fbpx
Wikipedia

Proprioception

Proprioception (/ˌprpri.ˈsɛpʃən, -ə-/[1][2] PROH-pree-oh-SEP-shən, -⁠ə-), also called kinaesthesia (or kinesthesia), is the sense of self-movement, force, and body position.[3][4]

Schematics and images of limb proprioceptors in mammals (top) and insects (bottom)[clarification needed]

Proprioception is mediated by proprioceptors, mechanosensory neurons located within muscles, tendons, and joints.[3] Most animals possess multiple subtypes of proprioceptors, which detect distinct kinematic parameters, such as joint position, movement, and load. Although all mobile animals possess proprioceptors, the structure of the sensory organs can vary across species.

Proprioceptive signals are transmitted to the central nervous system, where they are integrated with information from other sensory systems, such as the visual system and the vestibular system, to create an overall representation of body position, movement, and acceleration. In many animals, sensory feedback from proprioceptors is essential for stabilizing body posture and coordinating body movement.

System overview edit

In vertebrates, limb movement and velocity (muscle length and the rate of change) are encoded by one group of sensory neurons (type Ia sensory fiber) and another type encode static muscle length (group II neurons).[5] These two types of sensory neurons compose muscle spindles. There is a similar division of encoding in invertebrates; different subgroups of neurons of the Chordotonal organ[6] encode limb position and velocity.

To determine the load on a limb, vertebrates use sensory neurons in the Golgi tendon organs:[7] type Ib afferents. These proprioceptors are activated at given muscle forces, which indicate the resistance that muscle is experiencing. Similarly, invertebrates have a mechanism to determine limb load: the Campaniform sensilla.[8] These proprioceptors are active when a limb experiences resistance.[citation needed]

A third role for proprioceptors is to determine when a joint is at a specific position. In vertebrates, this is accomplished by Ruffini endings and Pacinian corpuscles. These proprioceptors are activated when the joint is at a threshold position, usually at the extremes of joint position. Invertebrates use hair plates[9] to accomplish this; a field of bristles located within joints that detects the relative movement of limb segments through the deflection of the associated cuticular hairs.

Reflexes edit

The sense of proprioception is ubiquitous across mobile animals and is essential for the motor coordination of the body. Proprioceptors can form reflex circuits with motor neurons to provide rapid feedback about body and limb position. These mechanosensory circuits are important for flexibly maintaining posture and balance, especially during locomotion. For example, consider the stretch reflex, in which stretch across a muscle is detected by a sensory receptor (e.g., muscle spindle, chordotonal neurons), which activates a motor neuron to induce muscle contraction and oppose the stretch. During locomotion, sensory neurons can reverse their activity when stretched, to promote rather than oppose movement.[10][11]

Conscious and nonconscious edit

In humans, a distinction is made between conscious proprioception and nonconscious proprioception:

Mechanisms edit

Proprioception is mediated by mechanically sensitive proprioceptor neurons distributed throughout an animal's body. Most vertebrates possess three basic types of proprioceptors: muscle spindles, which are embedded in skeletal muscles, Golgi tendon organs, which lie at the interface of muscles and tendons, and joint receptors, which are low-threshold mechanoreceptors embedded in joint capsules. Many invertebrates, such as insects, also possess three basic proprioceptor types with analogous functional properties: chordotonal neurons, campaniform sensilla, and hair plates.[3]

The initiation of proprioception is the activation of a proprioceptor in the periphery.[16] The proprioceptive sense is believed to be composed of information from sensory neurons located in the inner ear (motion and orientation) and in the stretch receptors located in the muscles and the joint-supporting ligaments (stance). There are specific nerve receptors for this form of perception termed "proprioceptors", just as there are specific receptors for pressure, light, temperature, sound, and other sensory experiences. Proprioceptors are sometimes known as adequate stimuli receptors.[citation needed]

Members of the transient receptor potential family of ion channels have been found to be important for proprioception in fruit flies,[17] nematode worms,[18] African clawed frogs,[19] and zebrafish.[20] PIEZO2, a nonselective cation channel, has been shown to underlie the mechanosensitivity of proprioceptors in mice.[21] Humans with loss-of-function mutations in the PIEZO2 gene exhibit specific deficits in joint proprioception,[a] as well as vibration and touch discrimination, suggesting that the PIEZO2 channel is essential for mechanosensitivity in some proprioceptors and low-threshold mechanoreceptors.[23]

Although it was known that finger kinesthesia relies on skin sensation, recent research has found that kinesthesia-based haptic perception relies strongly on the forces experienced during touch.[24] This research allows the creation of "virtual", illusory haptic shapes with different perceived qualities.[25]

Anatomy edit

Proprioception of the head stems from the muscles innervated by the trigeminal nerve, where the general somatic afferent fibers pass without synapsing in the trigeminal ganglion (first-order sensory neuron), reaching the mesencephalic tract and the mesencephalic nucleus of trigeminal nerve.[26] Proprioception of limbs often occurs due to receptors in connective tissue near joints.[27]

Function edit

Stability edit

An important role for proprioception is to allow an animal to stabilize itself against perturbations.[28] For instance, for a person to walk or stand upright, they must continuously monitor their posture and adjust muscle activity as needed to provide balance. Similarly, when walking on unfamiliar terrain or even tripping, the person must adjust the output of their muscles quickly based on estimated limb position and velocity. Proprioceptor reflex circuits are thought to play an important role to allow fast and unconscious execution of these behaviors, To make control of these behaviors efficient, proprioceptors are also thought to regulate reciprocal inhibition in muscles, leading to agonist-antagonist muscle pairs.

Planning and refining movements edit

When planning complex movements such as reaching or grooming, an animal must consider the current position and velocity of its limb and use that information to adjust dynamics to target a final position. If the animal's estimate of its limb's initial position is wrong, then a deficiency in the movement can result. Furthermore, proprioception is crucial in refining the movement if it deviates from the trajectory.

Development edit

In adult fruit flies, each proprioceptor class arises from a specific cell lineage (i.e. each chordotonal neuron is from the chordotonal neuron lineage, although multiple lineages give rise to sensory bristles). After the last cell division, proprioceptors send out axons toward the central nervous system and are guided by hormonal gradients to reach stereotyped synapses. [29] The mechanisms underlying axon guidance are similar across invertebrates and vertebrates.[citation needed]

In mammals with longer gestation periods, muscle spindles are fully formed at birth. Muscle spindles continue to grow throughout post-natal development as muscles grow. [30]

Mathematical models edit

Proprioceptors transfer the mechanical state of the body into patterns of neural activity. This transfer can be modeled mathematically, for example to better understand the internal workings of a proprioceptor[31][32][33] or to provide more realistic feedback in neuromechanical simulations.[34][35]

Various proprioceptor models of complexity have been developed. They range from simple phenomenological models to complex structural models, in which the mathematical elements correspond to anatomical features of the proprioceptor. The focus has been on muscle spindles,[31][32][33][36] but Golgi tendon organs[37][38] and insects' hair plates[39] have been modeled too.

Muscle spindles edit

Poppelle and Bowman [40] used linear system theory to model mammalian muscle spindles Ia and II afferents. They obtained a set of de-afferented muscle spindles, measured their response to a series of sinusoidal and step function stretches, and fit a transfer function to the spike rate. They found that the following Laplace transfer function describes the firing rate responses of the primary sensory fibers for a change in length:

 

The following equation describes the response of secondary sensory fibers:

 

More recently, Blum et al.[41] showed that the muscle spindle firing rate is modeled better as tracking the force of the muscle, rather than the length. Furthermore, muscle spindle firing rates show history dependence which cannot be modeled by a linear time-invariant system model.

Golgi tendon organs edit

Houk and Simon [38] provided one of the first mathematical models of a Golgi tendon organ receptor, modeling the firing rate of the receptor as a function of the muscle tension force. Just as for muscle spindles, they find that, as the receptors respond linearly to sine waves of different frequencies and has little variance in response over time to the same stimulus, Golgi tendon organ receptors may be modeled as linear time-invariant systems. Specifically, they find that the firing rate of a Golgi tendon organ receptor may be modeled as a sum of 3 decaying exponentials:

 

where   is the firing rate and   is a step function of force.

The corresponding Laplace transfer function for this system is:

 

For a soleus receptor, Houk and Simon obtain average values of K=57 pulses/sec/kg, A=0.31, a=0.22 sec−1, B=0.4, b=2.17 sec−1, C=2.5, c=36 sec−1 .

When modeling a stretch reflex, Lin and Crago[42] improved upon this model by adding a logarithmic nonlinearity before the Houk and Simon model and a threshold nonlinearity after.

Impairment edit

Chronic edit

Proprioception, a sense vital for rapid and proper body coordination,[43] can be permanently lost or impaired as a result of genetic conditions, disease, viral infections, and injuries. For instance, patients with joint hypermobility or Ehlers–Danlos syndromes, genetic conditions that result in weak connective tissue throughout the body, have chronic impairments to proprioception.[44] Moreover, proprioception may be chronically impaired in physiological aging (presbypropria),[45] autism spectrum disorder,[46] and Parkinson's disease.[47] In regards to Parkinson's disease, it remains unclear whether the proprioceptive-related decline in motor function occurs due to disrupted proprioceptors in the periphery or signaling in the spinal cord or brain.

In rare cases, viral infections result in a loss of proprioception. Ian Waterman and Charles Freed are two such people that lost their sense of proprioception from the neck down from supposed viral infections (i.e. gastric flu and a rare viral infection). After losing their sense of proprioception, Ian and Charles could move their lower body, but could not coordinate their movements. However, both individuals regained some control of their limbs and body by consciously planning their movements and relying solely on visual feedback. Interestingly, both individuals can still sense pain and temperature, indicating that they specifically lost proprioceptive feedback, but not tactile and nociceptive feedback. The impact of losing the sense of proprioception on daily life is perfectly illustrated when Ian Waterman stated, "What is an active brain without mobility".[48][49]

Proprioception is also permanently lost in people who lose a limb or body part through injury or amputation. After the removal of a limb, people may have a confused sense of that limb's existence on their body, known as phantom limb syndrome. Phantom sensations can occur as passive proprioceptive sensations of the limb's presence, or more active sensations such as perceived movement, pressure, pain, itching, or temperature. There are a variety of theories concerning the etiology of phantom limb sensations and experience. One is the concept of "proprioceptive memory", which argues that the brain retains a memory of specific limb positions and that after amputation there is a conflict between the visual system, which actually sees that the limb is missing, and the memory system which remembers the limb as a functioning part of the body.[50] Phantom sensations and phantom pain may also occur after the removal of body parts other than the limbs, such as after amputation of the breast, extraction of a tooth (phantom tooth pain), or removal of an eye (phantom eye syndrome).

Acute edit

Proprioception is occasionally impaired spontaneously, especially when one is tired. Similar effects can be felt during the hypnagogic state of consciousness, during the onset of sleep. One's body may feel too large or too small, or parts of the body may feel distorted in size. Similar effects can sometimes occur during epilepsy or migraine auras. These effects are presumed to arise from abnormal stimulation of the part of the parietal cortex of the brain involved with integrating information from different parts of the body.[51] Proprioceptive illusions can also be induced, such as the Pinocchio illusion.

Temporary impairment of proprioception has also been known to occur from an overdose of vitamin B6 (pyridoxine and pyridoxamine)[citation needed]. Most of the impaired function returns to normal shortly after the amount of the vitamin in the body returns to a level that is closer to that of the physiological norm. Impairment can also be caused by cytotoxic factors such as chemotherapy.

It has been proposed that even common tinnitus and the attendant hearing frequency-gaps masked by the perceived sounds may cause erroneous proprioceptive information to the balance and comprehension centers of the brain, precipitating mild confusion.

Temporary loss or impairment of proprioception may happen periodically during growth, mostly during adolescence. Growth that might also influence this would be large increases or drops in bodyweight/size due to fluctuations of fat (liposuction, rapid fat loss or gain) and/or muscle content (bodybuilding, anabolic steroids, catabolisis/starvation)[citation needed]. It can also occur in those that gain new levels of flexibility, stretching, and contortion. A limb's being in a new range of motion never experienced (or at least, not for a long time since youth perhaps) can disrupt one's sense of location of that limb. Possible experiences include suddenly feeling that feet or legs are missing from one's mental self-image; needing to look down at one's limbs to be sure they are still there; and falling down while walking, especially when attention is focused upon something other than the act of walking.

Diagnosis edit

Impaired proprioception may be diagnosed through a series of tests, each focusing on a different functional aspect of proprioception.

The Romberg's test is often used to assess balance. The subject must stand with feet together and eyes closed without support for 30 seconds. If the subject loses balance and falls, it is an indicator for impaired proprioception.

For evaluating proprioception's contribution to motor control, a common protocol is joint position matching.[52] The patient is blindfolded while a joint is moved to a specific angle for a given period of time and then returned to neutral. The subject is then asked to move the joint back to the specified angle. Recent investigations have shown that hand dominance, participant age, active versus passive matching, and presentation time of the angle can all affect performance on joint position matching tasks.[citation needed]

For passive sensing of joint angles, recent studies have found that experiments to probe psychophysical thresholds produce more precise estimates of proprioceptive discrimination than the joint position matching task.[53] In these experiments, the subject holds on to an object (such as an armrest) that moves and stops at different positions. The subject must discriminate whether one position is closer to the body than another. From the subject's choices, the tester may determine the subject's discrimination thresholds.

Proprioception is tested by American police officers using the field sobriety testing to check for alcohol intoxication. The subject is required to touch his or her nose with eyes closed; people with normal proprioception may make an error of no more than 20 mm (0.79 in)[citation needed], while people with impaired proprioception (a symptom of moderate to severe alcohol intoxication) fail this test due to difficulty locating their limbs in space relative to their noses.

Training edit

Proprioception is what allows someone to learn to walk in complete darkness without losing balance. During the learning of any new skill, sport, or art, it is usually necessary to become familiar with some proprioceptive tasks specific to that activity. Without the appropriate integration of proprioceptive input, an artist would not be able to brush paint onto a canvas without looking at the hand as it moved the brush over the canvas; it would be impossible to drive an automobile because a motorist would not be able to steer or use the pedals while looking at the road ahead; a person could not touch type or perform ballet; and people would not even be able to walk without watching where they put their feet.[citation needed]

Oliver Sacks reported the case of a young woman who lost her proprioception due to a viral infection of her spinal cord.[54] At first she could not move properly at all or even control her tone of voice (as voice modulation is primarily proprioceptive). Later she relearned by using her sight (watching her feet) and inner ear only for movement while using hearing to judge voice modulation. She eventually acquired a stiff and slow movement and nearly normal speech, which is believed to be the best possible in the absence of this sense. She could not judge effort involved in picking up objects and would grip them painfully to be sure she did not drop them.

Lower limb proprioceptive work

The proprioceptive sense can be sharpened through study of many disciplines. Juggling trains reaction time, spatial location, and efficient movement.[citation needed] Standing on a wobble board or balance board is often used to retrain or increase proprioceptive abilities, particularly as physical therapy for ankle or knee injuries. Slacklining is another method to increase proprioception.

Standing on one leg (stork standing) and various other body-position challenges are also used in such disciplines as yoga, Wing Chun and tai chi.[55] The vestibular system of the inner ear, vision and proprioception are the main three requirements for balance.[56] Moreover, there are specific devices designed for proprioception training, such as the exercise ball, which works on balancing the abdominal and back muscles.

History of study edit

In 1557, the position-movement sensation was described by Julius Caesar Scaliger as a "sense of locomotion".[57]

In 1826, Charles Bell expounded the idea of a "muscle sense",[58] which is credited as one of the first descriptions of physiologic feedback mechanisms.[59] Bell's idea was that commands are carried from the brain to the muscles, and that reports on the muscle's condition would be sent in the reverse direction.

In 1847, the London neurologist Robert Todd highlighted important differences in the anterolateral and posterior columns of the spinal cord, and suggested that the latter were involved in the coordination of movement and balance.[60]

At around the same time, Moritz Heinrich Romberg, a Berlin neurologist, was describing unsteadiness made worse by eye closure or darkness, now known as the eponymous Romberg's sign, once synonymous with tabes dorsalis, that became recognised as common to all proprioceptive disorders of the legs.[citation needed]

In 1880, Henry Charlton Bastian suggested "kinaesthesia" instead of "muscle sense" on the basis that some of the afferent information (back to the brain) comes from other structures, including tendons, joints, and skin.[61]

In 1889, Alfred Goldscheider suggested a classification of kinaesthesia into three types: muscle, tendon, and articular sensitivity.[62]

In 1906, the term proprio-ception (and also intero-ception and extero-ception) is attested in a publication by Charles Scott Sherrington involving receptors.[63] He explains the terminology as follows:[64]

The main fields of distribution of the receptor organs fundamentally distinguishable seem, therefore, to be two, namely, a surface field constituted by the surface layer of the organism, and a deep field constituted by the tissues of the organism beneath the surface sheet.
[...]
the stimulations occurring in [the] deep field is that the stimuli are traceable to actions of the organism itself, and are so in much greater measure than are the stimulations of the surface field of the organism. Since in the deep field the stimuli to the receptors are delivered by the organism itself,[b] the deep receptors may be termed proprio-ceptors, and the deep field a field of proprio-ception.

Today, the "exteroceptors" are the organs that provide information originating outside the body, such as the eyes, ears, mouth, and skin. The interoceptors provide information about the internal organs, and the "proprioceptors" provide information about movement derived from muscular, tendon, and articular sources. Using Sherrington's system, physiologists and anatomists search for specialised nerve endings that transmit mechanical data on joint capsule, tendon and muscle tension (such as Golgi tendon organs and muscle spindles), which play a large role in proprioception.[citation needed]

Primary endings of muscle spindles "respond to the size of a muscle length change and its speed" and "contribute both to the sense of limb position and movement".[65] Secondary endings of muscle spindles detect changes in muscle length, and thus supply information regarding only the sense of position.[65] Essentially, muscle spindles are stretch receptors.[66] It has been accepted that cutaneous receptors also contribute directly to proprioception by providing "accurate perceptual information about joint position and movement", and this knowledge is combined with information from the muscle spindles.[67]

Etymology edit

Proprioception is from Latin proprius, meaning "one's own", "individual", and capio, capere, to take or grasp. Thus to grasp one's own position in space, including the position of the limbs in relation to each other and the body as a whole.[citation needed]

The word kinesthesia or kinæsthesia (kinesthetic sense) refers to movement sense, but has been used inconsistently to refer either to proprioception alone or to the brain's integration of proprioceptive and vestibular inputs. Kinesthesia is a modern medical term composed of elements from Greek; kinein "to set in motion; to move" (from PIE root *keie- "to set in motion") + aisthesis "perception, feeling" (from PIE root *au- "to perceive").

Plants and bacteria edit

Although they lack neurons, systems responding to stimuli (analogous to the sensory system in animals with a nervous system, which includes the proprioception) have also been described in some plants (angiosperms).[68][69] Terrestrial plants control the orientation of their primary growth through the sensing of several vectorial stimuli such as the light gradient or the gravitational acceleration. This control has been called tropism. A quantitative study of shoot gravitropism demonstrated that, when a plant is tilted, it cannot recover a steady erected posture under the sole driving of the sensing of its angular deflection versus gravity. An additional control through the continuous sensing of its curvature by the organ and the subsequent driving an active straightening process are required.[68][69][70] Being a sensing by the plant of the relative configuration of its parts, it has been called proprioception. This dual sensing and control by gravisensing and proprioception has been formalized into a unifying mathematical model simulating the complete driving of the gravitropic movement. This model has been validated on 11 species sampling the phylogeny of land angiosperms, and on organs of very contrasted sizes, ranging from the small germination of wheat (coleoptile) to the trunk of poplar trees.[68][69]

Further studies have shown that the cellular mechanism of proprioception in plants involves myosin and actin, and seems to occur in specialized cells.[71] Proprioception was then found to be involved in other tropisms and to be central also to the control of nutation.[72]

The discovery of proprioception in plants has generated an interest in the popular science and generalist media.[73][74] This is because this discovery questions a long-lasting a priori that we have on plants. In some cases this has led to a shift between proprioception and self-awareness or self-consciousness. There is no scientific ground for such a semantic shift. Indeed, even in animals, proprioception can be unconscious; so it is thought to be in plants.[69][74]

Recent studies suggest that bacteria have control systems that may resemble proprioception.[75]

See also edit

Notes edit

  1. ^ The Piezo channel receptors play key roles in the perception of pressure, touch, and proprioception (Piezo2 receptor).[22]
  2. ^ in Latin: propriō

References edit

  1. ^ "proprioception". Merriam-Webster.com Dictionary.
  2. ^ . OxfordDictionaries.com. Archived from the original on September 3, 2012. Retrieved 2016-01-20.
  3. ^ a b c Tuthill JC, Azim E (1 March 2018). "Proprioception". Current Biology. 28 (5): R194–R203. doi:10.1016/j.cub.2018.01.064. PMID 29510103.
  4. ^ Balasubramanian, Ravi; Santos, Veronica (3 January 2014). The Human Hand as an Inspiration for Robot Hand Development. Springer. p. 127. ISBN 978-3-319-03017-3. Proprioception also includes the ability to perceive force and heaviness, the history of which has been less controversial than the senses of limb position and movement. The sense of force refers to the ability to perceive the force that is generated by the muscles and its primary receptor is the Golgi tendon organ.
  5. ^ Lundberg A, Malmgren K, Schomburg ED (November 1978). "Role of joint afferents in motor control exemplified by effects on reflex pathways from Ib afferents". The Journal of Physiology. 284: 327–43. doi:10.1113/jphysiol.1978.sp012543. PMC 1282824. PMID 215758.
  6. ^ Bush BM (April 1965). "Proprioception by the Coxo-Basal Chordotonal Organ, Cb, in Legs of the Crab, Carcinus Maenas". The Journal of Experimental Biology. 42 (2): 285–97. doi:10.1242/jeb.42.2.285. PMID 14323766.
  7. ^ Murphy JT, Wong YC, Kwan HC (July 1975). "Afferent-efferent linkages in motor cortex for single forelimb muscles". Journal of Neurophysiology. 38 (4): 990–1014. doi:10.1152/jn.1975.38.4.990. PMID 125786. S2CID 20111229.
  8. ^ Chapman KM (April 1965). "Campaniform Sensilla on the Tactile Spines of the Legs of the Cockroach". The Journal of Experimental Biology. 42 (2): 191–203. doi:10.1242/jeb.42.2.191. PMID 14323763.
  9. ^ Bräunig P, Hustert R, Pflüger HJ (1981). "Distribution and specific central projections of mechanoreceptors in the thorax and proximal leg joints of locusts. I. Morphology, location and innervation of internal proprioceptors of pro- and metathorax and their central projections". Cell and Tissue Research. 216 (1): 57–77. doi:10.1007/bf00234545. PMID 7226209. S2CID 29439820.
  10. ^ Bässler U, Büschges A (June 1998). "Pattern generation for stick insect walking movements--multisensory control of a locomotor program". Brain Research. Brain Research Reviews. 27 (1): 65–88. doi:10.1016/S0165-0173(98)00006-X. PMID 9639677. S2CID 16673654.
  11. ^ Tuthill JC, Wilson RI (October 2016). "Mechanosensation and Adaptive Motor Control in Insects". Current Biology. 26 (20): R1022–R1038. doi:10.1016/j.cub.2016.06.070. PMC 5120761. PMID 27780045.
  12. ^ Fix JD (2002). Neuroanatomy. Hagerstown, MD: Lippincott Williams & Wilkins. pp. 127. ISBN 978-0-7817-2829-4.
  13. ^ Swenson RS. "Review of Clinical and Functional Neuroscience, Chapter 7A: Somatosensory Systems". (online version Dartmouth college). from the original on 2008-04-05. Retrieved 2008-04-10.
  14. ^ Siegel A (2010). Essential Neuroscience. Lippincott Williams & Wilkins. p. 263.
  15. ^ "TMJ, Forward Head Posture and Neck Pain". Freedom From Pain Institute. from the original on 2013-10-05. Retrieved 3 October 2013.
  16. ^ Sherrington CS (1907). "On the proprioceptive system, especially in its reflex aspect". Brain. 29 (4): 467–85. doi:10.1093/brain/29.4.467.
  17. ^ Walker RG, Willingham AT, Zuker CS (March 2000). "A Drosophila mechanosensory transduction channel". Science. 287 (5461): 2229–34. Bibcode:2000Sci...287.2229W. CiteSeerX 10.1.1.646.2497. doi:10.1126/science.287.5461.2229. PMID 10744543.
  18. ^ Li W, Feng Z, Sternberg PW, Xu XZ (March 2006). "A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue". Nature. 440 (7084): 684–87. Bibcode:2006Natur.440..684L. doi:10.1038/nature04538. PMC 2865900. PMID 16572173.
  19. ^ Shin JB, Adams D, Paukert M, Siba M, Sidi S, Levin M, et al. (August 2005). "Xenopus TRPN1 (NOMPC) localizes to microtubule-based cilia in epithelial cells, including inner-ear hair cells". Proceedings of the National Academy of Sciences of the United States of America. 102 (35): 12572–77. Bibcode:2005PNAS..10212572S. doi:10.1073/pnas.0502403102. PMC 1194908. PMID 16116094.
  20. ^ Sidi S, Friedrich RW, Nicolson T (July 2003). "NompC TRP channel required for vertebrate sensory hair cell mechanotransduction". Science. 301 (5629): 96–99. Bibcode:2003Sci...301...96S. doi:10.1126/science.1084370. PMID 12805553. S2CID 23882972.
  21. ^ Woo SH, Lukacs V, de Nooij JC, Zaytseva D, Criddle CR, Francisco A, et al. (December 2015). "Piezo2 is the principal mechanotransduction channel for proprioception". Nature Neuroscience. 18 (12): 1756–62. doi:10.1038/nn.4162. PMC 4661126. PMID 26551544.
  22. ^ The Nobel Assembly at Karolinska Institutet (4 Oct 2021) Press release: The Nobel Prize in Physiology or Medicine 2021 The Nobel Prize in Physiology or Medicine 2021: David Julius, and Ardem Patapoutian
  23. ^ Chesler AT, Szczot M, Bharucha-Goebel D, Čeko M, Donkervoort S, Laubacher C, et al. (October 2016). "The Role of PIEZO2 in Human Mechanosensation". The New England Journal of Medicine. 375 (14): 1355–64. doi:10.1056/NEJMoa1602812. PMC 5911918. PMID 27653382.
  24. ^ Robles-De-La-Torre G, Hayward V (July 2001). (PDF). Nature. 412 (6845): 445–48. Bibcode:2001Natur.412..445R. doi:10.1038/35086588. PMID 11473320. S2CID 4413295. Archived from the original (PDF) on 2006-10-03. Retrieved 2006-10-03.
  25. ^ the MIT Technology Review article "The Cutting Edge of Haptics"
  26. ^ Orhan E. Arslan (7 August 2014). Neuroanatomical Basis of Clinical Neurology (2 ed.). CRC Press. pp. 432–. ISBN 978-1-4398-4834-0.
  27. ^ van der Wal, Jaap (7 December 2009). "The Architecture of the Connective Tissue in the Musculoskeletal System—An Often Overlooked Functional Parameter as to Proprioception in the Locomotor Apparatus". International Journal of Therapeutic Massage & Bodywork. 2 (4): 9–23. doi:10.3822/ijtmb.v2i4.62. ISSN 1916-257X. PMC 3091473. PMID 21589740.
  28. ^ David J. Magee; James E. Zachazewski; William S. Quillen (18 September 2008). Pathology and Intervention in Musculoskeletal Rehabilitation - E-Book. Elsevier Health Sciences. pp. 533–. ISBN 978-1-4160-6942-3. OCLC 1017975705.
  29. ^ Jan, Y. N. and Jan, L. Y. (1993). The peripheral nervous system. In: The Development of Drosophila melanogaster (ed. Bate, M and Arias, A. M.), pp. 1207–44. New York: Cold Spring Harbor Laboratory Press.
  30. ^ Maier A (February 1997). "Development and regeneration of muscle spindles in mammals and birds". The International Journal of Developmental Biology. 41 (1): 1–17. PMID 9074933.
  31. ^ a b Blum KP, Lamotte D'Incamps B, Zytnicki D, Ting LH (September 2017). "Force encoding in muscle spindles during stretch of passive muscle". PLOS Computational Biology. 13 (9): e1005767. Bibcode:2017PLSCB..13E5767B. doi:10.1371/journal.pcbi.1005767. PMC 5634630. PMID 28945740.
  32. ^ a b Mileusnic MP, Brown IE, Lan N, Loeb GE (October 2006). "Mathematical models of proprioceptors. I. Control and transduction in the muscle spindle". Journal of Neurophysiology. 96 (4): 1772–88. doi:10.1152/jn.00868.2005. PMID 16672301.
  33. ^ a b Maltenfort MG, Burke RE (May 2003). "Spindle model responsive to mixed fusimotor inputs and testable predictions of beta feedback effects". Journal of Neurophysiology. 89 (5): 2797–809. doi:10.1152/jn.00942.2002. PMID 12740414. S2CID 18253128.
  34. ^ Röhrle O, Yavuz UŞ, Klotz T, Negro F, Heidlauf T (November 2019). "Multiscale modeling of the neuromuscular system: Coupling neurophysiology and skeletal muscle mechanics" (PDF). Wiley Interdisciplinary Reviews. Systems Biology and Medicine. 11 (6): e1457. doi:10.1002/wsbm.1457. PMID 31237041. S2CID 195354352.
  35. ^ Prilutsky BI, Klishko AN, Weber DJ, Lemay MA (2016). "Computing Motion Dependent Afferent Activity During Cat Locomotion Using a Forward Dynamics Musculoskeletal Model". In Prilutsky BI, Edwards DH (eds.). Neuromechanical Modeling of Posture and Locomotion. Springer Series in Computational Neuroscience. New York: Springer. pp. 273–307. doi:10.1007/978-1-4939-3267-2_10. ISBN 978-1-4939-3267-2.
  36. ^ Prochazka A (1999). Binder MD (ed.). Chapter 11 Quantifying Proprioception. pp. 133–42. {{cite book}}: |work= ignored (help)
  37. ^ Mileusnic MP, Loeb GE (October 2006). "Mathematical models of proprioceptors. II. Structure and function of the Golgi tendon organ". Journal of Neurophysiology. 96 (4): 1789–802. doi:10.1152/jn.00869.2005. PMID 16672300.
  38. ^ a b Houk J, Simon W (November 1967). "Responses of Golgi tendon organs to forces applied to muscle tendon". Journal of Neurophysiology. 30 (6): 1466–81. doi:10.1152/jn.1967.30.6.1466. PMID 6066449.
  39. ^ Ache JM, Dürr V (July 2015). "A Computational Model of a Descending Mechanosensory Pathway Involved in Active Tactile Sensing". PLOS Computational Biology. 11 (7): e1004263. Bibcode:2015PLSCB..11E4263A. doi:10.1371/journal.pcbi.1004263. PMC 4497639. PMID 26158851.
  40. ^ Poppele RE, Bowman RJ (January 1970). "Quantitative description of linear behavior of mammalian muscle spindles". Journal of Neurophysiology. 33 (1): 59–72. doi:10.1152/jn.1970.33.1.59. PMID 4243791.
  41. ^ Blum KP, Lamotte D'Incamps B, Zytnicki D, Ting LH (September 2017). Ayers J (ed.). "Force encoding in muscle spindles during stretch of passive muscle". PLOS Computational Biology. 13 (9): e1005767. Bibcode:2017PLSCB..13E5767B. doi:10.1371/journal.pcbi.1005767. PMC 5634630. PMID 28945740.
  42. ^ Lin, Chou-Ching K.; Crago, Patrick E. (January 2002). "Neural and Mechanical Contributions to the Stretch Reflex: A Model Synthesis". Annals of Biomedical Engineering. 30 (1): 54–67. doi:10.1114/1.1432692. ISSN 0090-6964. PMID 11874142. S2CID 13015209.
  43. ^ Robles-De-La-Torre G (2006). (PDF). IEEE MultiMedia. 13 (3): 24–30. doi:10.1109/MMUL.2006.69. S2CID 16153497. Archived from the original (PDF) on 2014-01-24. Retrieved 2006-10-07.
  44. ^ Castori M (2012). "Ehlers-danlos syndrome, hypermobility type: an underdiagnosed hereditary connective tissue disorder with mucocutaneous, articular, and systemic manifestations". ISRN Dermatology. 2012: 751768. doi:10.5402/2012/751768. PMC 3512326. PMID 23227356.
  45. ^ Boisgontier MP, Olivier I, Chenu O, Nougier V (October 2012). "Presbypropria: the effects of physiological ageing on proprioceptive control". Age. 34 (5): 1179–94. doi:10.1007/s11357-011-9300-y. PMC 3448996. PMID 21850402.
  46. ^ Blanche, Erna Imperatore; Reinoso, Gustavo; Chang, Megan C; Bodison, Stephanie (1 September 2012). "Proprioceptive Processing Difficulties Among Children With Autism Spectrum Disorders and Developmental Disabilities". The American Journal of Occupational Therapy. 66 (5): 621–624. doi:10.5014/ajot.2012.004234. PMC 3754787. PMID 22917129.
  47. ^ Konczak J, Corcos DM, Horak F, Poizner H, Shapiro M, Tuite P, Volkmann J, Maschke M (November 2009). "Proprioception and motor control in Parkinson's disease". Journal of Motor Behavior. 41 (6): 543–52. doi:10.3200/35-09-002. PMID 19592360. S2CID 5775266.
  48. ^ The Man Who Lost His Body (1997). BBC Documentary.
  49. ^ The Man Who Lost His Body, retrieved 2023-02-21
  50. ^ Weeks SR, Anderson-Barnes VC, Tsao JW (September 2010). (PDF). The Neurologist. 16 (5): 277–86. doi:10.1097/nrl.0b013e3181edf128. PMID 20827116. S2CID 205894711. Archived from the original (PDF) on 2011-08-12.
  51. ^ Ehrsson HH, Kito T, Sadato N, Passingham RE, Naito E (December 2005). "Neural substrate of body size: illusory feeling of shrinking of the waist". PLOS Biology. 3 (12): e412. doi:10.1371/journal.pbio.0030412. PMC 1287503. PMID 16336049.
  52. ^ Goble DJ, Noble BC, Brown SH (August 2010). (PDF). Neuroscience Letters. 481 (1): 54–58. doi:10.1016/j.neulet.2010.06.053. PMID 20600603. S2CID 24385107. Archived from the original (PDF) on 2014-12-19. Retrieved 2013-03-15.
  53. ^ Elangovan, Naveen; Herrmann, Amanda; Konczak, Jürgen (April 2014). "Assessing proprioceptive function: evaluating joint position matching methods against psychophysical thresholds". Physical Therapy. 94 (4): 553–561. doi:10.2522/ptj.20130103. ISSN 1538-6724. PMC 6281037. PMID 24262599.
  54. ^ Sacks, O. "The Disembodied Lady", in The Man Who Mistook His Wife for a Hat and his autobiographical case study A Leg to Stand On.
  55. ^ cheng man ch'ing (1981). T'ai Chi Ch'uan. Blue Snake Books usa. pp. 86, 88. ISBN 978-0-913028-85-8.
  56. ^ Hanc J (15 September 2010). "Staying on Balance, With the Help of Exercises". The New York Times. from the original on 2017-10-11. Retrieved 11 October 2017.
  57. ^ Jerosch J, Heisel J (2010). Management der Arthrose: Innovative Therapiekonzepte (in German). Deutscher Ärzteverlag. p. 107. ISBN 978-3-7691-0599-5. Retrieved 8 April 2011.
  58. ^ Singh AK (1991). The Comprehensive History of Psychology. Motilal Banarsidass. p. 66. ISBN 978-81-208-0804-1. Retrieved 8 April 2011.
  59. ^ Dickinson J (1976). Proprioceptive control of human movement. Princeton Book Co. p. 4. Retrieved 8 April 2011.
  60. ^ Todd RB (1847). The Cyclopaedia of Anatomy and Physiology Vol. 4. London: Longmans. pp. 585–723.
  61. ^ Foster SL (2010). Choreographing Empathy: Kinesthesia in Performance. Taylor & Francis. p. 74. ISBN 978-0-415-59655-8. Retrieved 8 April 2011.
  62. ^ Brookhart JM, Mountcastle VB, Geiger SR (1984). Darian-Smith I (ed.). The Nervous system: Sensory processes;. American Physiological Society. p. 784. ISBN 978-0-683-01108-1. Retrieved 8 April 2011.
  63. ^ Sherrington, C.S. (1906). The Integrative Action of the Nervous System. NewHaven, CT: Yale University Press.
  64. ^ Sherrington, Charles Scott (1907). "On The Proprio-ceptive System, Especially In Its Reflex Aspect". Brain. 29 (4): 467–482. doi:10.1093/brain/29.4.467.
  65. ^ a b Proske U, Gandevia SC (September 2009). "The kinaesthetic senses". The Journal of Physiology. 587 (Pt 17): 4139–46. doi:10.1113/jphysiol.2009.175372. PMC 2754351. PMID 19581378.
  66. ^ Winter JA, Allen TJ, Proske U (November 2005). "Muscle spindle signals combine with the sense of effort to indicate limb position". The Journal of Physiology. 568 (Pt 3): 1035–46. doi:10.1113/jphysiol.2005.092619. PMC 1464181. PMID 16109730.
  67. ^ Collins DF, Refshauge KM, Todd G, Gandevia SC (September 2005). "Cutaneous receptors contribute to kinesthesia at the index finger, elbow, and knee". Journal of Neurophysiology. 94 (3): 1699–706. doi:10.1152/jn.00191.2005. PMID 15917323.
  68. ^ a b c Bastien R, Bohr T, Moulia B, Douady S (January 2013). "Unifying model of shoot gravitropism reveals proprioception as a central feature of posture control in plants". Proceedings of the National Academy of Sciences of the United States of America. 110 (2): 755–60. Bibcode:2013PNAS..110..755B. doi:10.1073/pnas.1214301109. PMC 3545775. PMID 23236182.
  69. ^ a b c d Hamant O, Moulia B (October 2016). "How do plants read their own shapes?". The New Phytologist. 212 (2): 333–37. doi:10.1111/nph.14143. PMID 27532273.
  70. ^ "From gravitropism to dynamical posture control: proprioception in plants". University of Cambridge. from the original on 2017-08-05. Retrieved 5 August 2017.
  71. ^ Okamoto K, Ueda H, Shimada T, Tamura K, Kato T, Tasaka M, et al. (March 2015). "Regulation of organ straightening and plant posture by an actin-myosin XI cytoskeleton". Nature Plants. 1 (4): 15031. doi:10.1038/nplants.2015.31. hdl:2433/197219. PMID 27247032. S2CID 22432635.
  72. ^ Bastien R, Meroz Y (December 2016). "The Kinematics of Plant Nutation Reveals a Simple Relation between Curvature and the Orientation of Differential Growth". PLOS Computational Biology. 12 (12): e1005238. arXiv:1603.00459. Bibcode:2016PLSCB..12E5238B. doi:10.1371/journal.pcbi.1005238. PMC 5140061. PMID 27923062.
  73. ^ Gabbatiss J (10 January 2017). "Plants can see, hear and smell – and respond". from the original on 2017-08-06. Retrieved 5 August 2017.
  74. ^ a b plantguy (28 May 2017). . How Plants Work. Archived from the original on 9 November 2018. Retrieved 5 August 2017.
  75. ^ Antani, Jyot D.; Gupta, Rachit; Lee, Annie H.; Rhee, Kathy Y.; Manson, Michael D.; Lele, Pushkar P. (2021-09-14). "Mechanosensitive recruitment of stator units promotes binding of the response regulator CheY-P to the flagellar motor". Nature Communications. 12 (1): 5442. Bibcode:2021NatCo..12.5442A. doi:10.1038/s41467-021-25774-2. ISSN 2041-1723. PMC 8440544. PMID 34521846.

External links edit

proprioception, proh, pree, shən, also, called, kinaesthesia, kinesthesia, sense, self, movement, force, body, position, schematics, images, limb, proprioceptors, mammals, insects, bottom, clarification, needed, mediated, proprioceptors, mechanosensory, neuron. Proprioception ˌ p r oʊ p r i oʊ ˈ s ɛ p ʃ en e 1 2 PROH pree oh SEP shen e also called kinaesthesia or kinesthesia is the sense of self movement force and body position 3 4 Schematics and images of limb proprioceptors in mammals top and insects bottom clarification needed Proprioception is mediated by proprioceptors mechanosensory neurons located within muscles tendons and joints 3 Most animals possess multiple subtypes of proprioceptors which detect distinct kinematic parameters such as joint position movement and load Although all mobile animals possess proprioceptors the structure of the sensory organs can vary across species Proprioceptive signals are transmitted to the central nervous system where they are integrated with information from other sensory systems such as the visual system and the vestibular system to create an overall representation of body position movement and acceleration In many animals sensory feedback from proprioceptors is essential for stabilizing body posture and coordinating body movement Contents 1 System overview 1 1 Reflexes 1 2 Conscious and nonconscious 2 Mechanisms 3 Anatomy 4 Function 4 1 Stability 4 2 Planning and refining movements 5 Development 6 Mathematical models 6 1 Muscle spindles 6 2 Golgi tendon organs 7 Impairment 7 1 Chronic 7 2 Acute 7 3 Diagnosis 8 Training 9 History of study 9 1 Etymology 10 Plants and bacteria 11 See also 12 Notes 13 References 14 External linksSystem overview editIn vertebrates limb movement and velocity muscle length and the rate of change are encoded by one group of sensory neurons type Ia sensory fiber and another type encode static muscle length group II neurons 5 These two types of sensory neurons compose muscle spindles There is a similar division of encoding in invertebrates different subgroups of neurons of the Chordotonal organ 6 encode limb position and velocity To determine the load on a limb vertebrates use sensory neurons in the Golgi tendon organs 7 type Ib afferents These proprioceptors are activated at given muscle forces which indicate the resistance that muscle is experiencing Similarly invertebrates have a mechanism to determine limb load the Campaniform sensilla 8 These proprioceptors are active when a limb experiences resistance citation needed A third role for proprioceptors is to determine when a joint is at a specific position In vertebrates this is accomplished by Ruffini endings and Pacinian corpuscles These proprioceptors are activated when the joint is at a threshold position usually at the extremes of joint position Invertebrates use hair plates 9 to accomplish this a field of bristles located within joints that detects the relative movement of limb segments through the deflection of the associated cuticular hairs Reflexes edit The sense of proprioception is ubiquitous across mobile animals and is essential for the motor coordination of the body Proprioceptors can form reflex circuits with motor neurons to provide rapid feedback about body and limb position These mechanosensory circuits are important for flexibly maintaining posture and balance especially during locomotion For example consider the stretch reflex in which stretch across a muscle is detected by a sensory receptor e g muscle spindle chordotonal neurons which activates a motor neuron to induce muscle contraction and oppose the stretch During locomotion sensory neurons can reverse their activity when stretched to promote rather than oppose movement 10 11 Conscious and nonconscious edit In humans a distinction is made between conscious proprioception and nonconscious proprioception Conscious proprioception is communicated by the dorsal column medial lemniscus pathway to the cerebrum 12 Nonconscious proprioception is communicated primarily via the dorsal spinocerebellar tract 13 and ventral spinocerebellar tract 14 to the cerebellum A nonconscious reaction is seen in the human proprioceptive reflex or righting reflex in the event that the body tilts in any direction the person will cock their head back to level the eyes against the horizon 15 This is seen even in infants as soon as they gain control of their neck muscles This control comes from the cerebellum the part of the brain affecting balance citation needed Mechanisms editProprioception is mediated by mechanically sensitive proprioceptor neurons distributed throughout an animal s body Most vertebrates possess three basic types of proprioceptors muscle spindles which are embedded in skeletal muscles Golgi tendon organs which lie at the interface of muscles and tendons and joint receptors which are low threshold mechanoreceptors embedded in joint capsules Many invertebrates such as insects also possess three basic proprioceptor types with analogous functional properties chordotonal neurons campaniform sensilla and hair plates 3 The initiation of proprioception is the activation of a proprioceptor in the periphery 16 The proprioceptive sense is believed to be composed of information from sensory neurons located in the inner ear motion and orientation and in the stretch receptors located in the muscles and the joint supporting ligaments stance There are specific nerve receptors for this form of perception termed proprioceptors just as there are specific receptors for pressure light temperature sound and other sensory experiences Proprioceptors are sometimes known as adequate stimuli receptors citation needed Members of the transient receptor potential family of ion channels have been found to be important for proprioception in fruit flies 17 nematode worms 18 African clawed frogs 19 and zebrafish 20 PIEZO2 a nonselective cation channel has been shown to underlie the mechanosensitivity of proprioceptors in mice 21 Humans with loss of function mutations in the PIEZO2 gene exhibit specific deficits in joint proprioception a as well as vibration and touch discrimination suggesting that the PIEZO2 channel is essential for mechanosensitivity in some proprioceptors and low threshold mechanoreceptors 23 Although it was known that finger kinesthesia relies on skin sensation recent research has found that kinesthesia based haptic perception relies strongly on the forces experienced during touch 24 This research allows the creation of virtual illusory haptic shapes with different perceived qualities 25 Anatomy editProprioception of the head stems from the muscles innervated by the trigeminal nerve where the general somatic afferent fibers pass without synapsing in the trigeminal ganglion first order sensory neuron reaching the mesencephalic tract and the mesencephalic nucleus of trigeminal nerve 26 Proprioception of limbs often occurs due to receptors in connective tissue near joints 27 Function editThis section does not cite any sources Please help improve this section by adding citations to reliable sources Unsourced material may be challenged and removed October 2021 Learn how and when to remove this template message Stability edit An important role for proprioception is to allow an animal to stabilize itself against perturbations 28 For instance for a person to walk or stand upright they must continuously monitor their posture and adjust muscle activity as needed to provide balance Similarly when walking on unfamiliar terrain or even tripping the person must adjust the output of their muscles quickly based on estimated limb position and velocity Proprioceptor reflex circuits are thought to play an important role to allow fast and unconscious execution of these behaviors To make control of these behaviors efficient proprioceptors are also thought to regulate reciprocal inhibition in muscles leading to agonist antagonist muscle pairs Planning and refining movements edit When planning complex movements such as reaching or grooming an animal must consider the current position and velocity of its limb and use that information to adjust dynamics to target a final position If the animal s estimate of its limb s initial position is wrong then a deficiency in the movement can result Furthermore proprioception is crucial in refining the movement if it deviates from the trajectory Development editIn adult fruit flies each proprioceptor class arises from a specific cell lineage i e each chordotonal neuron is from the chordotonal neuron lineage although multiple lineages give rise to sensory bristles After the last cell division proprioceptors send out axons toward the central nervous system and are guided by hormonal gradients to reach stereotyped synapses 29 The mechanisms underlying axon guidance are similar across invertebrates and vertebrates citation needed In mammals with longer gestation periods muscle spindles are fully formed at birth Muscle spindles continue to grow throughout post natal development as muscles grow 30 Mathematical models editProprioceptors transfer the mechanical state of the body into patterns of neural activity This transfer can be modeled mathematically for example to better understand the internal workings of a proprioceptor 31 32 33 or to provide more realistic feedback in neuromechanical simulations 34 35 Various proprioceptor models of complexity have been developed They range from simple phenomenological models to complex structural models in which the mathematical elements correspond to anatomical features of the proprioceptor The focus has been on muscle spindles 31 32 33 36 but Golgi tendon organs 37 38 and insects hair plates 39 have been modeled too Muscle spindles edit Poppelle and Bowman 40 used linear system theory to model mammalian muscle spindles Ia and II afferents They obtained a set of de afferented muscle spindles measured their response to a series of sinusoidal and step function stretches and fit a transfer function to the spike rate They found that the following Laplace transfer function describes the firing rate responses of the primary sensory fibers for a change in length H s K 1 s s 0 44 s 11 3 s 44 s 0 04 s 0 816 displaystyle H s K 1 frac s s 0 44 s 11 3 s 44 s 0 04 s 0 816 nbsp The following equation describes the response of secondary sensory fibers H s K 2 s 0 44 s 11 3 s 0 816 displaystyle H s K 2 frac s 0 44 s 11 3 s 0 816 nbsp More recently Blum et al 41 showed that the muscle spindle firing rate is modeled better as tracking the force of the muscle rather than the length Furthermore muscle spindle firing rates show history dependence which cannot be modeled by a linear time invariant system model Golgi tendon organs edit Houk and Simon 38 provided one of the first mathematical models of a Golgi tendon organ receptor modeling the firing rate of the receptor as a function of the muscle tension force Just as for muscle spindles they find that as the receptors respond linearly to sine waves of different frequencies and has little variance in response over time to the same stimulus Golgi tendon organ receptors may be modeled as linear time invariant systems Specifically they find that the firing rate of a Golgi tendon organ receptor may be modeled as a sum of 3 decaying exponentials r t K 1 A exp a t B exp b t C exp c t u t displaystyle r t K 1 A exp at B exp bt C exp ct u t nbsp where r t displaystyle r t nbsp is the firing rate and u t displaystyle u t nbsp is a step function of force The corresponding Laplace transfer function for this system is H s K 1 A s s a B s s b C s s c displaystyle H s K left 1 frac As s a frac Bs s b frac Cs s c right nbsp For a soleus receptor Houk and Simon obtain average values of K 57 pulses sec kg A 0 31 a 0 22 sec 1 B 0 4 b 2 17 sec 1 C 2 5 c 36 sec 1 When modeling a stretch reflex Lin and Crago 42 improved upon this model by adding a logarithmic nonlinearity before the Houk and Simon model and a threshold nonlinearity after Impairment editChronic edit Proprioception a sense vital for rapid and proper body coordination 43 can be permanently lost or impaired as a result of genetic conditions disease viral infections and injuries For instance patients with joint hypermobility or Ehlers Danlos syndromes genetic conditions that result in weak connective tissue throughout the body have chronic impairments to proprioception 44 Moreover proprioception may be chronically impaired in physiological aging presbypropria 45 autism spectrum disorder 46 and Parkinson s disease 47 In regards to Parkinson s disease it remains unclear whether the proprioceptive related decline in motor function occurs due to disrupted proprioceptors in the periphery or signaling in the spinal cord or brain In rare cases viral infections result in a loss of proprioception Ian Waterman and Charles Freed are two such people that lost their sense of proprioception from the neck down from supposed viral infections i e gastric flu and a rare viral infection After losing their sense of proprioception Ian and Charles could move their lower body but could not coordinate their movements However both individuals regained some control of their limbs and body by consciously planning their movements and relying solely on visual feedback Interestingly both individuals can still sense pain and temperature indicating that they specifically lost proprioceptive feedback but not tactile and nociceptive feedback The impact of losing the sense of proprioception on daily life is perfectly illustrated when Ian Waterman stated What is an active brain without mobility 48 49 Proprioception is also permanently lost in people who lose a limb or body part through injury or amputation After the removal of a limb people may have a confused sense of that limb s existence on their body known as phantom limb syndrome Phantom sensations can occur as passive proprioceptive sensations of the limb s presence or more active sensations such as perceived movement pressure pain itching or temperature There are a variety of theories concerning the etiology of phantom limb sensations and experience One is the concept of proprioceptive memory which argues that the brain retains a memory of specific limb positions and that after amputation there is a conflict between the visual system which actually sees that the limb is missing and the memory system which remembers the limb as a functioning part of the body 50 Phantom sensations and phantom pain may also occur after the removal of body parts other than the limbs such as after amputation of the breast extraction of a tooth phantom tooth pain or removal of an eye phantom eye syndrome Acute edit Proprioception is occasionally impaired spontaneously especially when one is tired Similar effects can be felt during the hypnagogic state of consciousness during the onset of sleep One s body may feel too large or too small or parts of the body may feel distorted in size Similar effects can sometimes occur during epilepsy or migraine auras These effects are presumed to arise from abnormal stimulation of the part of the parietal cortex of the brain involved with integrating information from different parts of the body 51 Proprioceptive illusions can also be induced such as the Pinocchio illusion Temporary impairment of proprioception has also been known to occur from an overdose of vitamin B6 pyridoxine and pyridoxamine citation needed Most of the impaired function returns to normal shortly after the amount of the vitamin in the body returns to a level that is closer to that of the physiological norm Impairment can also be caused by cytotoxic factors such as chemotherapy It has been proposed that even common tinnitus and the attendant hearing frequency gaps masked by the perceived sounds may cause erroneous proprioceptive information to the balance and comprehension centers of the brain precipitating mild confusion Temporary loss or impairment of proprioception may happen periodically during growth mostly during adolescence Growth that might also influence this would be large increases or drops in bodyweight size due to fluctuations of fat liposuction rapid fat loss or gain and or muscle content bodybuilding anabolic steroids catabolisis starvation citation needed It can also occur in those that gain new levels of flexibility stretching and contortion A limb s being in a new range of motion never experienced or at least not for a long time since youth perhaps can disrupt one s sense of location of that limb Possible experiences include suddenly feeling that feet or legs are missing from one s mental self image needing to look down at one s limbs to be sure they are still there and falling down while walking especially when attention is focused upon something other than the act of walking Diagnosis edit Impaired proprioception may be diagnosed through a series of tests each focusing on a different functional aspect of proprioception The Romberg s test is often used to assess balance The subject must stand with feet together and eyes closed without support for 30 seconds If the subject loses balance and falls it is an indicator for impaired proprioception For evaluating proprioception s contribution to motor control a common protocol is joint position matching 52 The patient is blindfolded while a joint is moved to a specific angle for a given period of time and then returned to neutral The subject is then asked to move the joint back to the specified angle Recent investigations have shown that hand dominance participant age active versus passive matching and presentation time of the angle can all affect performance on joint position matching tasks citation needed For passive sensing of joint angles recent studies have found that experiments to probe psychophysical thresholds produce more precise estimates of proprioceptive discrimination than the joint position matching task 53 In these experiments the subject holds on to an object such as an armrest that moves and stops at different positions The subject must discriminate whether one position is closer to the body than another From the subject s choices the tester may determine the subject s discrimination thresholds Proprioception is tested by American police officers using the field sobriety testing to check for alcohol intoxication The subject is required to touch his or her nose with eyes closed people with normal proprioception may make an error of no more than 20 mm 0 79 in citation needed while people with impaired proprioception a symptom of moderate to severe alcohol intoxication fail this test due to difficulty locating their limbs in space relative to their noses Training editProprioception is what allows someone to learn to walk in complete darkness without losing balance During the learning of any new skill sport or art it is usually necessary to become familiar with some proprioceptive tasks specific to that activity Without the appropriate integration of proprioceptive input an artist would not be able to brush paint onto a canvas without looking at the hand as it moved the brush over the canvas it would be impossible to drive an automobile because a motorist would not be able to steer or use the pedals while looking at the road ahead a person could not touch type or perform ballet and people would not even be able to walk without watching where they put their feet citation needed Oliver Sacks reported the case of a young woman who lost her proprioception due to a viral infection of her spinal cord 54 At first she could not move properly at all or even control her tone of voice as voice modulation is primarily proprioceptive Later she relearned by using her sight watching her feet and inner ear only for movement while using hearing to judge voice modulation She eventually acquired a stiff and slow movement and nearly normal speech which is believed to be the best possible in the absence of this sense She could not judge effort involved in picking up objects and would grip them painfully to be sure she did not drop them source source source source source source source source Lower limb proprioceptive workThe proprioceptive sense can be sharpened through study of many disciplines Juggling trains reaction time spatial location and efficient movement citation needed Standing on a wobble board or balance board is often used to retrain or increase proprioceptive abilities particularly as physical therapy for ankle or knee injuries Slacklining is another method to increase proprioception Standing on one leg stork standing and various other body position challenges are also used in such disciplines as yoga Wing Chun and tai chi 55 The vestibular system of the inner ear vision and proprioception are the main three requirements for balance 56 Moreover there are specific devices designed for proprioception training such as the exercise ball which works on balancing the abdominal and back muscles History of study editIn 1557 the position movement sensation was described by Julius Caesar Scaliger as a sense of locomotion 57 In 1826 Charles Bell expounded the idea of a muscle sense 58 which is credited as one of the first descriptions of physiologic feedback mechanisms 59 Bell s idea was that commands are carried from the brain to the muscles and that reports on the muscle s condition would be sent in the reverse direction In 1847 the London neurologist Robert Todd highlighted important differences in the anterolateral and posterior columns of the spinal cord and suggested that the latter were involved in the coordination of movement and balance 60 At around the same time Moritz Heinrich Romberg a Berlin neurologist was describing unsteadiness made worse by eye closure or darkness now known as the eponymous Romberg s sign once synonymous with tabes dorsalis that became recognised as common to all proprioceptive disorders of the legs citation needed In 1880 Henry Charlton Bastian suggested kinaesthesia instead of muscle sense on the basis that some of the afferent information back to the brain comes from other structures including tendons joints and skin 61 In 1889 Alfred Goldscheider suggested a classification of kinaesthesia into three types muscle tendon and articular sensitivity 62 In 1906 the term proprio ception and also intero ception and extero ception is attested in a publication by Charles Scott Sherrington involving receptors 63 He explains the terminology as follows 64 The main fields of distribution of the receptor organs fundamentally distinguishable seem therefore to be two namely a surface field constituted by the surface layer of the organism and a deep field constituted by the tissues of the organism beneath the surface sheet the stimulations occurring in the deep field is that the stimuli are traceable to actions of the organism itself and are so in much greater measure than are the stimulations of the surface field of the organism Since in the deep field the stimuli to the receptors are delivered by the organism itself b the deep receptors may be termed proprio ceptors and the deep field a field of proprio ception Today the exteroceptors are the organs that provide information originating outside the body such as the eyes ears mouth and skin The interoceptors provide information about the internal organs and the proprioceptors provide information about movement derived from muscular tendon and articular sources Using Sherrington s system physiologists and anatomists search for specialised nerve endings that transmit mechanical data on joint capsule tendon and muscle tension such as Golgi tendon organs and muscle spindles which play a large role in proprioception citation needed Primary endings of muscle spindles respond to the size of a muscle length change and its speed and contribute both to the sense of limb position and movement 65 Secondary endings of muscle spindles detect changes in muscle length and thus supply information regarding only the sense of position 65 Essentially muscle spindles are stretch receptors 66 It has been accepted that cutaneous receptors also contribute directly to proprioception by providing accurate perceptual information about joint position and movement and this knowledge is combined with information from the muscle spindles 67 Etymology edit Proprioception is from Latin proprius meaning one s own individual and capio capere to take or grasp Thus to grasp one s own position in space including the position of the limbs in relation to each other and the body as a whole citation needed The word kinesthesia or kinaesthesia kinesthetic sense refers to movement sense but has been used inconsistently to refer either to proprioception alone or to the brain s integration of proprioceptive and vestibular inputs Kinesthesia is a modern medical term composed of elements from Greek kinein to set in motion to move from PIE root keie to set in motion aisthesis perception feeling from PIE root au to perceive Plants and bacteria editAlthough they lack neurons systems responding to stimuli analogous to the sensory system in animals with a nervous system which includes the proprioception have also been described in some plants angiosperms 68 69 Terrestrial plants control the orientation of their primary growth through the sensing of several vectorial stimuli such as the light gradient or the gravitational acceleration This control has been called tropism A quantitative study of shoot gravitropism demonstrated that when a plant is tilted it cannot recover a steady erected posture under the sole driving of the sensing of its angular deflection versus gravity An additional control through the continuous sensing of its curvature by the organ and the subsequent driving an active straightening process are required 68 69 70 Being a sensing by the plant of the relative configuration of its parts it has been called proprioception This dual sensing and control by gravisensing and proprioception has been formalized into a unifying mathematical model simulating the complete driving of the gravitropic movement This model has been validated on 11 species sampling the phylogeny of land angiosperms and on organs of very contrasted sizes ranging from the small germination of wheat coleoptile to the trunk of poplar trees 68 69 Further studies have shown that the cellular mechanism of proprioception in plants involves myosin and actin and seems to occur in specialized cells 71 Proprioception was then found to be involved in other tropisms and to be central also to the control of nutation 72 The discovery of proprioception in plants has generated an interest in the popular science and generalist media 73 74 This is because this discovery questions a long lasting a priori that we have on plants In some cases this has led to a shift between proprioception and self awareness or self consciousness There is no scientific ground for such a semantic shift Indeed even in animals proprioception can be unconscious so it is thought to be in plants 69 74 Recent studies suggest that bacteria have control systems that may resemble proprioception 75 See also editBalance disorder Physiological disturbance of perception Body image Aesthetic perception of one s own body Body schema Postural model that keeps track of limb position Broken escalator phenomenon Illusion when stepping onto a broken escalator Dizziness Neurological condition causing impairment in spatial perception and stability Equilibrioception Physiological sense regarding posturePages displaying short descriptions of redirect targets Hand eye coordination Coordination between the eyes and handPages displaying short descriptions of redirect targets Ideomotor phenomenon Concept in hypnosis and psychological research Illusions of self motion Misperception of one s location or movement Instinctive aiming Shooting method where the weapon s sights are not used or relied onPages displaying short descriptions of redirect targets Kinaesthetics study of body motion and of the perception both conscious and unconscious of one s own body motionsPages displaying wikidata descriptions as a fallback Kinesthetic learning Learning by physical activities List of distinct cell types in the adult human body Motion sickness Nausea caused by motion or perceived motion Motor control Regulation of movement within organisms possessing a nervous system Multisensory integration Study of senses and nervous system Seasickness Motion sickness occurring at sea Spatial disorientation Inability of a person to correctly determine their body position in space Theory of multiple intelligences Theory of intelligence proposed by Howard Gardner Vertigo Type of dizziness where a person has the sensation of moving or surrounding objects movingNotes edit The Piezo channel receptors play key roles in the perception of pressure touch and proprioception Piezo2 receptor 22 in Latin propriōReferences edit proprioception Merriam Webster com Dictionary proprioceptive OxfordDictionaries com Archived from the original on September 3 2012 Retrieved 2016 01 20 a b c Tuthill JC Azim E 1 March 2018 Proprioception Current Biology 28 5 R194 R203 doi 10 1016 j cub 2018 01 064 PMID 29510103 Balasubramanian Ravi Santos Veronica 3 January 2014 The Human Hand as an Inspiration for Robot Hand Development Springer p 127 ISBN 978 3 319 03017 3 Proprioception also includes the ability to perceive force and heaviness the history of which has been less controversial than the senses of limb position and movement The sense of force refers to the ability to perceive the force that is generated by the muscles and its primary receptor is the Golgi tendon organ Lundberg A Malmgren K Schomburg ED November 1978 Role of joint afferents in motor control exemplified by effects on reflex pathways from Ib afferents The Journal of Physiology 284 327 43 doi 10 1113 jphysiol 1978 sp012543 PMC 1282824 PMID 215758 Bush BM April 1965 Proprioception by the Coxo Basal Chordotonal Organ Cb in Legs of the Crab Carcinus Maenas The Journal of Experimental Biology 42 2 285 97 doi 10 1242 jeb 42 2 285 PMID 14323766 Murphy JT Wong YC Kwan HC July 1975 Afferent efferent linkages in motor cortex for single forelimb muscles Journal of Neurophysiology 38 4 990 1014 doi 10 1152 jn 1975 38 4 990 PMID 125786 S2CID 20111229 Chapman KM April 1965 Campaniform Sensilla on the Tactile Spines of the Legs of the Cockroach The Journal of Experimental Biology 42 2 191 203 doi 10 1242 jeb 42 2 191 PMID 14323763 Braunig P Hustert R Pfluger HJ 1981 Distribution and specific central projections of mechanoreceptors in the thorax and proximal leg joints of locusts I Morphology location and innervation of internal proprioceptors of pro and metathorax and their central projections Cell and Tissue Research 216 1 57 77 doi 10 1007 bf00234545 PMID 7226209 S2CID 29439820 Bassler U Buschges A June 1998 Pattern generation for stick insect walking movements multisensory control of a locomotor program Brain Research Brain Research Reviews 27 1 65 88 doi 10 1016 S0165 0173 98 00006 X PMID 9639677 S2CID 16673654 Tuthill JC Wilson RI October 2016 Mechanosensation and Adaptive Motor Control in Insects Current Biology 26 20 R1022 R1038 doi 10 1016 j cub 2016 06 070 PMC 5120761 PMID 27780045 Fix JD 2002 Neuroanatomy Hagerstown MD Lippincott Williams amp Wilkins pp 127 ISBN 978 0 7817 2829 4 Swenson RS Review of Clinical and Functional Neuroscience Chapter 7A Somatosensory Systems online version Dartmouth college Archived from the original on 2008 04 05 Retrieved 2008 04 10 Siegel A 2010 Essential Neuroscience Lippincott Williams amp Wilkins p 263 TMJ Forward Head Posture and Neck Pain Freedom From Pain Institute Archived from the original on 2013 10 05 Retrieved 3 October 2013 Sherrington CS 1907 On the proprioceptive system especially in its reflex aspect Brain 29 4 467 85 doi 10 1093 brain 29 4 467 Walker RG Willingham AT Zuker CS March 2000 A Drosophila mechanosensory transduction channel Science 287 5461 2229 34 Bibcode 2000Sci 287 2229W CiteSeerX 10 1 1 646 2497 doi 10 1126 science 287 5461 2229 PMID 10744543 Li W Feng Z Sternberg PW Xu XZ March 2006 A C elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue Nature 440 7084 684 87 Bibcode 2006Natur 440 684L doi 10 1038 nature04538 PMC 2865900 PMID 16572173 Shin JB Adams D Paukert M Siba M Sidi S Levin M et al August 2005 Xenopus TRPN1 NOMPC localizes to microtubule based cilia in epithelial cells including inner ear hair cells Proceedings of the National Academy of Sciences of the United States of America 102 35 12572 77 Bibcode 2005PNAS 10212572S doi 10 1073 pnas 0502403102 PMC 1194908 PMID 16116094 Sidi S Friedrich RW Nicolson T July 2003 NompC TRP channel required for vertebrate sensory hair cell mechanotransduction Science 301 5629 96 99 Bibcode 2003Sci 301 96S doi 10 1126 science 1084370 PMID 12805553 S2CID 23882972 Woo SH Lukacs V de Nooij JC Zaytseva D Criddle CR Francisco A et al December 2015 Piezo2 is the principal mechanotransduction channel for proprioception Nature Neuroscience 18 12 1756 62 doi 10 1038 nn 4162 PMC 4661126 PMID 26551544 The Nobel Assembly at Karolinska Institutet 4 Oct 2021 Press release The Nobel Prize in Physiology or Medicine 2021 The Nobel Prize in Physiology or Medicine 2021 David Julius and Ardem Patapoutian Chesler AT Szczot M Bharucha Goebel D Ceko M Donkervoort S Laubacher C et al October 2016 The Role of PIEZO2 in Human Mechanosensation The New England Journal of Medicine 375 14 1355 64 doi 10 1056 NEJMoa1602812 PMC 5911918 PMID 27653382 Robles De La Torre G Hayward V July 2001 Force can overcome object geometry in the perception of shape through active touch PDF Nature 412 6845 445 48 Bibcode 2001Natur 412 445R doi 10 1038 35086588 PMID 11473320 S2CID 4413295 Archived from the original PDF on 2006 10 03 Retrieved 2006 10 03 the MIT Technology Review article The Cutting Edge of Haptics Orhan E Arslan 7 August 2014 Neuroanatomical Basis of Clinical Neurology 2 ed CRC Press pp 432 ISBN 978 1 4398 4834 0 van der Wal Jaap 7 December 2009 The Architecture of the Connective Tissue in the Musculoskeletal System An Often Overlooked Functional Parameter as to Proprioception in the Locomotor Apparatus International Journal of Therapeutic Massage amp Bodywork 2 4 9 23 doi 10 3822 ijtmb v2i4 62 ISSN 1916 257X PMC 3091473 PMID 21589740 David J Magee James E Zachazewski William S Quillen 18 September 2008 Pathology and Intervention in Musculoskeletal Rehabilitation E Book Elsevier Health Sciences pp 533 ISBN 978 1 4160 6942 3 OCLC 1017975705 Jan Y N and Jan L Y 1993 The peripheral nervous system In The Development of Drosophila melanogaster ed Bate M and Arias A M pp 1207 44 New York Cold Spring Harbor Laboratory Press Maier A February 1997 Development and regeneration of muscle spindles in mammals and birds The International Journal of Developmental Biology 41 1 1 17 PMID 9074933 a b Blum KP Lamotte D Incamps B Zytnicki D Ting LH September 2017 Force encoding in muscle spindles during stretch of passive muscle PLOS Computational Biology 13 9 e1005767 Bibcode 2017PLSCB 13E5767B doi 10 1371 journal pcbi 1005767 PMC 5634630 PMID 28945740 a b Mileusnic MP Brown IE Lan N Loeb GE October 2006 Mathematical models of proprioceptors I Control and transduction in the muscle spindle Journal of Neurophysiology 96 4 1772 88 doi 10 1152 jn 00868 2005 PMID 16672301 a b Maltenfort MG Burke RE May 2003 Spindle model responsive to mixed fusimotor inputs and testable predictions of beta feedback effects Journal of Neurophysiology 89 5 2797 809 doi 10 1152 jn 00942 2002 PMID 12740414 S2CID 18253128 Rohrle O Yavuz US Klotz T Negro F Heidlauf T November 2019 Multiscale modeling of the neuromuscular system Coupling neurophysiology and skeletal muscle mechanics PDF Wiley Interdisciplinary Reviews Systems Biology and Medicine 11 6 e1457 doi 10 1002 wsbm 1457 PMID 31237041 S2CID 195354352 Prilutsky BI Klishko AN Weber DJ Lemay MA 2016 Computing Motion Dependent Afferent Activity During Cat Locomotion Using a Forward Dynamics Musculoskeletal Model In Prilutsky BI Edwards DH eds Neuromechanical Modeling of Posture and Locomotion Springer Series in Computational Neuroscience New York Springer pp 273 307 doi 10 1007 978 1 4939 3267 2 10 ISBN 978 1 4939 3267 2 Prochazka A 1999 Binder MD ed Chapter 11 Quantifying Proprioception pp 133 42 a href Template Cite book html title Template Cite book cite book a work ignored help Mileusnic MP Loeb GE October 2006 Mathematical models of proprioceptors II Structure and function of the Golgi tendon organ Journal of Neurophysiology 96 4 1789 802 doi 10 1152 jn 00869 2005 PMID 16672300 a b Houk J Simon W November 1967 Responses of Golgi tendon organs to forces applied to muscle tendon Journal of Neurophysiology 30 6 1466 81 doi 10 1152 jn 1967 30 6 1466 PMID 6066449 Ache JM Durr V July 2015 A Computational Model of a Descending Mechanosensory Pathway Involved in Active Tactile Sensing PLOS Computational Biology 11 7 e1004263 Bibcode 2015PLSCB 11E4263A doi 10 1371 journal pcbi 1004263 PMC 4497639 PMID 26158851 Poppele RE Bowman RJ January 1970 Quantitative description of linear behavior of mammalian muscle spindles Journal of Neurophysiology 33 1 59 72 doi 10 1152 jn 1970 33 1 59 PMID 4243791 Blum KP Lamotte D Incamps B Zytnicki D Ting LH September 2017 Ayers J ed Force encoding in muscle spindles during stretch of passive muscle PLOS Computational Biology 13 9 e1005767 Bibcode 2017PLSCB 13E5767B doi 10 1371 journal pcbi 1005767 PMC 5634630 PMID 28945740 Lin Chou Ching K Crago Patrick E January 2002 Neural and Mechanical Contributions to the Stretch Reflex A Model Synthesis Annals of Biomedical Engineering 30 1 54 67 doi 10 1114 1 1432692 ISSN 0090 6964 PMID 11874142 S2CID 13015209 Robles De La Torre G 2006 The Importance of the Sense of Touch in Virtual and Real Environments PDF IEEE MultiMedia 13 3 24 30 doi 10 1109 MMUL 2006 69 S2CID 16153497 Archived from the original PDF on 2014 01 24 Retrieved 2006 10 07 Castori M 2012 Ehlers danlos syndrome hypermobility type an underdiagnosed hereditary connective tissue disorder with mucocutaneous articular and systemic manifestations ISRN Dermatology 2012 751768 doi 10 5402 2012 751768 PMC 3512326 PMID 23227356 Boisgontier MP Olivier I Chenu O Nougier V October 2012 Presbypropria the effects of physiological ageing on proprioceptive control Age 34 5 1179 94 doi 10 1007 s11357 011 9300 y PMC 3448996 PMID 21850402 Blanche Erna Imperatore Reinoso Gustavo Chang Megan C Bodison Stephanie 1 September 2012 Proprioceptive Processing Difficulties Among Children With Autism Spectrum Disorders and Developmental Disabilities The American Journal of Occupational Therapy 66 5 621 624 doi 10 5014 ajot 2012 004234 PMC 3754787 PMID 22917129 Konczak J Corcos DM Horak F Poizner H Shapiro M Tuite P Volkmann J Maschke M November 2009 Proprioception and motor control in Parkinson s disease Journal of Motor Behavior 41 6 543 52 doi 10 3200 35 09 002 PMID 19592360 S2CID 5775266 The Man Who Lost His Body 1997 BBC Documentary The Man Who Lost His Body retrieved 2023 02 21 Weeks SR Anderson Barnes VC Tsao JW September 2010 Phantom limb pain theories and therapies PDF The Neurologist 16 5 277 86 doi 10 1097 nrl 0b013e3181edf128 PMID 20827116 S2CID 205894711 Archived from the original PDF on 2011 08 12 Ehrsson HH Kito T Sadato N Passingham RE Naito E December 2005 Neural substrate of body size illusory feeling of shrinking of the waist PLOS Biology 3 12 e412 doi 10 1371 journal pbio 0030412 PMC 1287503 PMID 16336049 Goble DJ Noble BC Brown SH August 2010 Where was my arm again Memory based matching of proprioceptive targets is enhanced by increased target presentation time PDF Neuroscience Letters 481 1 54 58 doi 10 1016 j neulet 2010 06 053 PMID 20600603 S2CID 24385107 Archived from the original PDF on 2014 12 19 Retrieved 2013 03 15 Elangovan Naveen Herrmann Amanda Konczak Jurgen April 2014 Assessing proprioceptive function evaluating joint position matching methods against psychophysical thresholds Physical Therapy 94 4 553 561 doi 10 2522 ptj 20130103 ISSN 1538 6724 PMC 6281037 PMID 24262599 Sacks O The Disembodied Lady in The Man Who Mistook His Wife for a Hat and his autobiographical case study A Leg to Stand On cheng man ch ing 1981 T ai Chi Ch uan Blue Snake Books usa pp 86 88 ISBN 978 0 913028 85 8 Hanc J 15 September 2010 Staying on Balance With the Help of Exercises The New York Times Archived from the original on 2017 10 11 Retrieved 11 October 2017 Jerosch J Heisel J 2010 Management der Arthrose Innovative Therapiekonzepte in German Deutscher Arzteverlag p 107 ISBN 978 3 7691 0599 5 Retrieved 8 April 2011 Singh AK 1991 The Comprehensive History of Psychology Motilal Banarsidass p 66 ISBN 978 81 208 0804 1 Retrieved 8 April 2011 Dickinson J 1976 Proprioceptive control of human movement Princeton Book Co p 4 Retrieved 8 April 2011 Todd RB 1847 The Cyclopaedia of Anatomy and Physiology Vol 4 London Longmans pp 585 723 Foster SL 2010 Choreographing Empathy Kinesthesia in Performance Taylor amp Francis p 74 ISBN 978 0 415 59655 8 Retrieved 8 April 2011 Brookhart JM Mountcastle VB Geiger SR 1984 Darian Smith I ed The Nervous system Sensory processes American Physiological Society p 784 ISBN 978 0 683 01108 1 Retrieved 8 April 2011 Sherrington C S 1906 The Integrative Action of the Nervous System NewHaven CT Yale University Press Sherrington Charles Scott 1907 On The Proprio ceptive System Especially In Its Reflex Aspect Brain 29 4 467 482 doi 10 1093 brain 29 4 467 a b Proske U Gandevia SC September 2009 The kinaesthetic senses The Journal of Physiology 587 Pt 17 4139 46 doi 10 1113 jphysiol 2009 175372 PMC 2754351 PMID 19581378 Winter JA Allen TJ Proske U November 2005 Muscle spindle signals combine with the sense of effort to indicate limb position The Journal of Physiology 568 Pt 3 1035 46 doi 10 1113 jphysiol 2005 092619 PMC 1464181 PMID 16109730 Collins DF Refshauge KM Todd G Gandevia SC September 2005 Cutaneous receptors contribute to kinesthesia at the index finger elbow and knee Journal of Neurophysiology 94 3 1699 706 doi 10 1152 jn 00191 2005 PMID 15917323 a b c Bastien R Bohr T Moulia B Douady S January 2013 Unifying model of shoot gravitropism reveals proprioception as a central feature of posture control in plants Proceedings of the National Academy of Sciences of the United States of America 110 2 755 60 Bibcode 2013PNAS 110 755B doi 10 1073 pnas 1214301109 PMC 3545775 PMID 23236182 a b c d Hamant O Moulia B October 2016 How do plants read their own shapes The New Phytologist 212 2 333 37 doi 10 1111 nph 14143 PMID 27532273 From gravitropism to dynamical posture control proprioception in plants University of Cambridge Archived from the original on 2017 08 05 Retrieved 5 August 2017 Okamoto K Ueda H Shimada T Tamura K Kato T Tasaka M et al March 2015 Regulation of organ straightening and plant posture by an actin myosin XI cytoskeleton Nature Plants 1 4 15031 doi 10 1038 nplants 2015 31 hdl 2433 197219 PMID 27247032 S2CID 22432635 Bastien R Meroz Y December 2016 The Kinematics of Plant Nutation Reveals a Simple Relation between Curvature and the Orientation of Differential Growth PLOS Computational Biology 12 12 e1005238 arXiv 1603 00459 Bibcode 2016PLSCB 12E5238B doi 10 1371 journal pcbi 1005238 PMC 5140061 PMID 27923062 Gabbatiss J 10 January 2017 Plants can see hear and smell and respond Archived from the original on 2017 08 06 Retrieved 5 August 2017 a b plantguy 28 May 2017 The Selfish Plant 4 Plant Proprioception How Plants Work Archived from the original on 9 November 2018 Retrieved 5 August 2017 Antani Jyot D Gupta Rachit Lee Annie H Rhee Kathy Y Manson Michael D Lele Pushkar P 2021 09 14 Mechanosensitive recruitment of stator units promotes binding of the response regulator CheY P to the flagellar motor Nature Communications 12 1 5442 Bibcode 2021NatCo 12 5442A doi 10 1038 s41467 021 25774 2 ISSN 2041 1723 PMC 8440544 PMID 34521846 External links editProprioception at the U S National Library of Medicine Medical Subject Headings MeSH Retrieved from https en wikipedia org w index php title Proprioception amp oldid 1182001678, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.