fbpx
Wikipedia

Seed dispersal

In spermatophyte plants, seed dispersal is the movement, spread or transport of seeds away from the parent plant.[1] Plants have limited mobility and rely upon a variety of dispersal vectors to transport their seeds, including both abiotic vectors, such as the wind, and living (biotic) vectors such as birds. Seeds can be dispersed away from the parent plant individually or collectively, as well as dispersed in both space and time. The patterns of seed dispersal are determined in large part by the dispersal mechanism and this has important implications for the demographic and genetic structure of plant populations, as well as migration patterns and species interactions. There are five main modes of seed dispersal: gravity, wind, ballistic, water, and by animals. Some plants are serotinous and only disperse their seeds in response to an environmental stimulus. These modes are typically inferred based on adaptations, such as wings or fleshy fruit.[1] However, this simplified view may ignore complexity in dispersal. Plants can disperse via modes without possessing the typical associated adaptations and plant traits may be multifunctional.[2][3]

Epilobium hirsutum seed head dispersing seeds

Benefits edit

Seed dispersal is likely to have several benefits for different plant species. Seed survival is often higher away from the parent plant. This higher survival may result from the actions of density-dependent seed and seedling predators and pathogens, which often target the high concentrations of seeds beneath adults.[4] Competition with adult plants may also be lower when seeds are transported away from their parent.

Seed dispersal also allows plants to reach specific habitats that are favorable for survival, a hypothesis known as directed dispersal. For example, Ocotea endresiana (Lauraceae) is a tree species from Latin America which is dispersed by several species of birds, including the three-wattled bellbird. Male bellbirds perch on dead trees in order to attract mates, and often defecate seeds beneath these perches where the seeds have a high chance of survival because of high light conditions and escape from fungal pathogens.[5] In the case of fleshy-fruited plants, seed-dispersal in animal guts (endozoochory) often enhances the amount, the speed, and the asynchrony of germination, which can have important plant benefits.[6]

Seeds dispersed by ants (myrmecochory) are not only dispersed short distances but are also buried underground by the ants. These seeds can thus avoid adverse environmental effects such as fire or drought, reach nutrient-rich microsites and survive longer than other seeds.[7] These features are peculiar to myrmecochory, which may thus provide additional benefits not present in other dispersal modes.[8]

Seed dispersal may also allow plants to colonize vacant habitats and even new geographic regions.[9] Dispersal distances and deposition sites depend on the movement range of the disperser, and longer dispersal distances are sometimes accomplished through diplochory, the sequential dispersal by two or more different dispersal mechanisms. In fact, recent evidence suggests that the majority of seed dispersal events involves more than one dispersal phase.[10]

Types edit

Seed dispersal is sometimes split into autochory (when dispersal is attained using the plant's own means) and allochory (when obtained through external means).

Long distance edit

Long-distance seed dispersal (LDD) is a type of spatial dispersal that is currently defined by two forms, proportional and actual distance. A plant's fitness and survival may heavily depend on this method of seed dispersal depending on certain environmental factors. The first form of LDD, proportional distance, measures the percentage of seeds (1% out of total number of seeds produced) that travel the farthest distance out of a 99% probability distribution.[11][12] The proportional definition of LDD is in actuality a descriptor for more extreme dispersal events. An example of LDD would be that of a plant developing a specific dispersal vector or morphology in order to allow for the dispersal of its seeds over a great distance. The actual or absolute method identifies LDD as a literal distance. It classifies 1 km as the threshold distance for seed dispersal. Here, threshold means the minimum distance a plant can disperse its seeds and have it still count as LDD.[13][12] There is a second, unmeasurable, form of LDD besides proportional and actual. This is known as the non-standard form. Non-standard LDD is when seed dispersal occurs in an unusual and difficult-to-predict manner. An example would be a rare or unique incident in which a normally-lemur-dependent deciduous tree of Madagascar was to have seeds transported to the coastline of South Africa via attachment to a mermaid purse (egg case) laid by a shark or skate.[14][15][16] A driving factor for the evolutionary significance of LDD is that it increases plant fitness by decreasing neighboring plant competition for offspring. However, it is still unclear today as to how specific traits, conditions and trade-offs (particularly within short seed dispersal) affect LDD evolution.

Autochory edit

 
The "bill" and seed dispersal mechanism of Geranium pratense

Autochorous plants disperse their seed without any help from an external vector, as a result this limits plants considerably as to the distance they can disperse their seed.[17] Two other types of autochory not described in detail here are blastochory, where the stem of the plant crawls along the ground to deposit its seed far from the base of the plant; and herpochory, where the seed crawls by means of trichomes or hygroscopic appendages (awns) and changes in humidity.[18]

Gravity edit

Barochory or the plant use of gravity for dispersal is a simple means of achieving seed dispersal. The effect of gravity on heavier fruits causes them to fall from the plant when ripe. Fruits exhibiting this type of dispersal include apples, coconuts and passionfruit and those with harder shells (which often roll away from the plant to gain more distance). Gravity dispersal also allows for later transmission by water or animal.[19]

Ballistic dispersal edit

Ballochory is a type of dispersal where the seed is forcefully ejected by explosive dehiscence of the fruit. Often the force that generates the explosion results from turgor pressure within the fruit or due to internal hygroscopic tensions within the fruit.[17] Some examples of plants which disperse their seeds autochorously include: Arceuthobium spp., Cardamine hirsuta, Ecballium spp., Euphorbia heterophylla,[20] Geranium spp., Impatiens spp., Sucrea spp, Raddia spp.[21] and others. An exceptional example of ballochory is Hura crepitans—this plant is commonly called the dynamite tree due to the sound of the fruit exploding. The explosions are powerful enough to throw the seed up to 100 meters.[22]

Witch hazel uses ballistic dispersal without explosive mechanisms by simply squeezing the seeds out at approx. 45 km/h (28 mph).[23]

Allochory edit

Allochory refers to any of many types of seed dispersal where a vector or secondary agent is used to disperse seeds. These vectors may include wind, water, animals or others.

Wind edit

 
Wind dispersal of dandelion fruits
 
Entada phaseoloides – Hydrochory

Wind dispersal (anemochory) is one of the more primitive means of dispersal. Wind dispersal can take on one of two primary forms: seeds or fruits can float on the breeze or, alternatively, they can flutter to the ground.[24] The classic examples of these dispersal mechanisms, in the temperate northern hemisphere, include dandelions, which have a feathery pappus attached to their fruits (achenes) and can be dispersed long distances, and maples, which have winged fruits (samaras) that flutter to the ground.

An important constraint on wind dispersal is the need for abundant seed production to maximize the likelihood of a seed landing in a site suitable for germination. Some wind-dispersed plants, such as the dandelion, can adjust their morphology in order to increase or decrease the rate of diaspore detachment.[25] There are also strong evolutionary constraints on this dispersal mechanism. For instance, Cody and Overton (1996) found that species in the Asteraceae on islands tended to have reduced dispersal capabilities (i.e., larger seed mass and smaller pappus) relative to the same species on the mainland.[26] Also, Helonias bullata, a species of perennial herb native to the United States, evolved to utilize wind dispersal as the primary seed dispersal mechanism; however, limited wind in its habitat prevents the seeds to successfully disperse away from its parents, resulting in clusters of population.[27] Reliance on wind dispersal is common among many weedy or ruderal species. Unusual mechanisms of wind dispersal include tumbleweeds, where the entire plant (except for the roots) is blown by the wind. Physalis fruits, when not fully ripe, may sometimes be dispersed by wind due to the space between the fruit and the covering calyx which acts as an air bladder.

Water edit

Many aquatic (water dwelling) and some terrestrial (land dwelling) species use hydrochory, or seed dispersal through water. Seeds can travel for extremely long distances, depending on the specific mode of water dispersal; this especially applies to fruits which are waterproof and float on water.

The water lily is an example of such a plant. Water lilies' flowers make a fruit that floats in the water for a while and then drops down to the bottom to take root on the floor of the pond. The seeds of palm trees can also be dispersed by water. If they grow near oceans, the seeds can be transported by ocean currents over long distances, allowing the seeds to be dispersed as far as other continents.

Mangrove trees grow directly out of the water; when their seeds are ripe they fall from the tree and grow roots as soon as they touch any kind of soil. During low tide, they might fall in soil instead of water and start growing right where they fell. If the water level is high, however, they can be carried far away from where they fell. Mangrove trees often make little islands as dirt and detritus collect in their roots, making little bodies of land.

Animals: epi- and endozoochory edit

 
The small hooks on the surface of a Geum urbanum bur enable attachment of individual hooked fruits to animal fur for dispersion
 
Example of epizoochory: Labrador retriever with hooked fruits detached from Geum urbanum burs trapped in fur after running through undergrowth

Animals can disperse plant seeds in several ways, all named zoochory. Seeds can be transported on the outside of vertebrate animals (mostly mammals), a process known as epizoochory. Plant species transported externally by animals can have a variety of adaptations for dispersal, including adhesive mucus, and a variety of hooks, spines and barbs.[28] A typical example of an epizoochorous plant is Trifolium angustifolium, a species of Old World clover which adheres to animal fur by means of stiff hairs covering the seed.[9] Epizoochorous plants tend to be herbaceous plants, with many representative species in the families Apiaceae and Asteraceae.[28] However, epizoochory is a relatively rare dispersal syndrome for plants as a whole; the percentage of plant species with seeds adapted for transport on the outside of animals is estimated to be below 5%.[28] Nevertheless, epizoochorous transport can be highly effective if seeds attach to wide-ranging animals. This form of seed dispersal has been implicated in rapid plant migration and the spread of invasive species.[9]

Seed dispersal via ingestion and defecation by vertebrate animals (mostly birds and mammals), or endozoochory, is the dispersal mechanism for most tree species.[29] Endozoochory is generally a coevolved mutualistic relationship in which a plant surrounds seeds with an edible, nutritious fruit as a good food resource for animals that consume it. Such plants may advertise the presence of food resource by using colour.[30] Birds and mammals are the most important seed dispersers, but a wide variety of other animals, including turtles, fish, and insects (e.g. tree wētā and scree wētā), can transport viable seeds.[31][32] The exact percentage of tree species dispersed by endozoochory varies between habitats, but can range to over 90% in some tropical rainforests.[29] Seed dispersal by animals in tropical rainforests has received much attention, and this interaction is considered an important force shaping the ecology and evolution of vertebrate and tree populations.[33] In the tropics, large animal seed dispersers (such as tapirs, chimpanzees, black-and-white colobus, toucans and hornbills) may disperse large seeds with few other seed dispersal agents. The extinction of these large frugivores from poaching and habitat loss may have negative effects on the tree populations that depend on them for seed dispersal and reduce genetic diversity.[34][35] Seed dispersal through endozoochory can lead to quick spread of invasive species, such as in the case of prickly acacia in Australia.[36] A variation of endozoochory is regurgitation of seeds rather than their passage in faeces after passing through the entire digestive tract.[37]

Seed dispersal by ants (myrmecochory) is a dispersal mechanism of many shrubs of the southern hemisphere or understorey herbs of the northern hemisphere.[7] Seeds of myrmecochorous plants have a lipid-rich attachment called the elaiosome, which attracts ants. Ants carry such seeds into their colonies, feed the elaiosome to their larvae and discard the otherwise intact seed in an underground chamber.[38] Myrmecochory is thus a coevolved mutualistic relationship between plants and seed-disperser ants. Myrmecochory has independently evolved at least 100 times in flowering plants and is estimated to be present in at least 11 000 species, but likely up to 23 000 or 9% of all species of flowering plants.[7] Myrmecochorous plants are most frequent in the fynbos vegetation of the Cape Floristic Region of South Africa, the kwongan vegetation and other dry habitat types of Australia, dry forests and grasslands of the Mediterranean region and northern temperate forests of western Eurasia and eastern North America, where up to 30–40% of understorey herbs are myrmecochorous.[7] Seed dispersal by ants is a mutualistic relationship and benefits both the ant and the plant.[39]

Seed dispersal by bees (melittochory) is an unusual dispersal mechanism for a small number of tropical plants. As of 2023 it has only been documented in five plant species including Corymbia torelliana, Coussapoa asperifolia subsp. magnifolia, Zygia racemosa, Vanilla odorata, and Vanilla planifolia. The first three are tropical trees and the last two are tropical vines.[40]

Seed predators, which include many rodents (such as squirrels) and some birds (such as jays) may also disperse seeds by hoarding the seeds in hidden caches.[41] The seeds in caches are usually well-protected from other seed predators and if left uneaten will grow into new plants. In addition, rodents may also disperse seeds via seed spitting due to the presence of secondary metabolites in ripe fruits.[42] Finally, seeds may be secondarily dispersed from seeds deposited by primary animal dispersers, a process known as diplochory. For example, dung beetles are known to disperse seeds from clumps of feces in the process of collecting dung to feed their larvae.[43]

Other types of zoochory are chiropterochory (by bats), malacochory (by molluscs, mainly terrestrial snails), ornithochory (by birds) and saurochory (by non-bird sauropsids). Zoochory can occur in more than one phase, for example through diploendozoochory, where a primary disperser (an animal that ate a seed) along with the seeds it is carrying is eaten by a predator that then carries the seed further before depositing it.[44]

Humans edit

 
Epizoochory in Bidens tripartita (Asteraceae); the hooked achenes of the plant readily attach to clothing, such as this shirt sleeve.
 
Epizoochory in Galium aparine (Rubiaceae): shoelaces covered in velcro-like burs after a woodland walk
 
Epizoochory in the grass Cenchrus spinifex: burs on clothing after walk on beach
Seed dispersal by a car

Dispersal by humans (anthropochory) used to be seen as a form of dispersal by animals. Its most widespread and intense cases account for the planting of much of the land area on the planet, through agriculture. In this case, human societies form a long-term relationship with plant species, and create conditions for their growth.

Recent research points out that human dispersers differ from animal dispersers by having a much higher mobility, based on the technical means of human transport.[45] On the one hand, dispersal by humans also acts on smaller, regional scales and drives the dynamics of existing biological populations. On the other hand, dispersal by humans may act on large geographical scales and lead to the spread of invasive species.[46]

Humans may disperse seeds by many various means and some surprisingly high distances have been repeatedly measured.[47] Examples are: dispersal on human clothes (up to 250 m),[48] on shoes (up to 5 km),[45] or by cars (regularly ~ 250 m, singles cases > 100 km).[49] Seed dispersal by cars can be a form of unintentional transport of seeds by humans, which can reach far distances, greater than other conventional methods of dispersal.[50] Cars that carry soil are able to contain viable seeds, a study by Dunmail J. Hodkinson and Ken Thompson found that the most common seeds that were carried by vehicle were broadleaf plantain (Plantago major), Annual meadow grass (Poa annua), rough meadow grass (Poa trivialis), stinging nettle (Urtica dioica) and wild chamomile (Matricaria discoidea).[50]

Deliberate seed dispersal also occurs as seed bombing. This has risks, as unsuitable provenance may introduce genetically unsuitable plants to new environments.

Consequences edit

Seed dispersal has many consequences for the ecology and evolution of plants. Dispersal is necessary for species migrations, and in recent times dispersal ability is an important factor in whether or not a species transported to a new habitat by humans will become an invasive species.[51] Dispersal is also predicted to play a major role in the origin and maintenance of species diversity. For example, myrmecochory increased the rate of diversification more than twofold in plant groups in which it has evolved because myrmecochorous lineages contain more than twice as many species as their non-myrmecochorous sister groups.[52] Dispersal of seeds away from the parent organism has a central role in two major theories for how biodiversity is maintained in natural ecosystems, the Janzen-Connell hypothesis and recruitment limitation.[4] Seed dispersal is essential in allowing forest migration of flowering plants. It can be influenced by the production of different fruit morphs in plants, a phenomenon known as heterocarpy.[53] These fruit morphs are different in size and shape and have different dispersal ranges, which allows seeds to be dispersed for varying distances and adapt to different environments.[53] The distances of the dispersal also affects the kernel of the seed. The lowest distance of seed dispersal were found in the wetlands whereas the longest were dry landscapes.[54]

In addition, the speed and direction of wind are highly influential in the dispersal process and in turn the deposition patterns of floating seeds in the stagnant water bodies. The transportation of seeds is led by the wind direction. This effects colonization situated on the banks of a river or to wetlands adjacent to streams relative to the distinct wind directions. The wind dispersal process can also affect connections between water bodies. Essentially, wind plays a larger role in the dispersal of waterborne seeds in a short period of time, days and seasons, but the ecological process allows the process to become balanced throughout a time period of several years. The time period of which the dispersal occurs is essential when considering the consequences of wind on the ecological process.[citation needed]

See also edit

References edit

  1. ^ a b Howe, H F; Smallwood, J (November 1982). "Ecology of Seed Dispersal". Annual Review of Ecology and Systematics. 13 (1): 201–228. doi:10.1146/annurev.es.13.110182.001221. ISSN 0066-4162.
  2. ^ Green, Andy J.; Baltzinger, Christophe; Lovas-Kiss, Ádám (2021-06-24). "Plant dispersal syndromes are unreliable, especially for predicting zoochory and long-distance dispersal". Oikos. 2022 (2). doi:10.1111/oik.08327. hdl:10261/246285. ISSN 0030-1299. S2CID 237880167.
  3. ^ Bullock, James M.; Shea, Katriona; Skarpaas, Olav (2006-10-01). "Measuring plant dispersal: an introduction to field methods and experimental design". Plant Ecology. 186 (2): 217–234. doi:10.1007/s11258-006-9124-5. ISSN 1573-5052. S2CID 26926442.
  4. ^ a b Harms, K; Wright, SJ; Calderon, O; Hernandez, A; Herre, EA (2000). "Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest". Nature. 404 (6777): 493–495. Bibcode:2000Natur.404..493H. doi:10.1038/35006630. PMID 10761916. S2CID 4428057.
  5. ^ Wenny, D.G. & Levey, D.J. (1998). "Directed seed dispersal by bellbirds in a tropical cloud forest". Proceedings of the National Academy of Sciences of the United States of America. 95 (11): 6204–7. Bibcode:1998PNAS...95.6204W. doi:10.1073/pnas.95.11.6204. PMC 27627. PMID 9600942.
  6. ^ Fedriani, J. M.; Delibes, M. (2009). "Functional diversity in fruit-frugivore interactions: A field experiment with Mediterranean mammals". Ecography. 32 (6): 983–992. doi:10.1111/j.1600-0587.2009.05925.x. hdl:10261/50153.
  7. ^ a b c d Lengyel, S.; et al. (2010). "Convergent evolution of seed dispersal by ants, and phylogeny and biogeography in flowering plants: a global survey". Perspectives in Plant Ecology, Evolution and Systematics. 12 (1): 43–55. doi:10.1016/j.ppees.2009.08.001.
  8. ^ Manzaneda, Antonio J.; Fedriani, Jose M. & Rey, Pedro J. (2005). (PDF). Ecography. 28 (5): 583–592. CiteSeerX 10.1.1.507.1719. doi:10.1111/j.2005.0906-7590.04309.x. hdl:10261/58621. Archived from the original (PDF) on 2012-06-20. Retrieved 2012-05-26.
  9. ^ a b c Manzano, Pablo; Malo, Juan E. (2006). "Extreme long-distance seed dispersal via sheep" (PDF). Frontiers in Ecology and the Environment. 4 (5): 244–248. doi:10.1890/1540-9295(2006)004[0244:ELSDVS]2.0.CO;2. hdl:10486/1200. JSTOR 3868790.
  10. ^ OZINGA, WIM A.; BEKKER, RENEE M.; SCHAMINEE, JOOP H. J.; VAN GROENENDAEL, JAN M. (October 2004). "Dispersal potential in plant communities depends on environmental conditions". Journal of Ecology. 92 (5): 767–777. doi:10.1111/j.0022-0477.2004.00916.x.
  11. ^ Higgins, Steven I.; Richardson, David M. (May 1999). "Predicting Plant Migration Rates in a Changing World: The Role of Long-Distance Dispersal". The American Naturalist. 153 (5): 464–475. doi:10.1086/303193. PMID 29578791. S2CID 46359637.
  12. ^ a b Ran, Nathan; Schurr, Frank M.; Spiegel, Orr; Steinitz, Ofer; Trakhtenbrot, Ana; Tsoar, Asaf (November 2008). "Mechanisms of long-distance seed dispersal". Trends in Ecology and Evolution. 23 (11): 638–647. doi:10.1016/j.tree.2008.08.003. PMID 18823680.
  13. ^ Østergaard, Lars J. (2010). Annual Plant Reviews, Fruits Development and Seed Dispersal (first ed.). United Kingdom: Blackwell Publishing. pp. 204–205. ISBN 978-1-4051-8946-0.
  14. ^ Jörg, Ganzhorn U.; Fietz, Joanna; Rakotovao, Edmond; Schwab, Dorothea; Dietmar, Zinner (August 1999). "Lemurs and the Regeneration of Dry Deciduous Forest in Madagascar". Conservation Biology. 13 (4): 794–804. doi:10.1046/j.1523-1739.1999.98245.x. S2CID 83638661.
  15. ^ Ran, Nathan (August 11, 2006). "Long-Distance Dispersal of Plants". Science. 313 (5788): 786–788. Bibcode:2006Sci...313..786N. doi:10.1126/science.1124975. PMID 16902126. S2CID 32984474.
  16. ^ Craig & Griffiths, Charles Smith (October 1997). "Shark and skate egg-cases cast up ashore two South African beaches and their rates of hatching success, or causes of death". African Zoology. NISC (Pty) Ltd. 32 (4): 112–117. ISSN 1562-7020.
  17. ^ a b Vittoz, Pascal; Engler, Robin (7 February 2008). "Seed dispersal distances: a typology based on dispersal modes and plant traits" (PDF). Botanica Helvetica. 117 (2): 109–124. doi:10.1007/s00035-007-0797-8. S2CID 2339616.
  18. ^ Schulze, Ernst-Detlef; Beck, Erwin & Müller-Hohenstein, Klaus (2005). Plant Ecology. Springer. pp. 543–. ISBN 978-3-540-20833-4.
  19. ^ "Dispersal of seeds by gravity". Retrieved 2009-05-08.
  20. ^ Wilson, A. K. (1 March 1981). "Euphorbia heterophylla: a Review of Distribution, Importance and Control". Tropical Pest Management. 27 (1): 32–38. doi:10.1080/09670878109414169.
  21. ^ Kellogg, Elizabeth A. (2015). Flowering Plants. Monocots. Springer International Publishing. p. 74. doi:10.1007/978-3-319-15332-2. ISBN 978-3-319-15331-5. S2CID 30485589.
  22. ^ Feldkamp, Susan (2006). Modern Biology. United States: Holt, Rinehart, and Winston. p. 618.
  23. ^ Chang, Kenneth (8 August 2019). "Watch This Plant Shoot Its Seeds Like Spiraling Footballs". The New York Times. Retrieved 8 August 2019.
  24. ^ Gurevitch, J., Scheiner, S.M., & G.A. Fox (2006). Plant Ecology, 2nd ed. Sinauer Associates, Inc., Massachusetts.
  25. ^ Seale, Madeleine; Zhdanov, Oleksandr; Soons, Merel B; Cummins, Cathal; Kroll, Erika; et al. (2022-11-29). "Environmental morphing enables informed dispersal of the dandelion diaspore". eLife. eLife Sciences Publications, Ltd. 11. bioRxiv 10.1101/542696. doi:10.7554/elife.81962. ISSN 2050-084X. PMC 9797189. PMID 36445222.
  26. ^ Cody, M.L. & Overton, J.M. (1996). "Short-term evolution of reduced dispersal in island plant populations". Journal of Ecology. 84 (1): 53–61. doi:10.2307/2261699. JSTOR 2261699.
  27. ^ Godt, Mary (June 1995). "Genetic Diversity in a Threatened Wetland Species, Helonias bullata (Liliaceae)". Conservation Biology. 9 (3): 596–604. doi:10.1046/j.1523-1739.1995.09030596.x. JSTOR 2386613.
  28. ^ a b c Sorenson, A.E. (1986). "Seed dispersal by adhesion". Annual Review of Ecology and Systematics. 17: 443–463. doi:10.1146/annurev.es.17.110186.002303.
  29. ^ a b Howe, H. F. & Smallwood J. (1982). (PDF). Annual Review of Ecology and Systematics. 13: 201–228. doi:10.1146/annurev.es.13.110182.001221. Archived from the original (PDF) on 2006-05-13.
  30. ^ Lim, Ganges; Burns, Kevin C. (2021-11-24). "Do fruit reflectance properties affect avian frugivory in New Zealand?". New Zealand Journal of Botany. 60 (3): 319–329. doi:10.1080/0028825X.2021.2001664. ISSN 0028-825X. S2CID 244683146.
  31. ^ Corlett, R.T. (1998). "Frugivory and seed dispersal by vertebrates in the Oriental (Indomalayan) Region". Biological Reviews. 73 (4): 413–448. doi:10.1017/S0006323198005234. PMID 9951414.
  32. ^ Larsen, Hannah; Burns, Kevin C. (November 2012). "Seed dispersal effectiveness increases with body size in New Zealand alpine scree weta ( Deinacrida connectens ): WETA FRUGIVORY". Austral Ecology. 37 (7): 800–806. doi:10.1111/j.1442-9993.2011.02340.x. S2CID 4820468.
  33. ^ Terborgh, J. (1986) "Community aspects of frugivory in tropical forests": in Fleming, T.H.; Estrada, Alejandro (eds.) Frugivory and Seed Dispersal, Advances in Vegetation Science, Vol. 15, Springer, ISBN 978-0-7923-2141-5.
  34. ^ Chapman, C.A. & Onderdonk, D.A. (1998). "Forests without primates: primate/plant codependency". American Journal of Primatology. 45 (1): 127–141. doi:10.1002/(SICI)1098-2345(1998)45:1<127::AID-AJP9>3.0.CO;2-Y. PMID 9573446. S2CID 22103399.
  35. ^ Sezen, U.U. (2016). "Genetic Consequences of Tropical Second-Growth Forest Regeneration". Science. 307 (5711): 891. doi:10.1126/science.1105034. PMID 15705843. S2CID 40904897.
  36. ^ Kriticos, Darren; Brown, Joel; Radford, Ian; Nicholas, Mike (1999-10-01). "Plant Population Ecology and Biological Control: Acacia nilotica as a Case Study". Biological Control. 16 (2): 230–239. doi:10.1006/bcon.1999.0746. ISSN 1049-9644.
  37. ^ Delibes, Miguel; Castañeda, Irene; Fedriani, José M (2017). "Tree-climbing goats disperse seeds during rumination". Frontiers in Ecology and the Environment. 15 (4): 222. doi:10.1002/fee.1488. hdl:10261/158050.
  38. ^ Giladi, I. (2006). "Choosing benefits or partners: a review of the evidence for the evolution of myrmecochory". Oikos. 112 (3): 481–492. CiteSeerX 10.1.1.530.1306. doi:10.1111/j.0030-1299.2006.14258.x.
  39. ^ Handel, Steven N.; Beattie, Andrew J. (1990). "Seed Dispersal by Ants". Scientific American. 263 (2): 76–83B. Bibcode:1990SciAm.263b..76H. doi:10.1038/scientificamerican0890-76. ISSN 0036-8733. JSTOR 24996901.
  40. ^ Karremans, Adam P.; Bogarín, Diego; Fernández Otárola, Mauricio; Sharma, Jyotsna; Watteyn, Charlotte; Warner, Jorge; Rodríguez Herrera, Bernal; Chinchilla, Isler F.; Carman, Ernesto; Rojas Valerio, Emmanuel; Pillco Huarcaya, Ruthmery; Whitworth, Andy (January 2023). "First evidence for multimodal animal seed dispersal in orchids". Current Biology. 33 (2): 364–371.e3. doi:10.1016/j.cub.2022.11.041.
  41. ^ Forget, P.M. & Milleron, T. (1991). "Evidence for secondary seed dispersal by rodents in Panama". Oecologia. 87 (4): 596–599. Bibcode:1991Oecol..87..596F. doi:10.1007/BF00320426. PMID 28313705. S2CID 32745179.
  42. ^ Samuni-Blank, M.; et al. (2012). "Intraspecific directed deterrence by the mustard oil bomb in a desert plant". Current Biology. 22 (13): 1–3. doi:10.1016/j.cub.2012.04.051. PMID 22704992.
  43. ^ Andresen E. & Levey, D.J. (2004). "Effects of dung and seed size on secondary dispersal, seed predation, and seedling establishment of rainforest trees". Oecologia. 139 (1): 45–54. Bibcode:2004Oecol.139...45A. doi:10.1007/s00442-003-1480-4. PMID 14740290. S2CID 28576412.
  44. ^ Hämäläinen, Anni; Broadley, Kate; Droghini, Amanda; Haines, Jessica A.; Lamb, Clayton T.; Boutin, Stan; Gilbert, Sophie (February 2017). "The ecological significance of secondary seed dispersal by carnivores". Ecosphere. 8 (2): e01685. doi:10.1002/ecs2.1685.
  45. ^ a b Wichmann, M.C.; Alexander, M.J.; Soons, M.B.; Galsworthy, S.; Dunne, L.; Gould, R.; Fairfax, C.; Niggemann, M.; Hails, R.S. & Bullock, J.M. (2009). "Human mediated dispersal of seeds over long-distances". Proceedings of the Royal Society B. 276 (1656): 523–532. doi:10.1098/rspb.2008.1131. PMC 2664342. PMID 18826932.
  46. ^ Chaloupka, M. Y.; Domm, S. B. (December 1986). "Role of Anthropochory in the Invasion of Coral Cays by Alien Flora". Ecology. 67 (6): 1536–1547. doi:10.2307/1939084. JSTOR 1939084.
  47. ^ . Frugivores and Seed Dispersal Symposium. June 2010. Archived from the original on 2013-11-05. Retrieved 2014-03-06.
  48. ^ Bullock, S. H. & Primack, R. B. (1977). "Comparative experimental study of seed dispersal on animals". Ecology. 58 (3): 681–686. doi:10.2307/1939019. JSTOR 1939019.
  49. ^ von der Lippe, M. & Kowarik, I. (2007). "Long-distance dispersal of plants by vehicles as a driver of plant invasions". Conservation Biology. 21 (4): 986–996. doi:10.1111/j.1523-1739.2007.00722.x. PMID 17650249. S2CID 37957761.
  50. ^ a b Hodkinson, Dunmail J.; Thompson, Ken (1997). "Plant Dispersal: The Role of Man". Journal of Applied Ecology. 34 (6): 1484–1496. doi:10.2307/2405264. ISSN 0021-8901. JSTOR 2405264.
  51. ^ Caswell, H.; Lensink, R.; Neubert, M.G. (2003). "Demography And Dispersal: Life Table Response Experiments For Invasion Speed". Ecology. 84 (8): 1968–1978. doi:10.1890/02-0100.
  52. ^ Lengyel, S.; et al. (2009). Chave, Jerome (ed.). "Ants Sow the Seeds of Global Diversification in Flowering Plants". PLOS ONE. 4 (5): e5480. Bibcode:2009PLoSO...4.5480L. doi:10.1371/journal.pone.0005480. PMC 2674952. PMID 19436714.
  53. ^ a b Gardocki, Mary Elizabeth; Zablocki, Heather; El-Keblawy, Ali; Freeman, D. Carl (2000). "Heterocarpy in Calendula micrantha (Asteraceae): The effects of competition and availability of water on the performance of offspring from different fruit morphs" (PDF). Evolutionary Ecology Research. 2: 701–718. (PDF) from the original on 21 September 2022.
  54. ^ Kleyheeg, Erik; Treep, Jelle; de Jager, Monique; Nolet, Bart A.; Soons, Merel B. (September 2017). Nilsson, Christer (ed.). "Seed dispersal distributions resulting from landscape-dependent daily movement behaviour of a key vector species, Anas platyrhynchos". Journal of Ecology. 105 (5): 1279–1289. doi:10.1111/1365-2745.12738. ISSN 0022-0477.

Further reading edit

  • Hanson, Thor (2016). The Triumph of Seeds: How Grains, Nuts, Kernels, Pulses, and Pips Conquered the Plant Kingdom and Shaped Human History. Basic Books. ISBN 978-0465097401.
  • Ridley, Henry N (1930). The Dispersal of Plants Throughout the World. Ashford, Kent: L. Reeve & Co. ISBN 978-0-85393-004-4.

External links edit

  • Secondary metabolites promote seed dispersal

seed, dispersal, spermatophyte, plants, seed, dispersal, movement, spread, transport, seeds, away, from, parent, plant, plants, have, limited, mobility, rely, upon, variety, dispersal, vectors, transport, their, seeds, including, both, abiotic, vectors, such, . In spermatophyte plants seed dispersal is the movement spread or transport of seeds away from the parent plant 1 Plants have limited mobility and rely upon a variety of dispersal vectors to transport their seeds including both abiotic vectors such as the wind and living biotic vectors such as birds Seeds can be dispersed away from the parent plant individually or collectively as well as dispersed in both space and time The patterns of seed dispersal are determined in large part by the dispersal mechanism and this has important implications for the demographic and genetic structure of plant populations as well as migration patterns and species interactions There are five main modes of seed dispersal gravity wind ballistic water and by animals Some plants are serotinous and only disperse their seeds in response to an environmental stimulus These modes are typically inferred based on adaptations such as wings or fleshy fruit 1 However this simplified view may ignore complexity in dispersal Plants can disperse via modes without possessing the typical associated adaptations and plant traits may be multifunctional 2 3 Epilobium hirsutum seed head dispersing seedsContents 1 Benefits 2 Types 2 1 Long distance 2 2 Autochory 2 2 1 Gravity 2 2 2 Ballistic dispersal 2 3 Allochory 2 3 1 Wind 2 3 2 Water 2 3 3 Animals epi and endozoochory 2 3 4 Humans 3 Consequences 4 See also 5 References 6 Further reading 7 External linksBenefits editSeed dispersal is likely to have several benefits for different plant species Seed survival is often higher away from the parent plant This higher survival may result from the actions of density dependent seed and seedling predators and pathogens which often target the high concentrations of seeds beneath adults 4 Competition with adult plants may also be lower when seeds are transported away from their parent Seed dispersal also allows plants to reach specific habitats that are favorable for survival a hypothesis known as directed dispersal For example Ocotea endresiana Lauraceae is a tree species from Latin America which is dispersed by several species of birds including the three wattled bellbird Male bellbirds perch on dead trees in order to attract mates and often defecate seeds beneath these perches where the seeds have a high chance of survival because of high light conditions and escape from fungal pathogens 5 In the case of fleshy fruited plants seed dispersal in animal guts endozoochory often enhances the amount the speed and the asynchrony of germination which can have important plant benefits 6 Seeds dispersed by ants myrmecochory are not only dispersed short distances but are also buried underground by the ants These seeds can thus avoid adverse environmental effects such as fire or drought reach nutrient rich microsites and survive longer than other seeds 7 These features are peculiar to myrmecochory which may thus provide additional benefits not present in other dispersal modes 8 Seed dispersal may also allow plants to colonize vacant habitats and even new geographic regions 9 Dispersal distances and deposition sites depend on the movement range of the disperser and longer dispersal distances are sometimes accomplished through diplochory the sequential dispersal by two or more different dispersal mechanisms In fact recent evidence suggests that the majority of seed dispersal events involves more than one dispersal phase 10 Types editSeed dispersal is sometimes split into autochory when dispersal is attained using the plant s own means and allochory when obtained through external means Long distance edit Long distance seed dispersal LDD is a type of spatial dispersal that is currently defined by two forms proportional and actual distance A plant s fitness and survival may heavily depend on this method of seed dispersal depending on certain environmental factors The first form of LDD proportional distance measures the percentage of seeds 1 out of total number of seeds produced that travel the farthest distance out of a 99 probability distribution 11 12 The proportional definition of LDD is in actuality a descriptor for more extreme dispersal events An example of LDD would be that of a plant developing a specific dispersal vector or morphology in order to allow for the dispersal of its seeds over a great distance The actual or absolute method identifies LDD as a literal distance It classifies 1 km as the threshold distance for seed dispersal Here threshold means the minimum distance a plant can disperse its seeds and have it still count as LDD 13 12 There is a second unmeasurable form of LDD besides proportional and actual This is known as the non standard form Non standard LDD is when seed dispersal occurs in an unusual and difficult to predict manner An example would be a rare or unique incident in which a normally lemur dependent deciduous tree of Madagascar was to have seeds transported to the coastline of South Africa via attachment to a mermaid purse egg case laid by a shark or skate 14 15 16 A driving factor for the evolutionary significance of LDD is that it increases plant fitness by decreasing neighboring plant competition for offspring However it is still unclear today as to how specific traits conditions and trade offs particularly within short seed dispersal affect LDD evolution Autochory edit nbsp The bill and seed dispersal mechanism of Geranium pratenseAutochorous plants disperse their seed without any help from an external vector as a result this limits plants considerably as to the distance they can disperse their seed 17 Two other types of autochory not described in detail here are blastochory where the stem of the plant crawls along the ground to deposit its seed far from the base of the plant and herpochory where the seed crawls by means of trichomes or hygroscopic appendages awns and changes in humidity 18 Gravity edit Barochory or the plant use of gravity for dispersal is a simple means of achieving seed dispersal The effect of gravity on heavier fruits causes them to fall from the plant when ripe Fruits exhibiting this type of dispersal include apples coconuts and passionfruit and those with harder shells which often roll away from the plant to gain more distance Gravity dispersal also allows for later transmission by water or animal 19 Ballistic dispersal edit Ballochory is a type of dispersal where the seed is forcefully ejected by explosive dehiscence of the fruit Often the force that generates the explosion results from turgor pressure within the fruit or due to internal hygroscopic tensions within the fruit 17 Some examples of plants which disperse their seeds autochorously include Arceuthobium spp Cardamine hirsuta Ecballium spp Euphorbia heterophylla 20 Geranium spp Impatiens spp Sucrea spp Raddia spp 21 and others An exceptional example of ballochory is Hura crepitans this plant is commonly called the dynamite tree due to the sound of the fruit exploding The explosions are powerful enough to throw the seed up to 100 meters 22 Witch hazel uses ballistic dispersal without explosive mechanisms by simply squeezing the seeds out at approx 45 km h 28 mph 23 Allochory edit Allochory refers to any of many types of seed dispersal where a vector or secondary agent is used to disperse seeds These vectors may include wind water animals or others Wind edit nbsp Wind dispersal of dandelion fruits nbsp Entada phaseoloides HydrochoryWind dispersal anemochory is one of the more primitive means of dispersal Wind dispersal can take on one of two primary forms seeds or fruits can float on the breeze or alternatively they can flutter to the ground 24 The classic examples of these dispersal mechanisms in the temperate northern hemisphere include dandelions which have a feathery pappus attached to their fruits achenes and can be dispersed long distances and maples which have winged fruits samaras that flutter to the ground An important constraint on wind dispersal is the need for abundant seed production to maximize the likelihood of a seed landing in a site suitable for germination Some wind dispersed plants such as the dandelion can adjust their morphology in order to increase or decrease the rate of diaspore detachment 25 There are also strong evolutionary constraints on this dispersal mechanism For instance Cody and Overton 1996 found that species in the Asteraceae on islands tended to have reduced dispersal capabilities i e larger seed mass and smaller pappus relative to the same species on the mainland 26 Also Helonias bullata a species of perennial herb native to the United States evolved to utilize wind dispersal as the primary seed dispersal mechanism however limited wind in its habitat prevents the seeds to successfully disperse away from its parents resulting in clusters of population 27 Reliance on wind dispersal is common among many weedy or ruderal species Unusual mechanisms of wind dispersal include tumbleweeds where the entire plant except for the roots is blown by the wind Physalis fruits when not fully ripe may sometimes be dispersed by wind due to the space between the fruit and the covering calyx which acts as an air bladder Water edit Many aquatic water dwelling and some terrestrial land dwelling species use hydrochory or seed dispersal through water Seeds can travel for extremely long distances depending on the specific mode of water dispersal this especially applies to fruits which are waterproof and float on water The water lily is an example of such a plant Water lilies flowers make a fruit that floats in the water for a while and then drops down to the bottom to take root on the floor of the pond The seeds of palm trees can also be dispersed by water If they grow near oceans the seeds can be transported by ocean currents over long distances allowing the seeds to be dispersed as far as other continents Mangrove trees grow directly out of the water when their seeds are ripe they fall from the tree and grow roots as soon as they touch any kind of soil During low tide they might fall in soil instead of water and start growing right where they fell If the water level is high however they can be carried far away from where they fell Mangrove trees often make little islands as dirt and detritus collect in their roots making little bodies of land Animals epi and endozoochory edit nbsp The small hooks on the surface of a Geum urbanum bur enable attachment of individual hooked fruits to animal fur for dispersion nbsp Example of epizoochory Labrador retriever with hooked fruits detached from Geum urbanum burs trapped in fur after running through undergrowthAnimals can disperse plant seeds in several ways all named zoochory Seeds can be transported on the outside of vertebrate animals mostly mammals a process known as epizoochory Plant species transported externally by animals can have a variety of adaptations for dispersal including adhesive mucus and a variety of hooks spines and barbs 28 A typical example of an epizoochorous plant is Trifolium angustifolium a species of Old World clover which adheres to animal fur by means of stiff hairs covering the seed 9 Epizoochorous plants tend to be herbaceous plants with many representative species in the families Apiaceae and Asteraceae 28 However epizoochory is a relatively rare dispersal syndrome for plants as a whole the percentage of plant species with seeds adapted for transport on the outside of animals is estimated to be below 5 28 Nevertheless epizoochorous transport can be highly effective if seeds attach to wide ranging animals This form of seed dispersal has been implicated in rapid plant migration and the spread of invasive species 9 Seed dispersal via ingestion and defecation by vertebrate animals mostly birds and mammals or endozoochory is the dispersal mechanism for most tree species 29 Endozoochory is generally a coevolved mutualistic relationship in which a plant surrounds seeds with an edible nutritious fruit as a good food resource for animals that consume it Such plants may advertise the presence of food resource by using colour 30 Birds and mammals are the most important seed dispersers but a wide variety of other animals including turtles fish and insects e g tree weta and scree weta can transport viable seeds 31 32 The exact percentage of tree species dispersed by endozoochory varies between habitats but can range to over 90 in some tropical rainforests 29 Seed dispersal by animals in tropical rainforests has received much attention and this interaction is considered an important force shaping the ecology and evolution of vertebrate and tree populations 33 In the tropics large animal seed dispersers such as tapirs chimpanzees black and white colobus toucans and hornbills may disperse large seeds with few other seed dispersal agents The extinction of these large frugivores from poaching and habitat loss may have negative effects on the tree populations that depend on them for seed dispersal and reduce genetic diversity 34 35 Seed dispersal through endozoochory can lead to quick spread of invasive species such as in the case of prickly acacia in Australia 36 A variation of endozoochory is regurgitation of seeds rather than their passage in faeces after passing through the entire digestive tract 37 Seed dispersal by ants myrmecochory is a dispersal mechanism of many shrubs of the southern hemisphere or understorey herbs of the northern hemisphere 7 Seeds of myrmecochorous plants have a lipid rich attachment called the elaiosome which attracts ants Ants carry such seeds into their colonies feed the elaiosome to their larvae and discard the otherwise intact seed in an underground chamber 38 Myrmecochory is thus a coevolved mutualistic relationship between plants and seed disperser ants Myrmecochory has independently evolved at least 100 times in flowering plants and is estimated to be present in at least 11 000 species but likely up to 23 000 or 9 of all species of flowering plants 7 Myrmecochorous plants are most frequent in the fynbos vegetation of the Cape Floristic Region of South Africa the kwongan vegetation and other dry habitat types of Australia dry forests and grasslands of the Mediterranean region and northern temperate forests of western Eurasia and eastern North America where up to 30 40 of understorey herbs are myrmecochorous 7 Seed dispersal by ants is a mutualistic relationship and benefits both the ant and the plant 39 Seed dispersal by bees melittochory is an unusual dispersal mechanism for a small number of tropical plants As of 2023 it has only been documented in five plant species including Corymbia torelliana Coussapoa asperifolia subsp magnifolia Zygia racemosa Vanilla odorata and Vanilla planifolia The first three are tropical trees and the last two are tropical vines 40 Seed predators which include many rodents such as squirrels and some birds such as jays may also disperse seeds by hoarding the seeds in hidden caches 41 The seeds in caches are usually well protected from other seed predators and if left uneaten will grow into new plants In addition rodents may also disperse seeds via seed spitting due to the presence of secondary metabolites in ripe fruits 42 Finally seeds may be secondarily dispersed from seeds deposited by primary animal dispersers a process known as diplochory For example dung beetles are known to disperse seeds from clumps of feces in the process of collecting dung to feed their larvae 43 Other types of zoochory are chiropterochory by bats malacochory by molluscs mainly terrestrial snails ornithochory by birds and saurochory by non bird sauropsids Zoochory can occur in more than one phase for example through diploendozoochory where a primary disperser an animal that ate a seed along with the seeds it is carrying is eaten by a predator that then carries the seed further before depositing it 44 Humans edit nbsp Epizoochory in Bidens tripartita Asteraceae the hooked achenes of the plant readily attach to clothing such as this shirt sleeve nbsp Epizoochory in Galium aparine Rubiaceae shoelaces covered in velcro like burs after a woodland walk nbsp Epizoochory in the grass Cenchrus spinifex burs on clothing after walk on beach source source source source source Seed dispersal by a carDispersal by humans anthropochory used to be seen as a form of dispersal by animals Its most widespread and intense cases account for the planting of much of the land area on the planet through agriculture In this case human societies form a long term relationship with plant species and create conditions for their growth Recent research points out that human dispersers differ from animal dispersers by having a much higher mobility based on the technical means of human transport 45 On the one hand dispersal by humans also acts on smaller regional scales and drives the dynamics of existing biological populations On the other hand dispersal by humans may act on large geographical scales and lead to the spread of invasive species 46 Humans may disperse seeds by many various means and some surprisingly high distances have been repeatedly measured 47 Examples are dispersal on human clothes up to 250 m 48 on shoes up to 5 km 45 or by cars regularly 250 m singles cases gt 100 km 49 Seed dispersal by cars can be a form of unintentional transport of seeds by humans which can reach far distances greater than other conventional methods of dispersal 50 Cars that carry soil are able to contain viable seeds a study by Dunmail J Hodkinson and Ken Thompson found that the most common seeds that were carried by vehicle were broadleaf plantain Plantago major Annual meadow grass Poa annua rough meadow grass Poa trivialis stinging nettle Urtica dioica and wild chamomile Matricaria discoidea 50 Deliberate seed dispersal also occurs as seed bombing This has risks as unsuitable provenance may introduce genetically unsuitable plants to new environments Consequences editSeed dispersal has many consequences for the ecology and evolution of plants Dispersal is necessary for species migrations and in recent times dispersal ability is an important factor in whether or not a species transported to a new habitat by humans will become an invasive species 51 Dispersal is also predicted to play a major role in the origin and maintenance of species diversity For example myrmecochory increased the rate of diversification more than twofold in plant groups in which it has evolved because myrmecochorous lineages contain more than twice as many species as their non myrmecochorous sister groups 52 Dispersal of seeds away from the parent organism has a central role in two major theories for how biodiversity is maintained in natural ecosystems the Janzen Connell hypothesis and recruitment limitation 4 Seed dispersal is essential in allowing forest migration of flowering plants It can be influenced by the production of different fruit morphs in plants a phenomenon known as heterocarpy 53 These fruit morphs are different in size and shape and have different dispersal ranges which allows seeds to be dispersed for varying distances and adapt to different environments 53 The distances of the dispersal also affects the kernel of the seed The lowest distance of seed dispersal were found in the wetlands whereas the longest were dry landscapes 54 In addition the speed and direction of wind are highly influential in the dispersal process and in turn the deposition patterns of floating seeds in the stagnant water bodies The transportation of seeds is led by the wind direction This effects colonization situated on the banks of a river or to wetlands adjacent to streams relative to the distinct wind directions The wind dispersal process can also affect connections between water bodies Essentially wind plays a larger role in the dispersal of waterborne seeds in a short period of time days and seasons but the ecological process allows the process to become balanced throughout a time period of several years The time period of which the dispersal occurs is essential when considering the consequences of wind on the ecological process citation needed See also editBiological dispersal Biantitropical distribution Disturbance ecology Dormancy dispersal in time Gene flow Habitat fragmentation Landscape ecology Metapopulation Oceanic dispersal Population ecology Seed dispersal syndrome Evolutionary anachronismReferences edit a b Howe H F Smallwood J November 1982 Ecology of Seed Dispersal Annual Review of Ecology and Systematics 13 1 201 228 doi 10 1146 annurev es 13 110182 001221 ISSN 0066 4162 Green Andy J Baltzinger Christophe Lovas Kiss Adam 2021 06 24 Plant dispersal syndromes are unreliable especially for predicting zoochory and long distance dispersal Oikos 2022 2 doi 10 1111 oik 08327 hdl 10261 246285 ISSN 0030 1299 S2CID 237880167 Bullock James M Shea Katriona Skarpaas Olav 2006 10 01 Measuring plant dispersal an introduction to field methods and experimental design Plant Ecology 186 2 217 234 doi 10 1007 s11258 006 9124 5 ISSN 1573 5052 S2CID 26926442 a b Harms K Wright SJ Calderon O Hernandez A Herre EA 2000 Pervasive density dependent recruitment enhances seedling diversity in a tropical forest Nature 404 6777 493 495 Bibcode 2000Natur 404 493H doi 10 1038 35006630 PMID 10761916 S2CID 4428057 Wenny D G amp Levey D J 1998 Directed seed dispersal by bellbirds in a tropical cloud forest Proceedings of the National Academy of Sciences of the United States of America 95 11 6204 7 Bibcode 1998PNAS 95 6204W doi 10 1073 pnas 95 11 6204 PMC 27627 PMID 9600942 Fedriani J M Delibes M 2009 Functional diversity in fruit frugivore interactions A field experiment with Mediterranean mammals Ecography 32 6 983 992 doi 10 1111 j 1600 0587 2009 05925 x hdl 10261 50153 a b c d Lengyel S et al 2010 Convergent evolution of seed dispersal by ants and phylogeny and biogeography in flowering plants a global survey Perspectives in Plant Ecology Evolution and Systematics 12 1 43 55 doi 10 1016 j ppees 2009 08 001 Manzaneda Antonio J Fedriani Jose M amp Rey Pedro J 2005 Adaptive advantages of myrmecochory the predator avoidance hypothesis tested over a wide geographic range PDF Ecography 28 5 583 592 CiteSeerX 10 1 1 507 1719 doi 10 1111 j 2005 0906 7590 04309 x hdl 10261 58621 Archived from the original PDF on 2012 06 20 Retrieved 2012 05 26 a b c Manzano Pablo Malo Juan E 2006 Extreme long distance seed dispersal via sheep PDF Frontiers in Ecology and the Environment 4 5 244 248 doi 10 1890 1540 9295 2006 004 0244 ELSDVS 2 0 CO 2 hdl 10486 1200 JSTOR 3868790 OZINGA WIM A BEKKER RENEE M SCHAMINEE JOOP H J VAN GROENENDAEL JAN M October 2004 Dispersal potential in plant communities depends on environmental conditions Journal of Ecology 92 5 767 777 doi 10 1111 j 0022 0477 2004 00916 x Higgins Steven I Richardson David M May 1999 Predicting Plant Migration Rates in a Changing World The Role of Long Distance Dispersal The American Naturalist 153 5 464 475 doi 10 1086 303193 PMID 29578791 S2CID 46359637 a b Ran Nathan Schurr Frank M Spiegel Orr Steinitz Ofer Trakhtenbrot Ana Tsoar Asaf November 2008 Mechanisms of long distance seed dispersal Trends in Ecology and Evolution 23 11 638 647 doi 10 1016 j tree 2008 08 003 PMID 18823680 Ostergaard Lars J 2010 Annual Plant Reviews Fruits Development and Seed Dispersal first ed United Kingdom Blackwell Publishing pp 204 205 ISBN 978 1 4051 8946 0 Jorg Ganzhorn U Fietz Joanna Rakotovao Edmond Schwab Dorothea Dietmar Zinner August 1999 Lemurs and the Regeneration of Dry Deciduous Forest in Madagascar Conservation Biology 13 4 794 804 doi 10 1046 j 1523 1739 1999 98245 x S2CID 83638661 Ran Nathan August 11 2006 Long Distance Dispersal of Plants Science 313 5788 786 788 Bibcode 2006Sci 313 786N doi 10 1126 science 1124975 PMID 16902126 S2CID 32984474 Craig amp Griffiths Charles Smith October 1997 Shark and skate egg cases cast up ashore two South African beaches and their rates of hatching success or causes of death African Zoology NISC Pty Ltd 32 4 112 117 ISSN 1562 7020 a b Vittoz Pascal Engler Robin 7 February 2008 Seed dispersal distances a typology based on dispersal modes and plant traits PDF Botanica Helvetica 117 2 109 124 doi 10 1007 s00035 007 0797 8 S2CID 2339616 Schulze Ernst Detlef Beck Erwin amp Muller Hohenstein Klaus 2005 Plant Ecology Springer pp 543 ISBN 978 3 540 20833 4 Dispersal of seeds by gravity Retrieved 2009 05 08 Wilson A K 1 March 1981 Euphorbia heterophylla a Review of Distribution Importance and Control Tropical Pest Management 27 1 32 38 doi 10 1080 09670878109414169 Kellogg Elizabeth A 2015 Flowering Plants Monocots Springer International Publishing p 74 doi 10 1007 978 3 319 15332 2 ISBN 978 3 319 15331 5 S2CID 30485589 Feldkamp Susan 2006 Modern Biology United States Holt Rinehart and Winston p 618 Chang Kenneth 8 August 2019 Watch This Plant Shoot Its Seeds Like Spiraling Footballs The New York Times Retrieved 8 August 2019 Gurevitch J Scheiner S M amp G A Fox 2006 Plant Ecology 2nd ed Sinauer Associates Inc Massachusetts Seale Madeleine Zhdanov Oleksandr Soons Merel B Cummins Cathal Kroll Erika et al 2022 11 29 Environmental morphing enables informed dispersal of the dandelion diaspore eLife eLife Sciences Publications Ltd 11 bioRxiv 10 1101 542696 doi 10 7554 elife 81962 ISSN 2050 084X PMC 9797189 PMID 36445222 Cody M L amp Overton J M 1996 Short term evolution of reduced dispersal in island plant populations Journal of Ecology 84 1 53 61 doi 10 2307 2261699 JSTOR 2261699 Godt Mary June 1995 Genetic Diversity in a Threatened Wetland Species Helonias bullata Liliaceae Conservation Biology 9 3 596 604 doi 10 1046 j 1523 1739 1995 09030596 x JSTOR 2386613 a b c Sorenson A E 1986 Seed dispersal by adhesion Annual Review of Ecology and Systematics 17 443 463 doi 10 1146 annurev es 17 110186 002303 a b Howe H F amp Smallwood J 1982 Ecology of Seed Dispersal PDF Annual Review of Ecology and Systematics 13 201 228 doi 10 1146 annurev es 13 110182 001221 Archived from the original PDF on 2006 05 13 Lim Ganges Burns Kevin C 2021 11 24 Do fruit reflectance properties affect avian frugivory in New Zealand New Zealand Journal of Botany 60 3 319 329 doi 10 1080 0028825X 2021 2001664 ISSN 0028 825X S2CID 244683146 Corlett R T 1998 Frugivory and seed dispersal by vertebrates in the Oriental Indomalayan Region Biological Reviews 73 4 413 448 doi 10 1017 S0006323198005234 PMID 9951414 Larsen Hannah Burns Kevin C November 2012 Seed dispersal effectiveness increases with body size in New Zealand alpine scree weta Deinacrida connectens WETA FRUGIVORY Austral Ecology 37 7 800 806 doi 10 1111 j 1442 9993 2011 02340 x S2CID 4820468 Terborgh J 1986 Community aspects of frugivory in tropical forests in Fleming T H Estrada Alejandro eds Frugivory and Seed Dispersal Advances in Vegetation Science Vol 15 Springer ISBN 978 0 7923 2141 5 Chapman C A amp Onderdonk D A 1998 Forests without primates primate plant codependency American Journal of Primatology 45 1 127 141 doi 10 1002 SICI 1098 2345 1998 45 1 lt 127 AID AJP9 gt 3 0 CO 2 Y PMID 9573446 S2CID 22103399 Sezen U U 2016 Genetic Consequences of Tropical Second Growth Forest Regeneration Science 307 5711 891 doi 10 1126 science 1105034 PMID 15705843 S2CID 40904897 Kriticos Darren Brown Joel Radford Ian Nicholas Mike 1999 10 01 Plant Population Ecology and Biological Control Acacia nilotica as a Case Study Biological Control 16 2 230 239 doi 10 1006 bcon 1999 0746 ISSN 1049 9644 Delibes Miguel Castaneda Irene Fedriani Jose M 2017 Tree climbing goats disperse seeds during rumination Frontiers in Ecology and the Environment 15 4 222 doi 10 1002 fee 1488 hdl 10261 158050 Giladi I 2006 Choosing benefits or partners a review of the evidence for the evolution of myrmecochory Oikos 112 3 481 492 CiteSeerX 10 1 1 530 1306 doi 10 1111 j 0030 1299 2006 14258 x Handel Steven N Beattie Andrew J 1990 Seed Dispersal by Ants Scientific American 263 2 76 83B Bibcode 1990SciAm 263b 76H doi 10 1038 scientificamerican0890 76 ISSN 0036 8733 JSTOR 24996901 Karremans Adam P Bogarin Diego Fernandez Otarola Mauricio Sharma Jyotsna Watteyn Charlotte Warner Jorge Rodriguez Herrera Bernal Chinchilla Isler F Carman Ernesto Rojas Valerio Emmanuel Pillco Huarcaya Ruthmery Whitworth Andy January 2023 First evidence for multimodal animal seed dispersal in orchids Current Biology 33 2 364 371 e3 doi 10 1016 j cub 2022 11 041 Forget P M amp Milleron T 1991 Evidence for secondary seed dispersal by rodents in Panama Oecologia 87 4 596 599 Bibcode 1991Oecol 87 596F doi 10 1007 BF00320426 PMID 28313705 S2CID 32745179 Samuni Blank M et al 2012 Intraspecific directed deterrence by the mustard oil bomb in a desert plant Current Biology 22 13 1 3 doi 10 1016 j cub 2012 04 051 PMID 22704992 Andresen E amp Levey D J 2004 Effects of dung and seed size on secondary dispersal seed predation and seedling establishment of rainforest trees Oecologia 139 1 45 54 Bibcode 2004Oecol 139 45A doi 10 1007 s00442 003 1480 4 PMID 14740290 S2CID 28576412 Hamalainen Anni Broadley Kate Droghini Amanda Haines Jessica A Lamb Clayton T Boutin Stan Gilbert Sophie February 2017 The ecological significance of secondary seed dispersal by carnivores Ecosphere 8 2 e01685 doi 10 1002 ecs2 1685 a b Wichmann M C Alexander M J Soons M B Galsworthy S Dunne L Gould R Fairfax C Niggemann M Hails R S amp Bullock J M 2009 Human mediated dispersal of seeds over long distances Proceedings of the Royal Society B 276 1656 523 532 doi 10 1098 rspb 2008 1131 PMC 2664342 PMID 18826932 Chaloupka M Y Domm S B December 1986 Role of Anthropochory in the Invasion of Coral Cays by Alien Flora Ecology 67 6 1536 1547 doi 10 2307 1939084 JSTOR 1939084 Anthropochory or Human Mediated Dispersal HMD Frugivores and Seed Dispersal Symposium June 2010 Archived from the original on 2013 11 05 Retrieved 2014 03 06 Bullock S H amp Primack R B 1977 Comparative experimental study of seed dispersal on animals Ecology 58 3 681 686 doi 10 2307 1939019 JSTOR 1939019 von der Lippe M amp Kowarik I 2007 Long distance dispersal of plants by vehicles as a driver of plant invasions Conservation Biology 21 4 986 996 doi 10 1111 j 1523 1739 2007 00722 x PMID 17650249 S2CID 37957761 a b Hodkinson Dunmail J Thompson Ken 1997 Plant Dispersal The Role of Man Journal of Applied Ecology 34 6 1484 1496 doi 10 2307 2405264 ISSN 0021 8901 JSTOR 2405264 Caswell H Lensink R Neubert M G 2003 Demography And Dispersal Life Table Response Experiments For Invasion Speed Ecology 84 8 1968 1978 doi 10 1890 02 0100 Lengyel S et al 2009 Chave Jerome ed Ants Sow the Seeds of Global Diversification in Flowering Plants PLOS ONE 4 5 e5480 Bibcode 2009PLoSO 4 5480L doi 10 1371 journal pone 0005480 PMC 2674952 PMID 19436714 a b Gardocki Mary Elizabeth Zablocki Heather El Keblawy Ali Freeman D Carl 2000 Heterocarpy in Calendula micrantha Asteraceae The effects of competition and availability of water on the performance of offspring from different fruit morphs PDF Evolutionary Ecology Research 2 701 718 Archived PDF from the original on 21 September 2022 Kleyheeg Erik Treep Jelle de Jager Monique Nolet Bart A Soons Merel B September 2017 Nilsson Christer ed Seed dispersal distributions resulting from landscape dependent daily movement behaviour of a key vector species Anas platyrhynchos Journal of Ecology 105 5 1279 1289 doi 10 1111 1365 2745 12738 ISSN 0022 0477 Further reading editHanson Thor 2016 The Triumph of Seeds How Grains Nuts Kernels Pulses and Pips Conquered the Plant Kingdom and Shaped Human History Basic Books ISBN 978 0465097401 Ridley Henry N 1930 The Dispersal of Plants Throughout the World Ashford Kent L Reeve amp Co ISBN 978 0 85393 004 4 External links edit nbsp Wikimedia Commons has media related to Seed dispersal Fruit and seed dispersal images at bioimages vanderbilt edu Interactive model of movement of plant species induced by climate change Secondary metabolites promote seed dispersal Retrieved from https en wikipedia org w index php title Seed dispersal amp oldid 1193673529, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.