fbpx
Wikipedia

Solvent

A solvent (from the Latin solvō, "loosen, untie, solve") is a substance that dissolves a solute, resulting in a solution. A solvent is usually a liquid but can also be a solid, a gas, or a supercritical fluid. Water is a solvent for polar molecules, and the most common solvent used by living things; all the ions and proteins in a cell are dissolved in water within the cell.

Ethyl acetate, nail polish solvent.[1]

Major uses of solvents are in paints, paint removers, inks, and dry cleaning.[2] Specific uses for organic solvents are in dry cleaning (e.g. tetrachloroethylene); as paint thinners (toluene, turpentine); as nail polish removers and solvents of glue (acetone, methyl acetate, ethyl acetate); in spot removers (hexane, petrol ether); in detergents (citrus terpenes); and in perfumes (ethanol). Solvents find various applications in chemical, pharmaceutical, oil, and gas industries, including in chemical syntheses and purification processes.

Solutions and solvation edit

When one substance is dissolved into another, a solution is formed.[3] This is opposed to the situation when the compounds are insoluble like sand in water. In a solution, all of the ingredients are uniformly distributed at a molecular level and no residue remains. A solvent-solute mixture consists of a single phase with all solute molecules occurring as solvates (solvent-solute complexes), as opposed to separate continuous phases as in suspensions, emulsions and other types of non-solution mixtures. The ability of one compound to be dissolved in another is known as solubility; if this occurs in all proportions, it is called miscible.

In addition to mixing, the substances in a solution interact with each other at the molecular level. When something is dissolved, molecules of the solvent arrange around molecules of the solute. Heat transfer is involved and entropy is increased making the solution more thermodynamically stable than the solute and solvent separately. This arrangement is mediated by the respective chemical properties of the solvent and solute, such as hydrogen bonding, dipole moment and polarizability.[4] Solvation does not cause a chemical reaction or chemical configuration changes in the solute. However, solvation resembles a coordination complex formation reaction, often with considerable energetics (heat of solvation and entropy of solvation) and is thus far from a neutral process.

When one substance dissolves into another, a solution is formed. A solution is a homogeneous mixture consisting of a solute dissolved into a solvent. The solute is the substance that is being dissolved, while the solvent is the dissolving medium. Solutions can be formed with many different types and forms of solutes and solvents.

Solvent classifications edit

Solvents can be broadly classified into two categories: polar and non-polar. A special case is elemental mercury, whose solutions are known as amalgams; also, other metal solutions exist which are liquid at room temperature.

Generally, the dielectric constant of the solvent provides a rough measure of a solvent's polarity. The strong polarity of water is indicated by its high dielectric constant of 88 (at 0 °C).[5] Solvents with a dielectric constant of less than 15 are generally considered to be nonpolar.[6]

The dielectric constant measures the solvent's tendency to partly cancel the field strength of the electric field of a charged particle immersed in it. This reduction is then compared to the field strength of the charged particle in a vacuum.[6] Heuristically, the dielectric constant of a solvent can be thought of as its ability to reduce the solute's effective internal charge. Generally, the dielectric constant of a solvent is an acceptable predictor of the solvent's ability to dissolve common ionic compounds, such as salts.

Other polarity scales edit

Dielectric constants are not the only measure of polarity. Because solvents are used by chemists to carry out chemical reactions or observe chemical and biological phenomena, more specific measures of polarity are required. Most of these measures are sensitive to chemical structure.

The Grunwald–Winstein mY scale measures polarity in terms of solvent influence on buildup of positive charge of a solute during a chemical reaction.

Kosower's Z scale measures polarity in terms of the influence of the solvent on UV-absorption maxima of a salt, usually pyridinium iodide or the pyridinium zwitterion.[7]

Donor number and donor acceptor scale measures polarity in terms of how a solvent interacts with specific substances, like a strong Lewis acid or a strong Lewis base.[8]

The Hildebrand parameter is the square root of cohesive energy density. It can be used with nonpolar compounds, but cannot accommodate complex chemistry.

Reichardt's dye, a solvatochromic dye that changes color in response to polarity, gives a scale of ET(30) values. ET is the transition energy between the ground state and the lowest excited state in kcal/mol, and (30) identifies the dye. Another, roughly correlated scale (ET(33)) can be defined with Nile red.

The polarity, dipole moment, polarizability and hydrogen bonding of a solvent determines what type of compounds it is able to dissolve and with what other solvents or liquid compounds it is miscible. Generally, polar solvents dissolve polar compounds best and non-polar solvents dissolve non-polar compounds best; hence "like dissolves like". Strongly polar compounds like sugars (e.g. sucrose) or ionic compounds, like inorganic salts (e.g. table salt) dissolve only in very polar solvents like water, while strongly non-polar compounds like oils or waxes dissolve only in very non-polar organic solvents like hexane. Similarly, water and hexane (or vinegar and vegetable oil) are not miscible with each other and will quickly separate into two layers even after being shaken well.

Polarity can be separated to different contributions. For example, the Kamlet-Taft parameters are dipolarity/polarizability (π*), hydrogen-bonding acidity (α) and hydrogen-bonding basicity (β). These can be calculated from the wavelength shifts of 3–6 different solvatochromic dyes in the solvent, usually including Reichardt's dye, nitroaniline and diethylnitroaniline. Another option, Hansen solubility parameters, separates the cohesive energy density into dispersion, polar, and hydrogen bonding contributions.

Polar protic and polar aprotic edit

Solvents with a dielectric constant (more accurately, relative static permittivity) greater than 15 (i.e. polar or polarizable) can be further divided into protic and aprotic. Protic solvents, such as water, solvate anions (negatively charged solutes) strongly via hydrogen bonding. Polar aprotic solvents, such as acetone or dichloromethane, tend to have large dipole moments (separation of partial positive and partial negative charges within the same molecule) and solvate positively charged species via their negative dipole.[9] In chemical reactions the use of polar protic solvents favors the SN1 reaction mechanism, while polar aprotic solvents favor the SN2 reaction mechanism. These polar solvents are capable of forming hydrogen bonds with water to dissolve in water whereas non-polar solvents are not capable of strong hydrogen bonds.

Physical properties edit

Properties table of common solvents edit

The solvents are grouped into nonpolar, polar aprotic, and polar protic solvents, with each group ordered by increasing polarity. The properties of solvents which exceed those of water are bolded.

Solvent Chemical formula Boiling point[10]
(°C)
Dielectric constant[11] Density
(g/mL)
Dipole moment
(D)

Nonpolar hydrocarbon solvents edit

Pentane  

CH3CH2CH2CH2CH3

36.1 1.84 0.626 0.00
Hexane  

CH3CH2CH2CH2CH2CH3

69 1.88 0.655 0.00
Benzene  
C6H6
80.1 2.3 0.879 0.00
Heptane  

H3C(CH2)5CH3

98.38 1.92 0.680 0.0
Toluene  

C6H5-CH3

111 2.38 0.867 0.36

Nonpolar ether solvents edit

1,4-Dioxane  
C4H8O2
101.1 2.3 1.033 0.45
Diethyl ether  

CH3CH2-O-CH2CH3

34.6 4.3 0.713 1.15
Tetrahydrofuran (THF)  
C4H8O
66 7.5 0.886 1.75

Nonpolar chlorocarbon solvents edit

Chloroform  

CHCl3

61.2 4.81 1.498 1.04
Polar aprotic solvents
Dichloromethane (DCM)  

CH2Cl2

39.6 9.1 1.3266 1.60
Ethyl acetate  
CH3-C(=O)-O-CH2-CH3
77.1 6.02 0.894 1.78
Acetone  
CH3-C(=O)-CH3
56.1 21 0.786 2.88
Dimethylformamide (DMF)  
H-C(=O)N(CH3)2
153 38 0.944 3.82
Acetonitrile (MeCN)  

CH3-C≡N

82 37.5 0.786 3.92
Dimethyl sulfoxide (DMSO)  
CH3-S(=O)-CH3
189 46.7 1.092 3.96
Nitromethane  

CH3-NO2

100–103 35.87 1.1371 3.56
Propylene carbonate  

C4H6O3

240 64.0 1.205 4.9

Polar protic solvents edit

Ammonia  

NH3

-33.3 17 0.674

(at -33.3 °C)

1.42
Formic acid  
H-C(=O)OH
100.8 58 1.21 1.41
n-Butanol  

CH3CH2CH2CH2OH

117.7 18 0.810 1.63
Isopropyl alcohol (IPA)  
CH3-CH(-OH)-CH3
82.6 18 0.785 1.66
n-Propanol  

CH3CH2CH2OH

97 20 0.803 1.68
Ethanol  

CH3CH2OH

78.2 24.55 0.789 1.69
Methanol  

CH3OH

64.7 33 0.791 1.70
Acetic acid  
CH3-C(=O)OH
118 6.2 1.049 1.74
Water  
H-O-H
100 80 1.000 1.85

The ACS Green Chemistry Institute maintains a tool for the selection of solvents based on a principal component analysis of solvent properties.[12]

Hansen solubility parameter values edit

The Hansen solubility parameter (HSP) values[13][14] are based on dispersion bonds (δD), polar bonds (δP) and hydrogen bonds (δH). These contain information about the inter-molecular interactions with other solvents and also with polymers, pigments, nanoparticles, etc. This allows for rational formulations knowing, for example, that there is a good HSP match between a solvent and a polymer. Rational substitutions can also be made for "good" solvents (effective at dissolving the solute) that are "bad" (expensive or hazardous to health or the environment). The following table shows that the intuitions from "non-polar", "polar aprotic" and "polar protic" are put numerically – the "polar" molecules have higher levels of δP and the protic solvents have higher levels of δH. Because numerical values are used, comparisons can be made rationally by comparing numbers. For example, acetonitrile is much more polar than acetone but exhibits slightly less hydrogen bonding.

Solvent Chemical formula δD Dispersion δP Polar δH Hydrogen bonding

Non-polar solvents edit

n-Hexane CH3CH2CH2CH2CH2CH3 14.9 0.0 0.0
Benzene C6H6 18.4 0.0 2.0
Toluene C6H5-CH3 18.0 1.4 2.0
Diethyl ether CH3CH2-O-CH2CH3 14.5 2.9 4.6
Chloroform CHCl3 17.8 3.1 5.7
1,4-Dioxane /-CH2-CH2-O-CH2-CH2-O-\ 17.5 1.8 9.0

Polar aprotic solvents edit

Ethyl acetate CH3-C(=O)-O-CH2-CH3 15.8 5.3 7.2
Tetrahydrofuran (THF) /-CH2-CH2-O-CH2-CH2-\ 16.8 5.7 8.0
Dichloromethane CH2Cl2 17.0 7.3 7.1
Acetone CH3-C(=O)-CH3 15.5 10.4 7.0
Acetonitrile (MeCN) CH3-C≡N 15.3 18.0 6.1
Dimethylformamide (DMF) H-C(=O)N(CH3)2 17.4 13.7 11.3
Dimethyl sulfoxide (DMSO) CH3-S(=O)-CH3 18.4 16.4 10.2

Polar protic solvents edit

Acetic acid CH3-C(=O)OH 14.5 8.0 13.5
n-Butanol CH3CH2CH2CH2OH 16.0 5.7 15.8
Isopropanol CH3-CH(-OH)-CH3 15.8 6.1 16.4
n-Propanol CH3CH2CH2OH 16.0 6.8 17.4
Ethanol CH3CH2OH 15.8 8.8 19.4
Methanol CH3OH 14.7 12.3 22.3
Formic acid H-C(=O)OH 14.6 10.0 14.0
Water H-O-H 15.5 16.0 42.3

If, for environmental or other reasons, a solvent or solvent blend is required to replace another of equivalent solvency, the substitution can be made on the basis of the Hansen solubility parameters of each. The values for mixtures are taken as the weighted averages of the values for the neat solvents. This can be calculated by trial-and-error, a spreadsheet of values, or HSP software.[13][14] A 1:1 mixture of toluene and 1,4 dioxane has δD, δP and δH values of 17.8, 1.6 and 5.5, comparable to those of chloroform at 17.8, 3.1 and 5.7 respectively. Because of the health hazards associated with toluene itself, other mixtures of solvents may be found using a full HSP dataset.

Boiling point edit

Solvent Boiling point (°C)[10]
ethylene dichloride 83.48
pyridine 115.25
methyl isobutyl ketone 116.5
methylene chloride 39.75
isooctane 99.24
carbon disulfide 46.3
carbon tetrachloride 76.75
o-xylene 144.42

The boiling point is an important property because it determines the speed of evaporation. Small amounts of low-boiling-point solvents like diethyl ether, dichloromethane, or acetone will evaporate in seconds at room temperature, while high-boiling-point solvents like water or dimethyl sulfoxide need higher temperatures, an air flow, or the application of vacuum for fast evaporation.

  • Low boilers: boiling point below 100 °C (boiling point of water)
  • Medium boilers: between 100 °C and 150 °C
  • High boilers: above 150 °C

Density edit

Most organic solvents have a lower density than water, which means they are lighter than and will form a layer on top of water. Important exceptions are most of the halogenated solvents like dichloromethane or chloroform will sink to the bottom of a container, leaving water as the top layer. This is crucial to remember when partitioning compounds between solvents and water in a separatory funnel during chemical syntheses.

Often, specific gravity is cited in place of density. Specific gravity is defined as the density of the solvent divided by the density of water at the same temperature. As such, specific gravity is a unitless value. It readily communicates whether a water-insoluble solvent will float (SG < 1.0) or sink (SG > 1.0) when mixed with water.

Solvent Specific gravity[15]
Pentane 0.626
Petroleum ether 0.656
Hexane 0.659
Heptane 0.684
Diethyl amine 0.707
Diethyl ether 0.713
Triethyl amine 0.728
Tert-butyl methyl ether 0.741
Cyclohexane 0.779
Tert-butyl alcohol 0.781
Isopropanol 0.785
Acetonitrile 0.786
Ethanol 0.789
Acetone 0.790
Methanol 0.791
Methyl isobutyl ketone 0.798
Isobutyl alcohol 0.802
1-Propanol 0.803
Methyl ethyl ketone 0.805
2-Butanol 0.808
Isoamyl alcohol 0.809
1-Butanol 0.810
Diethyl ketone 0.814
1-Octanol 0.826
p-Xylene 0.861
m-Xylene 0.864
Toluene 0.867
Dimethoxyethane 0.868
Benzene 0.879
Butyl acetate 0.882
1-Chlorobutane 0.886
Tetrahydrofuran 0.889
Ethyl acetate 0.895
o-Xylene 0.897
Hexamethylphosphorus triamide 0.898
2-Ethoxyethyl ether 0.909
N,N-Dimethylacetamide 0.937
Diethylene glycol dimethyl ether 0.943
N,N-Dimethylformamide 0.944
2-Methoxyethanol 0.965
Pyridine 0.982
Propanoic acid 0.993
Water 1.000
2-Methoxyethyl acetate 1.009
Benzonitrile 1.01
1-Methyl-2-pyrrolidinone 1.028
Hexamethylphosphoramide 1.03
1,4-Dioxane 1.033
Acetic acid 1.049
Acetic anhydride 1.08
Dimethyl sulfoxide 1.092
Chlorobenzene 1.1066
Deuterium oxide 1.107
Ethylene glycol 1.115
Diethylene glycol 1.118
Propylene carbonate 1.21
Formic acid 1.22
1,2-Dichloroethane 1.245
Glycerin 1.261
Carbon disulfide 1.263
1,2-Dichlorobenzene 1.306
Methylene chloride 1.325
Nitromethane 1.382
2,2,2-Trifluoroethanol 1.393
Chloroform 1.498
1,1,2-Trichlorotrifluoroethane 1.575
Carbon tetrachloride 1.594
Tetrachloroethylene 1.623

Multicomponent solvents edit

Multicomponent solvents appeared after World War II in the USSR, and continue to be used and produced in the post-Soviet states. These solvents may have one or more applications, but they are not universal preparations.

Solvents edit

Name Composition
Solvent 645 toluene 50%, butyl acetate 18%, ethyl acetate 12%, butanol 10%, ethanol 10%.
Solvent 646 toluene 50%, ethanol 15%, butanol 10%, butyl- or amyl acetate 10%, ethyl cellosolve 8%, acetone 7%[16]
Solvent 647 butyl- or amyl acetate 29.8%, ethyl acetate 21.2%, butanol 7.7%, toluene or pyrobenzene 41.3%[17]
Solvent 648 butyl acetate 50%, ethanol 10%, butanol 20%, toluene 20%[18]
Solvent 649 ethyl cellosolve 30%, butanol 20%, xylene 50%
Solvent 650 ethyl cellosolve 20%, butanol 30%, xylene 50%[19]
Solvent 651 white spirit 90%, butanol 10%
Solvent KR-36 butyl acetate 20%, butanol 80%
Solvent R-4 toluene 62%, acetone 26%, butyl acetate 12%.
Solvent R-10 xylene 85%, acetone 15%.
Solvent R-12 toluene 60%, butyl acetate 30%, xylene 10%.
Solvent R-14 cyclohexanone 50%, toluene 50%.
Solvent R-24 solvent 50%, xylene 35%, acetone 15%.
Solvent R-40 toluene 50%, ethyl cellosolve 30%, acetone 20%.
Solvent R-219 toluene 34%, cyclohexanone 33%, acetone 33%.
Solvent R-3160 butanol 60%, ethanol 40%.
Solvent RCC xylene 90%, butyl acetate 10%.
Solvent RML ethanol 64%, ethylcellosolve 16%, toluene 10%, butanol 10%.
Solvent PML-315 toluene 25%, xylene 25%, butyl acetate 18%, ethyl cellosolve 17%, butanol 15%.
Solvent PC-1 toluene 60%, butyl acetate 30%, xylene 10%.
Solvent PC-2 white spirit 70%, xylene 30%.
Solvent RFG ethanol 75%, butanol 25%.
Solvent RE-1 xylene 50%, acetone 20%, butanol 15%, ethanol 15%.
Solvent RE-2 petroleum spirits 70%, ethanol 20%, acetone 10%.
Solvent RE-3 petroleum spirits 50%, ethanol 20%, acetone 20%, ethyl cellosolve 10%.
Solvent RE-4 petroleum spirits 50%, acetone 30%, ethanol 20%.
Solvent FK-1 (?) absolute alcohol (99.8%) 95%, ethyl acetate 5%

Thinners edit

Name Composition
Thinner RKB-1 butanol 50%, xylene 50%
Thinner RKB-2 butanol 95%, xylene 5%
Thinner RKB-3 xylene 90%, butanol 10%
Thinner M ethanol 65%, butyl acetate 30%, ethyl acetate 5%.
Thinner P-7 cyclohexanone 50%, ethanol 50%.
Thinner R-197 xylene 60%, butyl acetate 20%, ethyl cellosolve 20%.
Thinner of WFD toluene 50%, butyl acetate (or amyl acetate) 18%, butanol 10%, ethanol 10%, ethyl acetate 9%, acetone 3%.

Safety edit

Fire edit

Most organic solvents are flammable or highly flammable, depending on their volatility. Exceptions are some chlorinated solvents like dichloromethane and chloroform. Mixtures of solvent vapors and air can explode. Solvent vapors are heavier than air; they will sink to the bottom and can travel large distances nearly undiluted. Solvent vapors can also be found in supposedly empty drums and cans, posing a flash fire hazard; hence empty containers of volatile solvents should be stored open and upside down.

Both diethyl ether and carbon disulfide have exceptionally low autoignition temperatures which increase greatly the fire risk associated with these solvents. The autoignition temperature of carbon disulfide is below 100 °C (212 °F), so objects such as steam pipes, light bulbs, hotplates, and recently extinguished bunsen burners are able to ignite its vapors.

In addition some solvents, such as methanol, can burn with a very hot flame which can be nearly invisible under some lighting conditions.[20][21] This can delay or prevent the timely recognition of a dangerous fire, until flames spread to other materials.

Explosive peroxide formation edit

Ethers like diethyl ether and tetrahydrofuran (THF) can form highly explosive organic peroxides upon exposure to oxygen and light. THF is normally more likely to form such peroxides than diethyl ether. One of the most susceptible solvents is diisopropyl ether, but all ethers are considered to be potential peroxide sources.

The heteroatom (oxygen) stabilizes the formation of a free radical which is formed by the abstraction of a hydrogen atom by another free radical.[clarification needed] The carbon-centered free radical thus formed is able to react with an oxygen molecule to form a peroxide compound. The process of peroxide formation is greatly accelerated by exposure to even low levels of light, but can proceed slowly even in dark conditions.

Unless a desiccant is used which can destroy the peroxides, they will concentrate during distillation, due to their higher boiling point. When sufficient peroxides have formed, they can form a crystalline, shock-sensitive solid precipitate at the mouth of a container or bottle. Minor mechanical disturbances, such as scraping the inside of a vessel or the dislodging of a deposit, merely twisting the cap may provide sufficient energy for the peroxide to explode or detonate. Peroxide formation is not a significant problem when fresh solvents are used up quickly; they are more of a problem in laboratories which may take years to finish a single bottle. Low-volume users should acquire only small amounts of peroxide-prone solvents, and dispose of old solvents on a regular periodic schedule.

To avoid explosive peroxide formation, ethers should be stored in an airtight container, away from light, because both light and air can encourage peroxide formation.[22]

A number of tests can be used to detect the presence of a peroxide in an ether; one is to use a combination of iron(II) sulfate and potassium thiocyanate. The peroxide is able to oxidize the Fe2+ ion to an Fe3+ ion, which then forms a deep-red coordination complex with the thiocyanate.

Peroxides may be removed by washing with acidic iron(II) sulfate, filtering through alumina, or distilling from sodium/benzophenone. Alumina degrades the peroxides but some could remain intact in it, therefore it must be disposed of properly.[23] The advantage of using sodium/benzophenone is that moisture and oxygen are removed as well.[24]

Health effects edit

General health hazards associated with solvent exposure include toxicity to the nervous system, reproductive damage, liver and kidney damage, respiratory impairment, cancer, hearing loss [25][26], and dermatitis.[27]

Acute exposure edit

Many solvents[which?] can lead to a sudden loss of consciousness if inhaled in large amounts.[citation needed] Solvents like diethyl ether and chloroform have been used in medicine as anesthetics, sedatives, and hypnotics for a long time.[when?] Many solvents (e.g. from gasoline or solvent-based glues) are abused recreationally in glue sniffing, often with harmful long-term health effects such as neurotoxicity or cancer. Fraudulent substitution of 1,5-pentanediol by the psychoactive 1,4-butanediol by a subcontractor caused the Bindeez product recall.[28]

Ethanol (grain alcohol) is a widely used and abused psychoactive drug. If ingested, the so-called "toxic alcohols" (other than ethanol) such as methanol, 1-propanol, and ethylene glycol metabolize into toxic aldehydes and acids, which cause potentially fatal metabolic acidosis.[29] The commonly available alcohol solvent methanol can cause permanent blindness or death if ingested. The solvent 2-butoxyethanol, used in fracking fluids, can cause hypotension and metabolic acidosis.[30]

Chronic exposure edit

Chronic solvent exposures are often caused by the inhalation of solvent vapors, or the ingestion of diluted solvents, repeated over the course of an extended period.

Some solvents can damage internal organs like the liver, the kidneys, the nervous system, or the brain. The cumulative brain effects of long-term or repeated exposure to some solvents is called chronic solvent-induced encephalopathy (CSE).[31]

Chronic exposure to organic solvents in the work environment can produce a range of adverse neuropsychiatric effects. For example, occupational exposure to organic solvents has been associated with higher numbers of painters suffering from alcoholism.[32] Ethanol has a synergistic effect when taken in combination with many solvents; for instance, a combination of toluene/benzene and ethanol causes greater nausea/vomiting than either substance alone.

Some organic solvents are known or suspected to be cataractogenic. A mixture of aromatic hydrocarbons, aliphatic hydrocarbons, alcohols, esters, ketones, and terpenes were found to greatly increase the risk of developing cataracts in the lens of the eye.[33]

Environmental contamination edit

A major pathway of induced health effects arises from spills or leaks of solvents, especially chlorinated solvents, that reach the underlying soil. Since solvents readily migrate substantial distances, the creation of widespread soil contamination is not uncommon; this is particularly a health risk if aquifers are affected.[34] Vapor intrusion can occur from sites with extensive subsurface solvent contamination.[35]

See also edit

References edit

  1. ^ "What's the Difference Between Acetone and Non-acetone Nail Polish Remover?". 3 November 2009.
  2. ^ Stoye, Dieter (2000). "Solvents". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a24_437. ISBN 978-3527306732.
  3. ^ Tinoco I, Sauer K, Wang JC (2002). Physical Chemistry. Prentice Hall. p. 134. ISBN 978-0-13-026607-1.
  4. ^ Lowery and Richardson, pp. 181–183
  5. ^ Malmberg CG, Maryott AA (January 1956). "Dielectric Constant of Water from 0° to 100 °C". Journal of Research of the National Bureau of Standards. 56 (1): 1. doi:10.6028/jres.056.001.
  6. ^ a b Lowery and Richardson, p. 177.
  7. ^ Kosower, E.M. (1969) "An introduction to Physical Organic Chemistry" Wiley: New York, p. 293
  8. ^ Gutmann V (1976). "Solvent effects on the reactivities of organometallic compounds". Coord. Chem. Rev. 18 (2): 225. doi:10.1016/S0010-8545(00)82045-7.
  9. ^ Lowery and Richardson, p. 183.
  10. ^ a b Solvent Properties – Boiling Point 14 June 2011 at the Wayback Machine. Xydatasource.com. Retrieved on 26 January 2013.
  11. ^ Dielectric Constant 4 July 2010 at the Wayback Machine. Macro.lsu.edu. Retrieved on 26 January 2013.
  12. ^ Diorazio, Louis J.; Hose, David R. J.; Adlington, Neil K. (2016). "Toward a More Holistic Framework for Solvent Selection". Organic Process Research & Development. 20 (4): 760–773. doi:10.1021/acs.oprd.6b00015.
  13. ^ a b Abbott S, Hansen CM (2008). Hansen solubility parameters in practice. Hansen-Solubility. ISBN 978-0-9551220-2-6.
  14. ^ a b Hansen CM (January 2002). Hansen solubility parameters: a user's handbook. CRC press. ISBN 978-0-8493-7248-3.
  15. ^ Selected solvent properties – Specific Gravity 14 June 2011 at the Wayback Machine. Xydatasource.com. Retrieved on 26 January 2013.
  16. ^ "dcpt.ru Solvent 646 Characteristics (ru)".
  17. ^ "dcpt.ru Solvent 647 Characteristics (ru)".
  18. ^ . Archived from the original on 17 May 2017. Retrieved 18 January 2018.
  19. ^ "dcpt.ru Solvent 650 Characteristics (ru)".
  20. ^ Fanick ER, Smith LR, Baines TM (1 October 1984). "Safety Related Additives for Methanol Fuel". SAE Technical Paper Series. Vol. 1. Warrendale, PA: SAE. doi:10.4271/841378. from the original on 12 August 2017.
  21. ^ Anderson JE, Magyarl MW, Siegl WO (1 July 1985). "Concerning the Luminosity of Methanol-Hydrocarbon Diffusion Flames". Combustion Science and Technology. 43 (3–4): 115–125. doi:10.1080/00102208508947000. ISSN 0010-2202.
  22. ^ "Peroxides and Ethers | Environmental Health, Safety and Risk Management". www.uaf.edu. Retrieved 25 January 2018.
  23. ^ "Handling of Peroxide Forming Chemicals". Retrieved 24 September 2021.
  24. ^ Inoue, Ryo; Yamaguchi, Mana; Murakami, Yoshiaki; Okano, Kentaro; Mori, Atsunori (31 October 2018). "Revisiting of Benzophenone Ketyl Still: Use of a Sodium Dispersion for the Preparation of Anhydrous Solvents". ACS Omega. 3 (10): 12703–12706. doi:10.1021/acsomega.8b01707. ISSN 2470-1343. PMC 6210062. PMID 30411016.
  25. ^ https://www.cdc.gov/niosh/docs/2018-124/pdfs/2018-124.pdf
  26. ^ https://pubmed.ncbi.nlm.nih.gov/16938795/
  27. ^ "Solvents". Occupational Safety & Health Administration. U.S. Department of Labor. from the original on 15 March 2016.
  28. ^ Rood, David (7 November 2007). "National: Recall ordered for toy that turns into drug". www.theage.com.au.
  29. ^ Kraut JA, Mullins ME (January 2018). "Toxic Alcohols". The New England Journal of Medicine. 378 (3): 270–280. doi:10.1056/NEJMra1615295. PMID 29342392. S2CID 36652482.
  30. ^ Hung T, Dewitt CR, Martz W, Schreiber W, Holmes DT (July 2010). "Fomepizole fails to prevent progression of acidosis in 2-butoxyethanol and ethanol coingestion". Clinical Toxicology. 48 (6): 569–71. doi:10.3109/15563650.2010.492350. PMID 20560787. S2CID 23257894.
  31. ^ van der Laan, Gert; Sainio, Markku (1 August 2012). "Chronic Solvent induced Encephalopathy: A step forward". NeuroToxicology. Neurotoxicity and Neurodegeneration: Local Effect and Global Impact. 33 (4): 897–901. doi:10.1016/j.neuro.2012.04.012. ISSN 0161-813X. PMID 22560998.
  32. ^ Lundberg I, Gustavsson A, Högberg M, Nise G (June 1992). "Diagnoses of alcohol abuse and other neuropsychiatric disorders among house painters compared with house carpenters". British Journal of Industrial Medicine. 49 (6): 409–15. doi:10.1136/oem.49.6.409. PMC 1012122. PMID 1606027.
  33. ^ Raitta C, Husman K, Tossavainen A (August 1976). "Lens changes in car painters exposed to a mixture of organic solvents". Albrecht von Graefes Archiv für Klinische und Experimentelle Ophthalmologie. Albrecht von Graefe's Archive for Clinical and Experimental Ophthalmology. 200 (2): 149–56. doi:10.1007/bf00414364. PMID 1086605. S2CID 31344706.
  34. ^ Matteucci, Federica; Ercole, Claudia; del Gallo, Maddalena (2015). "A study of chlorinated solvent contamination of the aquifers of an industrial area in central Italy: a possibility of bioremediation". Frontiers in Microbiology. 6: 924. doi:10.3389/fmicb.2015.00924. ISSN 1664-302X. PMC 4556989. PMID 26388862.
  35. ^ Forand SP, Lewis-Michl EL, Gomez MI (April 2012). "Adverse birth outcomes and maternal exposure to trichloroethylene and tetrachloroethylene through soil vapor intrusion in New York State". Environmental Health Perspectives. 120 (4): 616–21. doi:10.1289/ehp.1103884. PMC 3339451. PMID 22142966.

Bibliography edit

External links edit

  • Solvent selection tool ACS Green Chemistry Institute
  • "European Solvents Industry Group - ESIG - ESIG European Solvents Industry Group" Solvents in Europe.
  • O-Chem Lecture
  • Properties and toxicities of organic solvents
  • CDC – Organic Solvents – NIOSH Workplace Safety and Health Topic
  • EPA – Solvent Contaminated Wipes

solvent, other, uses, disambiguation, solvent, from, latin, solvō, loosen, untie, solve, substance, that, dissolves, solute, resulting, solution, solvent, usually, liquid, also, solid, supercritical, fluid, water, solvent, polar, molecules, most, common, solve. For other uses see Solvent disambiguation A solvent from the Latin solvō loosen untie solve is a substance that dissolves a solute resulting in a solution A solvent is usually a liquid but can also be a solid a gas or a supercritical fluid Water is a solvent for polar molecules and the most common solvent used by living things all the ions and proteins in a cell are dissolved in water within the cell Ethyl acetate nail polish solvent 1 Major uses of solvents are in paints paint removers inks and dry cleaning 2 Specific uses for organic solvents are in dry cleaning e g tetrachloroethylene as paint thinners toluene turpentine as nail polish removers and solvents of glue acetone methyl acetate ethyl acetate in spot removers hexane petrol ether in detergents citrus terpenes and in perfumes ethanol Solvents find various applications in chemical pharmaceutical oil and gas industries including in chemical syntheses and purification processes Contents 1 Solutions and solvation 2 Solvent classifications 2 1 Other polarity scales 2 2 Polar protic and polar aprotic 3 Physical properties 3 1 Properties table of common solvents 3 1 1 Nonpolar hydrocarbon solvents 3 1 2 Nonpolar ether solvents 3 1 3 Nonpolar chlorocarbon solvents 3 1 4 Polar protic solvents 3 2 Hansen solubility parameter values 3 2 1 Non polar solvents 3 2 2 Polar aprotic solvents 3 2 3 Polar protic solvents 3 3 Boiling point 3 4 Density 4 Multicomponent solvents 4 1 Solvents 4 2 Thinners 5 Safety 5 1 Fire 5 2 Explosive peroxide formation 6 Health effects 6 1 Acute exposure 6 2 Chronic exposure 6 3 Environmental contamination 7 See also 8 References 9 Bibliography 10 External linksSolutions and solvation editWhen one substance is dissolved into another a solution is formed 3 This is opposed to the situation when the compounds are insoluble like sand in water In a solution all of the ingredients are uniformly distributed at a molecular level and no residue remains A solvent solute mixture consists of a single phase with all solute molecules occurring as solvates solvent solute complexes as opposed to separate continuous phases as in suspensions emulsions and other types of non solution mixtures The ability of one compound to be dissolved in another is known as solubility if this occurs in all proportions it is called miscible In addition to mixing the substances in a solution interact with each other at the molecular level When something is dissolved molecules of the solvent arrange around molecules of the solute Heat transfer is involved and entropy is increased making the solution more thermodynamically stable than the solute and solvent separately This arrangement is mediated by the respective chemical properties of the solvent and solute such as hydrogen bonding dipole moment and polarizability 4 Solvation does not cause a chemical reaction or chemical configuration changes in the solute However solvation resembles a coordination complex formation reaction often with considerable energetics heat of solvation and entropy of solvation and is thus far from a neutral process When one substance dissolves into another a solution is formed A solution is a homogeneous mixture consisting of a solute dissolved into a solvent The solute is the substance that is being dissolved while the solvent is the dissolving medium Solutions can be formed with many different types and forms of solutes and solvents Solvent classifications editSolvents can be broadly classified into two categories polar and non polar A special case is elemental mercury whose solutions are known as amalgams also other metal solutions exist which are liquid at room temperature Generally the dielectric constant of the solvent provides a rough measure of a solvent s polarity The strong polarity of water is indicated by its high dielectric constant of 88 at 0 C 5 Solvents with a dielectric constant of less than 15 are generally considered to be nonpolar 6 The dielectric constant measures the solvent s tendency to partly cancel the field strength of the electric field of a charged particle immersed in it This reduction is then compared to the field strength of the charged particle in a vacuum 6 Heuristically the dielectric constant of a solvent can be thought of as its ability to reduce the solute s effective internal charge Generally the dielectric constant of a solvent is an acceptable predictor of the solvent s ability to dissolve common ionic compounds such as salts Other polarity scales edit Dielectric constants are not the only measure of polarity Because solvents are used by chemists to carry out chemical reactions or observe chemical and biological phenomena more specific measures of polarity are required Most of these measures are sensitive to chemical structure The Grunwald Winstein mY scale measures polarity in terms of solvent influence on buildup of positive charge of a solute during a chemical reaction Kosower s Z scale measures polarity in terms of the influence of the solvent on UV absorption maxima of a salt usually pyridinium iodide or the pyridinium zwitterion 7 Donor number and donor acceptor scale measures polarity in terms of how a solvent interacts with specific substances like a strong Lewis acid or a strong Lewis base 8 The Hildebrand parameter is the square root of cohesive energy density It can be used with nonpolar compounds but cannot accommodate complex chemistry Reichardt s dye a solvatochromic dye that changes color in response to polarity gives a scale of ET 30 values ET is the transition energy between the ground state and the lowest excited state in kcal mol and 30 identifies the dye Another roughly correlated scale ET 33 can be defined with Nile red The polarity dipole moment polarizability and hydrogen bonding of a solvent determines what type of compounds it is able to dissolve and with what other solvents or liquid compounds it is miscible Generally polar solvents dissolve polar compounds best and non polar solvents dissolve non polar compounds best hence like dissolves like Strongly polar compounds like sugars e g sucrose or ionic compounds like inorganic salts e g table salt dissolve only in very polar solvents like water while strongly non polar compounds like oils or waxes dissolve only in very non polar organic solvents like hexane Similarly water and hexane or vinegar and vegetable oil are not miscible with each other and will quickly separate into two layers even after being shaken well Polarity can be separated to different contributions For example the Kamlet Taft parameters are dipolarity polarizability p hydrogen bonding acidity a and hydrogen bonding basicity b These can be calculated from the wavelength shifts of 3 6 different solvatochromic dyes in the solvent usually including Reichardt s dye nitroaniline and diethylnitroaniline Another option Hansen solubility parameters separates the cohesive energy density into dispersion polar and hydrogen bonding contributions Polar protic and polar aprotic edit Solvents with a dielectric constant more accurately relative static permittivity greater than 15 i e polar or polarizable can be further divided into protic and aprotic Protic solvents such as water solvate anions negatively charged solutes strongly via hydrogen bonding Polar aprotic solvents such as acetone or dichloromethane tend to have large dipole moments separation of partial positive and partial negative charges within the same molecule and solvate positively charged species via their negative dipole 9 In chemical reactions the use of polar protic solvents favors the SN1 reaction mechanism while polar aprotic solvents favor the SN2 reaction mechanism These polar solvents are capable of forming hydrogen bonds with water to dissolve in water whereas non polar solvents are not capable of strong hydrogen bonds Physical properties editProperties table of common solvents edit The solvents are grouped into nonpolar polar aprotic and polar protic solvents with each group ordered by increasing polarity The properties of solvents which exceed those of water are bolded Solvent Chemical formula Boiling point 10 C Dielectric constant 11 Density g mL Dipole moment D Nonpolar hydrocarbon solvents editPentane nbsp CH3CH2CH2CH2CH3 36 1 1 84 0 626 0 00Hexane nbsp CH3CH2CH2CH2CH2CH3 69 1 88 0 655 0 00Benzene nbsp C6H6 80 1 2 3 0 879 0 00Heptane nbsp H3C CH2 5CH3 98 38 1 92 0 680 0 0Toluene nbsp C6H5 CH3 111 2 38 0 867 0 36Nonpolar ether solvents edit1 4 Dioxane nbsp C4H8O2 101 1 2 3 1 033 0 45Diethyl ether nbsp CH3CH2 O CH2CH3 34 6 4 3 0 713 1 15Tetrahydrofuran THF nbsp C4H8O 66 7 5 0 886 1 75Nonpolar chlorocarbon solvents editChloroform nbsp CHCl3 61 2 4 81 1 498 1 04Polar aprotic solventsDichloromethane DCM nbsp CH2Cl2 39 6 9 1 1 3266 1 60Ethyl acetate nbsp CH3 C O O CH2 CH3 77 1 6 02 0 894 1 78Acetone nbsp CH3 C O CH3 56 1 21 0 786 2 88Dimethylformamide DMF nbsp H C O N CH3 2 153 38 0 944 3 82Acetonitrile MeCN nbsp CH3 C N 82 37 5 0 786 3 92Dimethyl sulfoxide DMSO nbsp CH3 S O CH3 189 46 7 1 092 3 96Nitromethane nbsp CH3 NO2 100 103 35 87 1 1371 3 56Propylene carbonate nbsp C4H6O3 240 64 0 1 205 4 9Polar protic solvents editAmmonia nbsp NH3 33 3 17 0 674 at 33 3 C 1 42Formic acid nbsp H C O OH 100 8 58 1 21 1 41n Butanol nbsp CH3CH2CH2CH2OH 117 7 18 0 810 1 63Isopropyl alcohol IPA nbsp CH3 CH OH CH3 82 6 18 0 785 1 66n Propanol nbsp CH3CH2CH2OH 97 20 0 803 1 68Ethanol nbsp CH3CH2OH 78 2 24 55 0 789 1 69Methanol nbsp CH3OH 64 7 33 0 791 1 70Acetic acid nbsp CH3 C O OH 118 6 2 1 049 1 74Water nbsp H O H 100 80 1 000 1 85The ACS Green Chemistry Institute maintains a tool for the selection of solvents based on a principal component analysis of solvent properties 12 Hansen solubility parameter values edit The Hansen solubility parameter HSP values 13 14 are based on dispersion bonds dD polar bonds dP and hydrogen bonds dH These contain information about the inter molecular interactions with other solvents and also with polymers pigments nanoparticles etc This allows for rational formulations knowing for example that there is a good HSP match between a solvent and a polymer Rational substitutions can also be made for good solvents effective at dissolving the solute that are bad expensive or hazardous to health or the environment The following table shows that the intuitions from non polar polar aprotic and polar protic are put numerically the polar molecules have higher levels of dP and the protic solvents have higher levels of dH Because numerical values are used comparisons can be made rationally by comparing numbers For example acetonitrile is much more polar than acetone but exhibits slightly less hydrogen bonding Solvent Chemical formula dD Dispersion dP Polar dH Hydrogen bondingNon polar solvents editn Hexane CH3CH2CH2CH2CH2CH3 14 9 0 0 0 0Benzene C6H6 18 4 0 0 2 0Toluene C6H5 CH3 18 0 1 4 2 0Diethyl ether CH3CH2 O CH2CH3 14 5 2 9 4 6Chloroform CHCl3 17 8 3 1 5 71 4 Dioxane CH2 CH2 O CH2 CH2 O 17 5 1 8 9 0Polar aprotic solvents editEthyl acetate CH3 C O O CH2 CH3 15 8 5 3 7 2Tetrahydrofuran THF CH2 CH2 O CH2 CH2 16 8 5 7 8 0Dichloromethane CH2Cl2 17 0 7 3 7 1Acetone CH3 C O CH3 15 5 10 4 7 0Acetonitrile MeCN CH3 C N 15 3 18 0 6 1Dimethylformamide DMF H C O N CH3 2 17 4 13 7 11 3Dimethyl sulfoxide DMSO CH3 S O CH3 18 4 16 4 10 2Polar protic solvents editAcetic acid CH3 C O OH 14 5 8 0 13 5n Butanol CH3CH2CH2CH2OH 16 0 5 7 15 8Isopropanol CH3 CH OH CH3 15 8 6 1 16 4n Propanol CH3CH2CH2OH 16 0 6 8 17 4Ethanol CH3CH2OH 15 8 8 8 19 4Methanol CH3OH 14 7 12 3 22 3Formic acid H C O OH 14 6 10 0 14 0Water H O H 15 5 16 0 42 3If for environmental or other reasons a solvent or solvent blend is required to replace another of equivalent solvency the substitution can be made on the basis of the Hansen solubility parameters of each The values for mixtures are taken as the weighted averages of the values for the neat solvents This can be calculated by trial and error a spreadsheet of values or HSP software 13 14 A 1 1 mixture of toluene and 1 4 dioxane has dD dP and dH values of 17 8 1 6 and 5 5 comparable to those of chloroform at 17 8 3 1 and 5 7 respectively Because of the health hazards associated with toluene itself other mixtures of solvents may be found using a full HSP dataset Boiling point edit Solvent Boiling point C 10 ethylene dichloride 83 48pyridine 115 25methyl isobutyl ketone 116 5methylene chloride 39 75isooctane 99 24carbon disulfide 46 3carbon tetrachloride 76 75o xylene 144 42 The boiling point is an important property because it determines the speed of evaporation Small amounts of low boiling point solvents like diethyl ether dichloromethane or acetone will evaporate in seconds at room temperature while high boiling point solvents like water or dimethyl sulfoxide need higher temperatures an air flow or the application of vacuum for fast evaporation Low boilers boiling point below 100 C boiling point of water Medium boilers between 100 C and 150 C High boilers above 150 CDensity edit Most organic solvents have a lower density than water which means they are lighter than and will form a layer on top of water Important exceptions are most of the halogenated solvents like dichloromethane or chloroform will sink to the bottom of a container leaving water as the top layer This is crucial to remember when partitioning compounds between solvents and water in a separatory funnel during chemical syntheses Often specific gravity is cited in place of density Specific gravity is defined as the density of the solvent divided by the density of water at the same temperature As such specific gravity is a unitless value It readily communicates whether a water insoluble solvent will float SG lt 1 0 or sink SG gt 1 0 when mixed with water Solvent Specific gravity 15 Pentane 0 626Petroleum ether 0 656Hexane 0 659Heptane 0 684Diethyl amine 0 707Diethyl ether 0 713Triethyl amine 0 728Tert butyl methyl ether 0 741Cyclohexane 0 779Tert butyl alcohol 0 781Isopropanol 0 785Acetonitrile 0 786Ethanol 0 789Acetone 0 790Methanol 0 791Methyl isobutyl ketone 0 798Isobutyl alcohol 0 8021 Propanol 0 803Methyl ethyl ketone 0 8052 Butanol 0 808Isoamyl alcohol 0 8091 Butanol 0 810Diethyl ketone 0 8141 Octanol 0 826p Xylene 0 861m Xylene 0 864Toluene 0 867Dimethoxyethane 0 868Benzene 0 879Butyl acetate 0 8821 Chlorobutane 0 886Tetrahydrofuran 0 889Ethyl acetate 0 895o Xylene 0 897Hexamethylphosphorus triamide 0 8982 Ethoxyethyl ether 0 909N N Dimethylacetamide 0 937Diethylene glycol dimethyl ether 0 943N N Dimethylformamide 0 9442 Methoxyethanol 0 965Pyridine 0 982Propanoic acid 0 993Water 1 0002 Methoxyethyl acetate 1 009Benzonitrile 1 011 Methyl 2 pyrrolidinone 1 028Hexamethylphosphoramide 1 031 4 Dioxane 1 033Acetic acid 1 049Acetic anhydride 1 08Dimethyl sulfoxide 1 092Chlorobenzene 1 1066Deuterium oxide 1 107Ethylene glycol 1 115Diethylene glycol 1 118Propylene carbonate 1 21Formic acid 1 221 2 Dichloroethane 1 245Glycerin 1 261Carbon disulfide 1 2631 2 Dichlorobenzene 1 306Methylene chloride 1 325Nitromethane 1 3822 2 2 Trifluoroethanol 1 393Chloroform 1 4981 1 2 Trichlorotrifluoroethane 1 575Carbon tetrachloride 1 594Tetrachloroethylene 1 623Multicomponent solvents editThis section needs additional citations for verification Please help improve this article by adding citations to reliable sources in this section Unsourced material may be challenged and removed Find sources Solvent news newspapers books scholar JSTOR January 2022 Learn how and when to remove this template message Multicomponent solvents appeared after World War II in the USSR and continue to be used and produced in the post Soviet states These solvents may have one or more applications but they are not universal preparations Solvents edit Name CompositionSolvent 645 toluene 50 butyl acetate 18 ethyl acetate 12 butanol 10 ethanol 10 Solvent 646 toluene 50 ethanol 15 butanol 10 butyl or amyl acetate 10 ethyl cellosolve 8 acetone 7 16 Solvent 647 butyl or amyl acetate 29 8 ethyl acetate 21 2 butanol 7 7 toluene or pyrobenzene 41 3 17 Solvent 648 butyl acetate 50 ethanol 10 butanol 20 toluene 20 18 Solvent 649 ethyl cellosolve 30 butanol 20 xylene 50 Solvent 650 ethyl cellosolve 20 butanol 30 xylene 50 19 Solvent 651 white spirit 90 butanol 10 Solvent KR 36 butyl acetate 20 butanol 80 Solvent R 4 toluene 62 acetone 26 butyl acetate 12 Solvent R 10 xylene 85 acetone 15 Solvent R 12 toluene 60 butyl acetate 30 xylene 10 Solvent R 14 cyclohexanone 50 toluene 50 Solvent R 24 solvent 50 xylene 35 acetone 15 Solvent R 40 toluene 50 ethyl cellosolve 30 acetone 20 Solvent R 219 toluene 34 cyclohexanone 33 acetone 33 Solvent R 3160 butanol 60 ethanol 40 Solvent RCC xylene 90 butyl acetate 10 Solvent RML ethanol 64 ethylcellosolve 16 toluene 10 butanol 10 Solvent PML 315 toluene 25 xylene 25 butyl acetate 18 ethyl cellosolve 17 butanol 15 Solvent PC 1 toluene 60 butyl acetate 30 xylene 10 Solvent PC 2 white spirit 70 xylene 30 Solvent RFG ethanol 75 butanol 25 Solvent RE 1 xylene 50 acetone 20 butanol 15 ethanol 15 Solvent RE 2 petroleum spirits 70 ethanol 20 acetone 10 Solvent RE 3 petroleum spirits 50 ethanol 20 acetone 20 ethyl cellosolve 10 Solvent RE 4 petroleum spirits 50 acetone 30 ethanol 20 Solvent FK 1 absolute alcohol 99 8 95 ethyl acetate 5 Thinners edit Name CompositionThinner RKB 1 butanol 50 xylene 50 Thinner RKB 2 butanol 95 xylene 5 Thinner RKB 3 xylene 90 butanol 10 Thinner M ethanol 65 butyl acetate 30 ethyl acetate 5 Thinner P 7 cyclohexanone 50 ethanol 50 Thinner R 197 xylene 60 butyl acetate 20 ethyl cellosolve 20 Thinner of WFD toluene 50 butyl acetate or amyl acetate 18 butanol 10 ethanol 10 ethyl acetate 9 acetone 3 Safety editFire edit Most organic solvents are flammable or highly flammable depending on their volatility Exceptions are some chlorinated solvents like dichloromethane and chloroform Mixtures of solvent vapors and air can explode Solvent vapors are heavier than air they will sink to the bottom and can travel large distances nearly undiluted Solvent vapors can also be found in supposedly empty drums and cans posing a flash fire hazard hence empty containers of volatile solvents should be stored open and upside down Both diethyl ether and carbon disulfide have exceptionally low autoignition temperatures which increase greatly the fire risk associated with these solvents The autoignition temperature of carbon disulfide is below 100 C 212 F so objects such as steam pipes light bulbs hotplates and recently extinguished bunsen burners are able to ignite its vapors In addition some solvents such as methanol can burn with a very hot flame which can be nearly invisible under some lighting conditions 20 21 This can delay or prevent the timely recognition of a dangerous fire until flames spread to other materials Explosive peroxide formation edit Ethers like diethyl ether and tetrahydrofuran THF can form highly explosive organic peroxides upon exposure to oxygen and light THF is normally more likely to form such peroxides than diethyl ether One of the most susceptible solvents is diisopropyl ether but all ethers are considered to be potential peroxide sources The heteroatom oxygen stabilizes the formation of a free radical which is formed by the abstraction of a hydrogen atom by another free radical clarification needed The carbon centered free radical thus formed is able to react with an oxygen molecule to form a peroxide compound The process of peroxide formation is greatly accelerated by exposure to even low levels of light but can proceed slowly even in dark conditions Unless a desiccant is used which can destroy the peroxides they will concentrate during distillation due to their higher boiling point When sufficient peroxides have formed they can form a crystalline shock sensitive solid precipitate at the mouth of a container or bottle Minor mechanical disturbances such as scraping the inside of a vessel or the dislodging of a deposit merely twisting the cap may provide sufficient energy for the peroxide to explode or detonate Peroxide formation is not a significant problem when fresh solvents are used up quickly they are more of a problem in laboratories which may take years to finish a single bottle Low volume users should acquire only small amounts of peroxide prone solvents and dispose of old solvents on a regular periodic schedule To avoid explosive peroxide formation ethers should be stored in an airtight container away from light because both light and air can encourage peroxide formation 22 A number of tests can be used to detect the presence of a peroxide in an ether one is to use a combination of iron II sulfate and potassium thiocyanate The peroxide is able to oxidize the Fe2 ion to an Fe3 ion which then forms a deep red coordination complex with the thiocyanate Peroxides may be removed by washing with acidic iron II sulfate filtering through alumina or distilling from sodium benzophenone Alumina degrades the peroxides but some could remain intact in it therefore it must be disposed of properly 23 The advantage of using sodium benzophenone is that moisture and oxygen are removed as well 24 Health effects editSee also Substance induced psychosis General health hazards associated with solvent exposure include toxicity to the nervous system reproductive damage liver and kidney damage respiratory impairment cancer hearing loss 25 26 and dermatitis 27 Acute exposure edit Many solvents which can lead to a sudden loss of consciousness if inhaled in large amounts citation needed Solvents like diethyl ether and chloroform have been used in medicine as anesthetics sedatives and hypnotics for a long time when Many solvents e g from gasoline or solvent based glues are abused recreationally in glue sniffing often with harmful long term health effects such as neurotoxicity or cancer Fraudulent substitution of 1 5 pentanediol by the psychoactive 1 4 butanediol by a subcontractor caused the Bindeez product recall 28 Ethanol grain alcohol is a widely used and abused psychoactive drug If ingested the so called toxic alcohols other than ethanol such as methanol 1 propanol and ethylene glycol metabolize into toxic aldehydes and acids which cause potentially fatal metabolic acidosis 29 The commonly available alcohol solvent methanol can cause permanent blindness or death if ingested The solvent 2 butoxyethanol used in fracking fluids can cause hypotension and metabolic acidosis 30 Chronic exposure edit Main article Chronic solvent induced encephalopathy Chronic solvent exposures are often caused by the inhalation of solvent vapors or the ingestion of diluted solvents repeated over the course of an extended period Some solvents can damage internal organs like the liver the kidneys the nervous system or the brain The cumulative brain effects of long term or repeated exposure to some solvents is called chronic solvent induced encephalopathy CSE 31 Chronic exposure to organic solvents in the work environment can produce a range of adverse neuropsychiatric effects For example occupational exposure to organic solvents has been associated with higher numbers of painters suffering from alcoholism 32 Ethanol has a synergistic effect when taken in combination with many solvents for instance a combination of toluene benzene and ethanol causes greater nausea vomiting than either substance alone Some organic solvents are known or suspected to be cataractogenic A mixture of aromatic hydrocarbons aliphatic hydrocarbons alcohols esters ketones and terpenes were found to greatly increase the risk of developing cataracts in the lens of the eye 33 Environmental contamination edit A major pathway of induced health effects arises from spills or leaks of solvents especially chlorinated solvents that reach the underlying soil Since solvents readily migrate substantial distances the creation of widespread soil contamination is not uncommon this is particularly a health risk if aquifers are affected 34 Vapor intrusion can occur from sites with extensive subsurface solvent contamination 35 See also edit nbsp Wikimedia Commons has media related to Solvents ASTDR Construction Refurbishment Renovation Free energy of solvation IARC Solvents are often refluxed with an appropriate desiccant prior to distillation to remove water This may be performed prior to a chemical synthesis where water may interfere with the intended reaction List of water miscible solvents Lyoluminescence Occupational health Partition coefficient log P is a measure of differential solubility of a compound in two solvents Pollution Solvation Solvent systems exist outside the realm of ordinary organic solvents Supercritical fluids ionic liquids and deep eutectic solvents Superfund Volatile Organic Compound Water model Water pollutionReferences edit What s the Difference Between Acetone and Non acetone Nail Polish Remover 3 November 2009 Stoye Dieter 2000 Solvents Ullmann s Encyclopedia of Industrial Chemistry Weinheim Wiley VCH doi 10 1002 14356007 a24 437 ISBN 978 3527306732 Tinoco I Sauer K Wang JC 2002 Physical Chemistry Prentice Hall p 134 ISBN 978 0 13 026607 1 Lowery and Richardson pp 181 183 Malmberg CG Maryott AA January 1956 Dielectric Constant of Water from 0 to 100 C Journal of Research of the National Bureau of Standards 56 1 1 doi 10 6028 jres 056 001 a b Lowery and Richardson p 177 Kosower E M 1969 An introduction to Physical Organic Chemistry Wiley New York p 293 Gutmann V 1976 Solvent effects on the reactivities of organometallic compounds Coord Chem Rev 18 2 225 doi 10 1016 S0010 8545 00 82045 7 Lowery and Richardson p 183 a b Solvent Properties Boiling Point Archived 14 June 2011 at the Wayback Machine Xydatasource com Retrieved on 26 January 2013 Dielectric Constant Archived 4 July 2010 at the Wayback Machine Macro lsu edu Retrieved on 26 January 2013 Diorazio Louis J Hose David R J Adlington Neil K 2016 Toward a More Holistic Framework for Solvent Selection Organic Process Research amp Development 20 4 760 773 doi 10 1021 acs oprd 6b00015 a b Abbott S Hansen CM 2008 Hansen solubility parameters in practice Hansen Solubility ISBN 978 0 9551220 2 6 a b Hansen CM January 2002 Hansen solubility parameters a user s handbook CRC press ISBN 978 0 8493 7248 3 Selected solvent properties Specific Gravity Archived 14 June 2011 at the Wayback Machine Xydatasource com Retrieved on 26 January 2013 dcpt ru Solvent 646 Characteristics ru dcpt ru Solvent 647 Characteristics ru dcpt ru Solvent 648 Characteristics ru Archived from the original on 17 May 2017 Retrieved 18 January 2018 dcpt ru Solvent 650 Characteristics ru Fanick ER Smith LR Baines TM 1 October 1984 Safety Related Additives for Methanol Fuel SAE Technical Paper Series Vol 1 Warrendale PA SAE doi 10 4271 841378 Archived from the original on 12 August 2017 Anderson JE Magyarl MW Siegl WO 1 July 1985 Concerning the Luminosity of Methanol Hydrocarbon Diffusion Flames Combustion Science and Technology 43 3 4 115 125 doi 10 1080 00102208508947000 ISSN 0010 2202 Peroxides and Ethers Environmental Health Safety and Risk Management www uaf edu Retrieved 25 January 2018 Handling of Peroxide Forming Chemicals Retrieved 24 September 2021 Inoue Ryo Yamaguchi Mana Murakami Yoshiaki Okano Kentaro Mori Atsunori 31 October 2018 Revisiting of Benzophenone Ketyl Still Use of a Sodium Dispersion for the Preparation of Anhydrous Solvents ACS Omega 3 10 12703 12706 doi 10 1021 acsomega 8b01707 ISSN 2470 1343 PMC 6210062 PMID 30411016 https www cdc gov niosh docs 2018 124 pdfs 2018 124 pdf https pubmed ncbi nlm nih gov 16938795 Solvents Occupational Safety amp Health Administration U S Department of Labor Archived from the original on 15 March 2016 Rood David 7 November 2007 National Recall ordered for toy that turns into drug www theage com au Kraut JA Mullins ME January 2018 Toxic Alcohols The New England Journal of Medicine 378 3 270 280 doi 10 1056 NEJMra1615295 PMID 29342392 S2CID 36652482 Hung T Dewitt CR Martz W Schreiber W Holmes DT July 2010 Fomepizole fails to prevent progression of acidosis in 2 butoxyethanol and ethanol coingestion Clinical Toxicology 48 6 569 71 doi 10 3109 15563650 2010 492350 PMID 20560787 S2CID 23257894 van der Laan Gert Sainio Markku 1 August 2012 Chronic Solvent induced Encephalopathy A step forward NeuroToxicology Neurotoxicity and Neurodegeneration Local Effect and Global Impact 33 4 897 901 doi 10 1016 j neuro 2012 04 012 ISSN 0161 813X PMID 22560998 Lundberg I Gustavsson A Hogberg M Nise G June 1992 Diagnoses of alcohol abuse and other neuropsychiatric disorders among house painters compared with house carpenters British Journal of Industrial Medicine 49 6 409 15 doi 10 1136 oem 49 6 409 PMC 1012122 PMID 1606027 Raitta C Husman K Tossavainen A August 1976 Lens changes in car painters exposed to a mixture of organic solvents Albrecht von Graefes Archiv fur Klinische und Experimentelle Ophthalmologie Albrecht von Graefe s Archive for Clinical and Experimental Ophthalmology 200 2 149 56 doi 10 1007 bf00414364 PMID 1086605 S2CID 31344706 Matteucci Federica Ercole Claudia del Gallo Maddalena 2015 A study of chlorinated solvent contamination of the aquifers of an industrial area in central Italy a possibility of bioremediation Frontiers in Microbiology 6 924 doi 10 3389 fmicb 2015 00924 ISSN 1664 302X PMC 4556989 PMID 26388862 Forand SP Lewis Michl EL Gomez MI April 2012 Adverse birth outcomes and maternal exposure to trichloroethylene and tetrachloroethylene through soil vapor intrusion in New York State Environmental Health Perspectives 120 4 616 21 doi 10 1289 ehp 1103884 PMC 3339451 PMID 22142966 Bibliography editLowery TH Richardson KS 1987 Mechanism and Theory in Organic Chemistry 3rd ed Harper Collins Publishers ISBN 978 0 06 364044 3 External links edit nbsp Look up solvent in Wiktionary the free dictionary Solvent selection tool ACS Green Chemistry Institute European Solvents Industry Group ESIG ESIG European Solvents Industry Group Solvents in Europe Table and text O Chem Lecture Tables Properties and toxicities of organic solvents CDC Organic Solvents NIOSH Workplace Safety and Health Topic EPA Solvent Contaminated Wipes Retrieved from https en wikipedia org w index php title Solvent amp oldid 1218072844 Solvent classifications, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.