fbpx
Wikipedia

Spatial memory

In cognitive psychology and neuroscience, spatial memory is a form of memory responsible for the recording and recovery of information needed to plan a course to a location and to recall the location of an object or the occurrence of an event.[1] Spatial memory is necessary for orientation in space.[2][3] Spatial memory can also be divided into egocentric and allocentric spatial memory.[4] A person's spatial memory is required to navigate around a familiar city. A rat's spatial memory is needed to learn the location of food at the end of a maze. In both humans and animals, spatial memories are summarized as a cognitive map.[5]

Spatial memory is required to navigate through an environment.

Spatial memory has representations within working, short-term memory and long-term memory. Research indicates that there are specific areas of the brain associated with spatial memory.[6] Many methods are used for measuring spatial memory in children, adults, and animals.[5]

Short-term spatial memory

Short-term memory (STM) can be described as a system allowing one to temporarily store and manage information that is necessary to complete complex cognitive tasks.[7] Tasks which employ short-term memory include learning, reasoning, and comprehension.[7] Spatial memory is a cognitive process that enables a person to remember different locations as well as spatial relations between objects.[7] This allows one to remember where an object is in relation to another object;[7] for instance, allowing someone to navigate through a familiar city. Spatial memories are said to form after a person has already gathered and processed sensory information about her or his environment.[7]

Spatial working memory

Working memory (WM) can be described as a limited capacity system that allows one to temporarily store and process information.[8] This temporary store enables one to complete or work on complex tasks while being able to keep information in mind.[8] For instance, the ability to work on a complicated mathematical problem utilizes one's working memory.

One influential theory of WM is the Baddeley and Hitch multi-component model of working memory.[8][9] The most recent version of this model suggests that there are four subcomponents to WM: phonological loop, the visuo-spatial sketchpad, the central executive, and the episodic buffer.[8] One component of this model, the visuo-spatial sketchpad, is likely responsible for the temporary storage, maintenance, and manipulation of both visual and spatial information.[8][9]

 
Baddeley and Hitch's multi-component model of working memory.

In contrast to the multi-component model, some researchers believe that STM should be viewed as a unitary construct.[9] In this respect, visual, spatial, and verbal information are thought to be organized by levels of representation rather than the type of store to which they belong.[9] Within the literature, it is suggested that further research into the fractionation of STM and WM be explored.[9][10] However, much of the research into the visuo-spatial memory construct have been conducted in accordance to the paradigm advanced by Baddeley and Hitch.[8][9][10][11][12]

The role of the central executive

Research into the exact function of the visuo-spatial sketchpad has indicated that both spatial short-term memory and working memory are dependent on executive resources and are not entirely distinct.[8] For instance, performance on a working memory but not on a short-term memory task was affected by articulatory suppression suggesting that impairment on the spatial task was caused by the concurrent performance on a task that had extensive use of executive resources.[8] Results have also found that performances were impaired on STM and WM tasks with executive suppression.[8] This illustrates how, within the visuo-spatial domain, both STM and WM require similar utility of the central executive.[8]

Additionally, during a spatial visualisation task (which is related to executive functioning and not STM or WM) concurrent executive suppression impaired performance indicating that the effects were due to common demands on the central executive and not short-term storage.[8] The researchers concluded with the explanation that the central executive employs cognitive strategies enabling participants to both encode and maintain mental representations during short-term memory tasks.[8]

Although studies suggest that the central executive is intimately involved in a number of spatial tasks, the exact way in which they are connected remains to be seen.[13]

Long-term spatial memory

Spatial memory recall is built upon a hierarchical structure. People remember the general layout of a particular space and then "cue target locations" within that spatial set.[14] This paradigm includes an ordinal scale of features that an individual must attend to in order to inform his or her cognitive map.[15] Recollection of spatial details is a top-down procedure that requires an individual to recall the superordinate features of a cognitive map, followed by the ordinate and subordinate features. Two spatial features are prominent in navigating a path: general layout and landmark orienting (Kahana et al., 2006). People are not only capable of learning about the spatial layout of their surroundings, but they can also piece together novel routes and new spatial relations through inference.

A cognitive map is "a mental model of objects' spatial configuration that permits navigation along optimal path between arbitrary pairs of points."[16] This mental map is built upon two fundamental bedrocks: layout, also known as route knowledge, and landmark orientation. Layout is potentially the first method of navigation that people learn to utilize; its workings reflect our most basic understandings of the world.

Hermer and Spelke (1994) determined that when toddlers begin to walk, around eighteen months, they navigate by their sense of the world's layout. McNamara, Hardy and Hirtle identified region membership as a major building block of anyone's cognitive map (1989). Specifically, region membership is defined by any kind of boundary, whether physical, perceptual or subjective (McNamara et al., 1989). Boundaries are among the most basic and endemic qualities in the world around us. These boundaries are nothing more than axial lines which are a feature that people are biased towards when relating to space; for example, one axial line determinant is gravity (McNamara & Shelton, 2001; Kim & Penn, 2004). Axial lines aid everyone in apportioning our perceptions into regions. This parceled world idea is further supported items by the finding that items that get recalled together are more likely than not to also be clustered within the same region of one's larger cognitive map.[15] Clustering shows that people tend to chunk information together according to smaller layouts within a larger cognitive map.

Boundaries are not the only determinants of layout. Clustering also demonstrates another important property of relation to spatial conceptions, which is that spatial recall is a hierarchical process. When someone recalls an environment or navigates terrain, that person implicitly recalls the overall layout at first. Then, due to the concept's "rich correlational structure", a series of associations become activated.[14] Eventually, the resulting cascade of activations will awaken the particular details that correspond with the region being recalled. This is how people encode many entities from varying ontological levels, such as the location of a stapler; in a desk; which is in the office.

One can recall from only one region at a time (a bottleneck). A bottleneck in a person's cognitive navigational system could be an issue. For instance, if there were a need for a sudden detour on a long road trip. Lack of experience in a locale, or simply sheer size, can disorient one's mental layout, especially in a large and unfamiliar place with many overwhelming stimuli. In these environments, people are still able to orient themselves, and find their way around using landmarks. This ability to "prioritize objects and regions in complex scenes for selection (and) recognition" was labeled by Chun and Jiang in 1998. Landmarks give people guidance by activating "learned associations between the global context and target locations."[14] Mallot and Gillner (2000) showed that subjects learned an association between a specific landmark and the direction of a turn, thereby furthering the relationship between associations and landmarks.[17] Shelton and McNamara (2001) succinctly summed up why landmarks, as markers, are so helpful: "location...cannot be described without making reference to the orientation of the observer."

People use both the layout of a particular space and the presence of orienting landmarks in order to navigate. Psychologists have yet to explain whether layout affects landmarks or if landmarks determine the boundaries of a layout. Because of this, the concept suffers from a chicken and the egg paradox. McNamara has found that subjects use "clusters of landmarks as intrinsic frames of reference," which only confuses the issue further.[16]

People perceive objects in their environment relative to other objects in that same environment. Landmarks and layout are complementary systems for spatial recall, but it is unknown how these two systems interact when both types of information are available. As a result, people have to make certain assumptions about the interaction between the two systems. For example, cognitive maps are not "absolute" but rather, as anyone can attest, are "used to provide a default...(which) modulated according to...task demands."[14] Psychologists also think that cognitive maps are instance based, which accounts for "discriminative matching to past experience."[14]

This field has traditionally been hampered by confounding variables, such as cost and the potential for previous exposure to an experimental environment. Technological advancements, including those in virtual reality technology, have made findings more accessible. Virtual reality affords experimenters the luxury of extreme control over their test environment. Any variable can be manipulated, including things that would not be possible in reality.

Virtual reality

During a 2006 study researchers designed three different virtual towns, each of which had its own "unique road layout and a unique set of five stores."[16] However, the overall footprint of the different maps was exactly the same size, "80 sq. units." In this experiment, participants had to partake in two different sets of trials.

A study conducted at the University of Maryland compared the effect of different levels of immersion on spatial memory recall.[18] In the study, 40 participants used both a traditional desktop and a head-mounted display to view two environments, a medieval town, and an ornate palace, where they memorized two sets of 21 faces presented as 3D portraits. After viewing these 21 faces for 5 minutes, followed by a brief rest period, the faces in the virtual environments were replaced with numbers and participants recalled which face was at each location. The study found on average, those who used the head-mounted display recalled the faces 8.8% more accurately, and with a greater confidence. The participants state that leveraging their innate vestibular and proprioceptive senses with the head-mounted display and mapping aspects of the environment relative to their body, elements that are absent with the desktop, was key to their success.

Spatial expertise

Within the literature, there is evidence that experts in a particular field are able to perform memory tasks in accordance with their skills at an exceptional level.[12] The level of skill displayed by experts may exceed the limits of the normal capacity of both STM and WM.[12] Because experts have an enormous amount of prelearned and task-specific knowledge, they may be able to encode information in a more efficient way.[12]

An interesting study investigating taxi drivers' memory for streets in Helsinki, Finland, examined the role of prelearned spatial knowledge.[12] This study compared experts to a control group to determine how this prelearned knowledge in their skill domain allows them to overcome the capacity limitations of STM and WM.[12] The study used four levels of spatial randomness:

  • Route Order – spatially continuous route[12]
  • Route Random – spatially continuous list presented randomly[12]
  • Map Order – street names forming a straight line on the map, but omitting intermediate streets[12]
  • Map Random – streets on map presented in random order[12]
 
Yellow taxi cabs in New York city

The results of this study indicate that the taxi drivers' (experts') recall of streets was higher in both the route order condition and the map order condition than in the two random conditions.[12] This indicates that the experts were able to use their prelearned spatial knowledge to organize the information in such a way that they surpassed STM and WM capacity limitations.[12] The organization strategy that the drivers employed is known as chunking.[12] Additionally, the comments made by the experts during the procedure point towards their use of route knowledge in completing the task.[12] To ensure that it was in fact spatial information that they were encoding, the researchers also presented lists in alphabetical order and semantic categories.[12] However, the researchers found that it was in fact spatial information that the experts were chunking, allowing them to surpass the limitations of both visuo-spatial STM and WM.[12]

Animal research

Certain species of paridae and corvidae (such as the black-capped chickadee and the scrub jay) are able to use spatial memory to remember where, when and what type of food they have cached.[19] Studies on rats and squirrels have also suggested that they are able to use spatial memory to locate previously hidden food.[19] Experiments using the radial maze have allowed researchers to control for a number of variables, such as the type of food hidden, the locations where the food is hidden, the retention interval, as well as any odor cues that could skew results of memory research.[19] Studies have indicated that rats have memory for where they have hidden food and what type of food they have hidden.[19] This is shown in retrieval behavior, such that the rats are selective in going more often to the arms of the maze where they have previously hidden preferred food than to arms with less preferred food or where no food was hidden.[19]

The evidence for the spatial memory of some species of animals, such as rats, indicates that they do use spatial memory to locate and retrieve hidden food stores.[19]

A study using GPS tracking to see where domestic cats go when their owners let them outside reported that cats have substantial spatial memory. Some of the cats in the study demonstrated exceptional long term spatial memory. One of them, usually traveling no further than 200 m (660 ft) to 250 m (820 ft) from its home, unexpectedly traveled some 1,250 m (4,100 ft) from its home. Researchers initially thought this to be a GPS malfunction, but soon discovered that the cat's owners went out of town that weekend, and that the house the cat went to was the owner's old house. The owners and the cat had not lived in that house for well over a year.[20]

Visual–spatial distinction

Logie (1995) proposed that the visuo-spatial sketchpad is broken down into two subcomponents, one visual and one spatial.[11] These are the visual cache and the inner scribe, respectively.[11] The visual cache is a temporary visual store including such dimensions as color and shape.[11] Conversely, the inner scribe is a rehearsal mechanism for visual information and is responsible for information concerning movement sequences.[11] Although a general lack of consensus regarding this distinction has been noted in the literature,[10][21][22] there is a growing amount of evidence that the two components are separate and serve different functions.[citation needed]

Visual memory is responsible for retaining visual shapes and colors (i.e., what), whereas spatial memory is responsible for information about locations and movement (i.e., where). This distinction is not always straightforward since part of visual memory involves spatial information and vice versa. For example, memory for object shapes usually involves maintaining information about the spatial arrangement of the features which define the object in question.[21]

In practice, the two systems work together in some capacity but different tasks have been developed to highlight the unique abilities involved in either visual or spatial memory. For example, the visual patterns test (VPT) measures visual span whereas the Corsi Blocks Task measures spatial span. Correlational studies of the two measures suggest a separation between visual and spatial abilities, due to a lack of correlation found between them in both healthy and brain damaged patients.[10]

Support for the division of visual and spatial memory components is found through experiments using the dual-task paradigm. A number of studies have shown that the retention of visual shapes or colors (i.e., visual information) is disrupted by the presentation of irrelevant pictures or dynamic visual noise. Conversely, the retention of location (i.e., spatial information) is disrupted only by spatial tracking tasks, spatial tapping tasks, and eye movements.[21][22] For example, participants completed both the VPT and the Corsi Blocks Task in a selective interference experiment. During the retention interval of the VPT, the subject viewed irrelevant pictures (e.g., avant-garde paintings). The spatial interference task required participants to follow, by touching the stimuli, an arrangement of small wooden pegs which were concealed behind a screen. Both the visual and spatial spans were shortened by their respective interference tasks, confirming that the Corsi Blocks Task relates primarily to spatial working memory.[10]

Measurement

There are a variety of tasks psychologists use to measure spatial memory on adults, children and animal models. These tasks allow professionals to identify cognitive irregularities in adults and children and allows researchers to administer varying types of drugs and/or lesions in participants and measure the consequential effects on spatial memory.

The Corsi block tapping task

The Corsi block-tapping test, also known as the Corsi span rest, is a psychological test commonly used to determine the visual-spatial memory span and the implicit visual-spatial learning abilities of an individual.[23][24] Participants sit with nine wooden 3x3-cm blocks fastened before them on a 25- x 30-cm baseboard in a standard random order. The experiment taps onto the blocks a sequence pattern which participants must then replicate. The blocks are numbered on the experimenters' side to allow for efficient pattern demonstration. The sequence length increases each trial until the participant is no longer able to replicate the pattern correctly. The test can be used to measure both short-term and long-term spatial memory, depending on the length of time between test and recall.

The test was created by Canadian neuropsychologist Phillip Corsi, who modeled it after Hebb's digit span task by replacing the numerical test items with spatial ones. On average, most participants achieve a span of five items on the Corsi span test and seven on the digit span task.

Visual pattern span

The visual pattern span is similar to the Corsi block tapping test but regarded as a more pure test of visual short-term recall.[25] Participants are presented with a series of matrix patterns that have half their cells colored and the other half blank. The matrix patterns are arranged in a way that is difficult to code verbally, forcing the participant to rely on visual spatial memory. Beginning with a small 2 x 2 matrix, participants copy the matrix pattern from memory into an empty matrix. The matrix patterns are increased in size and complexity at a rate of two cells until the participant's ability to replicate them breaks down. On average, participants' performance tends to break down at sixteen cells.

Pathway span task

This task is designed to measure spatial memory abilities in children.[23] The experimenter asks the participant to visualize a blank matrix with a little man. Through a series of directional instructions such as forwards, backwards, left or right, the experimenter guides the participant's little man on a pathway throughout the matrix. At the end, the participant is asked to indicate on a real matrix where the little man that he or she visualized finished. The length of the pathway varies depending on the level of difficulty (1-10) and the matrices themselves may vary in length from 2 x 2 cells to 6 x 6.

Dynamic mazes

Dynamic mazes are intended for measuring spatial ability in children. With this test, an experimenter presents the participant with a drawing of a maze with a picture of a man in the center.[23] While the participant watches, the experimenter uses his or her finger to trace a pathway from the opening of the maze to the drawing of the man. The participant is then expected to replicate the demonstrated pathway through the maze to the drawing of the man. Mazes vary in complexity as difficulty increases.

Radial arm maze

 
Simple Radial Maze

First pioneered by Olton and Samuelson in 1976,[26] the radial arm maze is designed to test the spatial memory capabilities of rats. Mazes are typically designed with a center platform and a varying number of arms[27] branching off with food placed at the ends. The arms are usually shielded from each other in some way but not to the extent that external cues cannot be used as reference points.

In most cases, the rat is placed in the center of the maze and needs to explore each arm individually to retrieve food while simultaneously remembering which arms it has already pursued. The maze is set up so the rat is forced to return to the center of the maze before pursuing another arm. Measures are usually taken to prevent the rat from using its olfactory senses to navigate such as placing extra food throughout the bottom of the maze.

Morris water navigation task

The Morris water navigation task is a classic test for studying spatial learning and memory in rats[28] and was first developed in 1981 by Richard G. Morris for whom the test is named. The subject is placed in a round tank of translucent water with walls that are too high for it to climb out and water that is too deep for it to stand in. The walls of the tank are decorated with visual cues to serve as reference points. The rat must swim around the pool until by chance it discovers just below the surface the hidden platform onto which it can climb.

Typically, rats swim around the edge of the pool first before venturing out into the center in a meandering pattern before stumbling upon the hidden platform. However, as time spent in the pool increases experience, the amount of time needed to locate the platform decreases, with veteran rats swimming directly to the platform almost immediately after being placed in the water.

Physiology

Hippocampus

 
Hippocampus shown in red

The hippocampus provides animals with a spatial map of their environment.[29] It stores information regarding non-egocentric space (egocentric means in reference to one's body position in space) and therefore supports viewpoint independence in spatial memory.[30] This means that it allows for viewpoint manipulation from memory. It is important for long-term spatial memory of allocentric space (reference to external cues in space).[31] Maintenance and retrieval of memories are thus relational or context dependent.[32] The hippocampus makes use of reference and working memory and has the important role of processing information about spatial locations.[33]

Blocking plasticity in this region results in problems in goal-directed navigation and impairs the ability to remember precise locations.[34] Amnesic patients with damage to the hippocampus cannot learn or remember spatial layouts, and patients having undergone hippocampal removal are severely impaired in spatial navigation.[30][35]

Monkeys with lesions to this area cannot learn object-place associations and rats also display spatial deficits by not reacting to spatial change.[30][36] In addition, rats with hippocampal lesions were shown to have temporally ungraded (time-independent) retrograde amnesia that is resistant to recognition of a learned platform task only when the entire hippocampus is lesioned, but not when it is partially lesioned.[37] Deficits in spatial memory are also found in spatial discrimination tasks.[35]

 
Brain slice showing areas CA1 and CA3 in the hippocampus

Large differences in spatial impairment are found among the dorsal and ventral hippocampus. Lesions to the ventral hippocampus have no effect on spatial memory, while the dorsal hippocampus is required for retrieval, processing short-term memory and transferring memory from the short term to longer delay periods.[38][39][40] Infusion of amphetamine into the dorsal hippocampus has also been shown to enhance memory for spatial locations learned previously.[41] These findings indicate that there is a functional dissociation between the dorsal and ventral hippocampus.

Hemispheric differences within the hippocampus are also observed. A study on London taxi drivers, asked drivers to recall complex routes around the city as well as famous landmarks for which the drivers had no knowledge of their spatial location. This resulted in an activation of the right hippocampus solely during recall of the complex routes which indicates that the right hippocampus is used for navigation in large scale spatial environments.[42]

The hippocampus is known to contain two separate memory circuits. One circuit is used for recollection-based place recognition memory and includes the entorhinal-CA1 system,[43] while the other system, consisting of the hippocampus trisynaptic loop (entohinal-dentate-CA3-CA1) is used for place recall memory[44] and facilitation of plasticity at the entorhinal-dentate synapse in mice is sufficient to enhance place recall.[45]

Place cells are also found in the hippocampus.

Posterior parietal cortex

 
Parietal lobe shown in red

The parietal cortex encodes spatial information using an egocentric frame of reference. It is therefore involved in the transformation of sensory information coordinates into action or effector coordinates by updating the spatial representation of the body within the environment.[46] As a result, lesions to the parietal cortex produce deficits in the acquisition and retention of egocentric tasks, whereas minor impairment is seen among allocentric tasks.[47]

Rats with lesions to the anterior region of the posterior parietal cortex reexplore displaced objects, while rats with lesions to the posterior region of the posterior parietal cortex displayed no reaction to spatial change.[36]

Parietal cortex lesions are also known to produce temporally ungraded retrograde amnesia.[48]

Entorhinal cortex

 
Medial view of the right cerebral hemisphere showing the entorhinal cortex in red at the base of the temporal lobe

The dorsalcaudal medial entorhinal cortex (dMEC) contains a topographically organized map of the spatial environment made up of grid cells.[49] This brain region thus transforms sensory input from the environment and stores it as a durable allocentric representation in the brain to be used for path integration.[50]

The entorhinal cortex contributes to the processing and integration of geometric properties and information in the environment.[51] Lesions to this region impair the use of distal but not proximal landmarks during navigation and produces a delay-dependent deficit in spatial memory that is proportional to the length of the delay.[52][53] Lesions to this region are also known to create retention deficits for tasks learned up to 4 weeks but not 6 weeks prior to the lesions.[48]

Memory consolidation in the entorhinal cortex is achieved through extracellular signal-regulated kinase activity.[54]

Prefrontal cortex

 
Medial view of the cerebral hemisphere showing the location of the prefrontal cortex and more specifically the medial and ventromedial prefrontal cortex in purple

The medial prefrontal cortex processes egocentric spatial information. It participates in the processing of short-term spatial memory used to guide planned search behavior and is believed to join spatial information with its motivational significance.[40][55] The identification of neurons that anticipate expected rewards in a spatial task support this hypothesis. The medial prefrontal cortex is also implicated in the temporal organization of information.[56]

Hemisphere specialization is found in this brain region. The left prefrontal cortex preferentially processes categorical spatial memory including source memory (reference to spatial relationships between a place or event), while the right prefrontal cortex preferentially processes coordinate spatial memory including item memory (reference to spatial relationships between features of an item).[57]

Lesions to the medial prefrontal cortex impair the performance of rats on a previously trained radial arm maze, but rats can gradually improve to the level of the controls as a function of experience.[58] Lesions to this area also cause deficits on delayed nonmatching-to-positions tasks and impairments in the acquisition of spatial memory tasks during training trials.[59][60]

Retrosplenial cortex

The retrosplenial cortex is involved in the processing of allocentric memory and geometric properties in the environment.[51] Inactivation of this region accounts for impaired navigation in the dark and it may be involved in the process of path integration.[61]

Lesions to the retrosplenial cortex consistently impair tests of allocentric memory, while sparing egocentric memory.[62] Animals with lesions to the caudal retrosplenial cortex show impaired performance on a radial arm maze only when the maze is rotated to remove their reliance on intramaze cues.[63]

 
Medial view of the cerebral hemisphere. The retrosplenial cortex encompasses Brodmann areas 26, 29, and 30. The perirhinal cortex contains Brodmann area 35 and 36 (not shown)

In humans, damage to the retrosplenial cortex results in topographical disorientation. Most cases involve damage to the right retrosplenial cortex and include Brodmann area 30. Patients are often impaired at learning new routes and at navigating through familiar environments.[64] However, most patients usually recover within 8 weeks.

The retrosplenial cortex preferentially processes spatial information in the right hemisphere.[64]

Perirhinal cortex

The perirhinal cortex is associated with both spatial reference and spatial working memory.[33] It processes relational information of environmental cues and locations.

Lesions in the perirhinal cortex account for deficits in reference memory and working memory, and increase the rate of forgetting of information during training trials of the Morris water maze.[65] This accounts for the impairment in the initial acquisition of the task. Lesions also cause impairment on an object location task and reduce habituation to a novel environment.[33]

Neuroplasticity

Spatial memories are formed after an animal gathers and processes sensory information about its surroundings (especially vision and proprioception). In general, mammals require a functioning hippocampus (particularly area CA1) in order to form and process memories about space. There is some evidence that human spatial memory is strongly tied to the right hemisphere of the brain.[66][67][68]

Spatial learning requires both NMDA and AMPA receptors, consolidation requires NMDA receptors, and the retrieval of spatial memories requires AMPA receptors.[69] In rodents, spatial memory has been shown to covary with the size of a part of the hippocampal mossy fiber projection.[70]

The function of NMDA receptors varies according to the subregion of the hippocampus. NMDA receptors are required in the CA3 of the hippocampus when spatial information needs to be reorganized, while NMDA receptors in the CA1 are required in the acquisition and retrieval of memory after a delay, as well as in the formation of CA1 place fields.[71] Blockade of the NMDA receptors prevents induction of long-term potentiation and impairs spatial learning.[72]

The CA3 of the hippocampus plays an especially important role in the encoding and retrieval of spatial memories. The CA3 is innervated by two afferent paths known as the perforant path (PPCA3) and the dentate gyrus (DG)-mediated mossy fibers (MFs). The first path is regarded as the retrieval index path while the second is concerned with encoding.[73]

Disorders/deficits

Topographical disorientation

Topographical disorientation (TD) is a cognitive disorder that results in the individual being unable to orient his or herself in the real or virtual environment. Patients also struggle with spatial-information dependent tasks. These problems could possibly be the result of a disruption in the ability to access one's cognitive map, a mental representation of the surrounding environment or the inability to judge objects' location in relation to one's self.[74]

Developmental topographical disorientation (DTD) is diagnosed when patients have shown an inability to navigate even familiar surroundings since birth and show no apparent neurological causes for this deficiency such as lesioning or brain damage. DTD is a relatively new disorder and can occur in varying degrees of severity.

A study was done to see if topographical disorientation had an effect on individuals who had mild cognitive impairment (MCI). The study was done by recruiting forty-one patients diagnosed with MCI and 24 healthy control individuals. The standards that were set for this experiment were:

  1. Subjective cognitive complaint by the patient or his/her caregiver.
  2. Normal general cognitive function above the 16th percentile on the Korean version of the Mini-Mental State Examination (K-MMSE).
  3. Normal activities of daily living (ADL) assessed both clinically and on a standardized scale (as described below).
  4. Objective cognitive decline below the 16th percentile on neuropsychological tests.
  5. Exclusion of dementia.

TD was assessed clinically in all participants. Neurological and neuropsychological evaluations were determined by a magnetic imaging scan which was performed on each participant. Voxel-based morphometry was used to compare patterns of gray-matter atrophy between patients with and without TD, and a group of normal controls. The outcome of the experiment was that they found TD in 17 out of the 41 MCI patients (41.4%). The functional abilities were significantly impaired in MCI patients with TD compared to in MCI patients without TD and that the presence of TD in MCI patients is associated with loss of gray matter in the medial temporal regions, including the hippocampus.[75]

Hippocampal damage and schizophrenia

Research with rats indicates that spatial memory may be adversely affected by neonatal damage to the hippocampus in a way that closely resembles schizophrenia. Schizophrenia is thought to stem from neurodevelopmental problems shortly after birth.[76]

Rats are commonly used as models of schizophrenia patients. Experimenters create lesions in the ventral hippocampal area shortly after birth, a procedure known as neonatal ventral hippocampal lesioning(NVHL). Adult rats who with NVHL show typical indicators of schizophrenia such as hypersensitivity to psychostimulants, reduced social interactions and impaired prepulse inhibition, working memory and set-shifting.[77][78][79][80][81] Similar to schizophrenia, impaired rats fail to use environmental context in spatial learning tasks such as showing difficulty completing the radial arm maze and the Moris water maze.[82][83][84]

GPS (Global Positioning System)

 
Example of a hand held GPS

Recent research on spatial memory and wayfinding in an article by Ishikawa et al. in 2008[85] revealed that using a GPS moving map device reduces an individual's navigation abilities when compared to other participants who were using maps or had previous experience on the route with a guide. GPS moving map devices are frequently set up to allow the user to only see a small detailed close-up of a particular segment of the map which is constantly updated. In comparison, maps usually allow the user to see the same view of the entire route from departure to arrival. Other research has shown that individuals who use GPS travel more slowly overall compared to map users who are faster. GPS users stop more frequently and for a longer period of time whereas map users and individuals using past experience as a guide travel on more direct routes to reach their goal.

NEIL1

Endonuclease VIII-like 1 (NEIL1) is a DNA repair enzyme that is widely expressed throughout the brain. NEIL1 is a DNA glycosylase that initiates the first step in base excision repair by cleaving bases damaged by reactive oxygen species and then introducing a DNA strand break via an associated lyase reaction. This enzyme recognizes and removes oxidized DNA bases including formamidopyrimidine, thymine glycol, 5-hydroxyuracil and 5-hydroxycytosine. NEIL1 promotes short-term spatial memory retention.[86] Mice lacking NEIL1 have impaired short-term spatial memory retention in a water maze test.[86]

Learning difficulties

Nonverbal learning disability is characterized by normal verbal abilities but impaired visuospatial abilities. Problem areas for children with nonverbal learning disability are arithmetic, geometry, and science. Impairments in spatial memory are linked to nonverbal learning disorder and other learning difficulties.[87]

Arithmetic word problems involve written text containing a set of data followed by one or more questions and require the use of the four basic arithmetic operations (addition, subtraction, multiplication, or division).[22] Researchers suggest that successful completion of arithmetic word problems involves spatial working memory (involved in building schematic representations) which facilitates the creation of spatial relationships between objects. Creating spatial relationships between objects is an important part of solving word problems because mental operations and transformations are required.[22]

Researchers investigated the role of spatial memory and visual memory in the ability to complete arithmetic word problems. Children in the study completed the Corsi block task (forward and backward series) and a spatial matrix task, as well as a visual memory task called the house recognition test. Poor problem-solvers were impaired on the Corsi block tasks and the spatial matrix task, but performed normally on the house recognition test when compared to normally achieving children. The experiment demonstrated that poor problem solving is related specifically to deficient processing of spatial information.[22]

Sleep

Sleep has been found to benefit spatial memory, by enhancing hippocampal-dependent memory consolidation.[88] Hippocampal areas activated in route-learning are reactivated during subsequent sleep (NREM sleep in particular). It was demonstrated in a particular study that the actual extent of reactivation during sleep correlated with the improvement in route retrieval and therefore memory performance the following day.[89] The study established the idea that sleep enhances the systems-level process of consolidation that consequently enhances/improves behavioral performance. A period of wakefulness has no effect on stabilizing memory traces, in comparison to a period of sleep. Sleep after the first post-training night, i.e. on the second night, does not benefit spatial memory consolidation further. Therefore, sleeping in the first post-training night e.g. after learning a route, is most important.[88]

Sleep deprivation and sleep has also been a researched association. Sleep deprivation hinders memory performance improvement due to an active disruption of spatial memory consolidation.[88] As a result, spatial memory is enhanced by a period of sleep.

See also

References

  1. ^ Burgess, Neil (2021). Spatial memory. Encyclopædia Britannica.
  2. ^ Mehta, Mitul A. (2010), "Spatial Memory in Humans", in Stolerman, Ian P. (ed.), Encyclopedia of Psychopharmacology, Berlin, Heidelberg: Springer, pp. 1262–1266, doi:10.1007/978-3-540-68706-1_355, ISBN 978-3-540-68706-1, retrieved 2021-06-05
  3. ^ "Spatial Memory - an overview | ScienceDirect Topics". www.sciencedirect.com. Retrieved 2021-06-05.
  4. ^ Kolarik, B.; Ekstrom, A. (2015-01-01). "The Neural Underpinnings of Spatial Memory and Navigation". Brain Mapping. pp. 507–514. doi:10.1016/B978-0-12-397025-1.00277-3. ISBN 9780123973160.
  5. ^ a b Wang, Jin-Hu (2019). Associative Memory Cells: Basic Units of Memory Trace. Springer Nature. p. 94. ISBN 978-9811395017.
  6. ^ Poeppel, David; Mangun, George R.; Gazzaniga, Michael S. (2020). The Cognitive Neurosciences. The MIT Press. p. 194. ISBN 978-0262043250.
  7. ^ a b c d e Johnson, E.; Adamo-Villani, N. (2010). "A Study of the Effects of Immersion on Short-term Spatial Memory". Engineering and Technology. 71: 582–587.
  8. ^ a b c d e f g h i j k l Ang, S. Y.; Lee, K. (2008). "Central executive involvement in children's spatial memory". Memory. 16 (8): 918–933. doi:10.1080/09658210802365347. PMID 18802804. S2CID 42610047.
  9. ^ a b c d e f Jones, D.; Farrand, P.; Stuart, G.; Morris, N.; et al. (1995). "Functional equivalence of verbal and spatial information in serial short-term memory". Journal of Experimental Psychology: Learning, Memory, and Cognition. 21 (4): 1008–1018. doi:10.1037/0278-7393.21.4.1008. PMID 7673864.
  10. ^ a b c d e Della Sala, S.; Gray, C.; Baddeley, A.; Allamano, N.; Wilson, L.; et al. (1999). "Pattern span: a tool for unwelding visuo-spatial memory". Neuropsychologia. 37 (10): 1189–1199. doi:10.1016/S0028-3932(98)00159-6. PMID 10509840. S2CID 1894333.
  11. ^ a b c d e Mammarella, I. C.; Pazzaglia, F.; Cornoldi, C.; et al. (2008). "Evidence for different components in children's visuospatial working memory". British Journal of Developmental Psychology. 26 (3): 337–355. doi:10.1348/026151007X236061.
  12. ^ a b c d e f g h i j k l m n o p Kalakoski, V.; Saariluoma, P. (2001). "Taxi drivers' exceptional memory of street names". Memory and Cognition. 29 (4): 634–638. doi:10.3758/BF03200464. PMID 11504011.
  13. ^ Fisk, J. E.; Sharp, C. A.; et al. (2003). "The role of the executive system in visuo-spatial memory functioning". Brain and Cognition. 52 (3): 364–381. doi:10.1016/S0278-2626(03)00183-0. PMID 12907181. S2CID 37589101.
  14. ^ a b c d e Chun, M.; Jiang, Y. (1998). "Contextual Cueing: implicit learning and memory of visual context guides spatial attention". Cognitive Psychology. 36 (1): 28–71. CiteSeerX 10.1.1.25.5066. doi:10.1006/cogp.1998.0681. PMID 9679076. S2CID 1955059.
  15. ^ a b McNamara, T.; Hardy, J.; Hirtle, S.; et al. (1989). "Subjective hierarchies in spatial memory". Journal of Experimental Psychology. 15 (2): 211–227. doi:10.1037/0278-7393.15.2.211. PMID 2522511.
  16. ^ a b c Newman, E.L.; Caplan, J.B.; Kirschen, M.P.; Korolev, I.O.; Sekuler, R.; Kahana, M.J.; et al. (2007). "Learning Your Way Around Town: How Virtual Taxicab Drivers Learn to Use Both Layout and Landmark Information" (PDF). Cognition. 104 (2): 231–253. CiteSeerX 10.1.1.69.5387. doi:10.1016/j.cognition.2006.05.013. PMID 16879816. S2CID 267034.
  17. ^ Gillner S, Mallot H (2000). "The role of global and local landmarks in virtual environment navigation". Perception. 9 (1): 69–83. CiteSeerX 10.1.1.138.8266. doi:10.1162/105474600566628. S2CID 13062306.
  18. ^ Krokos, Eric; Plaisant, Catherine; Varshney, Amitabh (16 May 2018). "Virtual Memory Palaces: Immersion Aids Recall". Virtual Reality. 23: 1–15. doi:10.1007/s10055-018-0346-3.
  19. ^ a b c d e f Bird, L. R.; Roberts, W. A.; Abroms, B.; Kit, K. A.; Crupi, C. (2003). "Spatial memory for food hidden by rats (Rattus norvegicus) on the radial maze: studies of memory for where, what, and when". Journal of Comparative Psychology. 117 (2): 176–187. doi:10.1037/0735-7036.117.2.176. PMID 12856788.
  20. ^ Jennifer S. Holland (August 8, 2014). "Watch: How Far Do Your Cats Roam?". National Geographic. Retrieved August 23, 2016.
  21. ^ a b c Klauer, K.C.; Zhao, Z.; et al. (2004). "Double dissociations in visual and spatial short-term memory". Journal of Experimental Psychology: General. 133 (3): 355–381. doi:10.1037/0096-3445.133.3.355. PMID 15355144. S2CID 7224613.
  22. ^ a b c d e Passolunghi, M.C.; Mammarella, I.C.; et al. (2010). "Spatial and visual working memory ability in children with difficulties in arithmetic word problem solving". European Journal of Cognitive Psychology. 22 (6): 944–963. doi:10.1080/09541440903091127. S2CID 143882629.
  23. ^ a b c Mammarella, I.C.; Pazzaglia, F.; Cornoldi, C. (2008). "Evidence of different components in children's visuospatial working memory". British Journal of Developmental Psychology. 26 (3): 337–355. doi:10.1348/026151007X236061.
  24. ^ Corsi, P. M. (1972). "Human memory and the medial temporal region of the brain". Dissertation Abstracts International. 34 (2): 891.
  25. ^ Della Sala, S., Gray, C., Baddeley, A., & Wilson, L. (1997). The Visual Patterns Test: A new test of short-term visual recall. Feltham, Suffolk: Thames Valley Test Company.
  26. ^ Olton, D.S.; Samuelson, R.J. (1976). "Remembrance of places past: spatial memory in rats". Journal of Experimental Psychology: Animal Behavior Processes. 2 (2): 97–116. CiteSeerX 10.1.1.456.3110. doi:10.1037/0097-7403.2.2.97.
  27. ^ Cole, M.R.; Chappell-Stephenson, Robyn (2003). "Exploring the limits of spatial memory using very large mazes". Learning & Behavior. 31 (4): 349–368. doi:10.3758/BF03195996. PMID 14733483.
  28. ^ Morris, R. G. (1981). "Spatial Localization Does Not Require the Presence of Local Cues". Learning and Motivation. 12 (2): 239–260. doi:10.1016/0023-9690(81)90020-5.
  29. ^ O'Keefe, J.; Dostrovsky, J. (1971). "The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat". Brain Research. 34 (1): 171–175. doi:10.1016/0006-8993(71)90358-1. PMID 5124915.
  30. ^ a b c Squire, L. R. (1992). "Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans". Psychological Review. 99 (2): 195–231. doi:10.1037/0033-295X.99.2.195. PMID 1594723. S2CID 14104324.
  31. ^ Ramos, J. M. J. (2000). "Long-term spatial memory in rats with hippocampal lesions". European Journal of Neuroscience. 12 (9): 3375–3384. doi:10.1046/j.1460-9568.2000.00206.x. PMID 10998120. S2CID 18121369.
  32. ^ Winocur, G.; Moscovitch, M.; Caruana, D. A.; Binns, M. A. (2005). "Retrograde amnesia in rats with lesions to the hippocampus on a test of spatial memory". Neuropsychologia. 43 (11): 1580–1590. doi:10.1016/j.neuropsychologia.2005.01.013. PMID 16009240. S2CID 9160452.
  33. ^ a b c Liu, P.; Bilkey, D. K. (2001). "The effect of excitotoxic lesions centered on the hippocampus or perirhinal cortex in object recognition and spatial memory tasks". Behavioral Neuroscience. 115 (1): 94–111. doi:10.1037/0735-7044.115.1.94. PMID 11256456.
  34. ^ Hebert, A. E.; Dash, P. K. (2004). "Nonredundant roles for hippocampal and entorhinal cortical plasticity in spatial memory storage". Pharmacology Biochemistry and Behavior. 79 (1): 143–153. doi:10.1016/j.pbb.2004.06.016. PMID 15388294. S2CID 25385758.
  35. ^ a b Morris RG, Garrud P, Rawlins JN, O'Keefe J (1982). "Place navigation impaired in rats with hippocampal lesions" (PDF). Nature. 297 (5868): 681–683. Bibcode:1982Natur.297..681M. doi:10.1038/297681a0. PMID 7088155. S2CID 4242147.
  36. ^ a b Save, E.; Poucet, B.; Foreman, N.; Buhot, M. (1992). "Object exploration and reactions to spatial and nonspatial changes in hooded rats following damage to parietal cortex or hippocampal formation". Behavioral Neuroscience. 106 (3): 447–456. doi:10.1037/0735-7044.106.3.447. PMID 1616611.
  37. ^ Martin, S. J.; de Hozl, L.; Morris, R. G. M. (2005). "Retrograde amnesia: neither partial nor complete hippocampal lesions in rats result in preferential sparing of remote spatial memory, even after reminding". Neuropsychologia. 43 (4): 609–624. doi:10.1016/j.neuropsychologia.2004.07.007. PMID 15716151. S2CID 24894665.
  38. ^ Bannerman, D. M.; Deacon, R. M. J.; Offen, S.; Friswell, J.; Grubb, M.; Rawlins, J. N. P. (2002). "Double dissociation of function within the hippocampus: Spatial memory and hyponeophagia". Behavioral Neuroscience. 116 (5): 884–901. doi:10.1037/0735-7044.116.5.884. PMID 12369808.
  39. ^ Moser, M.; Moser, E. I. (1998). "Distributed encoding and retrieval of spatial memory in the hippocampus". The Journal of Neuroscience. 18 (18): 7535–7542. doi:10.1523/JNEUROSCI.18-18-07535.1998. PMC 6793256. PMID 9736671.
  40. ^ a b Lee, I.; Kesner, R. P. (2003). "Time-dependent relationship between the dorsal hippocampus and the prefrontal cortex in spatial memory". The Journal of Neuroscience. 23 (4): 1517–1523. doi:10.1523/JNEUROSCI.23-04-01517.2003. PMC 6742248. PMID 12598640.
  41. ^ McGaugh, J. L. (2000). "Memory—a century of consolidation". Science. 287 (5451): 248–251. Bibcode:2000Sci...287..248M. doi:10.1126/science.287.5451.248. PMID 10634773. S2CID 40693856.
  42. ^ Maguire, E. A.; Frackowiak, R. S. J.; Frith, C. D. (1997). "Recalling routes around London: Activation of the right hippocampus in taxi drivers". The Journal of Neuroscience. 17 (18): 7103–7110. doi:10.1523/JNEUROSCI.17-18-07103.1997. PMC 6573257. PMID 9278544.
  43. ^ Brun, V. H.; Otnaess, M. K.; Molden, S.; Steffenach, H.; Witter, M. P.; Moser, M.; Moser, E. I. (2002). "Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry". Science. 296 (5576): 2243–2246. Bibcode:2002Sci...296.2243B. doi:10.1126/science.1071089. PMID 12077421. S2CID 8458253.
  44. ^ Goodrich-Hunsaker NJ, Hunsaker MR, Kesner RP (2008). "The interactions and dissociations of the dorsal hippocampus subregions: how the dentate gyrus, CA3, and CA1 process spatial information". Behav. Neurosci. 122 (1): 16–26. doi:10.1037/0735-7044.122.1.16. PMID 18298245.
  45. ^ Saab BJ, Georgiou J, Nath A, Lee FJ, Wang M, Michalon A, Liu F, Mansuy IM, Roder JC (2009). "NCS-1 in the dentate gyrus promotes exploration, synaptic plasticity, and rapid acquisition of spatial memory". Neuron. 63 (5): 643–56. doi:10.1016/j.neuron.2009.08.014. PMID 19755107. S2CID 5321020.
  46. ^ Colby, C. L.; Goldberg, M. E. (1999). "Space and attention in parietal cortex". Annual Review of Neuroscience. 22: 319–349. doi:10.1146/annurev.neuro.22.1.319. PMID 10202542. S2CID 14379470.
  47. ^ Save, E.; Moghaddam, M. (1996). "Effects of lesions of the associative parietal cortex on the acquisition and use of spatial memory in egocentric and allocentric navigation tasks in the rat". Behavioral Neuroscience. 110 (1): 74–85. doi:10.1037/0735-7044.110.1.74. PMID 8652075.
  48. ^ a b Cho, Y. H.; Kesner, R. P. (1996). "Involvement of entorhinal cortex or parietal cortex in long-term spatial discrimination memory in rats: Retrograde amnesia". Behavioral Neuroscience. 110 (3): 436–442. doi:10.1037/0735-7044.110.3.436. PMID 8888988.
  49. ^ Hafting, T.; Fyhn, M.; Molden, S.; Moser, M.; Moser, E. I. (2005). "Microstructure of a spatial map in the entorhinal cortex". Nature. 436 (7052): 801–806. Bibcode:2005Natur.436..801H. doi:10.1038/nature03721. PMID 15965463. S2CID 4405184.
  50. ^ Fyhn, M.; Molden, S.; Witter, M. P.; Moser, E. I.; Moser, M. (2004). "Spatial representation in the entorhinal cortex". Science. 305 (5688): 1258–1264. Bibcode:2004Sci...305.1258F. doi:10.1126/science.1099901. PMID 15333832.
  51. ^ a b Parron, C.; Save, E. (2004). "Comparison of the effects of entorhinal and retrosplenial cortical lesions on habituation, reaction to spatial and non-spatial changes during object exploration in the rat". Neurobiology of Learning and Memory. 82 (1): 1–11. doi:10.1016/j.nlm.2004.03.004. PMID 15183166. S2CID 36475737.
  52. ^ Parron, C.; Poucet, B.; Save, E. (2004). "Entorhinal cortex lesions impair the use of distal but not proximal landmarks during place navigation in the rat". Behavioural Brain Research. 154 (2): 345–352. doi:10.1016/j.bbr.2004.03.006. PMID 15313022. S2CID 919685.
  53. ^ Nagahara, H. A.; Otto, T.; Gallagher, M. (1995). "Entorhinal-perirhinal lesions impair performance of rats on two versions of place learning in the Morris water maze". Behavioral Neuroscience. 109 (1): 3–9. doi:10.1037/0735-7044.109.1.3. PMID 7734077.
  54. ^ Hebert, A. E.; Dash, P. K. (2002). "Extracellular signal-regulated kinase activity in the entorhinal cortex is necessary for long-term spatial memory". Learning & Memory. 9 (4): 156–166. doi:10.1101/lm.48502. PMC 182586. PMID 12177229.
  55. ^ Pratt, W. E.; Mizumori, S. J. Y. (2001). "Neurons in rat medial prefrontal cortex show anticipatory rate changes to predictable differential rewards in a spatial memory task". Behavioural Brain Research. 123 (2): 165–183. doi:10.1016/S0166-4328(01)00204-2. PMID 11399329. S2CID 3075976.
  56. ^ Kesner, R. P.; Holbrook, T. (1987). "Dissociation of item and order spatial memory in rats following medial prefrontal cortex lesions". Neuropsychologia. 25 (4): 653–664. doi:10.1016/0028-3932(87)90056-X. PMID 3658148. S2CID 23596034.
  57. ^ Slotnick, S. D.; Moo, L. R. (2006). "Prefrontal cortex hemispheric specialization for categorical and coordinate visual spatial memory". Neuropsychologia. 44 (9): 1560–1568. doi:10.1016/j.neuropsychologia.2006.01.018. PMID 16516248. S2CID 14396813.
  58. ^ Becker, J. T.; Walker, J. A.; Olton, D. S. (1980). "Neuroanatomical bases of spatial memory". Brain Research. 200 (2): 307–320. doi:10.1016/0006-8993(80)90922-1. PMID 7417818. S2CID 1429885.
  59. ^ Aggleton, J. P.; Neave, N.; Nagle, S.; Sahgal, A. (1995). "A comparison of the effects of medial prefrontal, cingulate cortex, and cingulum bundle lesions on tests of spatial memory: Evidence of a double dissociation between frontal and cingulum bundle contributions". The Journal of Neuroscience. 15 (11): 7270–7281. doi:10.1523/JNEUROSCI.15-11-07270.1995. PMC 6578066. PMID 7472481.
  60. ^ Lacroix, L.; White, I.; Feldon, J. (2002). "Effect of excitotoxic lesions of rat medial prefrontal cortex on spatial memory". Behavioural Brain Research. 133 (1): 69–81. doi:10.1016/S0166-4328(01)00442-9. PMID 12048175. S2CID 24280276.
  61. ^ Cooper, B. G.; Manka, T. F.; Mizumori, S. J. Y. (2001). "Finding your way in the dark: The retrosplenial cortex contributes to spatial memory and navigation without visual cues". Behavioral Neuroscience. 115 (5): 1012–1028. doi:10.1037/0735-7044.115.5.1012. PMID 11584914.
  62. ^ Vann, S. D.; Aggleton, J. P. (2002). "Extensive cytotoxic lesions of the rat retrosplenial cortex reveal consistent deficits on tasks that tax allocentric spatial memory". Behavioral Neuroscience. 116 (1): 85–94. doi:10.1037/0735-7044.116.1.85. PMID 11895186.
  63. ^ Vann, S. D.; Wilton, L. A.; Muir, J. L.; Aggleton, J. P. (2003). "Testing the importance of the caudal retrosplenial cortex for spatial memory in rats". Behavioural Brain Research. 140 (1–2): 107–118. doi:10.1016/S0166-4328(02)00274-7. PMID 12644284. S2CID 10400806.
  64. ^ a b Maguire, E. A. (2001). "The retrosplenial contribution to human navigation: A review of lesion and neuroimaging findings". Scandinavian Journal of Psychology. 42 (3): 225–238. doi:10.1111/1467-9450.00233. PMID 11501737.
  65. ^ Liu, P.; Bilkey, D. K. (1998). "Perirhinal cortex contributions to performance in the Morris water maze". Behavioral Neuroscience. 112 (2): 304–315. doi:10.1037/0735-7044.112.2.304. PMID 9588480.
  66. ^ Gutbrod, K; Cohen, R; Maier, T; Meier, E (1987). "Memory for spatial and temporal order in aphasics and right hemisphere damaged patients". Cortex. 23 (3): 463–74. doi:10.1016/s0010-9452(87)80007-2. PMID 3677733. S2CID 4489682.
  67. ^ Nunn, JA; Graydon, FJ; Polkey, CE; Morris, RG (1999). "Differential spatial memory impairment after right temporal lobectomy demonstrated using temporal titration". Brain. 122 (1): 47–59. doi:10.1093/brain/122.1.47. PMID 10050894.
  68. ^ Tucker, DM; Hartry-Speiser, A; McDougal, L; Luu, P; Degrandpre, D (1999). "Mood and spatial memory: emotion and right hemisphere contribution to spatial cognition". Biol Psychol. 50 (2): 103–25. doi:10.1016/S0301-0511(99)00005-8. PMID 10403200. S2CID 42669695.
  69. ^ Liang, KC; Hon, W; Tyan, YM; Liao, WL (1994). "Involvement of hippocampal NMDA and AMPA receptors in acquisition, formation and retrieval of spatial memory in the Morris water maze". Chin J Physiol. 37 (4): 201–12. PMID 7796636.
  70. ^ Crusio, W. E.; Schwegler, H. (2005). "Learning spatial orientation tasks in the radial-maze and structural variation in the hippocampus in inbred mice". Behavioral and Brain Functions. 1 (1): 3. doi:10.1186/1744-9081-1-3. PMC 1143776. PMID 15916698.
  71. ^ Lee, I.; Kesner, R. P. (2002). "Differential contribution of NMDA receptors in hippocampal subregions to spatial working memory". Nature Neuroscience. 5 (2): 162–168. doi:10.1038/nn790. PMID 11780144. S2CID 17727921.
  72. ^ Morris, R. G. M.; Anderson, E.; Lynch, G. S.; Baudry, M. (1986). "Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor anatagonist, AP5". Nature. 319 (6056): 774–776. Bibcode:1986Natur.319..774M. doi:10.1038/319774a0. PMID 2869411. S2CID 4356601.
  73. ^ Lee, I.; Kesner, R. P. (2004). "Encoding versus retrieval of spatial memory: Double dissociation between the dentate gyrus and the perforant path inputs into CA3 in the dorsal hippocampus". Hippocampus. 14 (1): 66–76. doi:10.1002/hipo.10167. PMID 15058484. S2CID 21361912.
  74. ^ Stark, M; Coslett, HB; Saffran, EM (1996). Impairment of an egocentric map of locations: implications for perception and action. 13. Cogn Neuropsychol. pp. 481–523.
  75. ^ Tae-Sung Lim, Giuseppe Iaria, So Young Moon. "Topographical Disorientation in Mild Cognitive Impairment: A Voxel-Based Morphometry Study." 9 August 2010. 16 April 2011 <http://www.neurolab.ca/2010(5)_Lim.pdf>.
  76. ^ Lewis, D.A.; Levitt, P. (2002). "Schizophrenia as a disorder of neurodevelopment". Annual Review of Neuroscience. 25: 409–432. doi:10.1146/annurev.neuro.25.112701.142754. PMID 12052915.
  77. ^ Lipska, B.K.; Weinberger, D.R. (2000). "To model a psychiatric disorder in animals: Schizophrenia as a reality test". Neuropsychopharmacology. 23 (3): 223–239. doi:10.1016/S0893-133X(00)00137-8. PMID 10942847.
  78. ^ Lipska, B.K.; Aultman, J.M.; Verma, A.; Weinberger, D.R.; Moghaddam, B. (2002). "Neonatal damage of the ventral hippocampus impairs working memory in the rat". Neuropsychopharmacology. 27 (1): 47–54. doi:10.1016/S0893-133X(02)00282-8. PMID 12062906.
  79. ^ Marquis, J. P.; Goulet, S.; Dore, F. Y. (2008). "Dissociable onset of cognitive and motivational dysfunctions following neonatal lesions of the ventral hippocampus in rats". Behavioral Neuroscience. 122 (3): 629–642. doi:10.1037/0735-7044.122.3.629. PMID 18513133.
  80. ^ Brady, A. M. (2009). "Neonatal ventral hippocampal lesions disrupt set-shifting ability in adult rats". Behavioural Brain Research. 205 (1): 294–298. doi:10.1016/j.bbr.2009.07.025. PMID 19646488. S2CID 29943421.
  81. ^ Marquis, J.P.; Goulet, S.; Dore, F.Y. (2008). "Neonatal ventral hippocampus lesions disrupt extra-dimensional shift and alter dendritic spine density in the medial prefrontal cortex of juvenile rats". Neurobiology of Learning and Memory. 90 (2): 339–346. doi:10.1016/j.nlm.2008.04.005. PMID 18490183. S2CID 26066133.
  82. ^ Winocur, G. & Mills, J. A. (1970). Transfer between related and unrelated problems following hippocampal lesions in rats. Journal of Comparative and Physiological Psychology
  83. ^ Levin, E.D.; Christopher, N.C. (2006). "Effects of clozapine on memory function in the rat neonatal hippocampal lesion model of schizophrenia". Progress in Neuro-Psychopharmacology and Biological Psychiatry. 30 (2): 223–229. doi:10.1016/j.pnpbp.2005.10.018. PMID 16356617. S2CID 23594752.
  84. ^ Silva-Gomez, A.B.; Bermudez, M.; Quirion, R.; Srivastava, L.K.; Picazo, O.; Flores, G. (2003). "Comparative behavioral changes between male and female postpubertal rats following neonatal excitotoxic lesions of the ventral hippocampus". Brain Research. 973 (2): 285–292. doi:10.1016/S0006-8993(03)02537-X. PMID 12738072. S2CID 17456907.
  85. ^ Ishikawa, T.; Hiromichi, F.; Osama, I.; Atsuyuki, O. (2008). "Wayfinding with a GPS-based mobile navigation system: A comparison with maps and direct experience". Journal of Environmental Psychology. 28: 74–82. doi:10.1016/j.jenvp.2007.09.002.
  86. ^ a b Canugovi C, Yoon JS, Feldman NH, Croteau DL, Mattson MP, Bohr VA (September 2012). "Endonuclease VIII-like 1 (NEIL1) promotes short-term spatial memory retention and protects from ischemic stroke-induced brain dysfunction and death in mice". Proc. Natl. Acad. Sci. U.S.A. 109 (37): 14948–53. Bibcode:2012PNAS..10914948C. doi:10.1073/pnas.1204156109. PMC 3443144. PMID 22927410.
  87. ^ Mammarella, I.C.; Lucangeli, D.; Cornoldi, C. (2010). "Spatial working memory and arithmetic deficites in children with nonverbal learning difficulties". Journal of Learning Disabilities. 43 (5): 455–468. doi:10.1177/0022219409355482. hdl:11577/2453526. PMID 20375290. S2CID 2596429.
  88. ^ a b c Ferrara M, Iaria, G, Tempesta D, Curcio G, Moroni F, Marzano C, De Gennaro L, Pacitti C (2008). "Sleep to find your way: the role of sleep in the consolidation of memory for navigation in humans". Hippocampus. 18 (8): 844–851. doi:10.1002/hipo.20444. PMID 18493970. S2CID 25998045.
  89. ^ Peigneux, P.; Laureys, S.; Fuchs, S.; Collette, F.; Perrin, F.; Reggers, J.; et al. (2004). "Are Spatial memories strengthened in the human hippocampus during slow wave sleep?". Neuron. 44 (3): 535–545. doi:10.1016/j.neuron.2004.10.007. hdl:2268/21205. PMID 15504332. S2CID 1424898.

External links

  • gettinglost.ca

spatial, memory, cognitive, psychology, neuroscience, spatial, memory, form, memory, responsible, recording, recovery, information, needed, plan, course, location, recall, location, object, occurrence, event, necessary, orientation, space, also, divided, into,. In cognitive psychology and neuroscience spatial memory is a form of memory responsible for the recording and recovery of information needed to plan a course to a location and to recall the location of an object or the occurrence of an event 1 Spatial memory is necessary for orientation in space 2 3 Spatial memory can also be divided into egocentric and allocentric spatial memory 4 A person s spatial memory is required to navigate around a familiar city A rat s spatial memory is needed to learn the location of food at the end of a maze In both humans and animals spatial memories are summarized as a cognitive map 5 Spatial memory is required to navigate through an environment Spatial memory has representations within working short term memory and long term memory Research indicates that there are specific areas of the brain associated with spatial memory 6 Many methods are used for measuring spatial memory in children adults and animals 5 Contents 1 Short term spatial memory 2 Spatial working memory 2 1 The role of the central executive 3 Long term spatial memory 4 Virtual reality 4 1 Spatial expertise 4 2 Animal research 5 Visual spatial distinction 6 Measurement 6 1 The Corsi block tapping task 6 2 Visual pattern span 6 3 Pathway span task 6 4 Dynamic mazes 6 5 Radial arm maze 6 6 Morris water navigation task 7 Physiology 7 1 Hippocampus 7 2 Posterior parietal cortex 7 3 Entorhinal cortex 7 4 Prefrontal cortex 7 5 Retrosplenial cortex 7 6 Perirhinal cortex 8 Neuroplasticity 9 Disorders deficits 9 1 Topographical disorientation 9 2 Hippocampal damage and schizophrenia 9 3 GPS Global Positioning System 9 4 NEIL1 10 Learning difficulties 11 Sleep 12 See also 13 References 14 External linksShort term spatial memory EditShort term memory STM can be described as a system allowing one to temporarily store and manage information that is necessary to complete complex cognitive tasks 7 Tasks which employ short term memory include learning reasoning and comprehension 7 Spatial memory is a cognitive process that enables a person to remember different locations as well as spatial relations between objects 7 This allows one to remember where an object is in relation to another object 7 for instance allowing someone to navigate through a familiar city Spatial memories are said to form after a person has already gathered and processed sensory information about her or his environment 7 Spatial working memory EditWorking memory WM can be described as a limited capacity system that allows one to temporarily store and process information 8 This temporary store enables one to complete or work on complex tasks while being able to keep information in mind 8 For instance the ability to work on a complicated mathematical problem utilizes one s working memory One influential theory of WM is the Baddeley and Hitch multi component model of working memory 8 9 The most recent version of this model suggests that there are four subcomponents to WM phonological loop the visuo spatial sketchpad the central executive and the episodic buffer 8 One component of this model the visuo spatial sketchpad is likely responsible for the temporary storage maintenance and manipulation of both visual and spatial information 8 9 Baddeley and Hitch s multi component model of working memory In contrast to the multi component model some researchers believe that STM should be viewed as a unitary construct 9 In this respect visual spatial and verbal information are thought to be organized by levels of representation rather than the type of store to which they belong 9 Within the literature it is suggested that further research into the fractionation of STM and WM be explored 9 10 However much of the research into the visuo spatial memory construct have been conducted in accordance to the paradigm advanced by Baddeley and Hitch 8 9 10 11 12 The role of the central executive Edit Research into the exact function of the visuo spatial sketchpad has indicated that both spatial short term memory and working memory are dependent on executive resources and are not entirely distinct 8 For instance performance on a working memory but not on a short term memory task was affected by articulatory suppression suggesting that impairment on the spatial task was caused by the concurrent performance on a task that had extensive use of executive resources 8 Results have also found that performances were impaired on STM and WM tasks with executive suppression 8 This illustrates how within the visuo spatial domain both STM and WM require similar utility of the central executive 8 Additionally during a spatial visualisation task which is related to executive functioning and not STM or WM concurrent executive suppression impaired performance indicating that the effects were due to common demands on the central executive and not short term storage 8 The researchers concluded with the explanation that the central executive employs cognitive strategies enabling participants to both encode and maintain mental representations during short term memory tasks 8 Although studies suggest that the central executive is intimately involved in a number of spatial tasks the exact way in which they are connected remains to be seen 13 Long term spatial memory EditSpatial memory recall is built upon a hierarchical structure People remember the general layout of a particular space and then cue target locations within that spatial set 14 This paradigm includes an ordinal scale of features that an individual must attend to in order to inform his or her cognitive map 15 Recollection of spatial details is a top down procedure that requires an individual to recall the superordinate features of a cognitive map followed by the ordinate and subordinate features Two spatial features are prominent in navigating a path general layout and landmark orienting Kahana et al 2006 People are not only capable of learning about the spatial layout of their surroundings but they can also piece together novel routes and new spatial relations through inference A cognitive map is a mental model of objects spatial configuration that permits navigation along optimal path between arbitrary pairs of points 16 This mental map is built upon two fundamental bedrocks layout also known as route knowledge and landmark orientation Layout is potentially the first method of navigation that people learn to utilize its workings reflect our most basic understandings of the world Hermer and Spelke 1994 determined that when toddlers begin to walk around eighteen months they navigate by their sense of the world s layout McNamara Hardy and Hirtle identified region membership as a major building block of anyone s cognitive map 1989 Specifically region membership is defined by any kind of boundary whether physical perceptual or subjective McNamara et al 1989 Boundaries are among the most basic and endemic qualities in the world around us These boundaries are nothing more than axial lines which are a feature that people are biased towards when relating to space for example one axial line determinant is gravity McNamara amp Shelton 2001 Kim amp Penn 2004 Axial lines aid everyone in apportioning our perceptions into regions This parceled world idea is further supported items by the finding that items that get recalled together are more likely than not to also be clustered within the same region of one s larger cognitive map 15 Clustering shows that people tend to chunk information together according to smaller layouts within a larger cognitive map Boundaries are not the only determinants of layout Clustering also demonstrates another important property of relation to spatial conceptions which is that spatial recall is a hierarchical process When someone recalls an environment or navigates terrain that person implicitly recalls the overall layout at first Then due to the concept s rich correlational structure a series of associations become activated 14 Eventually the resulting cascade of activations will awaken the particular details that correspond with the region being recalled This is how people encode many entities from varying ontological levels such as the location of a stapler in a desk which is in the office One can recall from only one region at a time a bottleneck A bottleneck in a person s cognitive navigational system could be an issue For instance if there were a need for a sudden detour on a long road trip Lack of experience in a locale or simply sheer size can disorient one s mental layout especially in a large and unfamiliar place with many overwhelming stimuli In these environments people are still able to orient themselves and find their way around using landmarks This ability to prioritize objects and regions in complex scenes for selection and recognition was labeled by Chun and Jiang in 1998 Landmarks give people guidance by activating learned associations between the global context and target locations 14 Mallot and Gillner 2000 showed that subjects learned an association between a specific landmark and the direction of a turn thereby furthering the relationship between associations and landmarks 17 Shelton and McNamara 2001 succinctly summed up why landmarks as markers are so helpful location cannot be described without making reference to the orientation of the observer People use both the layout of a particular space and the presence of orienting landmarks in order to navigate Psychologists have yet to explain whether layout affects landmarks or if landmarks determine the boundaries of a layout Because of this the concept suffers from a chicken and the egg paradox McNamara has found that subjects use clusters of landmarks as intrinsic frames of reference which only confuses the issue further 16 People perceive objects in their environment relative to other objects in that same environment Landmarks and layout are complementary systems for spatial recall but it is unknown how these two systems interact when both types of information are available As a result people have to make certain assumptions about the interaction between the two systems For example cognitive maps are not absolute but rather as anyone can attest are used to provide a default which modulated according to task demands 14 Psychologists also think that cognitive maps are instance based which accounts for discriminative matching to past experience 14 This field has traditionally been hampered by confounding variables such as cost and the potential for previous exposure to an experimental environment Technological advancements including those in virtual reality technology have made findings more accessible Virtual reality affords experimenters the luxury of extreme control over their test environment Any variable can be manipulated including things that would not be possible in reality Virtual reality EditDuring a 2006 study researchers designed three different virtual towns each of which had its own unique road layout and a unique set of five stores 16 However the overall footprint of the different maps was exactly the same size 80 sq units In this experiment participants had to partake in two different sets of trials A study conducted at the University of Maryland compared the effect of different levels of immersion on spatial memory recall 18 In the study 40 participants used both a traditional desktop and a head mounted display to view two environments a medieval town and an ornate palace where they memorized two sets of 21 faces presented as 3D portraits After viewing these 21 faces for 5 minutes followed by a brief rest period the faces in the virtual environments were replaced with numbers and participants recalled which face was at each location The study found on average those who used the head mounted display recalled the faces 8 8 more accurately and with a greater confidence The participants state that leveraging their innate vestibular and proprioceptive senses with the head mounted display and mapping aspects of the environment relative to their body elements that are absent with the desktop was key to their success Spatial expertise Edit Within the literature there is evidence that experts in a particular field are able to perform memory tasks in accordance with their skills at an exceptional level 12 The level of skill displayed by experts may exceed the limits of the normal capacity of both STM and WM 12 Because experts have an enormous amount of prelearned and task specific knowledge they may be able to encode information in a more efficient way 12 An interesting study investigating taxi drivers memory for streets in Helsinki Finland examined the role of prelearned spatial knowledge 12 This study compared experts to a control group to determine how this prelearned knowledge in their skill domain allows them to overcome the capacity limitations of STM and WM 12 The study used four levels of spatial randomness Route Order spatially continuous route 12 Route Random spatially continuous list presented randomly 12 Map Order street names forming a straight line on the map but omitting intermediate streets 12 Map Random streets on map presented in random order 12 Yellow taxi cabs in New York city The results of this study indicate that the taxi drivers experts recall of streets was higher in both the route order condition and the map order condition than in the two random conditions 12 This indicates that the experts were able to use their prelearned spatial knowledge to organize the information in such a way that they surpassed STM and WM capacity limitations 12 The organization strategy that the drivers employed is known as chunking 12 Additionally the comments made by the experts during the procedure point towards their use of route knowledge in completing the task 12 To ensure that it was in fact spatial information that they were encoding the researchers also presented lists in alphabetical order and semantic categories 12 However the researchers found that it was in fact spatial information that the experts were chunking allowing them to surpass the limitations of both visuo spatial STM and WM 12 Animal research Edit Certain species of paridae and corvidae such as the black capped chickadee and the scrub jay are able to use spatial memory to remember where when and what type of food they have cached 19 Studies on rats and squirrels have also suggested that they are able to use spatial memory to locate previously hidden food 19 Experiments using the radial maze have allowed researchers to control for a number of variables such as the type of food hidden the locations where the food is hidden the retention interval as well as any odor cues that could skew results of memory research 19 Studies have indicated that rats have memory for where they have hidden food and what type of food they have hidden 19 This is shown in retrieval behavior such that the rats are selective in going more often to the arms of the maze where they have previously hidden preferred food than to arms with less preferred food or where no food was hidden 19 The evidence for the spatial memory of some species of animals such as rats indicates that they do use spatial memory to locate and retrieve hidden food stores 19 A study using GPS tracking to see where domestic cats go when their owners let them outside reported that cats have substantial spatial memory Some of the cats in the study demonstrated exceptional long term spatial memory One of them usually traveling no further than 200 m 660 ft to 250 m 820 ft from its home unexpectedly traveled some 1 250 m 4 100 ft from its home Researchers initially thought this to be a GPS malfunction but soon discovered that the cat s owners went out of town that weekend and that the house the cat went to was the owner s old house The owners and the cat had not lived in that house for well over a year 20 Visual spatial distinction EditLogie 1995 proposed that the visuo spatial sketchpad is broken down into two subcomponents one visual and one spatial 11 These are the visual cache and the inner scribe respectively 11 The visual cache is a temporary visual store including such dimensions as color and shape 11 Conversely the inner scribe is a rehearsal mechanism for visual information and is responsible for information concerning movement sequences 11 Although a general lack of consensus regarding this distinction has been noted in the literature 10 21 22 there is a growing amount of evidence that the two components are separate and serve different functions citation needed Visual memory is responsible for retaining visual shapes and colors i e what whereas spatial memory is responsible for information about locations and movement i e where This distinction is not always straightforward since part of visual memory involves spatial information and vice versa For example memory for object shapes usually involves maintaining information about the spatial arrangement of the features which define the object in question 21 In practice the two systems work together in some capacity but different tasks have been developed to highlight the unique abilities involved in either visual or spatial memory For example the visual patterns test VPT measures visual span whereas the Corsi Blocks Task measures spatial span Correlational studies of the two measures suggest a separation between visual and spatial abilities due to a lack of correlation found between them in both healthy and brain damaged patients 10 Support for the division of visual and spatial memory components is found through experiments using the dual task paradigm A number of studies have shown that the retention of visual shapes or colors i e visual information is disrupted by the presentation of irrelevant pictures or dynamic visual noise Conversely the retention of location i e spatial information is disrupted only by spatial tracking tasks spatial tapping tasks and eye movements 21 22 For example participants completed both the VPT and the Corsi Blocks Task in a selective interference experiment During the retention interval of the VPT the subject viewed irrelevant pictures e g avant garde paintings The spatial interference task required participants to follow by touching the stimuli an arrangement of small wooden pegs which were concealed behind a screen Both the visual and spatial spans were shortened by their respective interference tasks confirming that the Corsi Blocks Task relates primarily to spatial working memory 10 Measurement EditThere are a variety of tasks psychologists use to measure spatial memory on adults children and animal models These tasks allow professionals to identify cognitive irregularities in adults and children and allows researchers to administer varying types of drugs and or lesions in participants and measure the consequential effects on spatial memory The Corsi block tapping task Edit Main article Corsi block tapping test The Corsi block tapping test also known as the Corsi span rest is a psychological test commonly used to determine the visual spatial memory span and the implicit visual spatial learning abilities of an individual 23 24 Participants sit with nine wooden 3x3 cm blocks fastened before them on a 25 x 30 cm baseboard in a standard random order The experiment taps onto the blocks a sequence pattern which participants must then replicate The blocks are numbered on the experimenters side to allow for efficient pattern demonstration The sequence length increases each trial until the participant is no longer able to replicate the pattern correctly The test can be used to measure both short term and long term spatial memory depending on the length of time between test and recall The test was created by Canadian neuropsychologist Phillip Corsi who modeled it after Hebb s digit span task by replacing the numerical test items with spatial ones On average most participants achieve a span of five items on the Corsi span test and seven on the digit span task Visual pattern span Edit The visual pattern span is similar to the Corsi block tapping test but regarded as a more pure test of visual short term recall 25 Participants are presented with a series of matrix patterns that have half their cells colored and the other half blank The matrix patterns are arranged in a way that is difficult to code verbally forcing the participant to rely on visual spatial memory Beginning with a small 2 x 2 matrix participants copy the matrix pattern from memory into an empty matrix The matrix patterns are increased in size and complexity at a rate of two cells until the participant s ability to replicate them breaks down On average participants performance tends to break down at sixteen cells Pathway span task Edit This task is designed to measure spatial memory abilities in children 23 The experimenter asks the participant to visualize a blank matrix with a little man Through a series of directional instructions such as forwards backwards left or right the experimenter guides the participant s little man on a pathway throughout the matrix At the end the participant is asked to indicate on a real matrix where the little man that he or she visualized finished The length of the pathway varies depending on the level of difficulty 1 10 and the matrices themselves may vary in length from 2 x 2 cells to 6 x 6 Dynamic mazes Edit Dynamic mazes are intended for measuring spatial ability in children With this test an experimenter presents the participant with a drawing of a maze with a picture of a man in the center 23 While the participant watches the experimenter uses his or her finger to trace a pathway from the opening of the maze to the drawing of the man The participant is then expected to replicate the demonstrated pathway through the maze to the drawing of the man Mazes vary in complexity as difficulty increases Radial arm maze Edit Main article Radial arm maze Simple Radial Maze First pioneered by Olton and Samuelson in 1976 26 the radial arm maze is designed to test the spatial memory capabilities of rats Mazes are typically designed with a center platform and a varying number of arms 27 branching off with food placed at the ends The arms are usually shielded from each other in some way but not to the extent that external cues cannot be used as reference points In most cases the rat is placed in the center of the maze and needs to explore each arm individually to retrieve food while simultaneously remembering which arms it has already pursued The maze is set up so the rat is forced to return to the center of the maze before pursuing another arm Measures are usually taken to prevent the rat from using its olfactory senses to navigate such as placing extra food throughout the bottom of the maze Morris water navigation task Edit Main article Morris water navigation task The Morris water navigation task is a classic test for studying spatial learning and memory in rats 28 and was first developed in 1981 by Richard G Morris for whom the test is named The subject is placed in a round tank of translucent water with walls that are too high for it to climb out and water that is too deep for it to stand in The walls of the tank are decorated with visual cues to serve as reference points The rat must swim around the pool until by chance it discovers just below the surface the hidden platform onto which it can climb Typically rats swim around the edge of the pool first before venturing out into the center in a meandering pattern before stumbling upon the hidden platform However as time spent in the pool increases experience the amount of time needed to locate the platform decreases with veteran rats swimming directly to the platform almost immediately after being placed in the water Physiology EditHippocampus Edit Hippocampus shown in red The hippocampus provides animals with a spatial map of their environment 29 It stores information regarding non egocentric space egocentric means in reference to one s body position in space and therefore supports viewpoint independence in spatial memory 30 This means that it allows for viewpoint manipulation from memory It is important for long term spatial memory of allocentric space reference to external cues in space 31 Maintenance and retrieval of memories are thus relational or context dependent 32 The hippocampus makes use of reference and working memory and has the important role of processing information about spatial locations 33 Blocking plasticity in this region results in problems in goal directed navigation and impairs the ability to remember precise locations 34 Amnesic patients with damage to the hippocampus cannot learn or remember spatial layouts and patients having undergone hippocampal removal are severely impaired in spatial navigation 30 35 Monkeys with lesions to this area cannot learn object place associations and rats also display spatial deficits by not reacting to spatial change 30 36 In addition rats with hippocampal lesions were shown to have temporally ungraded time independent retrograde amnesia that is resistant to recognition of a learned platform task only when the entire hippocampus is lesioned but not when it is partially lesioned 37 Deficits in spatial memory are also found in spatial discrimination tasks 35 Brain slice showing areas CA1 and CA3 in the hippocampus Large differences in spatial impairment are found among the dorsal and ventral hippocampus Lesions to the ventral hippocampus have no effect on spatial memory while the dorsal hippocampus is required for retrieval processing short term memory and transferring memory from the short term to longer delay periods 38 39 40 Infusion of amphetamine into the dorsal hippocampus has also been shown to enhance memory for spatial locations learned previously 41 These findings indicate that there is a functional dissociation between the dorsal and ventral hippocampus Hemispheric differences within the hippocampus are also observed A study on London taxi drivers asked drivers to recall complex routes around the city as well as famous landmarks for which the drivers had no knowledge of their spatial location This resulted in an activation of the right hippocampus solely during recall of the complex routes which indicates that the right hippocampus is used for navigation in large scale spatial environments 42 The hippocampus is known to contain two separate memory circuits One circuit is used for recollection based place recognition memory and includes the entorhinal CA1 system 43 while the other system consisting of the hippocampus trisynaptic loop entohinal dentate CA3 CA1 is used for place recall memory 44 and facilitation of plasticity at the entorhinal dentate synapse in mice is sufficient to enhance place recall 45 Place cells are also found in the hippocampus Posterior parietal cortex Edit Parietal lobe shown in red The parietal cortex encodes spatial information using an egocentric frame of reference It is therefore involved in the transformation of sensory information coordinates into action or effector coordinates by updating the spatial representation of the body within the environment 46 As a result lesions to the parietal cortex produce deficits in the acquisition and retention of egocentric tasks whereas minor impairment is seen among allocentric tasks 47 Rats with lesions to the anterior region of the posterior parietal cortex reexplore displaced objects while rats with lesions to the posterior region of the posterior parietal cortex displayed no reaction to spatial change 36 Parietal cortex lesions are also known to produce temporally ungraded retrograde amnesia 48 Entorhinal cortex Edit Medial view of the right cerebral hemisphere showing the entorhinal cortex in red at the base of the temporal lobe The dorsalcaudal medial entorhinal cortex dMEC contains a topographically organized map of the spatial environment made up of grid cells 49 This brain region thus transforms sensory input from the environment and stores it as a durable allocentric representation in the brain to be used for path integration 50 The entorhinal cortex contributes to the processing and integration of geometric properties and information in the environment 51 Lesions to this region impair the use of distal but not proximal landmarks during navigation and produces a delay dependent deficit in spatial memory that is proportional to the length of the delay 52 53 Lesions to this region are also known to create retention deficits for tasks learned up to 4 weeks but not 6 weeks prior to the lesions 48 Memory consolidation in the entorhinal cortex is achieved through extracellular signal regulated kinase activity 54 Prefrontal cortex Edit Medial view of the cerebral hemisphere showing the location of the prefrontal cortex and more specifically the medial and ventromedial prefrontal cortex in purple The medial prefrontal cortex processes egocentric spatial information It participates in the processing of short term spatial memory used to guide planned search behavior and is believed to join spatial information with its motivational significance 40 55 The identification of neurons that anticipate expected rewards in a spatial task support this hypothesis The medial prefrontal cortex is also implicated in the temporal organization of information 56 Hemisphere specialization is found in this brain region The left prefrontal cortex preferentially processes categorical spatial memory including source memory reference to spatial relationships between a place or event while the right prefrontal cortex preferentially processes coordinate spatial memory including item memory reference to spatial relationships between features of an item 57 Lesions to the medial prefrontal cortex impair the performance of rats on a previously trained radial arm maze but rats can gradually improve to the level of the controls as a function of experience 58 Lesions to this area also cause deficits on delayed nonmatching to positions tasks and impairments in the acquisition of spatial memory tasks during training trials 59 60 Retrosplenial cortex Edit The retrosplenial cortex is involved in the processing of allocentric memory and geometric properties in the environment 51 Inactivation of this region accounts for impaired navigation in the dark and it may be involved in the process of path integration 61 Lesions to the retrosplenial cortex consistently impair tests of allocentric memory while sparing egocentric memory 62 Animals with lesions to the caudal retrosplenial cortex show impaired performance on a radial arm maze only when the maze is rotated to remove their reliance on intramaze cues 63 Medial view of the cerebral hemisphere The retrosplenial cortex encompasses Brodmann areas 26 29 and 30 The perirhinal cortex contains Brodmann area 35 and 36 not shown In humans damage to the retrosplenial cortex results in topographical disorientation Most cases involve damage to the right retrosplenial cortex and include Brodmann area 30 Patients are often impaired at learning new routes and at navigating through familiar environments 64 However most patients usually recover within 8 weeks The retrosplenial cortex preferentially processes spatial information in the right hemisphere 64 Perirhinal cortex Edit The perirhinal cortex is associated with both spatial reference and spatial working memory 33 It processes relational information of environmental cues and locations Lesions in the perirhinal cortex account for deficits in reference memory and working memory and increase the rate of forgetting of information during training trials of the Morris water maze 65 This accounts for the impairment in the initial acquisition of the task Lesions also cause impairment on an object location task and reduce habituation to a novel environment 33 Neuroplasticity EditSee also Neurobiological effects of physical exercise Cognitive control and memory Spatial memories are formed after an animal gathers and processes sensory information about its surroundings especially vision and proprioception In general mammals require a functioning hippocampus particularly area CA1 in order to form and process memories about space There is some evidence that human spatial memory is strongly tied to the right hemisphere of the brain 66 67 68 Spatial learning requires both NMDA and AMPA receptors consolidation requires NMDA receptors and the retrieval of spatial memories requires AMPA receptors 69 In rodents spatial memory has been shown to covary with the size of a part of the hippocampal mossy fiber projection 70 The function of NMDA receptors varies according to the subregion of the hippocampus NMDA receptors are required in the CA3 of the hippocampus when spatial information needs to be reorganized while NMDA receptors in the CA1 are required in the acquisition and retrieval of memory after a delay as well as in the formation of CA1 place fields 71 Blockade of the NMDA receptors prevents induction of long term potentiation and impairs spatial learning 72 The CA3 of the hippocampus plays an especially important role in the encoding and retrieval of spatial memories The CA3 is innervated by two afferent paths known as the perforant path PPCA3 and the dentate gyrus DG mediated mossy fibers MFs The first path is regarded as the retrieval index path while the second is concerned with encoding 73 Disorders deficits EditTopographical disorientation Edit Main articles Topographical disorientation and Developmental topographical disorientation Topographical disorientation TD is a cognitive disorder that results in the individual being unable to orient his or herself in the real or virtual environment Patients also struggle with spatial information dependent tasks These problems could possibly be the result of a disruption in the ability to access one s cognitive map a mental representation of the surrounding environment or the inability to judge objects location in relation to one s self 74 Developmental topographical disorientation DTD is diagnosed when patients have shown an inability to navigate even familiar surroundings since birth and show no apparent neurological causes for this deficiency such as lesioning or brain damage DTD is a relatively new disorder and can occur in varying degrees of severity A study was done to see if topographical disorientation had an effect on individuals who had mild cognitive impairment MCI The study was done by recruiting forty one patients diagnosed with MCI and 24 healthy control individuals The standards that were set for this experiment were Subjective cognitive complaint by the patient or his her caregiver Normal general cognitive function above the 16th percentile on the Korean version of the Mini Mental State Examination K MMSE Normal activities of daily living ADL assessed both clinically and on a standardized scale as described below Objective cognitive decline below the 16th percentile on neuropsychological tests Exclusion of dementia TD was assessed clinically in all participants Neurological and neuropsychological evaluations were determined by a magnetic imaging scan which was performed on each participant Voxel based morphometry was used to compare patterns of gray matter atrophy between patients with and without TD and a group of normal controls The outcome of the experiment was that they found TD in 17 out of the 41 MCI patients 41 4 The functional abilities were significantly impaired in MCI patients with TD compared to in MCI patients without TD and that the presence of TD in MCI patients is associated with loss of gray matter in the medial temporal regions including the hippocampus 75 Hippocampal damage and schizophrenia Edit Research with rats indicates that spatial memory may be adversely affected by neonatal damage to the hippocampus in a way that closely resembles schizophrenia Schizophrenia is thought to stem from neurodevelopmental problems shortly after birth 76 Rats are commonly used as models of schizophrenia patients Experimenters create lesions in the ventral hippocampal area shortly after birth a procedure known as neonatal ventral hippocampal lesioning NVHL Adult rats who with NVHL show typical indicators of schizophrenia such as hypersensitivity to psychostimulants reduced social interactions and impaired prepulse inhibition working memory and set shifting 77 78 79 80 81 Similar to schizophrenia impaired rats fail to use environmental context in spatial learning tasks such as showing difficulty completing the radial arm maze and the Moris water maze 82 83 84 GPS Global Positioning System Edit Example of a hand held GPS Recent research on spatial memory and wayfinding in an article by Ishikawa et al in 2008 85 revealed that using a GPS moving map device reduces an individual s navigation abilities when compared to other participants who were using maps or had previous experience on the route with a guide GPS moving map devices are frequently set up to allow the user to only see a small detailed close up of a particular segment of the map which is constantly updated In comparison maps usually allow the user to see the same view of the entire route from departure to arrival Other research has shown that individuals who use GPS travel more slowly overall compared to map users who are faster GPS users stop more frequently and for a longer period of time whereas map users and individuals using past experience as a guide travel on more direct routes to reach their goal NEIL1 Edit Endonuclease VIII like 1 NEIL1 is a DNA repair enzyme that is widely expressed throughout the brain NEIL1 is a DNA glycosylase that initiates the first step in base excision repair by cleaving bases damaged by reactive oxygen species and then introducing a DNA strand break via an associated lyase reaction This enzyme recognizes and removes oxidized DNA bases including formamidopyrimidine thymine glycol 5 hydroxyuracil and 5 hydroxycytosine NEIL1 promotes short term spatial memory retention 86 Mice lacking NEIL1 have impaired short term spatial memory retention in a water maze test 86 Learning difficulties EditNonverbal learning disability is characterized by normal verbal abilities but impaired visuospatial abilities Problem areas for children with nonverbal learning disability are arithmetic geometry and science Impairments in spatial memory are linked to nonverbal learning disorder and other learning difficulties 87 Arithmetic word problems involve written text containing a set of data followed by one or more questions and require the use of the four basic arithmetic operations addition subtraction multiplication or division 22 Researchers suggest that successful completion of arithmetic word problems involves spatial working memory involved in building schematic representations which facilitates the creation of spatial relationships between objects Creating spatial relationships between objects is an important part of solving word problems because mental operations and transformations are required 22 Researchers investigated the role of spatial memory and visual memory in the ability to complete arithmetic word problems Children in the study completed the Corsi block task forward and backward series and a spatial matrix task as well as a visual memory task called the house recognition test Poor problem solvers were impaired on the Corsi block tasks and the spatial matrix task but performed normally on the house recognition test when compared to normally achieving children The experiment demonstrated that poor problem solving is related specifically to deficient processing of spatial information 22 Sleep EditSleep has been found to benefit spatial memory by enhancing hippocampal dependent memory consolidation 88 Hippocampal areas activated in route learning are reactivated during subsequent sleep NREM sleep in particular It was demonstrated in a particular study that the actual extent of reactivation during sleep correlated with the improvement in route retrieval and therefore memory performance the following day 89 The study established the idea that sleep enhances the systems level process of consolidation that consequently enhances improves behavioral performance A period of wakefulness has no effect on stabilizing memory traces in comparison to a period of sleep Sleep after the first post training night i e on the second night does not benefit spatial memory consolidation further Therefore sleeping in the first post training night e g after learning a route is most important 88 Sleep deprivation and sleep has also been a researched association Sleep deprivation hinders memory performance improvement due to an active disruption of spatial memory consolidation 88 As a result spatial memory is enhanced by a period of sleep See also EditCognitive map Dissociation neuropsychology Method of loci Spatial ability Space mapping Visual memoryReferences Edit Burgess Neil 2021 Spatial memory Encyclopaedia Britannica Mehta Mitul A 2010 Spatial Memory in Humans in Stolerman Ian P ed Encyclopedia of Psychopharmacology Berlin Heidelberg Springer pp 1262 1266 doi 10 1007 978 3 540 68706 1 355 ISBN 978 3 540 68706 1 retrieved 2021 06 05 Spatial Memory an overview ScienceDirect Topics www sciencedirect com Retrieved 2021 06 05 Kolarik B Ekstrom A 2015 01 01 The Neural Underpinnings of Spatial Memory and Navigation Brain Mapping pp 507 514 doi 10 1016 B978 0 12 397025 1 00277 3 ISBN 9780123973160 a b Wang Jin Hu 2019 Associative Memory Cells Basic Units of Memory Trace Springer Nature p 94 ISBN 978 9811395017 Poeppel David Mangun George R Gazzaniga Michael S 2020 The Cognitive Neurosciences The MIT Press p 194 ISBN 978 0262043250 a b c d e Johnson E Adamo Villani N 2010 A Study of the Effects of Immersion on Short term Spatial Memory Engineering and Technology 71 582 587 a b c d e f g h i j k l Ang S Y Lee K 2008 Central executive involvement in children s spatial memory Memory 16 8 918 933 doi 10 1080 09658210802365347 PMID 18802804 S2CID 42610047 a b c d e f Jones D Farrand P Stuart G Morris N et al 1995 Functional equivalence of verbal and spatial information in serial short term memory Journal of Experimental Psychology Learning Memory and Cognition 21 4 1008 1018 doi 10 1037 0278 7393 21 4 1008 PMID 7673864 a b c d e Della Sala S Gray C Baddeley A Allamano N Wilson L et al 1999 Pattern span a tool for unwelding visuo spatial memory Neuropsychologia 37 10 1189 1199 doi 10 1016 S0028 3932 98 00159 6 PMID 10509840 S2CID 1894333 a b c d e Mammarella I C Pazzaglia F Cornoldi C et al 2008 Evidence for different components in children s visuospatial working memory British Journal of Developmental Psychology 26 3 337 355 doi 10 1348 026151007X236061 a b c d e f g h i j k l m n o p Kalakoski V Saariluoma P 2001 Taxi drivers exceptional memory of street names Memory and Cognition 29 4 634 638 doi 10 3758 BF03200464 PMID 11504011 Fisk J E Sharp C A et al 2003 The role of the executive system in visuo spatial memory functioning Brain and Cognition 52 3 364 381 doi 10 1016 S0278 2626 03 00183 0 PMID 12907181 S2CID 37589101 a b c d e Chun M Jiang Y 1998 Contextual Cueing implicit learning and memory of visual context guides spatial attention Cognitive Psychology 36 1 28 71 CiteSeerX 10 1 1 25 5066 doi 10 1006 cogp 1998 0681 PMID 9679076 S2CID 1955059 a b McNamara T Hardy J Hirtle S et al 1989 Subjective hierarchies in spatial memory Journal of Experimental Psychology 15 2 211 227 doi 10 1037 0278 7393 15 2 211 PMID 2522511 a b c Newman E L Caplan J B Kirschen M P Korolev I O Sekuler R Kahana M J et al 2007 Learning Your Way Around Town How Virtual Taxicab Drivers Learn to Use Both Layout and Landmark Information PDF Cognition 104 2 231 253 CiteSeerX 10 1 1 69 5387 doi 10 1016 j cognition 2006 05 013 PMID 16879816 S2CID 267034 Gillner S Mallot H 2000 The role of global and local landmarks in virtual environment navigation Perception 9 1 69 83 CiteSeerX 10 1 1 138 8266 doi 10 1162 105474600566628 S2CID 13062306 Krokos Eric Plaisant Catherine Varshney Amitabh 16 May 2018 Virtual Memory Palaces Immersion Aids Recall Virtual Reality 23 1 15 doi 10 1007 s10055 018 0346 3 a b c d e f Bird L R Roberts W A Abroms B Kit K A Crupi C 2003 Spatial memory for food hidden by rats Rattus norvegicus on the radial maze studies of memory for where what and when Journal of Comparative Psychology 117 2 176 187 doi 10 1037 0735 7036 117 2 176 PMID 12856788 Jennifer S Holland August 8 2014 Watch How Far Do Your Cats Roam National Geographic Retrieved August 23 2016 a b c Klauer K C Zhao Z et al 2004 Double dissociations in visual and spatial short term memory Journal of Experimental Psychology General 133 3 355 381 doi 10 1037 0096 3445 133 3 355 PMID 15355144 S2CID 7224613 a b c d e Passolunghi M C Mammarella I C et al 2010 Spatial and visual working memory ability in children with difficulties in arithmetic word problem solving European Journal of Cognitive Psychology 22 6 944 963 doi 10 1080 09541440903091127 S2CID 143882629 a b c Mammarella I C Pazzaglia F Cornoldi C 2008 Evidence of different components in children s visuospatial working memory British Journal of Developmental Psychology 26 3 337 355 doi 10 1348 026151007X236061 Corsi P M 1972 Human memory and the medial temporal region of the brain Dissertation Abstracts International 34 2 891 Della Sala S Gray C Baddeley A amp Wilson L 1997 The Visual Patterns Test A new test of short term visual recall Feltham Suffolk Thames Valley Test Company Olton D S Samuelson R J 1976 Remembrance of places past spatial memory in rats Journal of Experimental Psychology Animal Behavior Processes 2 2 97 116 CiteSeerX 10 1 1 456 3110 doi 10 1037 0097 7403 2 2 97 Cole M R Chappell Stephenson Robyn 2003 Exploring the limits of spatial memory using very large mazes Learning amp Behavior 31 4 349 368 doi 10 3758 BF03195996 PMID 14733483 Morris R G 1981 Spatial Localization Does Not Require the Presence of Local Cues Learning and Motivation 12 2 239 260 doi 10 1016 0023 9690 81 90020 5 O Keefe J Dostrovsky J 1971 The hippocampus as a spatial map Preliminary evidence from unit activity in the freely moving rat Brain Research 34 1 171 175 doi 10 1016 0006 8993 71 90358 1 PMID 5124915 a b c Squire L R 1992 Memory and the hippocampus A synthesis from findings with rats monkeys and humans Psychological Review 99 2 195 231 doi 10 1037 0033 295X 99 2 195 PMID 1594723 S2CID 14104324 Ramos J M J 2000 Long term spatial memory in rats with hippocampal lesions European Journal of Neuroscience 12 9 3375 3384 doi 10 1046 j 1460 9568 2000 00206 x PMID 10998120 S2CID 18121369 Winocur G Moscovitch M Caruana D A Binns M A 2005 Retrograde amnesia in rats with lesions to the hippocampus on a test of spatial memory Neuropsychologia 43 11 1580 1590 doi 10 1016 j neuropsychologia 2005 01 013 PMID 16009240 S2CID 9160452 a b c Liu P Bilkey D K 2001 The effect of excitotoxic lesions centered on the hippocampus or perirhinal cortex in object recognition and spatial memory tasks Behavioral Neuroscience 115 1 94 111 doi 10 1037 0735 7044 115 1 94 PMID 11256456 Hebert A E Dash P K 2004 Nonredundant roles for hippocampal and entorhinal cortical plasticity in spatial memory storage Pharmacology Biochemistry and Behavior 79 1 143 153 doi 10 1016 j pbb 2004 06 016 PMID 15388294 S2CID 25385758 a b Morris RG Garrud P Rawlins JN O Keefe J 1982 Place navigation impaired in rats with hippocampal lesions PDF Nature 297 5868 681 683 Bibcode 1982Natur 297 681M doi 10 1038 297681a0 PMID 7088155 S2CID 4242147 a b Save E Poucet B Foreman N Buhot M 1992 Object exploration and reactions to spatial and nonspatial changes in hooded rats following damage to parietal cortex or hippocampal formation Behavioral Neuroscience 106 3 447 456 doi 10 1037 0735 7044 106 3 447 PMID 1616611 Martin S J de Hozl L Morris R G M 2005 Retrograde amnesia neither partial nor complete hippocampal lesions in rats result in preferential sparing of remote spatial memory even after reminding Neuropsychologia 43 4 609 624 doi 10 1016 j neuropsychologia 2004 07 007 PMID 15716151 S2CID 24894665 Bannerman D M Deacon R M J Offen S Friswell J Grubb M Rawlins J N P 2002 Double dissociation of function within the hippocampus Spatial memory and hyponeophagia Behavioral Neuroscience 116 5 884 901 doi 10 1037 0735 7044 116 5 884 PMID 12369808 Moser M Moser E I 1998 Distributed encoding and retrieval of spatial memory in the hippocampus The Journal of Neuroscience 18 18 7535 7542 doi 10 1523 JNEUROSCI 18 18 07535 1998 PMC 6793256 PMID 9736671 a b Lee I Kesner R P 2003 Time dependent relationship between the dorsal hippocampus and the prefrontal cortex in spatial memory The Journal of Neuroscience 23 4 1517 1523 doi 10 1523 JNEUROSCI 23 04 01517 2003 PMC 6742248 PMID 12598640 McGaugh J L 2000 Memory a century of consolidation Science 287 5451 248 251 Bibcode 2000Sci 287 248M doi 10 1126 science 287 5451 248 PMID 10634773 S2CID 40693856 Maguire E A Frackowiak R S J Frith C D 1997 Recalling routes around London Activation of the right hippocampus in taxi drivers The Journal of Neuroscience 17 18 7103 7110 doi 10 1523 JNEUROSCI 17 18 07103 1997 PMC 6573257 PMID 9278544 Brun V H Otnaess M K Molden S Steffenach H Witter M P Moser M Moser E I 2002 Place cells and place recognition maintained by direct entorhinal hippocampal circuitry Science 296 5576 2243 2246 Bibcode 2002Sci 296 2243B doi 10 1126 science 1071089 PMID 12077421 S2CID 8458253 Goodrich Hunsaker NJ Hunsaker MR Kesner RP 2008 The interactions and dissociations of the dorsal hippocampus subregions how the dentate gyrus CA3 and CA1 process spatial information Behav Neurosci 122 1 16 26 doi 10 1037 0735 7044 122 1 16 PMID 18298245 Saab BJ Georgiou J Nath A Lee FJ Wang M Michalon A Liu F Mansuy IM Roder JC 2009 NCS 1 in the dentate gyrus promotes exploration synaptic plasticity and rapid acquisition of spatial memory Neuron 63 5 643 56 doi 10 1016 j neuron 2009 08 014 PMID 19755107 S2CID 5321020 Colby C L Goldberg M E 1999 Space and attention in parietal cortex Annual Review of Neuroscience 22 319 349 doi 10 1146 annurev neuro 22 1 319 PMID 10202542 S2CID 14379470 Save E Moghaddam M 1996 Effects of lesions of the associative parietal cortex on the acquisition and use of spatial memory in egocentric and allocentric navigation tasks in the rat Behavioral Neuroscience 110 1 74 85 doi 10 1037 0735 7044 110 1 74 PMID 8652075 a b Cho Y H Kesner R P 1996 Involvement of entorhinal cortex or parietal cortex in long term spatial discrimination memory in rats Retrograde amnesia Behavioral Neuroscience 110 3 436 442 doi 10 1037 0735 7044 110 3 436 PMID 8888988 Hafting T Fyhn M Molden S Moser M Moser E I 2005 Microstructure of a spatial map in the entorhinal cortex Nature 436 7052 801 806 Bibcode 2005Natur 436 801H doi 10 1038 nature03721 PMID 15965463 S2CID 4405184 Fyhn M Molden S Witter M P Moser E I Moser M 2004 Spatial representation in the entorhinal cortex Science 305 5688 1258 1264 Bibcode 2004Sci 305 1258F doi 10 1126 science 1099901 PMID 15333832 a b Parron C Save E 2004 Comparison of the effects of entorhinal and retrosplenial cortical lesions on habituation reaction to spatial and non spatial changes during object exploration in the rat Neurobiology of Learning and Memory 82 1 1 11 doi 10 1016 j nlm 2004 03 004 PMID 15183166 S2CID 36475737 Parron C Poucet B Save E 2004 Entorhinal cortex lesions impair the use of distal but not proximal landmarks during place navigation in the rat Behavioural Brain Research 154 2 345 352 doi 10 1016 j bbr 2004 03 006 PMID 15313022 S2CID 919685 Nagahara H A Otto T Gallagher M 1995 Entorhinal perirhinal lesions impair performance of rats on two versions of place learning in the Morris water maze Behavioral Neuroscience 109 1 3 9 doi 10 1037 0735 7044 109 1 3 PMID 7734077 Hebert A E Dash P K 2002 Extracellular signal regulated kinase activity in the entorhinal cortex is necessary for long term spatial memory Learning amp Memory 9 4 156 166 doi 10 1101 lm 48502 PMC 182586 PMID 12177229 Pratt W E Mizumori S J Y 2001 Neurons in rat medial prefrontal cortex show anticipatory rate changes to predictable differential rewards in a spatial memory task Behavioural Brain Research 123 2 165 183 doi 10 1016 S0166 4328 01 00204 2 PMID 11399329 S2CID 3075976 Kesner R P Holbrook T 1987 Dissociation of item and order spatial memory in rats following medial prefrontal cortex lesions Neuropsychologia 25 4 653 664 doi 10 1016 0028 3932 87 90056 X PMID 3658148 S2CID 23596034 Slotnick S D Moo L R 2006 Prefrontal cortex hemispheric specialization for categorical and coordinate visual spatial memory Neuropsychologia 44 9 1560 1568 doi 10 1016 j neuropsychologia 2006 01 018 PMID 16516248 S2CID 14396813 Becker J T Walker J A Olton D S 1980 Neuroanatomical bases of spatial memory Brain Research 200 2 307 320 doi 10 1016 0006 8993 80 90922 1 PMID 7417818 S2CID 1429885 Aggleton J P Neave N Nagle S Sahgal A 1995 A comparison of the effects of medial prefrontal cingulate cortex and cingulum bundle lesions on tests of spatial memory Evidence of a double dissociation between frontal and cingulum bundle contributions The Journal of Neuroscience 15 11 7270 7281 doi 10 1523 JNEUROSCI 15 11 07270 1995 PMC 6578066 PMID 7472481 Lacroix L White I Feldon J 2002 Effect of excitotoxic lesions of rat medial prefrontal cortex on spatial memory Behavioural Brain Research 133 1 69 81 doi 10 1016 S0166 4328 01 00442 9 PMID 12048175 S2CID 24280276 Cooper B G Manka T F Mizumori S J Y 2001 Finding your way in the dark The retrosplenial cortex contributes to spatial memory and navigation without visual cues Behavioral Neuroscience 115 5 1012 1028 doi 10 1037 0735 7044 115 5 1012 PMID 11584914 Vann S D Aggleton J P 2002 Extensive cytotoxic lesions of the rat retrosplenial cortex reveal consistent deficits on tasks that tax allocentric spatial memory Behavioral Neuroscience 116 1 85 94 doi 10 1037 0735 7044 116 1 85 PMID 11895186 Vann S D Wilton L A Muir J L Aggleton J P 2003 Testing the importance of the caudal retrosplenial cortex for spatial memory in rats Behavioural Brain Research 140 1 2 107 118 doi 10 1016 S0166 4328 02 00274 7 PMID 12644284 S2CID 10400806 a b Maguire E A 2001 The retrosplenial contribution to human navigation A review of lesion and neuroimaging findings Scandinavian Journal of Psychology 42 3 225 238 doi 10 1111 1467 9450 00233 PMID 11501737 Liu P Bilkey D K 1998 Perirhinal cortex contributions to performance in the Morris water maze Behavioral Neuroscience 112 2 304 315 doi 10 1037 0735 7044 112 2 304 PMID 9588480 Gutbrod K Cohen R Maier T Meier E 1987 Memory for spatial and temporal order in aphasics and right hemisphere damaged patients Cortex 23 3 463 74 doi 10 1016 s0010 9452 87 80007 2 PMID 3677733 S2CID 4489682 Nunn JA Graydon FJ Polkey CE Morris RG 1999 Differential spatial memory impairment after right temporal lobectomy demonstrated using temporal titration Brain 122 1 47 59 doi 10 1093 brain 122 1 47 PMID 10050894 Tucker DM Hartry Speiser A McDougal L Luu P Degrandpre D 1999 Mood and spatial memory emotion and right hemisphere contribution to spatial cognition Biol Psychol 50 2 103 25 doi 10 1016 S0301 0511 99 00005 8 PMID 10403200 S2CID 42669695 Liang KC Hon W Tyan YM Liao WL 1994 Involvement of hippocampal NMDA and AMPA receptors in acquisition formation and retrieval of spatial memory in the Morris water maze Chin J Physiol 37 4 201 12 PMID 7796636 Crusio W E Schwegler H 2005 Learning spatial orientation tasks in the radial maze and structural variation in the hippocampus in inbred mice Behavioral and Brain Functions 1 1 3 doi 10 1186 1744 9081 1 3 PMC 1143776 PMID 15916698 Lee I Kesner R P 2002 Differential contribution of NMDA receptors in hippocampal subregions to spatial working memory Nature Neuroscience 5 2 162 168 doi 10 1038 nn790 PMID 11780144 S2CID 17727921 Morris R G M Anderson E Lynch G S Baudry M 1986 Selective impairment of learning and blockade of long term potentiation by an N methyl D aspartate receptor anatagonist AP5 Nature 319 6056 774 776 Bibcode 1986Natur 319 774M doi 10 1038 319774a0 PMID 2869411 S2CID 4356601 Lee I Kesner R P 2004 Encoding versus retrieval of spatial memory Double dissociation between the dentate gyrus and the perforant path inputs into CA3 in the dorsal hippocampus Hippocampus 14 1 66 76 doi 10 1002 hipo 10167 PMID 15058484 S2CID 21361912 Stark M Coslett HB Saffran EM 1996 Impairment of an egocentric map of locations implications for perception and action 13 Cogn Neuropsychol pp 481 523 Tae Sung Lim Giuseppe Iaria So Young Moon Topographical Disorientation in Mild Cognitive Impairment A Voxel Based Morphometry Study 9 August 2010 16 April 2011 lt http www neurolab ca 2010 5 Lim pdf gt Lewis D A Levitt P 2002 Schizophrenia as a disorder of neurodevelopment Annual Review of Neuroscience 25 409 432 doi 10 1146 annurev neuro 25 112701 142754 PMID 12052915 Lipska B K Weinberger D R 2000 To model a psychiatric disorder in animals Schizophrenia as a reality test Neuropsychopharmacology 23 3 223 239 doi 10 1016 S0893 133X 00 00137 8 PMID 10942847 Lipska B K Aultman J M Verma A Weinberger D R Moghaddam B 2002 Neonatal damage of the ventral hippocampus impairs working memory in the rat Neuropsychopharmacology 27 1 47 54 doi 10 1016 S0893 133X 02 00282 8 PMID 12062906 Marquis J P Goulet S Dore F Y 2008 Dissociable onset of cognitive and motivational dysfunctions following neonatal lesions of the ventral hippocampus in rats Behavioral Neuroscience 122 3 629 642 doi 10 1037 0735 7044 122 3 629 PMID 18513133 Brady A M 2009 Neonatal ventral hippocampal lesions disrupt set shifting ability in adult rats Behavioural Brain Research 205 1 294 298 doi 10 1016 j bbr 2009 07 025 PMID 19646488 S2CID 29943421 Marquis J P Goulet S Dore F Y 2008 Neonatal ventral hippocampus lesions disrupt extra dimensional shift and alter dendritic spine density in the medial prefrontal cortex of juvenile rats Neurobiology of Learning and Memory 90 2 339 346 doi 10 1016 j nlm 2008 04 005 PMID 18490183 S2CID 26066133 Winocur G amp Mills J A 1970 Transfer between related and unrelated problems following hippocampal lesions in rats Journal of Comparative and Physiological Psychology Levin E D Christopher N C 2006 Effects of clozapine on memory function in the rat neonatal hippocampal lesion model of schizophrenia Progress in Neuro Psychopharmacology and Biological Psychiatry 30 2 223 229 doi 10 1016 j pnpbp 2005 10 018 PMID 16356617 S2CID 23594752 Silva Gomez A B Bermudez M Quirion R Srivastava L K Picazo O Flores G 2003 Comparative behavioral changes between male and female postpubertal rats following neonatal excitotoxic lesions of the ventral hippocampus Brain Research 973 2 285 292 doi 10 1016 S0006 8993 03 02537 X PMID 12738072 S2CID 17456907 Ishikawa T Hiromichi F Osama I Atsuyuki O 2008 Wayfinding with a GPS based mobile navigation system A comparison with maps and direct experience Journal of Environmental Psychology 28 74 82 doi 10 1016 j jenvp 2007 09 002 a b Canugovi C Yoon JS Feldman NH Croteau DL Mattson MP Bohr VA September 2012 Endonuclease VIII like 1 NEIL1 promotes short term spatial memory retention and protects from ischemic stroke induced brain dysfunction and death in mice Proc Natl Acad Sci U S A 109 37 14948 53 Bibcode 2012PNAS 10914948C doi 10 1073 pnas 1204156109 PMC 3443144 PMID 22927410 Mammarella I C Lucangeli D Cornoldi C 2010 Spatial working memory and arithmetic deficites in children with nonverbal learning difficulties Journal of Learning Disabilities 43 5 455 468 doi 10 1177 0022219409355482 hdl 11577 2453526 PMID 20375290 S2CID 2596429 a b c Ferrara M Iaria G Tempesta D Curcio G Moroni F Marzano C De Gennaro L Pacitti C 2008 Sleep to find your way the role of sleep in the consolidation of memory for navigation in humans Hippocampus 18 8 844 851 doi 10 1002 hipo 20444 PMID 18493970 S2CID 25998045 Peigneux P Laureys S Fuchs S Collette F Perrin F Reggers J et al 2004 Are Spatial memories strengthened in the human hippocampus during slow wave sleep Neuron 44 3 535 545 doi 10 1016 j neuron 2004 10 007 hdl 2268 21205 PMID 15504332 S2CID 1424898 External links Editgettinglost ca Retrieved from https en wikipedia org w index php title Spatial memory amp oldid 1148418670, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.