fbpx
Wikipedia

Origin of water on Earth

The origin of water on Earth is the subject of a body of research in the fields of planetary science, astronomy, and astrobiology. Earth is unique among the rocky planets in the Solar System in having oceans of liquid water on its surface.[2] Liquid water, which is necessary for all known forms of life, continues to exist on the surface of Earth because the planet is at a far enough distance (known as the habitable zone) from the Sun that it does not lose its water, but not so far that low temperatures cause all water on the planet to freeze.

Water covers about 71% of Earth's surface.[1]

It was long thought that Earth's water did not originate from the planet's region of the protoplanetary disk. Instead, it was hypothesized water and other volatiles must have been delivered to Earth from the outer Solar System later in its history. Recent research, however, indicates that hydrogen inside the Earth played a role in the formation of the ocean.[3] The two ideas are not mutually exclusive, as there is also evidence that water was delivered to Earth by impacts from icy planetesimals similar in composition to asteroids in the outer edges of the asteroid belt.[4]

History of water on Earth edit

One factor in estimating when water appeared on Earth is that water is continually being lost to space. H2O molecules in the atmosphere are broken up by photolysis, and the resulting free hydrogen atoms can sometimes escape Earth's gravitational pull. When the Earth was younger and less massive, water would have been lost to space more easily. Lighter elements like hydrogen and helium are expected to leak from the atmosphere continually, but isotopic ratios of heavier noble gases in the modern atmosphere suggest that even the heavier elements in the early atmosphere were subject to significant losses.[4] In particular, xenon is useful for calculations of water loss over time. Not only is it a noble gas (and therefore is not removed from the atmosphere through chemical reactions with other elements), but comparisons between the abundances of its nine stable isotopes in the modern atmosphere reveal that the Earth lost at least one ocean of water early in its history, between the Hadean and Archean eons.[5][clarification needed]

Any water on Earth during the latter part of its accretion would have been disrupted by the Moon-forming impact (~4.5 billion years ago), which likely vaporized much of Earth's crust and upper mantle and created a rock-vapor atmosphere around the young planet.[6][7] The rock vapor would have condensed within two thousand years, leaving behind hot volatiles which probably resulted in a majority carbon dioxide atmosphere with hydrogen and water vapor. Afterward, liquid water oceans may have existed despite the surface temperature of 230 °C (446 °F) due to the increased atmospheric pressure of the CO2 atmosphere. As the cooling continued, most CO2 was removed from the atmosphere by subduction and dissolution in ocean water, but levels oscillated wildly as new surface and mantle cycles appeared.[8]

 
This pillow basalt on the seafloor near Hawaii was formed when magma extruded underwater. Other, much older pillow basalt formations provide evidence for large bodies of water long ago in Earth's history.

Geological evidence also helps constrain the time frame for liquid water existing on Earth. A sample of pillow basalt (a type of rock formed during an underwater eruption) was recovered from the Isua Greenstone Belt and provides evidence that water existed on Earth 3.8 billion years ago.[9] In the Nuvvuagittuq Greenstone Belt, Quebec, Canada, rocks dated at 3.8 billion years old by one study[10] and 4.28 billion years old by another[11] show evidence of the presence of water at these ages.[9] If oceans existed earlier than this, any geological evidence has yet to be discovered (which may be because such potential evidence has been destroyed by geological processes like crustal recycling). More recently, in August 2020, researchers reported that sufficient water to fill the oceans may have always been on the Earth since the beginning of the planet's formation.[12][13][14]

Unlike rocks, minerals called zircons are highly resistant to weathering and geological processes and so are used to understand conditions on the very early Earth. Mineralogical evidence from zircons has shown that liquid water and an atmosphere must have existed 4.404 ± 0.008 billion years ago, very soon after the formation of Earth.[15][16][17][18] This presents somewhat of a paradox, as the cool early Earth hypothesis suggests temperatures were cold enough to freeze water between about 4.4 billion and 4.0 billion years ago. Other studies of zircons found in Australian Hadean rock point to the existence of plate tectonics as early as 4 billion years ago. If true, that implies that rather than a hot, molten surface and an atmosphere full of carbon dioxide, early Earth's surface was much as it is today (in terms of thermal insulation). The action of plate tectonics traps vast amounts of CO2, thereby reducing greenhouse effects, leading to a much cooler surface temperature and the formation of solid rock and liquid water.[19]

Earth's water inventory edit

While the majority of Earth's surface is covered by oceans, those oceans make up just a small fraction of the mass of the planet. The mass of Earth's oceans is estimated to be 1.37 × 1021 kg, which is 0.023% of the total mass of Earth, 6.0 × 1024 kg. An additional 5.0 × 1020 kg of water is estimated to exist in ice, lakes, rivers, groundwater, and atmospheric water vapor.[20] A significant amount of water is also stored in Earth's crust, mantle, and core. Unlike molecular H2O that is found on the surface, water in the interior exists primarily in hydrated minerals or as trace amounts of hydrogen bonded to oxygen atoms in anhydrous minerals.[21] Hydrated silicates on the surface transport water into the mantle at convergent plate boundaries, where oceanic crust is subducted underneath continental crust. While it is difficult to estimate the total water content of the mantle due to limited samples, approximately three times the mass of the Earth's oceans could be stored there.[21] Similarly, the Earth's core could contain four to five oceans' worth of hydrogen.[20][22]

Hypotheses for the origins of Earth's water edit

Extraplanetary sources edit

Water has a much lower condensation temperature than other materials that compose the terrestrial planets in the Solar System, such as iron and silicates. The region of the protoplanetary disk closest to the Sun was very hot early in the history of the Solar System, and it is not feasible that oceans of water condensed with the Earth as it formed. Further from the young Sun where temperatures were lower, water could condense and form icy planetesimals. The boundary of the region where ice could form in the early Solar System is known as the frost line (or snow line), and is located in the modern asteroid belt, between about 2.7 and 3.1 astronomical units (AU) from the Sun.[23][24] It is therefore necessary that objects forming beyond the frost line–such as comets, trans-Neptunian objects, and water-rich meteoroids (protoplanets)–delivered water to Earth. However, the timing of this delivery is still in question.

One hypothesis claims that Earth accreted (gradually grew by accumulation of) icy planetesimals about 4.5 billion years ago, when it was 60 to 90% of its current size.[21] In this scenario, Earth was able to retain water in some form throughout accretion and major impact events. This hypothesis is supported by similarities in the abundance and the isotope ratios of water between the oldest known carbonaceous chondrite meteorites and meteorites from Vesta, both of which originate from the Solar System's asteroid belt.[25][26] It is also supported by studies of osmium isotope ratios, which suggest that a sizeable quantity of water was contained in the material that Earth accreted early on.[27][28] Measurements of the chemical composition of lunar samples collected by the Apollo 15 and 17 missions further support this, and indicate that water was already present on Earth before the Moon was formed.[29]

One problem with this hypothesis is that the noble gas isotope ratios of Earth's atmosphere are different from those of its mantle, which suggests they were formed from different sources.[30][31] To explain this observation, a so-called "late veneer" theory has been proposed in which water was delivered much later in Earth's history, after the Moon-forming impact. However, the current understanding of Earth's formation allows for less than 1% of Earth's material accreting after the Moon formed, implying that the material accreted later must have been very water-rich. Models of early Solar System dynamics have shown that icy asteroids could have been delivered to the inner Solar System (including Earth) during this period if Jupiter migrated closer to the Sun.[32]

Yet a third hypothesis, supported by evidence from molybdenum isotope ratios, suggests that the Earth gained most of its water from the same interplanetary collision that caused the formation of the Moon.[33]

The evidence from 2019 shows that the molybdenum isotopic composition of the Earth's mantle originates from the outer Solar System, likely having brought water to Earth. The explanation is that Theia, the planet said in the giant-impact hypothesis to have collided with Earth 4.5 billion years ago forming the Moon, may have originated in the outer Solar System rather than in the inner Solar System, bringing water and carbon-based materials with it.[33]

Geochemical analysis of water in the Solar System edit

 
Carbonaceous chondrites such as the Allende Meteorite (above) likely delivered much of the Earth's water, as evidenced by their isotopic similarities to ocean water.

Isotopic ratios provide a unique "chemical fingerprint" that is used to compare Earth's water with reservoirs elsewhere in the Solar System. One such isotopic ratio, that of deuterium to hydrogen (D/H), is particularly useful in the search for the origin of water on Earth. Hydrogen is the most abundant element in the universe, and its heavier isotope deuterium can sometimes take the place of a hydrogen atom in molecules like H2O. Most deuterium was created in the Big Bang or in supernovae, so its uneven distribution throughout the protosolar nebula was effectively "locked in" early in the formation of the Solar System.[34] By studying the different isotopic ratios of Earth and of other icy bodies in the Solar System, the likely origins of Earth's water can be researched.

Earth edit

The deuterium to hydrogen ratio for ocean water on Earth is known very precisely to be (1.5576 ± 0.0005) × 10−4.[35] This value represents a mixture of all of the sources that contributed to Earth's reservoirs, and is used to identify the source or sources of Earth's water. The ratio of deuterium to hydrogen has increased over the Earth's lifetime between 2 to 9 times the ratio at the Earth's origin, because the lighter isotope is more likely to leak into space in atmospheric loss processes.[36] Hydrogen beneath the Earth's crust is thought to have a D/H ratio more representative of the original D/H ratio upon formation of the Earth, because it is less affected by those processes. Analysis of subsurface hydrogen contained in recently released lava has been estimated to show that there was a 218 higher D/H ratio in the primordial Earth compared to the current ratio.[37] No process is known that can decrease Earth's D/H ratio over time.[38] This loss of the lighter isotope is one explanation for why Venus has such a high D/H ratio, as that planet's water was vaporized during the runaway greenhouse effect and subsequently lost much of its hydrogen to space.[39] Because Earth's D/H ratio has increased significantly over time, the D/H ratio of water originally delivered to the planet was lower than at present. This is consistent with a scenario in which a significant proportion of the water on Earth was already present during the planet's early evolution.[20]

Asteroids edit

 
Comet Halley as imaged by the European Space Agency's Giotto probe in 1986. Giotto flew by Halley's Comet and analyzed the isotopic levels of ice sublimating from the comet's surface using a mass spectrometer.

Multiple geochemical studies have concluded that asteroids are most likely the primary source of Earth's water.[40] Carbonaceous chondrites–which are a subclass of the oldest meteorites in the Solar System–have isotopic levels most similar to ocean water.[41][42] The CI and CM subclasses of carbonaceous chondrites specifically have hydrogen and nitrogen isotope levels that closely match Earth's seawater, which suggests water in these meteorites could be the source of Earth's oceans.[43] Two 4.5 billion-year-old meteorites found on Earth that contained liquid water alongside a wide diversity of deuterium-poor organic compounds further support this.[44] Earth's current deuterium to hydrogen ratio also matches ancient eucrite chondrites, which originate from the asteroid Vesta in the outer asteroid belt.[45] CI, CM, and eucrite chondrites are believed to have the same water content and isotope ratios as ancient icy protoplanets from the outer asteroid belt that later delivered water to Earth.[46]

A further asteroid particle study supported the theory that a large source of earth's water has come from hydrogen atoms carried on particles in the solar wind which combine with oxygen on asteroids and then arrive on earth in space dust. Using atom probe tomography the study found hydroxide and water molecules on the surface of a single grain from particles retrieved from the asteroid 25143 Itokawa by the Japanese space probe Hayabusa.[47][48]

Comets edit

Comets are kilometer-sized bodies made of dust and ice that originate from the Kuiper belt (20-50 AU) and the Oort cloud (>5,000 AU), but have highly elliptical orbits which bring them into the inner solar system. Their icy composition and trajectories which bring them into the inner solar system make them a target for remote and in situ measurements of D/H ratios.

It is implausible that Earth's water originated only from comets, since isotope measurements of the deuterium to hydrogen (D/H) ratio in comets Halley, Hyakutake, Hale–Bopp, 2002T7, and Tuttle, yield values approximately twice that of oceanic water.[49][50][51][52] Using this cometary D/H ratio, models predict that less than 10% of Earth's water was supplied from comets.[53]

Other, shorter period comets (<20 years) called Jupiter family comets likely originate from the Kuiper belt, but have had their orbital paths influenced by gravitational interactions with Jupiter or Neptune.[54] 67P/Churyumov–Gerasimenko is one such comet that was the subject of isotopic measurements by the Rosetta spacecraft, which found the comet has a D/H ratio three times that of Earth's seawater.[55] Another Jupiter family comet, 103P/Hartley 2, has a D/H ratio which is consistent with Earth's seawater, but its nitrogen isotope levels do not match Earth's.[52][56]

See also edit

Notes edit

  • Jörn Müller, Harald Lesch (2003): Woher kommt das Wasser der Erde? - Urgaswolke oder Meteoriten. Chemie in unserer Zeit 37(4), pg. 242 – 246, ISSN 0009-2851
  • Parts of this article were translated from the original article from the German Wikipedia, on 4/3/06

References edit

  1. ^ "The World Factbook". www.cia.gov. Retrieved 2016-03-17.
  2. ^ US Department of Commerce, National Oceanic and Atmospheric Administration. "Are there oceans on other planets?". oceanservice.noaa.gov. Retrieved 2020-07-16.
  3. ^ Taylor Redd, Nola (April 1, 2019). "Where did Earths water come from". Astronomy.com. Retrieved 2020-07-16.
  4. ^ a b Pepin, Robert O. (July 1991). "On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles". Icarus. 92 (1): 2–79. Bibcode:1991Icar...92....2P. doi:10.1016/0019-1035(91)90036-s. ISSN 0019-1035.
  5. ^ Zahnle, Kevin J.; Gacesa, Marko; Catling, David C. (January 2019). "Strange messenger: A new history of hydrogen on Earth, as told by Xenon". Geochimica et Cosmochimica Acta. 244: 56–85. arXiv:1809.06960. Bibcode:2019GeCoA.244...56Z. doi:10.1016/j.gca.2018.09.017. ISSN 0016-7037. S2CID 119079927.
  6. ^ Canup, Robin M.; Asphaug, Erik (August 2001). "Origin of the Moon in a giant impact near the end of the Earth's formation". Nature. 412 (6848): 708–712. Bibcode:2001Natur.412..708C. doi:10.1038/35089010. ISSN 0028-0836. PMID 11507633. S2CID 4413525.
  7. ^ Cuk, M.; Stewart, S. T. (2012-10-17). "Making the Moon from a Fast-Spinning Earth: A Giant Impact Followed by Resonant Despinning". Science. 338 (6110): 1047–1052. Bibcode:2012Sci...338.1047C. doi:10.1126/science.1225542. ISSN 0036-8075. PMID 23076099. S2CID 6909122.
  8. ^ Sleep, N. H.; Zahnle, K.; Neuhoff, P. S. (2001). "Initiation of clement surface conditions on the earliest Earth". Proceedings of the National Academy of Sciences. 98 (7): 3666–3672. Bibcode:2001PNAS...98.3666S. doi:10.1073/pnas.071045698. PMC 31109. PMID 11259665.
  9. ^ a b Pinti, Daniele L.; Arndt, Nicholas (2014), "Oceans, Origin of", Encyclopedia of Astrobiology, Springer Berlin Heidelberg, pp. 1–5, doi:10.1007/978-3-642-27833-4_1098-4, ISBN 978-3-642-27833-4
  10. ^ Cates, N.L.; Mojzsis, S.J. (March 2007). "Pre-3750 Ma supracrustal rocks from the Nuvvuagittuq supracrustal belt, northern Québec". Earth and Planetary Science Letters. 255 (1–2): 9–21. Bibcode:2007E&PSL.255....9C. doi:10.1016/j.epsl.2006.11.034. ISSN 0012-821X.
  11. ^ O'Neil, Jonathan; Carlson, Richard W.; Paquette, Jean-Louis; Francis, Don (November 2012). "Formation age and metamorphic history of the Nuvvuagittuq Greenstone Belt" (PDF). Precambrian Research. 220–221: 23–44. Bibcode:2012PreR..220...23O. doi:10.1016/j.precamres.2012.07.009. ISSN 0301-9268.
  12. ^ Piani, Laurette (28 August 2020). "Earth's water may have been inherited from material similar to enstatite chondrite meteorites". Science. 369 (6507): 1110–1113. Bibcode:2020Sci...369.1110P. doi:10.1126/science.aba1948. PMID 32855337. S2CID 221342529. Retrieved 28 August 2020.
  13. ^ Washington University in St. Louis (27 August 2020). "Meteorite study suggests Earth may have been wet since it formed - Enstatite chondrite meteorites, once considered 'dry,' contain enough water to fill the oceans -- and then some". EurekAlert!. Retrieved 28 August 2020.
  14. ^ American Association for the Advancement of Science (27 August 2020). "Unexpected abundance of hydrogen in meteorites reveals the origin of Earth's water". EurekAlert!. Retrieved 28 August 2020.
  15. ^ Wilde, S.A.; Valley, J.W.; Peck, W.H.; Graham, C.M. (2001). "Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 nGyr ago" (PDF). Nature. 409 (6817): 175–8. Bibcode:2001Natur.409..175W. doi:10.1038/35051550. PMID 11196637. S2CID 4319774.
  16. ^ "ANU - Research School of Earth Sciences - ANU College of Science - Harrison". Ses.anu.edu.au. Archived from the original on 2006-06-21. Retrieved 2009-08-20.
  17. ^ "ANU - OVC - MEDIA - MEDIA RELEASES - 2005 - NOVEMBER - 181105HARRISONCONTINENTS". Info.anu.edu.au. Retrieved 2009-08-20.
  18. ^ . Geology.wisc.edu. Archived from the original on 2013-06-16. Retrieved 2009-08-20.
  19. ^ Chang, Kenneth (2008-12-02). "A New Picture of the Early Earth". The New York Times. Retrieved 2010-05-20.
  20. ^ a b c Genda, Hidenori (2016). "Origin of Earth's oceans: An assessment of the total amount, history and supply of water". Geochemical Journal. 50 (1): 27–42. Bibcode:2016GeocJ..50...27G. doi:10.2343/geochemj.2.0398. ISSN 0016-7002. S2CID 92988014.
  21. ^ a b c Peslier, Anne H.; Schönbächler, Maria; Busemann, Henner; Karato, Shun-Ichiro (2017-08-09). "Water in the Earth's Interior: Distribution and Origin". Space Science Reviews. 212 (1–2): 743–810. Bibcode:2017SSRv..212..743P. doi:10.1007/s11214-017-0387-z. ISSN 0038-6308. S2CID 125860164.
  22. ^ Wu, Jun; Desch, Steven J.; Schaefer, Laura; Elkins-Tanton, Linda T.; Pahlevan, Kaveh; Buseck, Peter R. (October 2018). "Origin of Earth's Water: Chondritic Inheritance Plus Nebular Ingassing and Storage of Hydrogen in the Core". Journal of Geophysical Research: Planets. 123 (10): 2691–2712. Bibcode:2018JGRE..123.2691W. doi:10.1029/2018je005698. ISSN 2169-9097. S2CID 134803572.
  23. ^ Gradie, J.; Tedesco, E. (1982-06-25). "Compositional Structure of the Asteroid Belt". Science. 216 (4553): 1405–1407. Bibcode:1982Sci...216.1405G. doi:10.1126/science.216.4553.1405. ISSN 0036-8075. PMID 17798362. S2CID 32447726.
  24. ^ Martin, Rebecca G.; Livio, Mario (2013-07-03). "On the evolution of the snow line in protoplanetary discs – II. Analytic approximations". Monthly Notices of the Royal Astronomical Society. 434 (1): 633–638. arXiv:1207.4284. Bibcode:2013MNRAS.434..633M. doi:10.1093/mnras/stt1051. ISSN 0035-8711. S2CID 118419642.
  25. ^ Andrew Fazekas, , Nationalgeographic.com, 30 October 2014
  26. ^ Sarafian, A. R.; Nielsen, S. G.; Marschall, H. R.; McCubbin, F. M.; Monteleone, B. D. (2014-10-30). "Early accretion of water in the inner solar system from a carbonaceous chondrite-like source". Science. 346 (6209): 623–626. Bibcode:2014Sci...346..623S. doi:10.1126/science.1256717. ISSN 0036-8075. PMID 25359971. S2CID 30471982.
  27. ^ Drake, Michael J (2005). "Origin of water in the terrestrial planets". Meteoritics & Planetary Science. 40 (4): 519–527. Bibcode:2005M&PS...40..519D. doi:10.1111/j.1945-5100.2005.tb00960.x.
  28. ^ Drake, Michael J.; et al. (August 2005). "Origin of water in the terrestrial planets". Asteroids, Comets, and Meteors (IAU S229). 229th Symposium of the International Astronomical Union. Vol. 1. Búzios, Rio de Janeiro, Brazil: Cambridge University Press. pp. 381–394. Bibcode:2006IAUS..229..381D. doi:10.1017/S1743921305006861. ISBN 978-0-521-85200-5.
  29. ^ Cowen, Ron (9 May 2013). "Common source for Earth and Moon water". Nature. doi:10.1038/nature.2013.12963. S2CID 131174435.
  30. ^ Dauphas, Nicolas (October 2003). "The dual origin of the terrestrial atmosphere". Icarus. 165 (2): 326–339. arXiv:astro-ph/0306605. Bibcode:2003Icar..165..326D. doi:10.1016/s0019-1035(03)00198-2. ISSN 0019-1035. S2CID 14982509.
  31. ^ Owen, Tobias; Bar-Nun, Akiva; Kleinfeld, Idit (July 1992). "Possible cometary origin of heavy noble gases in the atmospheres of Venus, Earth and Mars". Nature. 358 (6381): 43–46. Bibcode:1992Natur.358...43O. doi:10.1038/358043a0. ISSN 0028-0836. PMID 11536499. S2CID 4357750.
  32. ^ Gomes, R.; Levison, H. F.; Tsiganis, K.; Morbidelli, A. (May 2005). "Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets". Nature. 435 (7041): 466–469. Bibcode:2005Natur.435..466G. doi:10.1038/nature03676. ISSN 0028-0836. PMID 15917802.
  33. ^ a b Budde, Gerrit; Burkhardt, Christoph; Kleine, Thorsten (20 May 2019). "Molybdenum isotopic evidence for the late accretion of outer Solar System material to Earth". Nature Astronomy. 3 (8): 736–741. Bibcode:2019NatAs...3..736B. doi:10.1038/s41550-019-0779-y. ISSN 2397-3366. S2CID 181460133.
  34. ^ Yang, J.; Turner, M. S.; Schramm, D. N.; Steigman, G.; Olive, K. A. (June 1984). "Primordial nucleosynthesis - A critical comparison of theory and observation". The Astrophysical Journal. 281: 493. Bibcode:1984ApJ...281..493Y. doi:10.1086/162123. ISSN 0004-637X.
  35. ^ Hagemann, R.; Nief, G.; Roth, E. (January 1970). "Absolute isotopic scale for deuterium analysis of natural waters. Absolute D/H ratio for SMOW". Tellus. 22 (6): 712–715. Bibcode:1970Tell...22..712H. doi:10.3402/tellusa.v22i6.10278. ISSN 0040-2826.
  36. ^ Genda, Hidenori; Ikoma, Masahiro (March 2008). "Origin of the ocean on the Earth: Early evolution of water D/H in a hydrogen-rich atmosphere". Icarus. 194 (1): 42–52. doi:10.1016/j.icarus.2007.09.007. ISSN 0019-1035.
  37. ^ Hallis, Lydia J.; Huss, Gary R.; Nagashima, Kazuhide; Taylor, G. Jeffrey; Halldórsson, Sæmundur A.; Hilton, David R.; Mottl, Michael J.; Meech, Karen J. (2015-11-13). "Evidence for primordial water in Earth's deep mantle". Science. 350 (6262): 795–797. doi:10.1126/science.aac4834. ISSN 0036-8075.
  38. ^ Catling, David C. (2017). Atmospheric Evolution on Inhabited and Lifeless Worlds. Cambridge University Press. p. 180. Bibcode:2017aeil.book.....C. ISBN 978-1-139-02055-8. OCLC 982451455.
  39. ^ Donahue, T. M.; Hoffman, J. H.; Hodges, R. R.; Watson, A. J. (1982-05-07). "Venus Was Wet: A Measurement of the Ratio of Deuterium to Hydrogen". Science. 216 (4546): 630–633. Bibcode:1982Sci...216..630D. doi:10.1126/science.216.4546.630. ISSN 0036-8075. PMID 17783310. S2CID 36740141.
  40. ^ Q. Choi, Charles (2014-12-10). "Most of Earth's Water Came from Asteroids, Not Comets". Space.com. Retrieved 2020-02-09.
  41. ^ Daly, R. Terik; Schultz, Peter H. (25 April 2018). "The delivery of water by impacts from planetary accretion to present". Science Advances. 4 (4): eaar2632. Bibcode:2018SciA....4.2632D. doi:10.1126/sciadv.aar2632. PMC 5916508. PMID 29707636.
  42. ^ Gorman, James (15 May 2018). "How Asteroids May Have Brought Water to Earth". The New York Times. Retrieved 16 May 2018.
  43. ^ Alexander, Conel M. O'D. (2017-04-17). "The origin of inner Solar System water". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 375 (2094): 20150384. Bibcode:2017RSPTA.37550384A. doi:10.1098/rsta.2015.0384. ISSN 1364-503X. PMC 5394251. PMID 28416723.
  44. ^ Chan, Queenie H. S.; et al. (10 January 2018). "Organic matter in extraterrestrial water-bearing salt crystals". Science Advances. 4 (1, eaao3521): eaao3521. Bibcode:2018SciA....4.3521C. doi:10.1126/sciadv.aao3521. PMC 5770164. PMID 29349297.
  45. ^ Sarafian, Adam R.; Nielsen, Sune G.; Marschall, Horst R.; McCubbin, Francis M.; Monteleone, Brian D. (2014-10-31). "Early accretion of water in the inner solar system from a carbonaceous chondrite–like source". Science. 346 (6209): 623–626. Bibcode:2014Sci...346..623S. doi:10.1126/science.1256717. ISSN 0036-8075. PMID 25359971. S2CID 30471982.
  46. ^ Morbidelli, Alessandro; et al. (2000). "Source regions and timescales for the delivery of water to the Earth". Meteoritics & Planetary Science. 35 (6): 1309–1329. Bibcode:2000M&PS...35.1309M. doi:10.1111/j.1945-5100.2000.tb01518.x.
  47. ^ Daly, Luke; Lee, Martin R.; Hallis, Lydia J.; Ishii, Hope A.; Bradley, John P.; Bland, Phillip. A.; Saxey, David W.; Fougerouse, Denis; Rickard, William D. A.; Forman, Lucy V.; Timms, Nicholas E.; Jourdan, Fred; Reddy, Steven M.; Salge, Tobias; Quadir, Zakaria; Christou, Evangelos; Cox, Morgan A.; Aguiar, Jeffrey A.; Hattar, Khalid; Monterrosa, Anthony; Keller, Lindsay P.; Christoffersen, Roy; Dukes, Catherine A.; Loeffler, Mark J.; Thompson, Michelle S. (December 2021). "Solar wind contributions to Earth's oceans" (PDF). Nature Astronomy. 5 (12): 1275–1285. Bibcode:2021NatAs...5.1275D. doi:10.1038/s41550-021-01487-w. OSTI 1834330. S2CID 244744492.
  48. ^ Daly, Luke; Lee, Martin R.; Timms, Nick; Bland, Phil (November 30, 2021). "Up to half of Earth's water may come from solar wind and space dust". Phys Org.
  49. ^ Eberhardt, P.; Dolder, U.; Schulte, W.; Krankowsky, D.; Lämmerzahl, P.; Hoffman, J. H.; Hodges, R. R.; Berthelier, J. J.; Illiano, J. M. (1988), "The D/H ratio in water from comet P/Halley", Exploration of Halley's Comet, Springer Berlin Heidelberg, pp. 435–437, doi:10.1007/978-3-642-82971-0_79, ISBN 978-3-642-82973-4
  50. ^ Meier, R. (1998-02-06). "A Determination of the HDO/H2O Ratio in Comet C/1995 O1 (Hale-Bopp)". Science. 279 (5352): 842–844. Bibcode:1998Sci...279..842M. doi:10.1126/science.279.5352.842. ISSN 0036-8075. PMID 9452379.
  51. ^ Bockelée-Morvan, D.; Gautier, D.; Lis, D.C.; Young, K.; Keene, J.; Phillips, T.; Owen, T.; Crovisier, J.; Goldsmith, P.F. (May 1998). "Deuterated Water in Comet C/1996 B2 (Hyakutake) and Its Implications for the Origin of Comets". Icarus. 133 (1): 147–162. Bibcode:1998Icar..133..147B. doi:10.1006/icar.1998.5916. hdl:2060/19980035143. ISSN 0019-1035. S2CID 121830932.
  52. ^ a b Hartogh, Paul; Lis, Dariusz C.; Bockelée-Morvan, Dominique; de Val-Borro, Miguel; Biver, Nicolas; Küppers, Michael; Emprechtinger, Martin; Bergin, Edwin A.; Crovisier, Jacques (October 2011). "Ocean-like water in the Jupiter-family comet 103P/Hartley 2". Nature. 478 (7368): 218–220. Bibcode:2011Natur.478..218H. doi:10.1038/nature10519. ISSN 0028-0836. PMID 21976024. S2CID 3139621.
  53. ^ Dauphas, N (December 2000). "The Late Asteroidal and Cometary Bombardment of Earth as Recorded in Water Deuterium to Protium Ratio". Icarus. 148 (2): 508–512. Bibcode:2000Icar..148..508D. doi:10.1006/icar.2000.6489. ISSN 0019-1035.
  54. ^ Duncan, M. J. (1997-06-13). "A Disk of Scattered Icy Objects and the Origin of Jupiter-Family Comets". Science. 276 (5319): 1670–1672. Bibcode:1997Sci...276.1670D. doi:10.1126/science.276.5319.1670. ISSN 0036-8075. PMID 9180070.
  55. ^ Altwegg, K.; Balsiger, H.; Bar-Nun, A.; Berthelier, J. J.; Bieler, A.; Bochsler, P.; Briois, C.; Calmonte, U.; Combi, M. (2015-01-23). "67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio" (PDF). Science. 347 (6220): 1261952. Bibcode:2015Sci...347A.387A. doi:10.1126/science.1261952. ISSN 0036-8075. PMID 25501976. S2CID 206563296.
  56. ^ Alexander, C. M. O.; Bowden, R.; Fogel, M. L.; Howard, K. T.; Herd, C. D. K.; Nittler, L. R. (2012-07-12). "The Provenances of Asteroids, and Their Contributions to the Volatile Inventories of the Terrestrial Planets". Science. 337 (6095): 721–723. Bibcode:2012Sci...337..721A. doi:10.1126/science.1223474. ISSN 0036-8075. PMID 22798405. S2CID 206542013.

External links edit

  • (archived copy)
  • Nature journal: "Earth has water older than the Sun"

origin, water, earth, origin, water, earth, subject, body, research, fields, planetary, science, astronomy, astrobiology, earth, unique, among, rocky, planets, solar, system, having, oceans, liquid, water, surface, liquid, water, which, necessary, known, forms. The origin of water on Earth is the subject of a body of research in the fields of planetary science astronomy and astrobiology Earth is unique among the rocky planets in the Solar System in having oceans of liquid water on its surface 2 Liquid water which is necessary for all known forms of life continues to exist on the surface of Earth because the planet is at a far enough distance known as the habitable zone from the Sun that it does not lose its water but not so far that low temperatures cause all water on the planet to freeze Water covers about 71 of Earth s surface 1 It was long thought that Earth s water did not originate from the planet s region of the protoplanetary disk Instead it was hypothesized water and other volatiles must have been delivered to Earth from the outer Solar System later in its history Recent research however indicates that hydrogen inside the Earth played a role in the formation of the ocean 3 The two ideas are not mutually exclusive as there is also evidence that water was delivered to Earth by impacts from icy planetesimals similar in composition to asteroids in the outer edges of the asteroid belt 4 Contents 1 History of water on Earth 2 Earth s water inventory 3 Hypotheses for the origins of Earth s water 3 1 Extraplanetary sources 4 Geochemical analysis of water in the Solar System 4 1 Earth 4 2 Asteroids 4 3 Comets 5 See also 6 Notes 7 References 8 External linksHistory of water on Earth editOne factor in estimating when water appeared on Earth is that water is continually being lost to space H2O molecules in the atmosphere are broken up by photolysis and the resulting free hydrogen atoms can sometimes escape Earth s gravitational pull When the Earth was younger and less massive water would have been lost to space more easily Lighter elements like hydrogen and helium are expected to leak from the atmosphere continually but isotopic ratios of heavier noble gases in the modern atmosphere suggest that even the heavier elements in the early atmosphere were subject to significant losses 4 In particular xenon is useful for calculations of water loss over time Not only is it a noble gas and therefore is not removed from the atmosphere through chemical reactions with other elements but comparisons between the abundances of its nine stable isotopes in the modern atmosphere reveal that the Earth lost at least one ocean of water early in its history between the Hadean and Archean eons 5 clarification needed Any water on Earth during the latter part of its accretion would have been disrupted by the Moon forming impact 4 5 billion years ago which likely vaporized much of Earth s crust and upper mantle and created a rock vapor atmosphere around the young planet 6 7 The rock vapor would have condensed within two thousand years leaving behind hot volatiles which probably resulted in a majority carbon dioxide atmosphere with hydrogen and water vapor Afterward liquid water oceans may have existed despite the surface temperature of 230 C 446 F due to the increased atmospheric pressure of the CO2 atmosphere As the cooling continued most CO2 was removed from the atmosphere by subduction and dissolution in ocean water but levels oscillated wildly as new surface and mantle cycles appeared 8 nbsp This pillow basalt on the seafloor near Hawaii was formed when magma extruded underwater Other much older pillow basalt formations provide evidence for large bodies of water long ago in Earth s history Geological evidence also helps constrain the time frame for liquid water existing on Earth A sample of pillow basalt a type of rock formed during an underwater eruption was recovered from the Isua Greenstone Belt and provides evidence that water existed on Earth 3 8 billion years ago 9 In the Nuvvuagittuq Greenstone Belt Quebec Canada rocks dated at 3 8 billion years old by one study 10 and 4 28 billion years old by another 11 show evidence of the presence of water at these ages 9 If oceans existed earlier than this any geological evidence has yet to be discovered which may be because such potential evidence has been destroyed by geological processes like crustal recycling More recently in August 2020 researchers reported that sufficient water to fill the oceans may have always been on the Earth since the beginning of the planet s formation 12 13 14 Unlike rocks minerals called zircons are highly resistant to weathering and geological processes and so are used to understand conditions on the very early Earth Mineralogical evidence from zircons has shown that liquid water and an atmosphere must have existed 4 404 0 008 billion years ago very soon after the formation of Earth 15 16 17 18 This presents somewhat of a paradox as the cool early Earth hypothesis suggests temperatures were cold enough to freeze water between about 4 4 billion and 4 0 billion years ago Other studies of zircons found in Australian Hadean rock point to the existence of plate tectonics as early as 4 billion years ago If true that implies that rather than a hot molten surface and an atmosphere full of carbon dioxide early Earth s surface was much as it is today in terms of thermal insulation The action of plate tectonics traps vast amounts of CO2 thereby reducing greenhouse effects leading to a much cooler surface temperature and the formation of solid rock and liquid water 19 Earth s water inventory editWhile the majority of Earth s surface is covered by oceans those oceans make up just a small fraction of the mass of the planet The mass of Earth s oceans is estimated to be 1 37 1021 kg which is 0 023 of the total mass of Earth 6 0 1024 kg An additional 5 0 1020 kg of water is estimated to exist in ice lakes rivers groundwater and atmospheric water vapor 20 A significant amount of water is also stored in Earth s crust mantle and core Unlike molecular H2O that is found on the surface water in the interior exists primarily in hydrated minerals or as trace amounts of hydrogen bonded to oxygen atoms in anhydrous minerals 21 Hydrated silicates on the surface transport water into the mantle at convergent plate boundaries where oceanic crust is subducted underneath continental crust While it is difficult to estimate the total water content of the mantle due to limited samples approximately three times the mass of the Earth s oceans could be stored there 21 Similarly the Earth s core could contain four to five oceans worth of hydrogen 20 22 Hypotheses for the origins of Earth s water editExtraplanetary sources edit Water has a much lower condensation temperature than other materials that compose the terrestrial planets in the Solar System such as iron and silicates The region of the protoplanetary disk closest to the Sun was very hot early in the history of the Solar System and it is not feasible that oceans of water condensed with the Earth as it formed Further from the young Sun where temperatures were lower water could condense and form icy planetesimals The boundary of the region where ice could form in the early Solar System is known as the frost line or snow line and is located in the modern asteroid belt between about 2 7 and 3 1 astronomical units AU from the Sun 23 24 It is therefore necessary that objects forming beyond the frost line such as comets trans Neptunian objects and water rich meteoroids protoplanets delivered water to Earth However the timing of this delivery is still in question One hypothesis claims that Earth accreted gradually grew by accumulation of icy planetesimals about 4 5 billion years ago when it was 60 to 90 of its current size 21 In this scenario Earth was able to retain water in some form throughout accretion and major impact events This hypothesis is supported by similarities in the abundance and the isotope ratios of water between the oldest known carbonaceous chondrite meteorites and meteorites from Vesta both of which originate from the Solar System s asteroid belt 25 26 It is also supported by studies of osmium isotope ratios which suggest that a sizeable quantity of water was contained in the material that Earth accreted early on 27 28 Measurements of the chemical composition of lunar samples collected by the Apollo 15 and 17 missions further support this and indicate that water was already present on Earth before the Moon was formed 29 One problem with this hypothesis is that the noble gas isotope ratios of Earth s atmosphere are different from those of its mantle which suggests they were formed from different sources 30 31 To explain this observation a so called late veneer theory has been proposed in which water was delivered much later in Earth s history after the Moon forming impact However the current understanding of Earth s formation allows for less than 1 of Earth s material accreting after the Moon formed implying that the material accreted later must have been very water rich Models of early Solar System dynamics have shown that icy asteroids could have been delivered to the inner Solar System including Earth during this period if Jupiter migrated closer to the Sun 32 Yet a third hypothesis supported by evidence from molybdenum isotope ratios suggests that the Earth gained most of its water from the same interplanetary collision that caused the formation of the Moon 33 The evidence from 2019 shows that the molybdenum isotopic composition of the Earth s mantle originates from the outer Solar System likely having brought water to Earth The explanation is that Theia the planet said in the giant impact hypothesis to have collided with Earth 4 5 billion years ago forming the Moon may have originated in the outer Solar System rather than in the inner Solar System bringing water and carbon based materials with it 33 Geochemical analysis of water in the Solar System edit nbsp Carbonaceous chondrites such as the Allende Meteorite above likely delivered much of the Earth s water as evidenced by their isotopic similarities to ocean water Isotopic ratios provide a unique chemical fingerprint that is used to compare Earth s water with reservoirs elsewhere in the Solar System One such isotopic ratio that of deuterium to hydrogen D H is particularly useful in the search for the origin of water on Earth Hydrogen is the most abundant element in the universe and its heavier isotope deuterium can sometimes take the place of a hydrogen atom in molecules like H2O Most deuterium was created in the Big Bang or in supernovae so its uneven distribution throughout the protosolar nebula was effectively locked in early in the formation of the Solar System 34 By studying the different isotopic ratios of Earth and of other icy bodies in the Solar System the likely origins of Earth s water can be researched Earth edit The deuterium to hydrogen ratio for ocean water on Earth is known very precisely to be 1 5576 0 0005 10 4 35 This value represents a mixture of all of the sources that contributed to Earth s reservoirs and is used to identify the source or sources of Earth s water The ratio of deuterium to hydrogen has increased over the Earth s lifetime between 2 to 9 times the ratio at the Earth s origin because the lighter isotope is more likely to leak into space in atmospheric loss processes 36 Hydrogen beneath the Earth s crust is thought to have a D H ratio more representative of the original D H ratio upon formation of the Earth because it is less affected by those processes Analysis of subsurface hydrogen contained in recently released lava has been estimated to show that there was a 218 higher D H ratio in the primordial Earth compared to the current ratio 37 No process is known that can decrease Earth s D H ratio over time 38 This loss of the lighter isotope is one explanation for why Venus has such a high D H ratio as that planet s water was vaporized during the runaway greenhouse effect and subsequently lost much of its hydrogen to space 39 Because Earth s D H ratio has increased significantly over time the D H ratio of water originally delivered to the planet was lower than at present This is consistent with a scenario in which a significant proportion of the water on Earth was already present during the planet s early evolution 20 Asteroids edit nbsp Comet Halley as imaged by the European Space Agency s Giotto probe in 1986 Giotto flew by Halley s Comet and analyzed the isotopic levels of ice sublimating from the comet s surface using a mass spectrometer Multiple geochemical studies have concluded that asteroids are most likely the primary source of Earth s water 40 Carbonaceous chondrites which are a subclass of the oldest meteorites in the Solar System have isotopic levels most similar to ocean water 41 42 The CI and CM subclasses of carbonaceous chondrites specifically have hydrogen and nitrogen isotope levels that closely match Earth s seawater which suggests water in these meteorites could be the source of Earth s oceans 43 Two 4 5 billion year old meteorites found on Earth that contained liquid water alongside a wide diversity of deuterium poor organic compounds further support this 44 Earth s current deuterium to hydrogen ratio also matches ancient eucrite chondrites which originate from the asteroid Vesta in the outer asteroid belt 45 CI CM and eucrite chondrites are believed to have the same water content and isotope ratios as ancient icy protoplanets from the outer asteroid belt that later delivered water to Earth 46 A further asteroid particle study supported the theory that a large source of earth s water has come from hydrogen atoms carried on particles in the solar wind which combine with oxygen on asteroids and then arrive on earth in space dust Using atom probe tomography the study found hydroxide and water molecules on the surface of a single grain from particles retrieved from the asteroid 25143 Itokawa by the Japanese space probe Hayabusa 47 48 Comets edit Comets are kilometer sized bodies made of dust and ice that originate from the Kuiper belt 20 50 AU and the Oort cloud gt 5 000 AU but have highly elliptical orbits which bring them into the inner solar system Their icy composition and trajectories which bring them into the inner solar system make them a target for remote and in situ measurements of D H ratios It is implausible that Earth s water originated only from comets since isotope measurements of the deuterium to hydrogen D H ratio in comets Halley Hyakutake Hale Bopp 2002T7 and Tuttle yield values approximately twice that of oceanic water 49 50 51 52 Using this cometary D H ratio models predict that less than 10 of Earth s water was supplied from comets 53 Other shorter period comets lt 20 years called Jupiter family comets likely originate from the Kuiper belt but have had their orbital paths influenced by gravitational interactions with Jupiter or Neptune 54 67P Churyumov Gerasimenko is one such comet that was the subject of isotopic measurements by the Rosetta spacecraft which found the comet has a D H ratio three times that of Earth s seawater 55 Another Jupiter family comet 103P Hartley 2 has a D H ratio which is consistent with Earth s seawater but its nitrogen isotope levels do not match Earth s 52 56 See also editWater on terrestrial planets of the Solar SystemNotes editJorn Muller Harald Lesch 2003 Woher kommt das Wasser der Erde Urgaswolke oder Meteoriten Chemie in unserer Zeit 37 4 pg 242 246 ISSN 0009 2851 Parts of this article were translated from the original article from the German Wikipedia on 4 3 06References edit The World Factbook www cia gov Retrieved 2016 03 17 US Department of Commerce National Oceanic and Atmospheric Administration Are there oceans on other planets oceanservice noaa gov Retrieved 2020 07 16 Taylor Redd Nola April 1 2019 Where did Earths water come from Astronomy com Retrieved 2020 07 16 a b Pepin Robert O July 1991 On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles Icarus 92 1 2 79 Bibcode 1991Icar 92 2P doi 10 1016 0019 1035 91 90036 s ISSN 0019 1035 Zahnle Kevin J Gacesa Marko Catling David C January 2019 Strange messenger A new history of hydrogen on Earth as told by Xenon Geochimica et Cosmochimica Acta 244 56 85 arXiv 1809 06960 Bibcode 2019GeCoA 244 56Z doi 10 1016 j gca 2018 09 017 ISSN 0016 7037 S2CID 119079927 Canup Robin M Asphaug Erik August 2001 Origin of the Moon in a giant impact near the end of the Earth s formation Nature 412 6848 708 712 Bibcode 2001Natur 412 708C doi 10 1038 35089010 ISSN 0028 0836 PMID 11507633 S2CID 4413525 Cuk M Stewart S T 2012 10 17 Making the Moon from a Fast Spinning Earth A Giant Impact Followed by Resonant Despinning Science 338 6110 1047 1052 Bibcode 2012Sci 338 1047C doi 10 1126 science 1225542 ISSN 0036 8075 PMID 23076099 S2CID 6909122 Sleep N H Zahnle K Neuhoff P S 2001 Initiation of clement surface conditions on the earliest Earth Proceedings of the National Academy of Sciences 98 7 3666 3672 Bibcode 2001PNAS 98 3666S doi 10 1073 pnas 071045698 PMC 31109 PMID 11259665 a b Pinti Daniele L Arndt Nicholas 2014 Oceans Origin of Encyclopedia of Astrobiology Springer Berlin Heidelberg pp 1 5 doi 10 1007 978 3 642 27833 4 1098 4 ISBN 978 3 642 27833 4 Cates N L Mojzsis S J March 2007 Pre 3750 Ma supracrustal rocks from the Nuvvuagittuq supracrustal belt northern Quebec Earth and Planetary Science Letters 255 1 2 9 21 Bibcode 2007E amp PSL 255 9C doi 10 1016 j epsl 2006 11 034 ISSN 0012 821X O Neil Jonathan Carlson Richard W Paquette Jean Louis Francis Don November 2012 Formation age and metamorphic history of the Nuvvuagittuq Greenstone Belt PDF Precambrian Research 220 221 23 44 Bibcode 2012PreR 220 23O doi 10 1016 j precamres 2012 07 009 ISSN 0301 9268 Piani Laurette 28 August 2020 Earth s water may have been inherited from material similar to enstatite chondrite meteorites Science 369 6507 1110 1113 Bibcode 2020Sci 369 1110P doi 10 1126 science aba1948 PMID 32855337 S2CID 221342529 Retrieved 28 August 2020 Washington University in St Louis 27 August 2020 Meteorite study suggests Earth may have been wet since it formed Enstatite chondrite meteorites once considered dry contain enough water to fill the oceans and then some EurekAlert Retrieved 28 August 2020 American Association for the Advancement of Science 27 August 2020 Unexpected abundance of hydrogen in meteorites reveals the origin of Earth s water EurekAlert Retrieved 28 August 2020 Wilde S A Valley J W Peck W H Graham C M 2001 Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4 4 nGyr ago PDF Nature 409 6817 175 8 Bibcode 2001Natur 409 175W doi 10 1038 35051550 PMID 11196637 S2CID 4319774 ANU Research School of Earth Sciences ANU College of Science Harrison Ses anu edu au Archived from the original on 2006 06 21 Retrieved 2009 08 20 ANU OVC MEDIA MEDIA RELEASES 2005 NOVEMBER 181105HARRISONCONTINENTS Info anu edu au Retrieved 2009 08 20 A Cool Early Earth Geology wisc edu Archived from the original on 2013 06 16 Retrieved 2009 08 20 Chang Kenneth 2008 12 02 A New Picture of the Early Earth The New York Times Retrieved 2010 05 20 a b c Genda Hidenori 2016 Origin of Earth s oceans An assessment of the total amount history and supply of water Geochemical Journal 50 1 27 42 Bibcode 2016GeocJ 50 27G doi 10 2343 geochemj 2 0398 ISSN 0016 7002 S2CID 92988014 a b c Peslier Anne H Schonbachler Maria Busemann Henner Karato Shun Ichiro 2017 08 09 Water in the Earth s Interior Distribution and Origin Space Science Reviews 212 1 2 743 810 Bibcode 2017SSRv 212 743P doi 10 1007 s11214 017 0387 z ISSN 0038 6308 S2CID 125860164 Wu Jun Desch Steven J Schaefer Laura Elkins Tanton Linda T Pahlevan Kaveh Buseck Peter R October 2018 Origin of Earth s Water Chondritic Inheritance Plus Nebular Ingassing and Storage of Hydrogen in the Core Journal of Geophysical Research Planets 123 10 2691 2712 Bibcode 2018JGRE 123 2691W doi 10 1029 2018je005698 ISSN 2169 9097 S2CID 134803572 Gradie J Tedesco E 1982 06 25 Compositional Structure of the Asteroid Belt Science 216 4553 1405 1407 Bibcode 1982Sci 216 1405G doi 10 1126 science 216 4553 1405 ISSN 0036 8075 PMID 17798362 S2CID 32447726 Martin Rebecca G Livio Mario 2013 07 03 On the evolution of the snow line in protoplanetary discs II Analytic approximations Monthly Notices of the Royal Astronomical Society 434 1 633 638 arXiv 1207 4284 Bibcode 2013MNRAS 434 633M doi 10 1093 mnras stt1051 ISSN 0035 8711 S2CID 118419642 Andrew Fazekas Mystery of Earth s Water Origin Solved Nationalgeographic com 30 October 2014 Sarafian A R Nielsen S G Marschall H R McCubbin F M Monteleone B D 2014 10 30 Early accretion of water in the inner solar system from a carbonaceous chondrite like source Science 346 6209 623 626 Bibcode 2014Sci 346 623S doi 10 1126 science 1256717 ISSN 0036 8075 PMID 25359971 S2CID 30471982 Drake Michael J 2005 Origin of water in the terrestrial planets Meteoritics amp Planetary Science 40 4 519 527 Bibcode 2005M amp PS 40 519D doi 10 1111 j 1945 5100 2005 tb00960 x Drake Michael J et al August 2005 Origin of water in the terrestrial planets Asteroids Comets and Meteors IAU S229 229th Symposium of the International Astronomical Union Vol 1 Buzios Rio de Janeiro Brazil Cambridge University Press pp 381 394 Bibcode 2006IAUS 229 381D doi 10 1017 S1743921305006861 ISBN 978 0 521 85200 5 Cowen Ron 9 May 2013 Common source for Earth and Moon water Nature doi 10 1038 nature 2013 12963 S2CID 131174435 Dauphas Nicolas October 2003 The dual origin of the terrestrial atmosphere Icarus 165 2 326 339 arXiv astro ph 0306605 Bibcode 2003Icar 165 326D doi 10 1016 s0019 1035 03 00198 2 ISSN 0019 1035 S2CID 14982509 Owen Tobias Bar Nun Akiva Kleinfeld Idit July 1992 Possible cometary origin of heavy noble gases in the atmospheres of Venus Earth and Mars Nature 358 6381 43 46 Bibcode 1992Natur 358 43O doi 10 1038 358043a0 ISSN 0028 0836 PMID 11536499 S2CID 4357750 Gomes R Levison H F Tsiganis K Morbidelli A May 2005 Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets Nature 435 7041 466 469 Bibcode 2005Natur 435 466G doi 10 1038 nature03676 ISSN 0028 0836 PMID 15917802 a b Budde Gerrit Burkhardt Christoph Kleine Thorsten 20 May 2019 Molybdenum isotopic evidence for the late accretion of outer Solar System material to Earth Nature Astronomy 3 8 736 741 Bibcode 2019NatAs 3 736B doi 10 1038 s41550 019 0779 y ISSN 2397 3366 S2CID 181460133 Yang J Turner M S Schramm D N Steigman G Olive K A June 1984 Primordial nucleosynthesis A critical comparison of theory and observation The Astrophysical Journal 281 493 Bibcode 1984ApJ 281 493Y doi 10 1086 162123 ISSN 0004 637X Hagemann R Nief G Roth E January 1970 Absolute isotopic scale for deuterium analysis of natural waters Absolute D H ratio for SMOW Tellus 22 6 712 715 Bibcode 1970Tell 22 712H doi 10 3402 tellusa v22i6 10278 ISSN 0040 2826 Genda Hidenori Ikoma Masahiro March 2008 Origin of the ocean on the Earth Early evolution of water D H in a hydrogen rich atmosphere Icarus 194 1 42 52 doi 10 1016 j icarus 2007 09 007 ISSN 0019 1035 Hallis Lydia J Huss Gary R Nagashima Kazuhide Taylor G Jeffrey Halldorsson Saemundur A Hilton David R Mottl Michael J Meech Karen J 2015 11 13 Evidence for primordial water in Earth s deep mantle Science 350 6262 795 797 doi 10 1126 science aac4834 ISSN 0036 8075 Catling David C 2017 Atmospheric Evolution on Inhabited and Lifeless Worlds Cambridge University Press p 180 Bibcode 2017aeil book C ISBN 978 1 139 02055 8 OCLC 982451455 Donahue T M Hoffman J H Hodges R R Watson A J 1982 05 07 Venus Was Wet A Measurement of the Ratio of Deuterium to Hydrogen Science 216 4546 630 633 Bibcode 1982Sci 216 630D doi 10 1126 science 216 4546 630 ISSN 0036 8075 PMID 17783310 S2CID 36740141 Q Choi Charles 2014 12 10 Most of Earth s Water Came from Asteroids Not Comets Space com Retrieved 2020 02 09 Daly R Terik Schultz Peter H 25 April 2018 The delivery of water by impacts from planetary accretion to present Science Advances 4 4 eaar2632 Bibcode 2018SciA 4 2632D doi 10 1126 sciadv aar2632 PMC 5916508 PMID 29707636 Gorman James 15 May 2018 How Asteroids May Have Brought Water to Earth The New York Times Retrieved 16 May 2018 Alexander Conel M O D 2017 04 17 The origin of inner Solar System water Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences 375 2094 20150384 Bibcode 2017RSPTA 37550384A doi 10 1098 rsta 2015 0384 ISSN 1364 503X PMC 5394251 PMID 28416723 Chan Queenie H S et al 10 January 2018 Organic matter in extraterrestrial water bearing salt crystals Science Advances 4 1 eaao3521 eaao3521 Bibcode 2018SciA 4 3521C doi 10 1126 sciadv aao3521 PMC 5770164 PMID 29349297 Sarafian Adam R Nielsen Sune G Marschall Horst R McCubbin Francis M Monteleone Brian D 2014 10 31 Early accretion of water in the inner solar system from a carbonaceous chondrite like source Science 346 6209 623 626 Bibcode 2014Sci 346 623S doi 10 1126 science 1256717 ISSN 0036 8075 PMID 25359971 S2CID 30471982 Morbidelli Alessandro et al 2000 Source regions and timescales for the delivery of water to the Earth Meteoritics amp Planetary Science 35 6 1309 1329 Bibcode 2000M amp PS 35 1309M doi 10 1111 j 1945 5100 2000 tb01518 x Daly Luke Lee Martin R Hallis Lydia J Ishii Hope A Bradley John P Bland Phillip A Saxey David W Fougerouse Denis Rickard William D A Forman Lucy V Timms Nicholas E Jourdan Fred Reddy Steven M Salge Tobias Quadir Zakaria Christou Evangelos Cox Morgan A Aguiar Jeffrey A Hattar Khalid Monterrosa Anthony Keller Lindsay P Christoffersen Roy Dukes Catherine A Loeffler Mark J Thompson Michelle S December 2021 Solar wind contributions to Earth s oceans PDF Nature Astronomy 5 12 1275 1285 Bibcode 2021NatAs 5 1275D doi 10 1038 s41550 021 01487 w OSTI 1834330 S2CID 244744492 Daly Luke Lee Martin R Timms Nick Bland Phil November 30 2021 Up to half of Earth s water may come from solar wind and space dust Phys Org Eberhardt P Dolder U Schulte W Krankowsky D Lammerzahl P Hoffman J H Hodges R R Berthelier J J Illiano J M 1988 The D H ratio in water from comet P Halley Exploration of Halley s Comet Springer Berlin Heidelberg pp 435 437 doi 10 1007 978 3 642 82971 0 79 ISBN 978 3 642 82973 4 Meier R 1998 02 06 A Determination of the HDO H2O Ratio in Comet C 1995 O1 Hale Bopp Science 279 5352 842 844 Bibcode 1998Sci 279 842M doi 10 1126 science 279 5352 842 ISSN 0036 8075 PMID 9452379 Bockelee Morvan D Gautier D Lis D C Young K Keene J Phillips T Owen T Crovisier J Goldsmith P F May 1998 Deuterated Water in Comet C 1996 B2 Hyakutake and Its Implications for the Origin of Comets Icarus 133 1 147 162 Bibcode 1998Icar 133 147B doi 10 1006 icar 1998 5916 hdl 2060 19980035143 ISSN 0019 1035 S2CID 121830932 a b Hartogh Paul Lis Dariusz C Bockelee Morvan Dominique de Val Borro Miguel Biver Nicolas Kuppers Michael Emprechtinger Martin Bergin Edwin A Crovisier Jacques October 2011 Ocean like water in the Jupiter family comet 103P Hartley 2 Nature 478 7368 218 220 Bibcode 2011Natur 478 218H doi 10 1038 nature10519 ISSN 0028 0836 PMID 21976024 S2CID 3139621 Dauphas N December 2000 The Late Asteroidal and Cometary Bombardment of Earth as Recorded in Water Deuterium to Protium Ratio Icarus 148 2 508 512 Bibcode 2000Icar 148 508D doi 10 1006 icar 2000 6489 ISSN 0019 1035 Duncan M J 1997 06 13 A Disk of Scattered Icy Objects and the Origin of Jupiter Family Comets Science 276 5319 1670 1672 Bibcode 1997Sci 276 1670D doi 10 1126 science 276 5319 1670 ISSN 0036 8075 PMID 9180070 Altwegg K Balsiger H Bar Nun A Berthelier J J Bieler A Bochsler P Briois C Calmonte U Combi M 2015 01 23 67P Churyumov Gerasimenko a Jupiter family comet with a high D H ratio PDF Science 347 6220 1261952 Bibcode 2015Sci 347A 387A doi 10 1126 science 1261952 ISSN 0036 8075 PMID 25501976 S2CID 206563296 Alexander C M O Bowden R Fogel M L Howard K T Herd C D K Nittler L R 2012 07 12 The Provenances of Asteroids and Their Contributions to the Volatile Inventories of the Terrestrial Planets Science 337 6095 721 723 Bibcode 2012Sci 337 721A doi 10 1126 science 1223474 ISSN 0036 8075 PMID 22798405 S2CID 206542013 External links editDr C s Ocean World How the Oceans Formed archived copy Nature journal Earth has water older than the Sun Portals nbsp Astronomy nbsp Water nbsp World Retrieved from https en wikipedia org w index php title Origin of water on Earth amp oldid 1218638183, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.