten algorithms from the 20th Century". www.math.cornell.edu.
  3. ^ Metropolis, N. (1987). "The Beginning of the Monte Carlo method" (PDF). Los Alamos Science. No. 15, Page 125. {{cite journal}}: |volume= has extra text (help). Accessed 5 May 2012.
  4. ^ S. Ulam, R. D. Richtmyer, and J. von Neumann(1947). Statistical methods in neutron diffusion. Los Alamos Scientific Laboratory report LAMS–551.
  5. ^ N. Metropolis and S. Ulam (1949). The Monte Carlo method. Journal of the American Statistical Association 44:335–341.
  6. ^ Richtmyer, R. D. (1948). Proposed Numerical Method for Calculation of Shocks. Los Alamos, NM: Los Alamos Scientific Laboratory LA-671.
  7. ^ A Method for the Numerical Calculation of Hydrodynamic Shocks. Von Neumann, J.; Richtmyer, R. D. Journal of Applied Physics, Vol. 21, pp. 232–237
  8. ^ Von Neumann, J., Theory of Self-Reproducing Automata, Univ. of Illinois Press, Urbana, 1966.
  9. ^ "Cellular Automaton".
  10. ^ Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. (1953). "Equations of State Calculations by Fast Computing Machines". Journal of Chemical Physics. 21 (6): 1087–1092. Bibcode:1953JChPh..21.1087M. doi:10.1063/1.1699114. OSTI 4390578. S2CID 1046577.
  11. ^ Unfortunately, Alder's thesis advisor was unimpressed, so Alder and Frankel delayed publication of their results until much later. Alder, B. J., Frankel, S. P., and Lewinson, B. A., J. Chem. Phys., 23, 3 (1955).
  12. ^ Reed, Mark M. "Stan Frankel". Hp9825.com. Retrieved 1 December 2017.
  13. ^ Fermi, E. (posthumously); Pasta, J.; Ulam, S. (1955) : Studies of Nonlinear Problems (accessed 25 Sep 2012). Los Alamos Laboratory Document LA-1940. Also appeared in 'Collected Works of Enrico Fermi', E. Segre ed., University of Chicago Press, Vol.II,978–988,1965. Recovered 21 December 2012
  14. ^ Broadbent, S. R.; Hammersley, J. M. (2008). "Percolation processes". Math. Proc. of the Camb. Philo. Soc.; 53 (3): 629.
  15. ^ Alder, B. J.; Wainwright, T. E. (1959). "Studies in Molecular Dynamics. I. General Method". Journal of Chemical Physics. 31 (2): 459. Bibcode:1959JChPh..31..459A. doi:10.1063/1.1730376.
  16. ^ Minovitch, Michael: "A method for determining interplanetary free-fall reconnaissance trajectories," Jet Propulsion Laboratory Technical Memo TM-312-130, pages 38-44 (23 August 1961).
  17. ^ Christopher Riley and Dallas Campbell, 22 October 2012. "The maths that made Voyager possible" 30 July 2013 at the Wayback Machine. BBC News Science and Environment. Recovered 16 June 2013.
  18. ^ R. J. Glauber. "Time-dependent statistics of the Ising model, J. Math. Phys. 4 (1963), 294–307.
  19. ^ Lorenz, Edward N. (1963). "Deterministic Nonperiodic Flow" (PDF). Journal of the Atmospheric Sciences. 20 (2): 130–141. Bibcode:1963JAtS...20..130L. doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.
  20. ^ Rahman, A (1964). "Correlations in the Motion of Atoms in Liquid Argon". Phys Rev. 136 (2A): A405–A41. Bibcode:1964PhRv..136..405R. doi:10.1103/PhysRev.136.A405.
  21. ^ Kohn, Walter; Hohenberg, Pierre (1964). "Inhomogeneous Electron Gas". Physical Review. 136 (3B): B864–B871. Bibcode:1964PhRv..136..864H. doi:10.1103/PhysRev.136.B864.
  22. ^ Kohn, Walter; Sham, Lu Jeu (1965). "Self-Consistent Equations Including Exchange and Correlation Effects". Physical Review. 140 (4A): A1133–A1138. Bibcode:1965PhRv..140.1133K. doi:10.1103/PHYSREV.140.A1133.
  23. ^ "The Nobel Prize in Chemistry 1998". Nobelprize.org. Retrieved 6 October 2008.
  24. ^ Zabusky, N. J.; Kruskal, M. D. (1965). "Interaction of 'solitons' in a collisionless plasma and the recurrence of initial states". Phys. Rev. Lett. 15 (6): 240–243. Bibcode 1965PhRvL..15..240Z. doi:10.1103/PhysRevLett.15.240.
  25. ^ "Definition of SOLITON". Merriam-webster.com. Retrieved 1 December 2017.
  26. ^ K. Kawasaki, "Diffusion Constants near the Critical Point for Time-Dependent Ising Models. I. Phys. Rev. 145, 224 (1966)
  27. ^ a b Verlet, Loup (1967). "Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard−Jones Molecules". Physical Review. 159 (1): 98–103. Bibcode:1967PhRv..159...98V. doi:10.1103/PhysRev.159.98.
  28. ^ Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007). "Section 17.4. Second-Order Conservative Equations". Numerical Recipes: The Art of Scientific Computing (3rd ed.). New York: Cambridge University Press. ISBN 978-0-521-88068-8.
  29. ^ Brackx, F.; Constales, D. (30 November 1991). Computer Algebra with LISP and REDUCE: An Introduction to Computer-aided Pure Mathematics. Springer Science & Business Media. ISBN 9780792314417.
  30. ^ Contopoulos, George (16 June 2004). Order and Chaos in Dynamical Astronomy. Springer Science & Business Media. ISBN 9783540433606.
  31. ^ Jose Romildo Malaquias; Carlos Roberto Lopes. "Implementing a computer algebra system in Haskell" (PDF). Repositorio.ufop.br. Retrieved 1 December 2017.
  32. ^ "Computer Algebra" (PDF). Mosaicsciencemagazine.org. Retrieved 1 December 2017.
  33. ^ [1] [dead link]
  34. ^ Frank Close. The Infinity Puzzle, pg 207. OUP, 2011.
  35. ^ Stefan Weinzierl:- "Computer Algebra in Particle Physics." pgs 5–7. arXiv:hep-ph/0209234. All links accessed 1 January 2012. "Seminario Nazionale di Fisica Teorica", Parma, September 2002.
  36. ^ J. Hardy, Y. Pomeau, and O. de Pazzis (1973). "Time evolution of two-dimensional model system I: invariant states and time correlation functions". Journal of Mathematical Physics, 14:1746–1759.
  37. ^ J. Hardy, O. de Pazzis, and Y. Pomeau (1976). "Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions". Physical Review A, 13:1949–1961.
  38. ^ Wilson, K. (1974). "Confinement of quarks". Physical Review D. 10 (8): 2445. Bibcode:1974PhRvD..10.2445W. doi:10.1103/PhysRevD.10.2445.
  39. ^ Car, R.; Parrinello, M (1985). "Unified Approach for Molecular Dynamics and Density-Functional Theory". Physical Review Letters. 55 (22): 2471–2474. Bibcode:1985PhRvL..55.2471C. doi:10.1103/PhysRevLett.55.2471. PMID 10032153.
  40. ^ Swendsen, R. H., and Wang, J.-S. (1987), Nonuniversal critical dynamics in Monte Carlo simulations, Phys. Rev. Lett., 58(2):86–88.
  41. ^ L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems, MIT, Cambridge, (1987).
  42. ^ Rokhlin, Vladimir (1985). "Rapid Solution of Integral Equations of Classic Potential Theory." J. Computational Physics Vol. 60, pp. 187–207.
  43. ^ L. Greengard and V. Rokhlin, "A fast algorithm for particle simulations," J. Comput. Phys., 73 (1987), no. 2, pp. 325–348.
  44. ^ Wolff, Ulli (1989), "Collective Monte Carlo Updating for Spin Systems", Physical Review Letters, 62 (4): 361

External links edit

  • Monte Carlo Landmark Papers

timeline, computational, physics, this, article, multiple, issues, please, help, improve, discuss, these, issues, talk, page, learn, when, remove, these, template, messages, this, article, require, cleanup, meet, wikipedia, quality, standards, specific, proble. This article has multiple issues Please help improve it or discuss these issues on the talk page Learn how and when to remove these template messages This article may require cleanup to meet Wikipedia s quality standards The specific problem is Needs more information to constitute a comprehensive timeline Please help improve this article if you can May 2017 Learn how and when to remove this template message This article may be in need of reorganization to comply with Wikipedia s layout guidelines Please help by editing the article to make improvements to the overall structure May 2017 Learn how and when to remove this template message Learn how and when to remove this template message The following timeline starts with the invention of the modern computer in the late interwar period Contents 1 1930s 2 1940s 3 1950s 4 1960s 5 1970s 6 1980s 7 See also 8 References 9 External links1930s editJohn Vincent Atanasoff and Clifford Berry create the first electronic non programmable digital computing device the Atanasoff Berry Computer that lasted from 1937 to 1942 1940s editNuclear bomb and ballistics simulations at Los Alamos National Laboratory and Ballistic Research Laboratory BRL respectively 1 Monte Carlo simulation voted one of the top 10 algorithms of the 20th century by Jack Dongarra and Francis Sullivan in the 2000 issue of Computing in Science and Engineering 2 is invented at Los Alamos National Laboratory by John von Neumann Stanislaw Ulam and Nicholas Metropolis 3 4 5 First hydrodynamic simulations performed at Los Alamos National Laboratory 6 7 Ulam and von Neumann introduce the notion of cellular automata 8 9 1950s editEquations of State Calculations by Fast Computing Machines introduces the Metropolis Hastings algorithm 10 Also important earlier independent work by Berni Alder and Stan Frankel 11 12 Enrico Fermi Ulam and John Pasta with help from Mary Tsingou discover the Fermi Pasta Ulam Tsingou problem 13 Research initiated into percolation theory 14 Molecular dynamics is formulated by Alder and Tom E Wainwright 15 1960s editUsing computational investigations of the 3 body problem Michael Minovitch formulates the gravity assist method 16 17 Glauber dynamics is invented for the Ising model by Roy J Glauber 18 Edward Lorenz discovers the butterfly effect on a computer attracting interest in chaos theory 19 Molecular dynamics is independently invented by Aneesur Rahman 20 Walter Kohn instigates the development of density functional theory with L J Sham and Pierre Hohenberg 21 22 for which he shared the Nobel Chemistry Prize 1998 23 Martin Kruskal and Norman Zabusky follow up the Fermi Pasta Ulam problem with further numerical experiments and coin the term soliton 24 25 Kawasaki dynamics is invented for the Ising model 26 Loup Verlet re discovers a numerical integration algorithm 27 first used in 1791 by Jean Baptiste Delambre by P H Cowell and A C C Crommelin in 1909 and by Carl Fredrik Stormer in 1907 28 hence the alternative names Stormer s method or the Verlet Stormer method for dynamics and the Verlet list 27 1970s editComputer algebra replicates the work of Boris Delaunay in Lunar theory 29 30 31 32 33 Martinus Veltman s calculations at CERN lead him and Gerard t Hooft to valuable insights into renormalizability of electroweak theory 34 The computation has been cited as a key reason for the award of the Nobel Physics Prize that has been given to both 35 Jean Hardy Yves Pomeau and Olivier de Pazzis introduce the first lattice gas model abbreviated as the HPP model after its authors 36 37 These later evolved into lattice Boltzmann models Kenneth G Wilson shows that continuum quantum chromodynamics QCD is recovered for an infinitely large lattice with its sites infinitesimally close to one another thereby beginning lattice QCD 38 1980s editItalian physicists Roberto Car and Michele Parrinello invent the Car Parrinello method 39 Swendsen Wang algorithm is invented in the field of Monte Carlo simulations 40 Fast multipole method is invented by Vladimir Rokhlin and Leslie Greengard voted one of the top 10 algorithms of the 20th century 41 42 43 Ullli Wolff invents the Wolff algorithm for statistical physics and Monte Carlo simulation 44 See also editTimeline of scientific computing Computational physics Important publications in computational physicsReferences edit Ballistic Research Laboratory Aberdeen Proving Grounds Maryland MATH 6140 Top ten algorithms from the 20th Century www math cornell edu Metropolis N 1987 The Beginning of the Monte Carlo method PDF Los Alamos Science No 15 Page 125 a href Template Cite journal html title Template Cite journal cite journal a volume has extra text help Accessed 5 May 2012 S Ulam R D Richtmyer and J von Neumann 1947 Statistical methods in neutron diffusion Los Alamos Scientific Laboratory report LAMS 551 N Metropolis and S Ulam 1949 The Monte Carlo method Journal of the American Statistical Association 44 335 341 Richtmyer R D 1948 Proposed Numerical Method for Calculation of Shocks Los Alamos NM Los Alamos Scientific Laboratory LA 671 A Method for the Numerical Calculation of Hydrodynamic Shocks Von Neumann J Richtmyer R D Journal of Applied Physics Vol 21 pp 232 237 Von Neumann J Theory of Self Reproducing Automata Univ of Illinois Press Urbana 1966 Cellular Automaton Metropolis N Rosenbluth A W Rosenbluth M N Teller A H Teller E 1953 Equations of State Calculations by Fast Computing Machines Journal of Chemical Physics 21 6 1087 1092 Bibcode 1953JChPh 21 1087M doi 10 1063 1 1699114 OSTI 4390578 S2CID 1046577 Unfortunately Alder s thesis advisor was unimpressed so Alder and Frankel delayed publication of their results until much later Alder B J Frankel S P and Lewinson B A J Chem Phys 23 3 1955 Reed Mark M Stan Frankel Hp9825 com Retrieved 1 December 2017 Fermi E posthumously Pasta J Ulam S 1955 Studies of Nonlinear Problems accessed 25 Sep 2012 Los Alamos Laboratory Document LA 1940 Also appeared in Collected Works of Enrico Fermi E Segre ed University of Chicago Press Vol II 978 988 1965 Recovered 21 December 2012 Broadbent S R Hammersley J M 2008 Percolation processes Math Proc of the Camb Philo Soc 53 3 629 Alder B J Wainwright T E 1959 Studies in Molecular Dynamics I General Method Journal of Chemical Physics 31 2 459 Bibcode 1959JChPh 31 459A doi 10 1063 1 1730376 Minovitch Michael A method for determining interplanetary free fall reconnaissance trajectories Jet Propulsion Laboratory Technical Memo TM 312 130 pages 38 44 23 August 1961 Christopher Riley and Dallas Campbell 22 October 2012 The maths that made Voyager possible Archived 30 July 2013 at the Wayback Machine BBC News Science and Environment Recovered 16 June 2013 R J Glauber Time dependent statistics of the Ising model J Math Phys 4 1963 294 307 Lorenz Edward N 1963 Deterministic Nonperiodic Flow PDF Journal of the Atmospheric Sciences 20 2 130 141 Bibcode 1963JAtS 20 130L doi 10 1175 1520 0469 1963 020 lt 0130 DNF gt 2 0 CO 2 Rahman A 1964 Correlations in the Motion of Atoms in Liquid Argon Phys Rev 136 2A A405 A41 Bibcode 1964PhRv 136 405R doi 10 1103 PhysRev 136 A405 Kohn Walter Hohenberg Pierre 1964 Inhomogeneous Electron Gas Physical Review 136 3B B864 B871 Bibcode 1964PhRv 136 864H doi 10 1103 PhysRev 136 B864 Kohn Walter Sham Lu Jeu 1965 Self Consistent Equations Including Exchange and Correlation Effects Physical Review 140 4A A1133 A1138 Bibcode 1965PhRv 140 1133K doi 10 1103 PHYSREV 140 A1133 The Nobel Prize in Chemistry 1998 Nobelprize org Retrieved 6 October 2008 Zabusky N J Kruskal M D 1965 Interaction of solitons in a collisionless plasma and the recurrence of initial states Phys Rev Lett 15 6 240 243 Bibcode 1965PhRvL 15 240Z doi 10 1103 PhysRevLett 15 240 Definition of SOLITON Merriam webster com Retrieved 1 December 2017 K Kawasaki Diffusion Constants near the Critical Point for Time Dependent Ising Models I Phys Rev 145 224 1966 a b Verlet Loup 1967 Computer Experiments on Classical Fluids I Thermodynamical Properties of Lennard Jones Molecules Physical Review 159 1 98 103 Bibcode 1967PhRv 159 98V doi 10 1103 PhysRev 159 98 Press WH Teukolsky SA Vetterling WT Flannery BP 2007 Section 17 4 Second Order Conservative Equations Numerical Recipes The Art of Scientific Computing 3rd ed New York Cambridge University Press ISBN 978 0 521 88068 8 Brackx F Constales D 30 November 1991 Computer Algebra with LISP and REDUCE An Introduction to Computer aided Pure Mathematics Springer Science amp Business Media ISBN 9780792314417 Contopoulos George 16 June 2004 Order and Chaos in Dynamical Astronomy Springer Science amp Business Media ISBN 9783540433606 Jose Romildo Malaquias Carlos Roberto Lopes Implementing a computer algebra system in Haskell PDF Repositorio ufop br Retrieved 1 December 2017 Computer Algebra PDF Mosaicsciencemagazine org Retrieved 1 December 2017 1 dead link Frank Close The Infinity Puzzle pg 207 OUP 2011 Stefan Weinzierl Computer Algebra in Particle Physics pgs 5 7 arXiv hep ph 0209234 All links accessed 1 January 2012 Seminario Nazionale di Fisica Teorica Parma September 2002 J Hardy Y Pomeau and O de Pazzis 1973 Time evolution of two dimensional model system I invariant states and time correlation functions Journal of Mathematical Physics 14 1746 1759 J Hardy O de Pazzis and Y Pomeau 1976 Molecular dynamics of a classical lattice gas Transport properties and time correlation functions Physical Review A 13 1949 1961 Wilson K 1974 Confinement of quarks Physical Review D 10 8 2445 Bibcode 1974PhRvD 10 2445W doi 10 1103 PhysRevD 10 2445 Car R Parrinello M 1985 Unified Approach for Molecular Dynamics and Density Functional Theory Physical Review Letters 55 22 2471 2474 Bibcode 1985PhRvL 55 2471C doi 10 1103 PhysRevLett 55 2471 PMID 10032153 Swendsen R H and Wang J S 1987 Nonuniversal critical dynamics in Monte Carlo simulations Phys Rev Lett 58 2 86 88 L Greengard The Rapid Evaluation of Potential Fields in Particle Systems MIT Cambridge 1987 Rokhlin Vladimir 1985 Rapid Solution of Integral Equations of Classic Potential Theory J Computational Physics Vol 60 pp 187 207 L Greengard and V Rokhlin A fast algorithm for particle simulations J Comput Phys 73 1987 no 2 pp 325 348 Wolff Ulli 1989 Collective Monte Carlo Updating for Spin Systems Physical Review Letters 62 4 361External links editThe Monte Carlo Method Classic Papers Monte Carlo Landmark Papers Retrieved from https en wikipedia org w index php title Timeline of computational physics amp oldid 1200216769, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.