fbpx
Wikipedia

Apollo 17

Apollo 17 (December 7–19, 1972) was the eleventh and final mission of NASA's Apollo program, the sixth and most recent time humans have set foot on the Moon or traveled beyond low Earth orbit. Commander Gene Cernan and Lunar Module Pilot Harrison Schmitt walked on the Moon, while Command Module Pilot Ronald Evans orbited above. Schmitt was the only professional geologist to land on the Moon; he was selected in place of Joe Engle, as NASA had been under pressure to send a scientist to the Moon. The mission's heavy emphasis on science meant the inclusion of a number of new experiments, including a biological experiment containing five mice that was carried in the command module.

Apollo 17
Gene Cernan salutes the U.S. flag, with the Apollo Lunar Module Challenger and Lunar Roving Vehicle in the background
Mission typeCrewed lunar landing (J)
OperatorNASA
COSPAR ID
  • CSM: 1972-096A
  • LM: 1972-096C
SATCAT no.
  • CSM: 6300
  • LM: 6307
Mission duration12 days, 13 hours, 51 minutes, 59 seconds
Spacecraft properties
Spacecraft
Manufacturer
Launch mass48,609 kilograms (107,165 lb)[2]
Landing mass5,500 kilograms (12,120 lb)[3]
Crew
Crew size3
Members
Callsign
  • CSM: America
  • LM: Challenger
EVAs1 in cislunar space
3 on the lunar surface
EVA duration1 hour, 5 minutes, 44 seconds
(Spacewalk to retrieve film cassettes)
Start of mission
Launch dateDecember 7, 1972, 05:33:00 (1972-12-07UTC05:33Z) UTC (12:33 a.m. EST)[4]
RocketSaturn V SA-512
Launch siteKennedy LC-39A
End of mission
Recovered byUSS Ticonderoga
Landing dateDecember 19, 1972, 19:54:58 (1972-12-19UTC19:54:59Z) UTC[5]
Landing siteSouth Pacific Ocean
17°53′S 166°07′W / 17.88°S 166.11°W / -17.88; -166.11 (Apollo 17 splashdown)
Lunar orbiter
Spacecraft componentCommand and service module
Orbital insertionDecember 10, 1972, 19:53:55 UTC[5]
Orbital departureDecember 16, 1972, 23:35:09 UTC[5]
Orbits75
Lunar lander
Spacecraft componentLunar module
Landing dateDecember 11, 1972, 19:54:58 UTC[5]
Return launchDecember 14, 1972, 22:54:37 UTC[5]
Landing siteTaurus–Littrow
20°11′27″N 30°46′18″E / 20.1908°N 30.7717°E / 20.1908; 30.7717[6]
Sample mass115 kilograms (254 lb)
Surface EVAs3
EVA duration
  • 22 hours, 3 minutes, 57 seconds
  • First: 7 hours, 11 minutes, 53 seconds
  • Second: 7 hours, 36 minutes, 56 seconds
  • Third: 7 hours, 15 minutes, 8 seconds
Lunar rover
Distance driven35.7 kilometers (22.2 mi)

Left to right: Schmitt, Cernan (seated), Evans
Apollo 18 (canceled) →
 

Mission planners had two primary goals in deciding on the landing site: to sample lunar highland material older than that at Mare Imbrium and to investigate the possibility of relatively recent volcanic activity. They therefore selected Taurus–Littrow, where formations that had been viewed and pictured from orbit were thought to be volcanic in nature. Since all three crew members had backed up previous Apollo lunar missions, they were familiar with the Apollo spacecraft and had more time for geology training.

Launched at 12:33 a.m. Eastern Standard Time (EST) on December 7, 1972, following the only launch-pad delay in the course of the whole Apollo program that was caused by a hardware problem, Apollo 17 was a "J-type" mission that included three days on the lunar surface, expanded scientific capability, and the use of the third Lunar Roving Vehicle (LRV). Cernan and Schmitt landed in the Taurus–Littrow valley, completed three moonwalks, took lunar samples and deployed scientific instruments. Orange soil was discovered at Shorty crater; it proved to be volcanic in origin, although from early in the Moon's history. Evans remained in lunar orbit in the command and service module (CSM), taking scientific measurements and photographs. The spacecraft returned to Earth on December 19.

The mission broke several records for crewed spaceflight, including the longest crewed lunar landing mission (12 days, 14 hours),[7] greatest distance from a spacecraft during an extravehicular activity of any type (7.6 kilometers or 4.7 miles), longest total duration of lunar-surface extravehicular activities (22 hours, 4 minutes),[8] largest lunar-sample return (approximately 115 kg or 254 lb), longest time in lunar orbit (6 days, 4 hours),[7] and greatest number of lunar orbits (75).[9]

Crew and key Mission Control personnel

Position[10] Astronaut
Commander Eugene A. Cernan
Third and last spaceflight
Command Module Pilot (CMP) Ronald E. Evans
Only spaceflight
Lunar Module Pilot (LMP) Harrison H. Schmitt
Only spaceflight

In 1969, NASA announced[11] that the backup crew of Apollo 14 would be Gene Cernan, Ronald Evans, and former X-15 pilot Joe Engle.[12][13] This put them in line to be the prime crew of Apollo 17, because the Apollo program's crew rotation generally meant that a backup crew would fly as prime crew three missions later. Harrison Schmitt, who was a professional geologist as well as an astronaut, had served on the backup crew of Apollo 15, and thus, because of the rotation, would have been due to fly as lunar module pilot on Apollo 18.[14]

In September 1970, the plan to launch Apollo 18 was cancelled. The scientific community pressed NASA to assign a geologist, rather than a pilot with non-professional geological training, to an Apollo landing. NASA subsequently assigned Schmitt to Apollo 17 as the lunar module pilot. After that, NASA's director of flight crew operations, Deke Slayton, was left with the question of who would fill the two other Apollo 17 slots: the rest of the Apollo 15 backup crew (Dick Gordon and Vance Brand), or Cernan and Evans from the Apollo 14 backup crew. Slayton ultimately chose Cernan and Evans.[11] Support at NASA for assigning Cernan was not unanimous. Cernan had crashed a Bell 47G helicopter into the Indian River near Cape Kennedy during a training exercise in January 1971; the accident was later attributed to pilot error, as Cernan had misjudged his altitude before crashing into the water. Jim McDivitt, who was manager of the Apollo Spacecraft Program Office at the time, objected to Cernan's selection because of this accident, but Slayton dismissed the concern. After Cernan was offered command of the mission, he advocated for Engle to fly with him on the mission, but it was made clear to him that Schmitt would be assigned instead, with or without Cernan, so he acquiesced.[15][16] The prime crew of Apollo 17 was publicly announced on August 13, 1971.[17]

When assigned to Apollo 17, Cernan was a 38-year-old captain in the United States Navy; he had been selected in the third group of astronauts in 1963, and flown as pilot of Gemini 9A in 1966 and as lunar module pilot of Apollo 10 in 1969 before he served on Apollo 14's backup crew. Evans, 39 years old when assigned to Apollo 17, had been selected as part of the fifth group of astronauts in 1966, and had been a lieutenant commander in the United States Navy. Schmitt, a civilian, was 37 years old when assigned Apollo 17, had a doctorate in geology from Harvard University, and had been selected in the fourth group of astronauts in 1965. Both Evans and Schmitt were making their first spaceflights.[18]

For the backup crews of Apollo 16 and 17, the final Apollo lunar missions, NASA selected astronauts who had already flown Apollo lunar missions, to take advantage of their experience, and avoid investing time and money in training rookies who would be unlikely to ever fly an Apollo mission.[19][20] The original backup crew for Apollo 17, announced at the same time as the prime crew,[17] was the crew of Apollo 15: David Scott as commander, Alfred Worden as CMP and James Irwin as LMP, but in May 1972 they were removed from the backup crew because of their roles in the Apollo 15 postal covers incident.[21] They were replaced with the landing crew of Apollo 16: John W. Young as backup crew commander, Charles Duke as LMP, and Apollo 14's CMP, Stuart Roosa.[18][22][23] Originally, Apollo 16's CMP, Ken Mattingly, was to be assigned along with his crewmates, but he declined so he could spend more time with his family, his son having just been born, and instead took an assignment to the Space Shuttle program.[24] Roosa had also served as backup CMP for Apollo 16.[25]

For the Apollo program, in addition to the prime and backup crews that had been used in the Mercury and Gemini programs, NASA assigned a third crew of astronauts, known as the support crew. Their role was to provide any assistance in preparing for the missions that the missions director assigned then. Preparations took place in meetings at facilities across the US and sometimes needed a member of the flight crew to attend them. Because McDivitt was concerned that problems could be created if a prime or backup crew member was unable to attend a meeting, Slayton created the support crews to ensure that someone would be able to attend in their stead.[26] Usually low in seniority, they also assembled the mission's rules, flight plan and checklists, and kept them updated;[27][28] for Apollo 17, they were Robert F. Overmyer, Robert A. Parker and C. Gordon Fullerton.[29]

Flight directors were Gerry Griffin, first shift, Gene Kranz and Neil B. Hutchinson, second shift, and Pete Frank and Charles R. Lewis, third shift.[30] According to Kranz, flight directors during the program Apollo had a one-sentence job description, "The flight director may take any actions necessary for crew safety and mission success."[31] Capsule communicators (CAPCOMs) were Fullerton, Parker, Young, Duke, Mattingly, Roosa, Alan Shepard and Joseph P. Allen.[32]

Mission insignia and call signs

The insignia's most prominent feature is an image of the Greek sun god Apollo backdropped by a rendering of an American eagle, the red bars on the eagle mirroring those on the U.S. flag. Three white stars above the red bars represent the three crewmembers of the mission. The background includes the Moon, the planet Saturn, and a galaxy or nebula. The wing of the eagle partially overlays the Moon, suggesting humanity's established presence there.[33]

 
Apollo 17 space-flown silver Robbins medallion

The insignia includes, along with the colors of the U.S. flag (red, white, and blue), the color gold, representative of a "golden age" of spaceflight that was to begin with Apollo 17.[33] The image of Apollo in the mission insignia is a rendering of the Apollo Belvedere sculpture in the Vatican Museums. It looks forward into the future, towards the celestial objects shown in the insignia beyond the Moon. These represent humanity's goals, and the image symbolizes human intelligence, wisdom and ambition. The insignia was designed by artist Robert McCall, based on ideas from the crew.[34]

In deciding the call signs for the command module (CM) and lunar module (LM), the crew wished to pay tribute to the American public for their support of the Apollo program, and to the mission, and wanted names with a tradition within American history. The CM was given the call sign "America". According to Cernan, this evoked the 19th century sailing ships which were given that name, and was a thank-you to the people of the United States. The crew selected the name "Challenger" for the LM in lieu of an alternative, "Heritage". Cernan stated that the selected name "just seemed to describe more of what the future for America really held, and that was a challenge".[35] After Schmitt stepped onto the Moon from Challenger, he stated, "I think the next generation ought to accept this as a challenge. Let's see them leave footprints like these."[36]

Planning and training

Scheduling and landing site selection

Prior to the cancellation of Apollo 18 through 20, Apollo 17 was slated to launch in September 1971 as part of NASA's tentative launch schedule set forth in 1969.[4] The in-flight abort of Apollo 13 and the resulting modifications to the Apollo spacecraft delayed subsequent missions.[37] Following the cancellation of Apollo 20 in early 1970, NASA decided there would be no more than two Apollo missions per year.[38] Part of the reason Apollo 17 was scheduled for December 1972 was to make it fall after the presidential election in November, ensuring that if there was a disaster, it would have no effect on President Richard Nixon's re-election campaign.[39] Nixon had been deeply concerned about the Apollo 13 astronauts, and, fearing another mission in crisis as he ran for re-election, initially decided to omit the funds for Apollo 17 from the budget; he was persuaded to accept a December 1972 date for the mission.[40]

Like Apollo 15 and 16, Apollo 17 was slated to be a "J-mission", an Apollo mission type that featured lunar surface stays of three days, higher scientific capability, and the usage of the Lunar Roving Vehicle. Since Apollo 17 was to be the final lunar landing of the Apollo program, high-priority landing sites that had not been visited previously were given consideration for potential exploration. Some sites were rejected at earlier stages. For instance, a landing in the crater Copernicus was rejected because Apollo 12 had already obtained samples from that impact, and three other Apollo expeditions had already visited the vicinity of Mare Imbrium, near the rim of which Copernicus is located. The lunar highlands near the crater Tycho were rejected because of the rough terrain that the astronauts would encounter there. A site on the lunar far side in the crater Tsiolkovskiy was rejected due to technical considerations and the operational costs of maintaining communication with Earth during surface operations. Lastly, a landing in a region southwest of Mare Crisium was rejected on the grounds that a Soviet spacecraft could easily access the site and retrieve samples; Luna 20 ultimately did so shortly after the Apollo 17 site selection was made.[41] Schmitt advocated for a landing on the far side of the Moon until told by Director of Flight Operations Christopher C. Kraft that it would not happen as NASA lacked the funds for the necessary communications satellites.[42]

 
Landing site and surrounding area, as imaged from the Apollo 17 command module, 1972

The three sites that made the final consideration for Apollo 17 were Alphonsus crater, Gassendi crater, and the Taurus–Littrow valley. In making the final landing site decision, mission planners considered the primary objectives for Apollo 17: obtaining old highlands material a substantial distance from Mare Imbrium, sampling material from young volcanic activity (i.e., less than three billion years), and having minimal ground overlap with the orbital ground tracks of Apollo 15 and Apollo 16 to maximize the amount of new data obtained.[41] A significant reason for the selection of Taurus–Littrow was that Apollo 15's CMP, Al Worden, had overflown the site and observed features he described as likely volcanic in nature.[43]

Gassendi was eliminated because NASA felt that its central peak would be difficult to reach due to the roughness of the local terrain, and, though Alphonsus might be easier operationally than Taurus–Littrow, it was of lesser scientific interest.[44] At Taurus–Littrow, it was believed that the crew would be able to obtain samples of old highland material from the remnants of a landslide event that occurred on the south wall of the valley and the possibility of relatively young, explosive volcanic activity in the area. Although the valley is similar to the landing site of Apollo 15 in that it is on the border of a lunar mare, the advantages of Taurus–Littrow were believed to outweigh the drawbacks.[41] The Apollo Site Selection Board, a committee of NASA personnel and scientists charged with setting out scientific objectives of the Apollo landing missions and selecting landing sites for them,[45] unanimously recommended Taurus–Littrow at its final meeting in February 1972. Upon that recommendation, NASA selected Taurus–Littrow as the landing site for Apollo 17.[44]

Training

 
Gene Cernan participates in geology training in Sudbury, Ontario, in May 1972

As with previous lunar landings, the Apollo 17 astronauts undertook an extensive training program that included learning to collect samples on the surface, usage of the spacesuits, navigation in the Lunar Roving Vehicle, field geology training, survival training, splashdown and recovery training, and equipment training.[46] The geology field trips were conducted as much as possible as if the astronauts were on the Moon: they would be provided with aerial images and maps, and briefed on features of the site and a suggested routing. The following day, they would follow the route, and have tasks and observations to be done at each of the stops.[47]

The geology field trips began with one to Big Bend National Park in Texas in October 1971. The early ones were not specifically tailored to prepare the astronauts for Taurus–Littrow, which was not selected until February 1972, but by June, the astronauts were going on field trips to sites specifically selected to prepare for Apollo 17's landing site.[48] Both Cernan and Schmitt had served on backup crews for Apollo landing missions, and were familiar with many of the procedures. Their trainers, such as Gordon Swann, feared that Cernan would defer to Schmitt as a professional geologist on matters within his field. Cernan also had to adjust for the loss of Engle, with whom he had trained for Apollo 14. In spite of these issues, Cernan and Schmitt worked well together as a team, and Cernan became adept at describing what he was seeing on geology field trips, and working independently of Schmitt when necessary.[49]

The landing crew aimed for a division of labor so that, when they arrived in a new area, Cernan would perform tasks such as adjusting the antenna on the Lunar Roving Vehicle so as to transmit to Earth while Schmitt gave a report on the geological aspects of the site. The scientists in the geology "backroom" relied on Schmitt's reports to adjust the tasks planned for that site, which would be transmitted to the CapCom and then to Cernan and Schmitt. According to William R. Muehlberger, one of the scientists who trained the astronauts, "In effect [Schmitt] was running the mission from the Moon. But we set it up this way. All of those within the geological world certainly knew it, and I had a sneaking hunch that the top brass knew it too, but this is a practical way out, and they didn't object."[50]

Also participating in some of the geology field trips were the commander and lunar module pilot of the backup crew. The initial field trips took place before the Apollo 15 astronauts were assigned as the backup crew for Apollo 17 in February 1972. Either one or both of Scott and Irwin of Apollo 15 took part in four field trips, though both were present together for only two of them. After they were removed from the backup crew, the new backup commander and LMP, Young and Duke, took part in the final four field trips.[21] On field trips, the backup crew would follow half an hour after the prime crew, performing identical tasks, and have their own simulated CapCom and Mission Control guiding them.[47] The Apollo 17 astronauts had fourteen field trips—the Apollo 11 crew had only one.[51]

Evans did not go on the geology field trips, having his own set of trainers—by this time, geology training for the CMP was well-established. He would fly with a NASA geologist/pilot, Dick Laidley, over geologic features, with part of the exercise conducted at 40,000 feet (12,000 m), and part at 1,000 feet (300 m) to 5,000 feet (1,500 m). The higher altitude was equivalent to what could be seen from the planned lunar orbit of about 60 nmi with binoculars. Evans would be briefed for several hours before each exercise, and given study guides; afterwards, there would be debriefing and evaluation. Evans was trained in lunar geology by Farouk El-Baz late in the training cycle; this continued until close to launch. The CMP was given information regarding the lunar features he would overfly in the CSM and which he was expected to photograph.[52]

Mission hardware and experiments

 
SA-512, Apollo 17's Saturn V rocket, on the launch pad awaiting liftoff, November 1972

Spacecraft and launch vehicle

The Apollo 17 spacecraft comprised CSM-114 (consisting of Command Module 114 (CM-114) and Service Module 114 (SM-114)); Lunar Module 12 (LM-12);[53] a Spacecraft-Lunar Module Adapter (SLA) numbered SLA-21; and a Launch Escape System (LES).[54][55] The LES contained a rocket motor that would propel the CM to safety in the event of an aborted mission in the moments after launch, while the SLA housed the LM during the launch and early part of the flight. The LES was jettisoned after the launch vehicle ascended to the point that it was not needed, while the SLA was left atop the S-IVB third stage of the rocket after the CSM and LM separated from it.[56][57]

The launch vehicle, SA-512,[53] was one of fifteen Saturn V rockets built,[58] and was the twelfth to fly.[59] With a weight at launch of 6,529,784 pounds (2,961,860 kg) (116,269 pounds (52,739 kg) of which was attributable to the spacecraft), Apollo 17's vehicle was slightly lighter than Apollo 16, but heavier than every other crewed Apollo mission.[60]

Preparation and assembly

The first piece of the launch vehicle to arrive at Kennedy Space Center was the S-II second stage, on October 27, 1970; it was followed by the S-IVB on December 21; the S-IC first stage did not arrive until May 11, 1972, followed by the Instrument Unit on June 7. By then, LM-12 had arrived, the ascent stage on June 16, 1971, and the descent stage the following day; they were not mated until May 18, 1972. CM-114, SM-114 and SLA-21 all arrived on March 24, 1972. The rover reached Kennedy Space Center on June 2, 1972.[61]

 
Cernan (seated, right) and Schmitt in the training Lunar Roving Vehicle, with the mockup Lunar Module in the background, August 1972

The CM and the service module (SM) were mated on March 28, 1972,[61] and the testing of the spacecraft began that month.[62] The CSM was placed in a vacuum chamber at Kennedy Space Center, and the testing was conducted under those conditions. The LM was also placed in a vacuum chamber; both the prime and the backup crews participated in testing the CSM and LM.[63] During the testing, it was discovered that the LM's rendezvous radar assembly had received too much voltage during earlier tests; it was replaced by the manufacturer, Grumman. The LM's landing radar also malfunctioned intermittently and was also replaced. The front and rear steering motors of the Lunar Roving Vehicle (LRV) also had to be replaced, and it required several modifications.[62] Following the July 1972 removal from the vacuum chamber, the LM's landing gear was installed, and it, the CSM and the SLA were mated to each other. The combined craft was moved into the Vehicle Assembly Building in August for further testing, after which it was mounted on the launch vehicle.[63] After completing testing, including a simulated mission, the LRV was placed in the LM on August 13.[64]

Erection of the stages of the launch vehicle began on May 15, 1972, in High Bay 3 of the Vehicle Assembly Building, and was completed on June 27. Since the launch vehicles for Skylab 1 and Skylab 2 were being processed in that building at the same time, this marked the first time NASA had three launch vehicles there since the height of the Apollo program in 1969. After the spacecraft was mounted on the launch vehicle on August 24,[64] it was rolled out to Pad 39-A on August 28.[61] Although this was not the final time a Saturn V would fly (another would lift Skylab to orbit), area residents reacted as though it was, and 5,000 of them watched the rollout, during which the prime crew joined the operating crew from Bendix atop the crawler.[62]

At Pad 39-A, testing continued, and the CSM was electrically mated to the launch vehicle on October 11, 1972. Testing concluded with the countdown demonstration tests, accomplished on November 20 and 21.[61] The countdown to launch began at 7:53 a.m. (12:53 UTC) on December 5, 1972.[65]

Lunar surface science

ALSEP

The Apollo Lunar Surface Experiments Package was a suite of nuclear-powered experiments, flown on each landing mission after Apollo 11. This equipment was to be emplaced by the astronauts to continue functioning after the astronauts returned to Earth.[66] For Apollo 17, the ALSEP experiments were a Heat Flow Experiment (HFE), to measure the rate of heat flow from the interior of the Moon, a Lunar Surface Gravimeter (LSG), to measure alterations in the lunar gravity field at the site,[67] a Lunar Atmospheric Composition Experiment (LACE), to investigate what the lunar atmosphere is made up of,[68] a Lunar Seismic Profiling Experiment (LSPE), to detect nearby seismic activity, and a Lunar Ejecta and Meteorites Experiment (LEME), to measure the velocity and energy of dust particles.[67] Of these, only the HFE had been flown before; the others were new.[66]

The HFE had been flown on the aborted Apollo 13 mission, as well as on Apollo 15 and 16, but placed successfully only on Apollo 15, and unexpected results from that device made scientists anxious for a second successful emplacement. It was successfully deployed on Apollo 17.[69] The lunar gravimeter was intended to detect wavers in gravity, which would provide support for Albert Einstein's general theory of relativity;[70] it ultimately failed to function as intended.[71] The LACE was a surface-deployed module that used a mass spectrometer to analyze the Moon's atmosphere.[72] On previous missions, the Code Cathode Gauge experiment had measured the quantity of atmospheric particles, but the LACE determined which gases were present: principally neon, helium and hydrogen.[68] The LSPE was a seismic-detecting device that used geophones, which would detect explosives to be set off by ground command once the astronauts left the Moon.[67] When operating, it could only send useful data to Earth in high bit rate, meaning that no other ALSEP experiment could send data then, and limiting its operating time. It was turned on to detect the liftoff of the ascent stage, as well as use of the explosives packages, and the ascent stage's impact, and thereafter about once a week, as well as for some 100 hour periods.[73] The LEME had a set of detectors to measure the characteristics of the dust particles it sought.[67] It was hoped that the LEME would detect dust impacting the Moon from elsewhere, such as from comets or interstellar space, but analysis showed that it primarily detected dust moving at slow speeds across the lunar surface.[74]

All powered ALSEP experiments that remained active were deactivated on September 30, 1977,[66] principally because of budgetary constraints.[75]

Other lunar-surface science

 
Apollo 17's Lunar Roving Vehicle as it was left parked on the Moon at the conclusion of the mission. The Surface Electrical Properties (SEP) experiment receiver is the antenna on the right-rear of the vehicle

Like Apollo 15 and 16, Apollo 17 carried a Lunar Roving Vehicle. In addition to being used by the astronauts for transport from station to station on the mission's three moonwalks, the LRV was used to transport the astronauts' tools, communications equipment, and the lunar samples they gathered.[76] The Apollo 17 LRV was also used to carry some of the scientific instruments, such as the Traverse Gravimeter Experiment (TGE) and Surface Electrical Properties (SEP) experiment.[71][77] The Apollo 17 LRV traveled a cumulative distance of approximately 35.7 km (22.2 mi) in a total drive time of about four hours and twenty-six minutes; the greatest distance Cernan and Schmitt traveled from the lunar module was about 7.6 km (4.7 mi).[78]

This was the only mission to carry the TGE, which was built by Draper Laboratory at the Massachusetts Institute of Technology. As gravimeters had been useful in studying the Earth's internal structure, the objective of this experiment was to do the same on the Moon. The gravimeter was used to obtain relative gravity measurements at the landing site in the immediate vicinity of the lunar module, as well as various locations on the mission's traverse routes. Scientists would then use this data to help determine the geological substructure of the landing site and the surrounding vicinity. Measurements were taken while the TGE was mounted on the LRV, and also while the device was placed on the lunar surface. A total of 26 measurements were taken with the TGE during the mission's three moonwalks, with productive results.[71]

The SEP was also unique to Apollo 17, and included two major components: a transmitting antenna deployed near the lunar module and a receiver mounted on the LRV. At different stops during the mission's traverses, electrical signals traveled from the transmitting device, through the ground, and were received at the LRV. The electrical properties of the lunar regolith could be determined by comparison of the transmitted and received electrical signals. The results of this experiment, which are consistent with lunar rock composition, show that there is almost no water in the area of the Moon in which Apollo 17 landed, to a depth of 2 km (1.2 mi).[77]

A 2.4 m (7.9 ft) long, 2 cm (0.79 in) diameter[79] device, the Lunar Neutron Probe was inserted into one of the holes drilled into the surface to collect core samples. It was designed to measure the quantity of neutrons which penetrated to the detectors it bore along its length. This was intended to measure the rate of the "gardening" process on the lunar surface, whereby the regolith on the surface is slowly mixed or buried due to micrometeorites and other events. Placed during the first EVA, it was retrieved during the third and final EVA. The astronauts brought it with them back to Earth, and the measurements from it were compared with the evidence of neutron flux in the core that had been removed from the hole it had been placed in. Results from the probe and from the cores were instrumental in current theories that the top centimeter of lunar regolith turns over every million years, whereas "gardening" to a depth of one meter takes about a billion years.[80]

Orbital science

Biological experiments

Apollo 17's CM carried a biological cosmic ray experiment (BIOCORE), containing five mice that had been implanted with radiation monitors under their scalps to see whether they suffered damage from cosmic rays. These animals were placed in individual metal tubes inside a sealed container that had its own oxygen supply, and flown on the mission. All five were pocket mice (Perognathus longimembris);[81] this species was chosen because it was well-documented, small, easy to maintain in an isolated state (not requiring drinking water during the mission and with highly concentrated waste), and for its ability to withstand environmental stress.[82] Officially, the mice—four male and one female—were assigned the identification numbers A3326, A3400, A3305, A3356 and A3352. Unofficially, according to Cernan, the Apollo 17 crew dubbed them Fe, Fi, Fo, Fum, and Phooey.[83]

Four of the five mice survived the flight, though only two of them appeared healthy and active; the cause of death of the fifth mouse was not determined. Of those that survived, the study found lesions in the scalp itself and, in one case, the liver. The scalp lesions and liver lesions appeared to be unrelated to one another; nothing was found that could be attributed to cosmic rays.[84]

The Biostack experiment was similar to one carried on Apollo 16, and was designed to test the effects of the cosmic rays encountered in space travel on microorganisms that were included, on seeds, and on the eggs of simple animals (brine shrimp and beetles), which were carried in a sealed container. After the mission, the microorganisms and seeds showed little effect, but many of the eggs of all species failed to hatch, or to mature normally; many died or displayed abnormalities.[85]

Scientific Instrument Module

 
Apollo 17 SIM bay on the service module America, seen from the Lunar Module Challenger in orbit around the Moon

The Apollo 17 SM contained the scientific instrument module (SIM) bay. The SIM bay housed three new experiments for use in lunar orbit: a lunar sounder, an infrared scanning radiometer, and a far-ultraviolet spectrometer. A mapping camera, panoramic camera, and a laser altimeter, which had been carried previously, were also included in the SIM bay.[86]

The lunar sounder was to beam electromagnetic impulses toward the lunar surface, which were designed with the objective of obtaining data to assist in developing a geological model of the interior of the Moon to an approximate depth of 1.3 km (0.81 mi).[86] The infrared scanning radiometer was designed with the objective of generating a temperature map of the lunar surface to aid in locating surface features such as rock fields, structural differences in the lunar crust, and volcanic activity. The far-ultraviolet spectrometer was to be used to obtain information on the composition, density, and constituency of the lunar atmosphere. The spectrometer was also designed to detect far-UV radiation emitted by the Sun that had been reflected off the lunar surface. The laser altimeter was designed to measure the altitude of the spacecraft above the lunar surface within approximately 2 meters (6.6 feet), providing altitude information to the panoramic and mapping cameras, which were also in the SIM bay.[86][87]

Light-flash phenomenon and other experiments

Beginning with Apollo 11, crew members observed light flashes that penetrated their closed eyelids. These flashes, described by the astronauts as "streaks" or "specks" of light, were usually observed while the spacecraft was darkened during a sleep period. These flashes, while not observed on the lunar surface, would average about two per minute and were observed by the crew members during the trip out to the Moon, back to Earth, and in lunar orbit.[88]

The Apollo 17 crew repeated an experiment, also conducted on Apollo 16, with the objective of linking these light flashes with cosmic rays. Evans wore a device over his eyes that recorded the time, strength, and path of high-energy atomic particles that penetrated the device, while the other two wore blindfolds to keep out light. Investigators concluded that the available evidence supports the hypothesis that these flashes occur when charged particles travel through the retina in the eye.[88]

Apollo 17 carried a sodium-iodide crystal identical to the ones in the gamma-ray spectrometer flown on Apollo 15 and 16. Data from this, once it was examined on Earth, was to be used to help form a baseline, allowing for subtraction of rays from the CM or from cosmic radiation to gain better data from the earlier results.[89] In addition, the S-band transponders in the CSM and LM were pointed at the Moon to gain data on its gravitational field. Results from the Lunar Orbiter probes had revealed that lunar gravity varies slightly due to the presence of mass concentrations, or "mascons". Data from the missions, and from the lunar subsatellites left by Apollo 15 and 16, were used to map such variations in lunar gravity.[90][91]

Mission events

Launch and outbound trip

 
Apollo 17 launches on December 7, 1972

Originally planned to launch on December 6, 1972, at 9:53 p.m. EST (2:53 a.m. on December 7 UTC),[65] Apollo 17 was the final crewed Saturn V launch, and the only one to occur at night. The launch was delayed by two hours and forty minutes due to an automatic cutoff in the launch sequencer at the T-30 second mark in the countdown. The cause of the problem was quickly determined to be the launch sequencer's failure to automatically pressurize the liquid oxygen tank in the third stage of the rocket; although launch control noticed this and manually caused the tank to pressurize, the sequencer did not recognize the fix and therefore paused the countdown. The clock was reset and held at the T-22 minute mark while technicians worked around the malfunction in order to continue with the launch. This pause was the only launch delay in the Apollo program caused by a hardware problem. The countdown then resumed, and the liftoff occurred at 12:33 a.m. EST on December 7, 1972.[4][92] The launch window, which had begun at the originally planned launch time of 9:53 p.m. on December 6, remained open until 1:31 a.m., the latest time at which a launch could have occurred during the December 6–7 window.[93]

Approximately 500,000 people observed the launch in the immediate vicinity of Kennedy Space Center, despite the early-morning hour. The launch was visible as far away as 800 km (500 mi), and observers in Miami, Florida, reported a "red streak" crossing the northern sky.[92] Among those in attendance at the program's final launch were astronauts Neil Armstrong and Dick Gordon, as well as centenarian Charlie Smith, who alleged he was 130 years old at the time of Apollo 17.[94]

The ascent resulted in an orbit with an altitude and velocity almost exactly that which had been planned.[95] In the hours following the launch, Apollo 17 orbited the Earth while the crew spent time monitoring and checking the spacecraft to ensure its readiness to depart Earth orbit. At 3:46 a.m. EST, the S-IVB third stage was reignited for the 351-second trans-lunar injection burn to propel the spacecraft towards the Moon.[11][4] Ground controllers chose a faster trajectory for Apollo 17 than originally planned to allow the vehicle to reach lunar orbit at the planned time, despite the launch delay.[96] The Command and Service Module separated from the S-IVB approximately half an hour following the S-IVB trans-lunar injection burn, after which Evans turned the spacecraft to face the LM, still attached to the S-IVB. The CSM then docked with the LM and extracted it from the S-IVB. Following the LM extraction, Mission Control programmed the S-IVB, no longer needed to propel the spacecraft, to impact the Moon and trip the seismometers left by prior Apollo crews.[11] It struck the Moon just under 87 hours into the mission, triggering the seismometers from Apollo 12, 14, 15 and 16.[97] Approximately nine hours after launch, the crew concluded the mission's first day with a sleep period, until waking up to begin the second day.[11]

 
View of Earth from Apollo 17 while in transit to the Moon, a photo now known as The Blue Marble

Mission Control and the crew decided to shorten the mission's second day, the first full day in space, in order to adjust the crew's wake-up times for the subsequent days in preparation for an early morning (EST) wake-up time on the day of the lunar landing, then scheduled for early afternoon (EST). This was done since the first day of the mission had been extended because of the launch delay. Following the second rest period, and on the third day of the mission, the crew executed the first mid-course correction, a two-second burn of the CSM's service propulsion engine to adjust the spacecraft's Moon-bound trajectory. Following the burn, the crew opened the hatch separating the CSM and LM in order to check the LM's systems and concluded that they were nominal.[11] So that events would take place at the time indicated in the flight plan, the mission clocks were moved ahead by 2 hours and 40 minutes, the amount of the launch delay, with one hour of it at 45:00:00 into the mission and the remainder at 65:00:00.[98]

Among their other activities during the outbound trip, the crew photographed the Earth from the spacecraft as it travelled towards the Moon. One of these photographs is now known as The Blue Marble.[99] The crew found that one of the latches holding the CSM and LM together was unlatched. While Schmitt and Cernan were engaged in a second period of LM housekeeping beginning just before sixty hours into the Mission, Evans worked on the balky latch. He was successful, and left it in the position it would need to be in for the CSM-LM docking that would occur upon return from the lunar surface.[100]

Also during the outward journey, the crew performed a heat flow and convection demonstration, as well as the Apollo light-flash experiment. A few hours before entry into lunar orbit, the SIM door on the SM was jettisoned. At approximately 2:47 p.m. EST on December 10, the service propulsion system engine on the CSM ignited to slow down the CSM/LM stack into lunar orbit. Following orbit insertion and orbital stabilization, the crew began preparations for the landing at Taurus–Littrow.[4]

Lunar landing

 
The valley of Taurus-Littrow as seen from the Lunar Module Challenger on the orbit before powered descent there. The Command and Service Module America can just be seen crossing the base of the 2.3 km high South Massif. Between the South and North Massifs, the valley is 7 km wide. Mare Serenitatis, the Sea of Serenity, is on the horizon.

The day of the landing began with a checkout of the Lunar Module's systems, which revealed no problems preventing continuation of the mission. Cernan, Evans, and Schmitt each donned their spacesuits, and Cernan and Schmitt entered the LM in preparation for separating from the CSM and landing. The LM undocked from the CSM, and the two spacecraft orbited close together for about an hour and a half while the astronauts made visual inspections and conducted their final pre-landing checks.[11] After finally separating from the CSM, the LM Challenger and its crew of two adjusted their orbit, such that its lowest point would pass about 10.5 mi (16.9 km) above the landing site, and began preparations for the descent to Taurus–Littrow. While Cernan and Schmitt prepared for landing, Evans remained in orbit to take observations, perform experiments and await the return of his crewmates a few days later.[4][11][101]

Soon after completing their preparations for landing and just over two hours following the LM's undocking from the CSM, Cernan and Schmitt began their descent to the Taurus–Littrow valley on the lunar surface with the ignition of the Lunar Module's descent propulsion system (DPS) engine.[101][102] Approximately ten minutes later, as planned, the LM pitched over, giving Cernan and Schmitt their first look at the landing site during the descent phase and allowing Cernan to guide the spacecraft to a desirable landing target while Schmitt provided data from the flight computer essential for landing. The LM touched down on the lunar surface at 2:55 p.m. EST on December 11, just over twelve minutes after DPS ignition.[102] Challenger landed about 656 feet (200 m) east of the planned landing point.[103] Shortly thereafter, the two astronauts began re-configuring the LM for their stay on the surface and began preparations for the first moonwalk of the mission, or EVA-1.[4][101]

Lunar surface

First EVA

 
Cernan on the lunar surface, December 13, 1972

During their approximately 75-hour stay[104] on the lunar surface, Cernan and Schmitt performed three moonwalks (EVAs). The astronauts deployed the LRV, then emplaced the ALSEP and the seismic explosive charges. They drove the rover to nine planned geological-survey stations to collect samples and make observations. Additionally, twelve short sampling stops were made at Schmitt's discretion while riding the rover, during which the astronauts used a handled scoop to get a sample, without dismounting.[105] During lunar-surface operations, Commander Cernan always drove the rover, while Lunar Module Pilot Schmitt was a passenger who assisted with navigation. This division of responsibilities between the two crew positions was used consistently throughout Apollo's J-missions.[106][107][108]

The first lunar excursion began four hours after landing, at 6:54 p.m. EST on December 11. After exiting through the hatch of the LM and descending the ladder to the footpad, Cernan took the first step on the lunar surface of the mission. Just before doing so, Cernan remarked, "I'm on the footpad. And, Houston, as I step off at the surface at Taurus–Littrow, we'd like to dedicate the first step of Apollo 17 to all those who made it possible."[109] After Cernan surveyed the exterior of the LM and commented on the immediate landing site, Schmitt joined Cernan on the surface.[109] The first task was to offload the rover and other equipment from the LM. While working near the rover, Cernan caught his hammer under the right-rear fender extension, accidentally breaking it off. A similar incident occurred on Apollo 16 as John Young maneuvered around the rover. Although this was not a mission-critical issue, the loss of the part caused Cernan and Schmitt to be covered with dust stirred up when the rover was in motion.[110] The crew made a short-lived fix using duct tape at the beginning of the second EVA, attaching a paper map to the damaged fender. Lunar dust stuck to the tape's surface, however, preventing it from adhering properly. Following deployment and testing the maneuverability of the rover, the crew deployed the ALSEP just west of the landing site. The ALSEP deployment took longer than had been planned, with the drilling of core holes presenting some difficulty, meaning the geological portion of the first EVA would need to be shortened, cancelling a planned visit to Emory crater. Instead, following the deployment of the ALSEP, Cernan and Schmitt drove to Steno crater, to the south of the landing site. The objective at Steno was to sample the subsurface material excavated by the impact that formed the crater. The astronauts gathered 14 kilograms (31 lb) of samples, took seven gravimeter measurements, and deployed two explosive packages. The explosive packages were later detonated remotely; the resulting explosions detected by geophones placed by the astronauts and also by seismometers left during previous missions.[111] The first EVA ended after seven hours and twelve minutes.[4] and the astronauts remained in the pressurized LM for the next 17 hours.[112]

Second EVA

Astronauts Cernan and Schmitt singing "I Was Strolling on the Moon One Day" to the words and tune of the 1884 song "While Strolling Through the Park One Day"

On December 12, awakened by a recording of "Ride of the Valkyries" played from Mission Control,[113] Cernan and Schmitt began their second lunar excursion. The first order of business was to provide the rover's fender a better fix. Overnight, the flight controllers devised a procedure communicated by John Young: taping together four stiff paper maps[113] to form a "replacement fender extension" and then clamping it onto the fender.[114] The astronauts carried out the new fix which did its job without failing until near the end of the third excursion.[115][116] Cernan and Schmitt then departed for station 2—Nansen Crater, at the foot of the South Massif. When they arrived, their range from the Challenger was 7.6 kilometers (4.7 miles, 25,029 feet[8]). This remains the furthest distance any spacefarers have ever traveled away from the safety of a pressurizable spacecraft while on a planetary body,[117] and also during an EVA of any type.[a] The astronauts were at the extremity of their "walkback limit", a safety constraint meant to ensure that they could walk back to the LM if the rover failed. They began a return trip, traveling northeast in the rover.[119]

At station 3, Schmitt fell to the ground while working, looking so awkward that Parker jokingly told him that NASA's switchboard had lit up seeking Schmitt's services for Houston's ballet group, and the site of station 3 was in 2019 renamed Ballet Crater.[120] Cernan took a sample at Station 3 that was to be maintained in vacuum until better analytical techniques became available, joking with the CAPCOM, Parker, about placing a note inside. The container remained unopened until 2022.[114][121]

Stopping at station 4—Shorty crater—the astronauts discovered orange soil, which proved to be very small beads of volcanic glass formed over 3.5 billion years ago.[122] This discovery caused great excitement among the scientists at Mission Control, who felt that the astronauts may have discovered a volcanic vent. However, post-mission sample analysis revealed that Shorty is not a volcanic vent, but rather an impact crater. Analysis also found the orange soil to be a remnant of a fire fountain. This fire fountain sprayed molten lava high into the lunar sky in the Moon's early days, some 3.5 billion years ago and long before Shorty's creation. The orange volcanic beads were droplets of molten lava from the fountain that solidified and were buried by lava deposits until exposed by the impact that formed Shorty, less than 20 million years ago.[119]

The final stop before returning to the LM was Camelot crater; throughout the sojourn, the astronauts collected 34 kilograms (75 lb) of samples, took another seven gravimeter measurements, and deployed three more explosive packages.[4] Concluding the EVA at seven hours and thirty-seven minutes, Cernan and Schmitt had completed the longest-duration EVA in history to-date, traveling further away from a spacecraft and covering more ground on a planetary body during a single EVA than any other spacefarers.[8] The improvised fender had remained intact throughout, causing the president of the "Auto Body Association of America" to award them honorary lifetime membership.[123]

Third EVA

 
Composite image of Harrison Schmitt working next to Tracy's Rock during EVA-3

The third moonwalk, the last of the Apollo program, began at 5:25 p.m. EST on December 13. Cernan and Schmitt rode the rover northeast of the landing site, exploring the base of the North Massif and the Sculptured Hills. Stopping at station 6, they examined a house-sized split boulder dubbed Tracy's Rock (or Split Rock), after Cernan's daughter. The ninth and final planned station was conducted at Van Serg crater. The crew collected 66 kilograms (146 lb) of lunar samples and took another nine gravimeter measurements.[4] Schmitt had seen a fine-grained rock, unusual for that vicinity, earlier in the mission and had stood it on its edge; before closing out the EVA, he went and got it. Subsequently, designated Sample 70215, it was, at 17.7 pounds (8.0 kg), the largest rock brought back by Apollo 17. A small piece of it is on exhibit at the Smithsonian Institution, one of the few rocks from the Moon that the public may touch.[124] Schmitt also collected a sample, designated as Sample 76535, at geology station 6 near the base of the North Massif; the sample, a troctolite, was later identified as the oldest known "unshocked" lunar rock, meaning it has not been damaged by high-impact geological events. Scientists have therefore used Sample 76535 in thermochronological studies to determine if the Moon formed a metallic core or, as study results suggest, a core dynamo.[125][126]

Before concluding the moonwalk, the crew collected a breccia rock, dedicating it to the nations of Earth, 70 of which were represented by students touring the U.S. and present in Mission Control Center in Houston, Texas, at the time. Portions of this sample, known as the Friendship Rock, were subsequently distributed to the nations represented by the students. A plaque located on the LM, commemorating the achievements made during the Apollo program, was then unveiled. Before reentering the LM for the final time, Cernan remarked,[4][127]

... I'm on the surface; and, as I take man's last step from the surface, back home for some time to come – but we believe not too long into the future – I'd like to just [say] what I believe history will record. That America's challenge of today has forged man's destiny of tomorrow. And, as we leave the Moon at Taurus–Littrow, we leave as we came and, God willing, as we shall return, with peace and hope for all mankind. "Godspeed the crew of Apollo 17."[128]

Cernan then followed Schmitt into the LM; the final lunar excursion had a duration of seven hours and fifteen minutes.[4] Following closing of the LM hatch and repressurization of the LM cabin, Cernan and Schmitt removed their spacesuits and reconfigured the cabin for a final rest period on the lunar surface. As they did following each of the previous two EVAs, Cernan and Schmitt discussed their geological observations from the day's excursion with mission control while preparing to rest.[129]

Solo activities

While Cernan and Schmitt were on the lunar surface, Evans remained alone in the CSM in lunar orbit and was assigned a number of observational and scientific tasks to perform while awaiting the return of his crewmates. In addition to the operation of the various orbital science equipment contained in the CSM's SIM bay, Evans conducted both visual and photographic observation of surface features from his aerial vantage point.[130] The orbit of the CSM having been modified to an elliptical orbit in preparation for the LM's departure and eventual descent, one of Evans' solo tasks in the CSM was to circularize its orbit such that the CSM would remain at approximately the same distance above the surface throughout its orbit.[131] Evans observed geological features visible to him and used handheld cameras to record certain visual targets.[130] Evans also observed and sketched the solar corona at "sunrise," or the period of time during which the CSM would pass from the darkened portion of the Moon to the illuminated portion when the Moon itself mostly obscured the sun.[132] To photograph portions of the surface that were not illuminated by the sun while Evans passed over them, Evans relied in conjunction on exposure and Earthlight. Evans photographed such features as the craters Eratosthenes and Copernicus, as well as the vicinity of Mare Orientale, using this technique.[133] According to the Apollo 17 Mission Report, Evans was able to capture all scientific photographic targets, as well as some other targets of interest.[134]

 
An oblique, black-and-white view of a portion of Mare Orientale from the CSM, illustrating the illuminating effect of Earthlight on the lunar terrain below during local nighttime; Evans reported seeing a light "flash" apparently originating from the surface in this area

Similarly to the crew of Apollo 16, Evans (as well as Schmitt, while in lunar orbit) reported seeing light "flashes" apparently originating from the lunar surface, known as transient lunar phenomena (TLP); Evans reported seeing these "flashes" in the vicinity of Grimaldi crater and Mare Orientale. The causes of TLP are not well-understood and, though inconclusive as an explanation, both of the sites in which Evans reported seeing TLP are the general locations of outgassing from the Moon's interior. Meteorite impacts are another possible explanation.[135][136]

The flight plan kept Evans busy, making him so tired he overslept one morning by an hour, despite the efforts of Mission Control to awaken him. Before the LM departed for the lunar surface, Evans had discovered that he had misplaced his pair of scissors, necessary to open food packets. Cernan and Schmitt lent him one of theirs.[137] The instruments in the SIM bay functioned without significant hindrance during the orbital portion of the mission, though the lunar sounder and the mapping camera encountered minor problems.[138] Evans spent approximately 148 total hours in lunar orbit, including solo time and time spent together with Cernan and Schmitt, which is more time than any other individual has spent orbiting the Moon.[104][139]

Evans was also responsible for piloting the CSM during the orbital phase of the mission, maneuvering the spacecraft to alter and maintain its orbital trajectory. In addition to the initial orbital recircularization maneuver shortly after the LM's departure, one of the solo activities Evans performed in the CSM in preparation for the return of his crewmates from the lunar surface was the plane change maneuver. This maneuver was meant to align the CSM's trajectory to the eventual trajectory of the LM to facilitate rendezvous in orbit. Evans fired the SPS engine of the CSM for about 20 seconds in successfully adjusting the CSM's orbital plane.[9][138]

Return to Earth

 
Apollo 17 post-splashdown recovery operations

Cernan and Schmitt successfully lifted off from the lunar surface in the ascent stage of the LM on December 14, at 5:54 p.m. EST. The return to lunar orbit took just over seven minutes.[140] The LM, piloted by Cernan, and the CSM, piloted by Evans, maneuvered, and redocked about two hours after liftoff from the surface. Once the docking had taken place, the crew transferred equipment and lunar samples from the LM to the CSM for return to Earth.[102][141] The crew sealed the hatches between the CSM and the LM ascent stage following completion of the transfer and the LM was jettisoned at 11:51 p.m. EST on December 14. The unoccupied ascent stage was then remotely deorbited, crashing it into the Moon with an impact recorded by the seismometers left by Apollo 17 and previous missions.[4][141] At 6:35 p.m. EST on December 16, the CSM's SPS engine was ignited once more to propel the spacecraft away from the Moon on a trajectory back towards Earth. The successful trans-Earth injection SPS burn lasted just over two minutes.[140]

During the return to Earth, Evans performed a 65-minute EVA to retrieve film cassettes from the service module's SIM bay, with assistance from Schmitt who remained at the command module's hatch. At approximately 160,000 nautical miles[142]: 1730  (184,000 mi; 296,000 km) from Earth, it was the third "deep space" EVA in history, performed at great distance from any planetary body. As of 2024, it remains one of only three such EVAs, all performed during Apollo's J-missions under similar circumstances. It was the last EVA of the Apollo program.[4][143]

During the trip back to Earth, the crew operated the infrared radiometer in the SM, as well as the ultraviolet spectrometer. One midcourse correction was performed, lasting 9 seconds.[144] On December 19, the crew jettisoned the no-longer-needed SM, leaving only the CM for return to Earth. The Apollo 17 spacecraft reentered Earth's atmosphere and splashed down safely in the Pacific Ocean at 2:25 p.m. EST, 6.4 kilometers (4.0 mi) from the recovery ship, USS Ticonderoga. Cernan, Evans, and Schmitt were then retrieved by a recovery helicopter piloted by Commander Edward E. Dahill, III and were safe aboard the recovery ship 52 minutes after splashdown.[4][141][145] As the final Apollo mission concluded successfully, Mission Control in Houston was filled with many former flight controllers and astronauts, who applauded as America returned to Earth.[146]

Aftermath and spacecraft locations

 
Apollo 17 command module America, on display at Space Center Houston
 
Lunar Reconnaissance Orbiter image of the Apollo 17 mission site taken in 2011, the Challenger descent stage is in the center, the Lunar Roving Vehicle appears in the lower right.

Following their mission, the crew undertook both domestic and international tours, visiting 29 states and 11 countries. The tour kicked off at Super Bowl VII, with the crew leading the crowd in the Pledge of Allegiance; the CM America was also displayed during the pregame activities.[147]

None of the Apollo 17 astronauts flew in space again.[148] Cernan retired from NASA and the Navy in 1976. He died in 2017.[149] Evans retired from the Navy in 1976 and from NASA in 1977, entering the private sector. He died in 1990.[150] Schmitt resigned from NASA in 1975 prior to his successful run for a United States Senate seat from New Mexico in 1976. There, he served one six-year term.[151]

The Command Module America is currently on display at Space Center Houston at the Lyndon B. Johnson Space Center in Houston, Texas.[152][153] The ascent stage of Lunar Module Challenger impacted the Moon on December 15, 1972, at 06:50:20.8 UTC (1:50 a.m. EST), at 19°58′N 30°30′E / 19.96°N 30.50°E / 19.96; 30.50 (Apollo 17 LM ascent stage).[152] The descent stage remains on the Moon at the landing site, 20°11′27″N 30°46′18″E / 20.19080°N 30.77168°E / 20.19080; 30.77168 (Apollo 17 LM descent stage).[9] In 2023, a study of Apollo-era data from the Lunar Seismic Profiling Experiment showed that the descent stage was causing very slight tremors each lunar morning as components expanded in the heat.[154]

Eugene Cernan's flown Apollo 17 spacesuit is in the collection of the Smithsonian's National Air and Space Museum (NASM), where it was transferred in 1974,[155] and Harrison Schmitt's is in storage at NASM's Paul E. Garber Facility. Amanda Young of NASM indicated in 2004 that Schmitt's suit is in the best condition of the flown Apollo lunar spacesuits, and therefore is not on public display.[156] Ron Evans' spacesuit was also transferred from NASA in 1974 to the collection of the NASM; it remains in storage.[157]

Since Apollo 17's return, there have been attempts to photograph the landing site, where the LM's descent stage, LRV and some other mission hardware, remain. In 2009 and again in 2011, the Lunar Reconnaissance Orbiter photographed the landing site from increasingly low orbits.[158] At least one group has indicated an intention to visit the site as well; in 2018, the German space company PTScientists said that it planned to land two lunar rovers nearby.[159]

See also

Notes

  1. ^ Apart from the Apollo program's moonwalks (and a unique trio of deep-space EVAs conducted during the program's J-missions), all other spacewalks have been conducted in Low-Earth orbit, of which almost all have involved a safety tether keeping the spacefarer attached to the spacecraft by a short distance. The exceptions occurred in 1984 and 1994, when a series of seven EVAs involved untethered activity using the Manned Maneuvering Unit (MMU) and the Simplified Aid For EVA Rescue Unit (SAFER). Among this latter group, the greatest distance traveled away from a spacecraft during orbital flight was approximately 100 meters (320 feet), achieved by Bruce McCandless on STS-41-B during the first test of the MMU.[118]

References

  1. ^ Orloff 2004, Statistical Tables: Launch Vehicle/Spacecraft Key Facts.
  2. ^ Orloff & Harland 2006, p. 585.
  3. ^ Orloff & Harland 2006, p. 581.
  4. ^ a b c d e f g h i j k l m n o Wade, Mark. . Encyclopedia Astronautica. Archived from the original on August 12, 2011. Retrieved August 22, 2011.
  5. ^ a b c d e Orloff, Richard W. (2000). "Apollo 17, pp243". Apollo by the Numbers (PDF). NASA. NASA SP-2000-4029. Retrieved December 12, 2022.
  6. ^ "NASA NSSDC Master Catalog – Apollo 17 descent stage". NASA. Retrieved January 1, 2011.
  7. ^ a b "Astronaut Friday: Ronald Evans". Space Center Houston. December 28, 2018. Retrieved February 7, 2022.
  8. ^ a b c "Extravehicular Activity". NASA. Retrieved January 6, 2022.
  9. ^ a b c Orloff 2004, Apollo 17: The Eleventh Mission.
  10. ^ . The Apollo Program. Washington, D.C.: National Air and Space Museum. Archived from the original on July 5, 2011. Retrieved August 26, 2011.
  11. ^ a b c d e f g h Jones, Eric M.; Glover, Ken (eds.). . Apollo 17 Lunar Surface Journal. NASA. Archived from the original on March 20, 2012. Retrieved August 25, 2011.
  12. ^ . The Apollo Program. National Air and Space Museum. Archived from the original on February 8, 2022. Retrieved February 8, 2022.
  13. ^ "Astronauts – Craters of the Moon". National Park Service. Retrieved February 8, 2022.
  14. ^ Wilhelms 1993, pp. 309–310.
  15. ^ Kraft 2002, pp. 346–348.
  16. ^ (PDF). Manned Spacecraft Center: Public Information Offie. October 18, 1971. Archived from the original (PDF) on February 28, 2021. Retrieved January 13, 2022.
  17. ^ a b (PDF). Manned Spacecraft Center: Public Information Office. August 13, 1971. Archived from the original (PDF) on February 28, 2021. Retrieved January 13, 2022.
  18. ^ a b Orloff & Harland 2006, pp. 507–508.
  19. ^ Shayler & Burgess 2017, pp. 289–290.
  20. ^ Chaikin 1995, p. 549.
  21. ^ a b Phinney 2015, p. 130.
  22. ^ Slayton & Cassutt 1994, p. 279.
  23. ^ Riley, John E. (May 23, 1972). "Release No. 72-113: Astronauts Mitchell and Irwin to Retire" (PDF). NASA: Manned Spacecraft Center. Archived (PDF) from the original on October 9, 2022. Retrieved January 13, 2022.
  24. ^ Shayler & Burgess 2017, p. 296.
  25. ^ Orloff & Harland 2006, p. 471.
  26. ^ Slayton & Cassutt 1994, p. 184.
  27. ^ Hersch, Matthew (July 19, 2009). "The fourth crewmember". Air & Space/Smithsonian. Retrieved October 4, 2019.
  28. ^ Brooks, Grimwood, & Swenson 1979, p. 261.
  29. ^ Compton 1989, p. 377.
  30. ^ Orloff & Harland 2006, p. 566.
  31. ^ Williams, Mike (September 13, 2012). . Rice University Office of Public Affairs. Archived from the original on August 17, 2020. Retrieved October 5, 2019.
  32. ^ Orloff & Harland 2006, p. 577.
  33. ^ a b "Apollo Mission Insignias". NASA. from the original on July 21, 2011. Retrieved August 25, 2011.
  34. ^ Lattimer 1985, p. 93.
  35. ^ Lattimer 1985, p. 94.
  36. ^ Chaikin 1995, p. 509.
  37. ^ Uri, John (July 31, 2020). Mars, Kelli (ed.). "50 Years Ago: Apollo 14 and 15 Preparations". NASA. Retrieved January 8, 2022.
  38. ^ "Apollo's schedule shifted by NASA; next flight in April". The New York Times. January 9, 1970. p. 17. Retrieved October 30, 2020.
  39. ^ Shayler & Burgess 2017, p. 207.
  40. ^ Logsdon 2015, pp. 154–159.
  41. ^ a b c "Landing Site Overview". Apollo 17 Mission. Lunar and Planetary Institute. Retrieved February 7, 2022.
  42. ^ Wilhelms 1993, p. 312.
  43. ^ Wilhelms 1993, p. 313.
  44. ^ a b Wilhelms 1993, p. 314.
  45. ^ "Apollo Site Selection Board Meeting Minutes – February 11, 1972" (PDF). NASA. Archived (PDF) from the original on October 9, 2022. Retrieved February 3, 2022.
  46. ^ Mason, Betsy (July 20, 2011). "The Incredible Things NASA Did to Train Apollo Astronauts". Wired Science. Condé Nast Publications. Retrieved August 23, 2011.
  47. ^ a b Phinney 2015, p. 95.
  48. ^ Wilhelms 1993, pp. 316–317.
  49. ^ Phinney 2015, pp. 129–139.
  50. ^ Phinney 2015, p. 131.
  51. ^ Phinney 2015, p. 102.
  52. ^ Phinney 2015, pp. 147–149.
  53. ^ a b Orloff & Harland 2006, p. 508.
  54. ^ Apollo 17 Press Kit, pp. 97–99.
  55. ^ "Apollo/Skylab ASTP and Shuttle Orbiter Major End Items" (PDF). NASA. March 1978. p. 15. Archived (PDF) from the original on October 9, 2022.
  56. ^ Apollo 17 Press Kit, p. 97.
  57. ^ Orloff & Harland 2006, p. 26.
  58. ^ Sharp, Tim (October 17, 2018). "Saturn V Rockets & Apollo Spacecraft". Space.com. Retrieved February 7, 2022.
  59. ^ . Rocket Park. NASA. Archived from the original on April 8, 2015. Retrieved February 8, 2022.
  60. ^ Orloff & Harland 2006, pp. 584–585.
  61. ^ a b c d Orloff & Harland 2006, p. 512.
  62. ^ a b c Benson, Charles D.; Faherty, William Barnaby (1978). . Moonport: A History of Apollo Launch Facilities and Operations. NASA. NASA SP-4204. Archived from the original on January 23, 2008. Retrieved November 23, 2021.
  63. ^ a b Apollo 17 Press Kit, p. 15.
  64. ^ a b Apollo 17 Press Kit, p. 16.
  65. ^ a b Orloff & Harland 2006, p. 510.
  66. ^ a b c Orloff & Harland 2006, pp. 601–602.
  67. ^ a b c d Orloff 2004, Statistical Tables: Lunar Surface Experiments.
  68. ^ a b "Science Experiments – Lunar Atmospheric Composition". Lunar and Planetary Institute. Retrieved February 8, 2022.
  69. ^ Chaikin 1995, pp. 467–469, 478, 513.
  70. ^ Lunsford, Christine (December 7, 2017). "Apollo 17: NASA's Last Apollo Moon Landing Mission in Pictures". Space.com. Retrieved February 8, 2022.
  71. ^ a b c Jones, Eric M.; Glover, Ken (eds.). "Apollo 17 Traverse Gravimeter Experiment". Apollo 17 Lunar Surface Journal. NASA. Retrieved November 29, 2021.
  72. ^ Stern, S. Alan (1999). The Lunar Atmosphere: History, Status, Current Problems, and Context (Report). Southwest Research Institute. CiteSeerX 10.1.1.21.9994.
  73. ^ "Lunar Seismic Profiling Experiment" (PDF). Lunar and Planetary Institute. Archived (PDF) from the original on October 9, 2022.
  74. ^ "Science Experiments – Lunar Ejecta and Meteorite". Lunar and Planetary Institute. Retrieved February 12, 2022.
  75. ^ Talcott, Richard (June 21, 2019). "What did the Apollo astronauts leave behind?". Astronomy. Retrieved February 1, 2021.
  76. ^ . The Apollo Program. National Air and Space Museum. Archived from the original on February 8, 2022. Retrieved February 8, 2022.
  77. ^ a b "Science Experiments – Surface Electrical Properties". Apollo 17 Mission. Lunar and Planetary Institute. Retrieved February 7, 2022.
  78. ^ Orloff 2004, Statistical Tables: Extravehicular Activity.
  79. ^ Apollo 17 Press Kit, p. 46.
  80. ^ "Science Experiments – Lunar Neutron Probe". Apollo 17 Mission. Lunar and Planetary Institute. 2019. Retrieved February 12, 2022.
  81. ^ Johnson et al. 1975, Ch. 4.
  82. ^ Apollo 17 Preliminary Science Report, pp. 26-1–26-14.
  83. ^ Burgess & Dubbs 2007, p. 320.
  84. ^ Johnson et al. 1975, Part IV, Ch. 4.
  85. ^ Johnson et al. 1975, Part IV, Ch. 1.
  86. ^ a b c . The Apollo Program. National Air and Space Museum. Archived from the original on February 8, 2022. Retrieved February 8, 2022.
  87. ^ Apollo 17 Press Kit, pp. 56–59.
  88. ^ a b Osborne, W. Zachary; Pinsky, Lawrence S.; Bailey, J. Vernon (1975). . In Johnston, Richard S.; Dietlein, Lawrence F.; Berry, Charles A. (eds.). Biomedical Results of Apollo. Foreword by Christopher C. Kraft Jr. Washington, D.C.: NASA. NASA SP-368. Archived from the original on September 17, 2011. Retrieved August 26, 2011.
  89. ^ Apollo 17 Preliminary Science Report, pp. 20-1–20-2.
  90. ^ Apollo 17 Preliminary Science Report, pp. 14-1–14-2.
  91. ^ "Science Experiments – S-Band Transponder". Apollo 17 Mission. Lunar and Planetary Institute. 2019. Retrieved February 12, 2022.
  92. ^ a b "Apollo 17 Launch Operations". NASA. Retrieved November 16, 2011.
  93. ^ Orloff 2004, Statistical Tables: Launch Windows.
  94. ^ Chaikin 1995, pp. 495, 498.
  95. ^ Orloff & Harland 2006, p. 511.
  96. ^ Orloff & Harland 2006, p. 514.
  97. ^ Orloff & Harland 2006, p. 214.
  98. ^ Woods, David; Feist, Ben, eds. (December 26, 2017). "Day 4, part 1: Clock update". Apollo 17 Flight Journal. NASA. Retrieved November 24, 2021.
  99. ^ Cosgrove, Ben (April 11, 2014). . Time. Archived from the original on June 1, 2015. Retrieved December 7, 2019.
  100. ^ Orloff & Harland 2006, pp. 514–515.
  101. ^ a b c Jones, Eric M.; Glover, Ken (eds.). "Landing at Taurus-Littrow". Apollo 17 Lunar Surface Journal. NASA. Retrieved August 22, 2011.
  102. ^ a b c Orloff & Harland 2006, p. 519.
  103. ^ Orloff & Harland 2006, p. 515.
  104. ^ a b Orloff 2004, Statistical Tables: General Background.
  105. ^ "Apollo 17 Mission: Surface Operations Overview". Universities Space Research Association. Lunar and Planetary Institute. Retrieved November 29, 2021.
  106. ^ Jones, Eric M.; Glover, Ken (eds.). "Apollo 15 Mission Summary: Mountains of the Moon". Apollo 15 Lunar Surface Journal. NASA. Retrieved January 6, 2022.
  107. ^ Riley, Woods, & Dolling 2012, p. 165.
  108. ^ Gohd, Chelsea (March 22, 2019). "The Risk of Apollo: Astronauts Swap Harrowing Tales from NASA's Moon Shots". Space.com. Retrieved January 6, 2022.
  109. ^ a b Jones, Eric M.; Glover, Ken (eds.). "Down the Ladder". Apollo 17 Lunar Surface Journal. NASA. Retrieved January 6, 2022.
  110. ^ Jones, Eric M.; Glover, Ken (eds.). "ALSEP Off-load". Apollo 17 Lunar Surface Journal. NASA. Retrieved August 24, 2011.
  111. ^ Brzostowski, Matthew; Brzostowski, Adam (April 2009). "Archiving the Apollo active seismic data". The Leading Edge. Tulsa, OK: Society of Exploration Geophysicists. 28 (4): 414–416. Bibcode:2009LeaEd..28..414B. doi:10.1190/1.3112756. ISSN 1070-485X. Retrieved June 12, 2014.
  112. ^ Orloff & Harland 2006, p. 516.
  113. ^ a b Jones, Eric M.; Glover, Ken, eds. (May 20, 2014). "EVA-2 Wake-up". Apollo 17 Lunar Surface Journal. NASA. Retrieved January 7, 2022.
  114. ^ a b "Apollo 17 Technical Air-to-Ground Voice Transcription" (PDF). NASA. December 1972. p. 977. Archived (PDF) from the original on October 9, 2022.
  115. ^ Chaikin 1995, p. 542.
  116. ^ Swift 2021, pp. 1043–1045, 1085.
  117. ^ Swift 2021, pp. 1053–1058.
  118. ^ Chaikin, Andrew (October 2014). "Untethered". Air and Space Magazine. Retrieved January 6, 2022.
  119. ^ a b Chaikin 1995, pp. 527–530.
  120. ^ Swift 2021, pp. 1062–1063.
  121. ^ Wamsley, Laurel (March 8, 2022). "NASA is just now opening a vacuum-sealed sample it took from the moon 50 years ago". National Public Radio. Retrieved March 11, 2022.
  122. ^ Cortright 2019, p. 276.
  123. ^ Swift 2021, pp. 1070–1071.
  124. ^ Craddock, Bob (March 2002). "In the Museum: The Rock". Air & Space/Smithsonian. Retrieved December 4, 2021.
  125. ^ Garrick-Bethell, Ian; et al. (January 2009). "Early Lunar Magnetism". Science. 323 (5912): 356–359. Bibcode:2009Sci...323..356G. doi:10.1126/science.1166804. PMID 19150839. S2CID 23227936.
  126. ^ "Lunar Sample 76535". Lunar and Planetary Institute. Retrieved December 13, 2021.
  127. ^ Chaikin 1995, p. 543.
  128. ^ Jones, Eric M.; Glover, Ken (eds.). "EVA-3 Close-out". Apollo 17 Lunar Surface Journal. NASA. from the original on July 18, 2011. Retrieved August 22, 2011.
  129. ^ Jones, Eric M.; Glover, Ken (eds.). "Post-EVA-3 Activities". Apollo 17 Lunar Surface Journal. NASA. Retrieved December 11, 2021.
  130. ^ a b "Ronald E. Evans". New Mexico Museum of Space History. Retrieved February 8, 2022.
  131. ^ Fowler, Wallace T. . Lunar Mission Characteristics. University of Texas. Archived from the original on February 8, 2022. Retrieved February 8, 2022.
  132. ^ Zook, H. A.; Potter, A. E.; Cooper, B. L. (1995). "The Lunar Dust Exosphere and Clementine Lunar Horizon Glow". Abstracts of the Lunar and Planetary Science Conference. 26: 1577. Bibcode:1995LPI....26.1577Z. Retrieved February 8, 2022.
  133. ^ Apollo 17 Mission Report, pp. 10-34–10-38.
  134. ^ Apollo 17 Mission Report, p. 10-37.
  135. ^ Crotts 2014, pp. 268–269.
  136. ^ "Transient Lunar Phenomena Studies". Columbia University. Retrieved December 12, 2021.
  137. ^ Chaikin 1995, p. 532.
  138. ^ a b Apollo 17 Mission Report, p. 10-38.
  139. ^ Howell, Elizabeth (April 23, 2013). "Ron Evans: Apollo 17 Command Module Pilot". Space.com. Retrieved February 12, 2022.
  140. ^ a b Orloff & Harland 2006, p. 518.
  141. ^ a b c Jones, Eric M.; Glover, Ken (eds.). "Return to Earth". Apollo 17 Lunar Surface Journal. NASA. Retrieved August 22, 2011.
  142. ^ Jones, Eric M.; Glover, Ken (eds.). "Apollo 17 Transcripts: Apollo 17 (PAO) Spacecraft Commentary" (PDF). Apollo 17 Lunar Surface Journal. NASA. Archived (PDF) from the original on October 9, 2022.
  143. ^ LePage, Andrew (December 17, 2017). "A History of Deep Space EVAs". Drew Ex Machina. Retrieved January 5, 2022.
  144. ^ Orloff & Harland 2006, p. 520.
  145. ^ "Obituaries – Commander Edward E. "Ted" Dahill, III (ret.)". Coronado Eagle and Journal. May 9–15, 2007. Retrieved March 14, 2022.
  146. ^ Chaikin 1995, p. 550.
  147. ^ Adams, Kaitlyn (January 4, 2023). "50 Years Ago: Apollo 17 Post Mission Activities". NASA. Retrieved March 31, 2023.
  148. ^ Chaikin 1995, pp. 587–588, 591.
  149. ^ "Eugene Andrew Cernan 14 March 1934 – 16 January 2017". Naval History and Heritage Command. January 17, 2017. Retrieved January 7, 2022.
  150. ^ "Ronald Ellwin Evans 10 November 1933 – 7 April 1990". Naval History and Heritage Command. November 16, 2016. Retrieved January 7, 2022.
  151. ^ "SCHMITT, Harrison Hagan". Biographical Directory of the United States Congress. United States Congress. Retrieved February 8, 2022.
  152. ^ a b "Apollo: Where are they now?". NASA. from the original on July 17, 2011. Retrieved August 26, 2011.
  153. ^ . National Air and Space Museum. Archived from the original on June 1, 2021. Retrieved August 27, 2019.
  154. ^ "The lunar alarm clock: new study characterizes regular Moonquakes". Caltech. September 7, 2023. Retrieved September 15, 2023.
  155. ^ "Pressure Suit, A7-LB, Cernan, Apollo 17, Flown". National Air and Space Museum. Retrieved January 5, 2022.
  156. ^ Jones, Eric M.; Glover, Ken (eds.). "Jack Schmitt's Apollo 17 Suit". Apollo 17 Lunar Surface Journal. NASA. Retrieved January 5, 2022.
  157. ^ "Pressure Suit, A7-LB, Evans, Apollo 17, Flown". National Air and Space Museum. Retrieved February 18, 2022.
  158. ^ Neal-Jones, Nancy; Zubritsky, Elizabeth; Cole, Steve (September 6, 2011). Garner, Robert (ed.). "NASA Spacecraft Images Offer Sharper Views of Apollo Landing Sites". NASA. Goddard Release No. 11-058 (co-issued as NASA HQ Release No. 11-289). Retrieved July 24, 2013.
  159. ^ . PTScientists. Archived from the original on December 5, 2018. Retrieved January 6, 2022.

Bibliography

  • Apollo 17 Mission Report (PDF). Houston, Texas: Scientific and Technical Information Branch, NASA. 1973. Archived (PDF) from the original on October 9, 2022.
  • Apollo 17 Preliminary Science Report (PDF). Houston, Texas: Manned Spacecraft Center, NASA. 1973. Archived (PDF) from the original on October 9, 2022.
  • Apollo 17 Press Kit. Washington, D.C.: NASA. 1972.
  • Brooks, Courtney G.; Grimwood, James M.; Swenson, Loyd S. Jr. (1979). Chariots for Apollo: A History of Manned Lunar Spacecraft (PDF). NASA History Series. Washington, D.C.: Scientific and Technical Information Branch, NASA. ISBN 978-0-486-46756-6. LCCN 79001042. OCLC 4664449. NASA SP-4205. Archived (PDF) from the original on October 9, 2022.
  • Burgess, Colin; Dubbs, Chris (2007). Animals in Space: From Research Rockets to the Space Shuttle. Berlin, Germany: Springer Science & Business Media. ISBN 978-0-387-49678-8.
  • Chaikin, Andrew (1995) [1994]. A Man on the Moon: The Voyages of the Apollo Astronauts. Foreword by Tom Hanks. New York City: Penguin Books. ISBN 978-0-14-024146-4.
  • Compton, William D. (1989). Where No Man Has Gone Before: A History of Apollo Lunar Exploration Missions. Washington, D.C.: U.S. Government Printing Office. OCLC 1045558568. SP-4214.
  • Cortright, Edgar M., ed. (2019). Apollo Expeditions to the Moon. Mineola, New York: Dover Publications. ISBN 978-0-486-83652-2.
  • Crotts, Arlin (2014). The New Moon: Water, Exploration, and Future Habitation. Cambridge, United Kingdom: Cambridge University Press. ISBN 978-0-521-76224-3.
  • Johnston, Richard S.; Berry, Charles A.; Dietlein, Lawrence F., eds. (1975). Biomedical Results of Apollo. Washington, D.C.: Science and Technical Information Office, NASA. OCLC 1906749. NASA SP-368.
  • Kraft, Christopher C. (2002). Flight: My Life in Mission Control. New York City: E. P. Dutton. ISBN 978-0-452-28304-6.
  • Lattimer, Dick (1985). All We Did Was Fly to the Moon. History-alive series. Vol. 1. Foreword by James A. Michener (1st ed.). Gainesville, Florida: Whispering Eagle Press. ISBN 978-0-9611228-0-5.
  • Logsdon, John M. (2015). After Apollo? : Richard Nixon and the American Space Program. New York City: Palgrave Macmillan. ISBN 978-1-137-43853-9.
  • Orloff, Richard W. (2004) [First published 2000]. . NASA History Series. Washington, D.C.: NASA. ISBN 0-16-050631-X. LCCN 00061677. NASA SP-2000-4029. Archived from the original on August 23, 2007.
  • Orloff, Richard W.; Harland, David M. (2006). Apollo: The Definitive Sourcebook. Chichester, United Kingdom: Praxis Publishing Company. ISBN 978-0-387-30043-6.
  • Phinney, William C. (2015). Science Training History of the Apollo Astronauts (PDF). Houston, Texas: Johnson Space Center, NASA. SP-2015-626. Archived (PDF) from the original on October 9, 2022.
  • Riley, Christopher; Woods, David; Dolling, Philip (2012). Lunar Rover: Owner's Workshop Manual. Sparkford, United Kingdom: Haynes. ISBN 978-0-85733-267-7.
  • Shayler, David J.; Burgess, Colin (2017). The Last of NASA's Original Pilot Astronauts: Expanding the Space Frontier in the Late Sixties. Chichester, United Kingdom: Springer. ISBN 978-3-319-51014-9.
  • Slayton, Donald K. "Deke"; Cassutt, Michael (1994). Deke! U.S. Manned Space: From Mercury to the Shuttle (1st ed.). New York City: Forge. ISBN 0-312-85503-6. LCCN 94002463. OCLC 29845663.
  • Swift, Earl (2021). Across the Airless Wilds (eBook ed.). New York City: Custom House. ISBN 978-0-06-298653-5.
  • Wilhelms, Don E. (1993). To a Rocky Moon: A Geologist's History of Lunar Exploration. Tempe, Arizona: University of Arizona Press. ISBN 978-0-8165-1065-8.

External links

  • Apollo 17 Traverses, 43D1S2(25), Lunar Photomap at Lunar and Planetary Institute
  • "Apollo 17" – Detailed mission information by David R. Williams, NASA Goddard Space Flight Center
  • "Table 2-45. Apollo 17 Characteristics" from NASA Historical Data Book: Volume III: Programs and Projects 1969–1978 by Linda Neuman Ezell, NASA SP-4012, NASA History Series (1988)
  • Apollo 17 Lunar Surface Journal January 4, 2014, at the Wayback Machine
  • "Apollo 17 Real-Time Mission Experience" – All mission audio, film, video, and photography presented in real-time.
  • Apollo 17 Mission Experiments Overview at the Lunar and Planetary Institute
  • Apollo 17 Voice Transcript Pertaining to the Geology of the Landing Site (PDF) by N. G. Bailey and G. E. Ulrich, United States Geological Survey, 1975
  • "Apollo Program Summary Report" (PDF), NASA, JSC-09423, April 1975
  • The Apollo Spacecraft: A Chronology December 9, 2017, at the Wayback Machine NASA, NASA SP-4009
  • Apollo 17 "On The Shoulders of Giants" – NASA Space Program and Moon Landings Documentary on YouTube
  • – Excerpt from the September 1973 issue of National Geographic magazine

apollo, december, 1972, eleventh, final, mission, nasa, apollo, program, sixth, most, recent, time, humans, have, foot, moon, traveled, beyond, earth, orbit, commander, gene, cernan, lunar, module, pilot, harrison, schmitt, walked, moon, while, command, module. Apollo 17 December 7 19 1972 was the eleventh and final mission of NASA s Apollo program the sixth and most recent time humans have set foot on the Moon or traveled beyond low Earth orbit Commander Gene Cernan and Lunar Module Pilot Harrison Schmitt walked on the Moon while Command Module Pilot Ronald Evans orbited above Schmitt was the only professional geologist to land on the Moon he was selected in place of Joe Engle as NASA had been under pressure to send a scientist to the Moon The mission s heavy emphasis on science meant the inclusion of a number of new experiments including a biological experiment containing five mice that was carried in the command module Apollo 17Gene Cernan salutes the U S flag with the Apollo Lunar Module Challenger and Lunar Roving Vehicle in the backgroundMission typeCrewed lunar landing J OperatorNASACOSPAR IDCSM 1972 096ALM 1972 096CSATCAT no CSM 6300LM 6307Mission duration12 days 13 hours 51 minutes 59 secondsSpacecraft propertiesSpacecraftApollo CSM 114Apollo LM 12ManufacturerCSM North American Rockwell 1 LM GrummanLaunch mass48 609 kilograms 107 165 lb 2 Landing mass5 500 kilograms 12 120 lb 3 CrewCrew size3MembersEugene A CernanRonald E EvansHarrison H SchmittCallsignCSM AmericaLM ChallengerEVAs1 in cislunar space3 on the lunar surfaceEVA duration1 hour 5 minutes 44 seconds Spacewalk to retrieve film cassettes Start of missionLaunch dateDecember 7 1972 05 33 00 1972 12 07UTC05 33Z UTC 12 33 a m EST 4 RocketSaturn V SA 512Launch siteKennedy LC 39AEnd of missionRecovered byUSS TiconderogaLanding dateDecember 19 1972 19 54 58 1972 12 19UTC19 54 59Z UTC 5 Landing siteSouth Pacific Ocean17 53 S 166 07 W 17 88 S 166 11 W 17 88 166 11 Apollo 17 splashdown Lunar orbiterSpacecraft componentCommand and service moduleOrbital insertionDecember 10 1972 19 53 55 UTC 5 Orbital departureDecember 16 1972 23 35 09 UTC 5 Orbits75Lunar landerSpacecraft componentLunar moduleLanding dateDecember 11 1972 19 54 58 UTC 5 Return launchDecember 14 1972 22 54 37 UTC 5 Landing siteTaurus Littrow20 11 27 N 30 46 18 E 20 1908 N 30 7717 E 20 1908 30 7717 6 Sample mass115 kilograms 254 lb Surface EVAs3EVA duration22 hours 3 minutes 57 secondsFirst 7 hours 11 minutes 53 secondsSecond 7 hours 36 minutes 56 secondsThird 7 hours 15 minutes 8 secondsLunar roverDistance driven35 7 kilometers 22 2 mi Left to right Schmitt Cernan seated EvansApollo program Apollo 16Apollo 18 canceled Mission planners had two primary goals in deciding on the landing site to sample lunar highland material older than that at Mare Imbrium and to investigate the possibility of relatively recent volcanic activity They therefore selected Taurus Littrow where formations that had been viewed and pictured from orbit were thought to be volcanic in nature Since all three crew members had backed up previous Apollo lunar missions they were familiar with the Apollo spacecraft and had more time for geology training Launched at 12 33 a m Eastern Standard Time EST on December 7 1972 following the only launch pad delay in the course of the whole Apollo program that was caused by a hardware problem Apollo 17 was a J type mission that included three days on the lunar surface expanded scientific capability and the use of the third Lunar Roving Vehicle LRV Cernan and Schmitt landed in the Taurus Littrow valley completed three moonwalks took lunar samples and deployed scientific instruments Orange soil was discovered at Shorty crater it proved to be volcanic in origin although from early in the Moon s history Evans remained in lunar orbit in the command and service module CSM taking scientific measurements and photographs The spacecraft returned to Earth on December 19 The mission broke several records for crewed spaceflight including the longest crewed lunar landing mission 12 days 14 hours 7 greatest distance from a spacecraft during an extravehicular activity of any type 7 6 kilometers or 4 7 miles longest total duration of lunar surface extravehicular activities 22 hours 4 minutes 8 largest lunar sample return approximately 115 kg or 254 lb longest time in lunar orbit 6 days 4 hours 7 and greatest number of lunar orbits 75 9 Contents 1 Crew and key Mission Control personnel 2 Mission insignia and call signs 3 Planning and training 3 1 Scheduling and landing site selection 3 2 Training 4 Mission hardware and experiments 4 1 Spacecraft and launch vehicle 4 1 1 Preparation and assembly 4 2 Lunar surface science 4 2 1 ALSEP 4 2 2 Other lunar surface science 4 3 Orbital science 4 3 1 Biological experiments 4 3 2 Scientific Instrument Module 4 3 3 Light flash phenomenon and other experiments 5 Mission events 5 1 Launch and outbound trip 5 2 Lunar landing 5 3 Lunar surface 5 3 1 First EVA 5 3 2 Second EVA 5 3 3 Third EVA 5 4 Solo activities 5 5 Return to Earth 6 Aftermath and spacecraft locations 7 See also 8 Notes 9 References 10 Bibliography 11 External linksCrew and key Mission Control personnelPosition 10 AstronautCommander Eugene A CernanThird and last spaceflightCommand Module Pilot CMP Ronald E EvansOnly spaceflightLunar Module Pilot LMP Harrison H SchmittOnly spaceflightIn 1969 NASA announced 11 that the backup crew of Apollo 14 would be Gene Cernan Ronald Evans and former X 15 pilot Joe Engle 12 13 This put them in line to be the prime crew of Apollo 17 because the Apollo program s crew rotation generally meant that a backup crew would fly as prime crew three missions later Harrison Schmitt who was a professional geologist as well as an astronaut had served on the backup crew of Apollo 15 and thus because of the rotation would have been due to fly as lunar module pilot on Apollo 18 14 In September 1970 the plan to launch Apollo 18 was cancelled The scientific community pressed NASA to assign a geologist rather than a pilot with non professional geological training to an Apollo landing NASA subsequently assigned Schmitt to Apollo 17 as the lunar module pilot After that NASA s director of flight crew operations Deke Slayton was left with the question of who would fill the two other Apollo 17 slots the rest of the Apollo 15 backup crew Dick Gordon and Vance Brand or Cernan and Evans from the Apollo 14 backup crew Slayton ultimately chose Cernan and Evans 11 Support at NASA for assigning Cernan was not unanimous Cernan had crashed a Bell 47G helicopter into the Indian River near Cape Kennedy during a training exercise in January 1971 the accident was later attributed to pilot error as Cernan had misjudged his altitude before crashing into the water Jim McDivitt who was manager of the Apollo Spacecraft Program Office at the time objected to Cernan s selection because of this accident but Slayton dismissed the concern After Cernan was offered command of the mission he advocated for Engle to fly with him on the mission but it was made clear to him that Schmitt would be assigned instead with or without Cernan so he acquiesced 15 16 The prime crew of Apollo 17 was publicly announced on August 13 1971 17 When assigned to Apollo 17 Cernan was a 38 year old captain in the United States Navy he had been selected in the third group of astronauts in 1963 and flown as pilot of Gemini 9A in 1966 and as lunar module pilot of Apollo 10 in 1969 before he served on Apollo 14 s backup crew Evans 39 years old when assigned to Apollo 17 had been selected as part of the fifth group of astronauts in 1966 and had been a lieutenant commander in the United States Navy Schmitt a civilian was 37 years old when assigned Apollo 17 had a doctorate in geology from Harvard University and had been selected in the fourth group of astronauts in 1965 Both Evans and Schmitt were making their first spaceflights 18 For the backup crews of Apollo 16 and 17 the final Apollo lunar missions NASA selected astronauts who had already flown Apollo lunar missions to take advantage of their experience and avoid investing time and money in training rookies who would be unlikely to ever fly an Apollo mission 19 20 The original backup crew for Apollo 17 announced at the same time as the prime crew 17 was the crew of Apollo 15 David Scott as commander Alfred Worden as CMP and James Irwin as LMP but in May 1972 they were removed from the backup crew because of their roles in the Apollo 15 postal covers incident 21 They were replaced with the landing crew of Apollo 16 John W Young as backup crew commander Charles Duke as LMP and Apollo 14 s CMP Stuart Roosa 18 22 23 Originally Apollo 16 s CMP Ken Mattingly was to be assigned along with his crewmates but he declined so he could spend more time with his family his son having just been born and instead took an assignment to the Space Shuttle program 24 Roosa had also served as backup CMP for Apollo 16 25 For the Apollo program in addition to the prime and backup crews that had been used in the Mercury and Gemini programs NASA assigned a third crew of astronauts known as the support crew Their role was to provide any assistance in preparing for the missions that the missions director assigned then Preparations took place in meetings at facilities across the US and sometimes needed a member of the flight crew to attend them Because McDivitt was concerned that problems could be created if a prime or backup crew member was unable to attend a meeting Slayton created the support crews to ensure that someone would be able to attend in their stead 26 Usually low in seniority they also assembled the mission s rules flight plan and checklists and kept them updated 27 28 for Apollo 17 they were Robert F Overmyer Robert A Parker and C Gordon Fullerton 29 Flight directors were Gerry Griffin first shift Gene Kranz and Neil B Hutchinson second shift and Pete Frank and Charles R Lewis third shift 30 According to Kranz flight directors during the program Apollo had a one sentence job description The flight director may take any actions necessary for crew safety and mission success 31 Capsule communicators CAPCOMs were Fullerton Parker Young Duke Mattingly Roosa Alan Shepard and Joseph P Allen 32 Mission insignia and call signsThe insignia s most prominent feature is an image of the Greek sun god Apollo backdropped by a rendering of an American eagle the red bars on the eagle mirroring those on the U S flag Three white stars above the red bars represent the three crewmembers of the mission The background includes the Moon the planet Saturn and a galaxy or nebula The wing of the eagle partially overlays the Moon suggesting humanity s established presence there 33 nbsp Apollo 17 space flown silver Robbins medallionThe insignia includes along with the colors of the U S flag red white and blue the color gold representative of a golden age of spaceflight that was to begin with Apollo 17 33 The image of Apollo in the mission insignia is a rendering of the Apollo Belvedere sculpture in the Vatican Museums It looks forward into the future towards the celestial objects shown in the insignia beyond the Moon These represent humanity s goals and the image symbolizes human intelligence wisdom and ambition The insignia was designed by artist Robert McCall based on ideas from the crew 34 In deciding the call signs for the command module CM and lunar module LM the crew wished to pay tribute to the American public for their support of the Apollo program and to the mission and wanted names with a tradition within American history The CM was given the call sign America According to Cernan this evoked the 19th century sailing ships which were given that name and was a thank you to the people of the United States The crew selected the name Challenger for the LM in lieu of an alternative Heritage Cernan stated that the selected name just seemed to describe more of what the future for America really held and that was a challenge 35 After Schmitt stepped onto the Moon from Challenger he stated I think the next generation ought to accept this as a challenge Let s see them leave footprints like these 36 Planning and trainingScheduling and landing site selection Prior to the cancellation of Apollo 18 through 20 Apollo 17 was slated to launch in September 1971 as part of NASA s tentative launch schedule set forth in 1969 4 The in flight abort of Apollo 13 and the resulting modifications to the Apollo spacecraft delayed subsequent missions 37 Following the cancellation of Apollo 20 in early 1970 NASA decided there would be no more than two Apollo missions per year 38 Part of the reason Apollo 17 was scheduled for December 1972 was to make it fall after the presidential election in November ensuring that if there was a disaster it would have no effect on President Richard Nixon s re election campaign 39 Nixon had been deeply concerned about the Apollo 13 astronauts and fearing another mission in crisis as he ran for re election initially decided to omit the funds for Apollo 17 from the budget he was persuaded to accept a December 1972 date for the mission 40 Like Apollo 15 and 16 Apollo 17 was slated to be a J mission an Apollo mission type that featured lunar surface stays of three days higher scientific capability and the usage of the Lunar Roving Vehicle Since Apollo 17 was to be the final lunar landing of the Apollo program high priority landing sites that had not been visited previously were given consideration for potential exploration Some sites were rejected at earlier stages For instance a landing in the crater Copernicus was rejected because Apollo 12 had already obtained samples from that impact and three other Apollo expeditions had already visited the vicinity of Mare Imbrium near the rim of which Copernicus is located The lunar highlands near the crater Tycho were rejected because of the rough terrain that the astronauts would encounter there A site on the lunar far side in the crater Tsiolkovskiy was rejected due to technical considerations and the operational costs of maintaining communication with Earth during surface operations Lastly a landing in a region southwest of Mare Crisium was rejected on the grounds that a Soviet spacecraft could easily access the site and retrieve samples Luna 20 ultimately did so shortly after the Apollo 17 site selection was made 41 Schmitt advocated for a landing on the far side of the Moon until told by Director of Flight Operations Christopher C Kraft that it would not happen as NASA lacked the funds for the necessary communications satellites 42 nbsp Landing site and surrounding area as imaged from the Apollo 17 command module 1972The three sites that made the final consideration for Apollo 17 were Alphonsus crater Gassendi crater and the Taurus Littrow valley In making the final landing site decision mission planners considered the primary objectives for Apollo 17 obtaining old highlands material a substantial distance from Mare Imbrium sampling material from young volcanic activity i e less than three billion years and having minimal ground overlap with the orbital ground tracks of Apollo 15 and Apollo 16 to maximize the amount of new data obtained 41 A significant reason for the selection of Taurus Littrow was that Apollo 15 s CMP Al Worden had overflown the site and observed features he described as likely volcanic in nature 43 Gassendi was eliminated because NASA felt that its central peak would be difficult to reach due to the roughness of the local terrain and though Alphonsus might be easier operationally than Taurus Littrow it was of lesser scientific interest 44 At Taurus Littrow it was believed that the crew would be able to obtain samples of old highland material from the remnants of a landslide event that occurred on the south wall of the valley and the possibility of relatively young explosive volcanic activity in the area Although the valley is similar to the landing site of Apollo 15 in that it is on the border of a lunar mare the advantages of Taurus Littrow were believed to outweigh the drawbacks 41 The Apollo Site Selection Board a committee of NASA personnel and scientists charged with setting out scientific objectives of the Apollo landing missions and selecting landing sites for them 45 unanimously recommended Taurus Littrow at its final meeting in February 1972 Upon that recommendation NASA selected Taurus Littrow as the landing site for Apollo 17 44 Training nbsp Gene Cernan participates in geology training in Sudbury Ontario in May 1972As with previous lunar landings the Apollo 17 astronauts undertook an extensive training program that included learning to collect samples on the surface usage of the spacesuits navigation in the Lunar Roving Vehicle field geology training survival training splashdown and recovery training and equipment training 46 The geology field trips were conducted as much as possible as if the astronauts were on the Moon they would be provided with aerial images and maps and briefed on features of the site and a suggested routing The following day they would follow the route and have tasks and observations to be done at each of the stops 47 The geology field trips began with one to Big Bend National Park in Texas in October 1971 The early ones were not specifically tailored to prepare the astronauts for Taurus Littrow which was not selected until February 1972 but by June the astronauts were going on field trips to sites specifically selected to prepare for Apollo 17 s landing site 48 Both Cernan and Schmitt had served on backup crews for Apollo landing missions and were familiar with many of the procedures Their trainers such as Gordon Swann feared that Cernan would defer to Schmitt as a professional geologist on matters within his field Cernan also had to adjust for the loss of Engle with whom he had trained for Apollo 14 In spite of these issues Cernan and Schmitt worked well together as a team and Cernan became adept at describing what he was seeing on geology field trips and working independently of Schmitt when necessary 49 The landing crew aimed for a division of labor so that when they arrived in a new area Cernan would perform tasks such as adjusting the antenna on the Lunar Roving Vehicle so as to transmit to Earth while Schmitt gave a report on the geological aspects of the site The scientists in the geology backroom relied on Schmitt s reports to adjust the tasks planned for that site which would be transmitted to the CapCom and then to Cernan and Schmitt According to William R Muehlberger one of the scientists who trained the astronauts In effect Schmitt was running the mission from the Moon But we set it up this way All of those within the geological world certainly knew it and I had a sneaking hunch that the top brass knew it too but this is a practical way out and they didn t object 50 Also participating in some of the geology field trips were the commander and lunar module pilot of the backup crew The initial field trips took place before the Apollo 15 astronauts were assigned as the backup crew for Apollo 17 in February 1972 Either one or both of Scott and Irwin of Apollo 15 took part in four field trips though both were present together for only two of them After they were removed from the backup crew the new backup commander and LMP Young and Duke took part in the final four field trips 21 On field trips the backup crew would follow half an hour after the prime crew performing identical tasks and have their own simulated CapCom and Mission Control guiding them 47 The Apollo 17 astronauts had fourteen field trips the Apollo 11 crew had only one 51 Evans did not go on the geology field trips having his own set of trainers by this time geology training for the CMP was well established He would fly with a NASA geologist pilot Dick Laidley over geologic features with part of the exercise conducted at 40 000 feet 12 000 m and part at 1 000 feet 300 m to 5 000 feet 1 500 m The higher altitude was equivalent to what could be seen from the planned lunar orbit of about 60 nmi with binoculars Evans would be briefed for several hours before each exercise and given study guides afterwards there would be debriefing and evaluation Evans was trained in lunar geology by Farouk El Baz late in the training cycle this continued until close to launch The CMP was given information regarding the lunar features he would overfly in the CSM and which he was expected to photograph 52 Mission hardware and experiments nbsp SA 512 Apollo 17 s Saturn V rocket on the launch pad awaiting liftoff November 1972Spacecraft and launch vehicle The Apollo 17 spacecraft comprised CSM 114 consisting of Command Module 114 CM 114 and Service Module 114 SM 114 Lunar Module 12 LM 12 53 a Spacecraft Lunar Module Adapter SLA numbered SLA 21 and a Launch Escape System LES 54 55 The LES contained a rocket motor that would propel the CM to safety in the event of an aborted mission in the moments after launch while the SLA housed the LM during the launch and early part of the flight The LES was jettisoned after the launch vehicle ascended to the point that it was not needed while the SLA was left atop the S IVB third stage of the rocket after the CSM and LM separated from it 56 57 The launch vehicle SA 512 53 was one of fifteen Saturn V rockets built 58 and was the twelfth to fly 59 With a weight at launch of 6 529 784 pounds 2 961 860 kg 116 269 pounds 52 739 kg of which was attributable to the spacecraft Apollo 17 s vehicle was slightly lighter than Apollo 16 but heavier than every other crewed Apollo mission 60 Preparation and assembly The first piece of the launch vehicle to arrive at Kennedy Space Center was the S II second stage on October 27 1970 it was followed by the S IVB on December 21 the S IC first stage did not arrive until May 11 1972 followed by the Instrument Unit on June 7 By then LM 12 had arrived the ascent stage on June 16 1971 and the descent stage the following day they were not mated until May 18 1972 CM 114 SM 114 and SLA 21 all arrived on March 24 1972 The rover reached Kennedy Space Center on June 2 1972 61 nbsp Cernan seated right and Schmitt in the training Lunar Roving Vehicle with the mockup Lunar Module in the background August 1972The CM and the service module SM were mated on March 28 1972 61 and the testing of the spacecraft began that month 62 The CSM was placed in a vacuum chamber at Kennedy Space Center and the testing was conducted under those conditions The LM was also placed in a vacuum chamber both the prime and the backup crews participated in testing the CSM and LM 63 During the testing it was discovered that the LM s rendezvous radar assembly had received too much voltage during earlier tests it was replaced by the manufacturer Grumman The LM s landing radar also malfunctioned intermittently and was also replaced The front and rear steering motors of the Lunar Roving Vehicle LRV also had to be replaced and it required several modifications 62 Following the July 1972 removal from the vacuum chamber the LM s landing gear was installed and it the CSM and the SLA were mated to each other The combined craft was moved into the Vehicle Assembly Building in August for further testing after which it was mounted on the launch vehicle 63 After completing testing including a simulated mission the LRV was placed in the LM on August 13 64 Erection of the stages of the launch vehicle began on May 15 1972 in High Bay 3 of the Vehicle Assembly Building and was completed on June 27 Since the launch vehicles for Skylab 1 and Skylab 2 were being processed in that building at the same time this marked the first time NASA had three launch vehicles there since the height of the Apollo program in 1969 After the spacecraft was mounted on the launch vehicle on August 24 64 it was rolled out to Pad 39 A on August 28 61 Although this was not the final time a Saturn V would fly another would lift Skylab to orbit area residents reacted as though it was and 5 000 of them watched the rollout during which the prime crew joined the operating crew from Bendix atop the crawler 62 At Pad 39 A testing continued and the CSM was electrically mated to the launch vehicle on October 11 1972 Testing concluded with the countdown demonstration tests accomplished on November 20 and 21 61 The countdown to launch began at 7 53 a m 12 53 UTC on December 5 1972 65 Lunar surface science ALSEP The Apollo Lunar Surface Experiments Package was a suite of nuclear powered experiments flown on each landing mission after Apollo 11 This equipment was to be emplaced by the astronauts to continue functioning after the astronauts returned to Earth 66 For Apollo 17 the ALSEP experiments were a Heat Flow Experiment HFE to measure the rate of heat flow from the interior of the Moon a Lunar Surface Gravimeter LSG to measure alterations in the lunar gravity field at the site 67 a Lunar Atmospheric Composition Experiment LACE to investigate what the lunar atmosphere is made up of 68 a Lunar Seismic Profiling Experiment LSPE to detect nearby seismic activity and a Lunar Ejecta and Meteorites Experiment LEME to measure the velocity and energy of dust particles 67 Of these only the HFE had been flown before the others were new 66 The HFE had been flown on the aborted Apollo 13 mission as well as on Apollo 15 and 16 but placed successfully only on Apollo 15 and unexpected results from that device made scientists anxious for a second successful emplacement It was successfully deployed on Apollo 17 69 The lunar gravimeter was intended to detect wavers in gravity which would provide support for Albert Einstein s general theory of relativity 70 it ultimately failed to function as intended 71 The LACE was a surface deployed module that used a mass spectrometer to analyze the Moon s atmosphere 72 On previous missions the Code Cathode Gauge experiment had measured the quantity of atmospheric particles but the LACE determined which gases were present principally neon helium and hydrogen 68 The LSPE was a seismic detecting device that used geophones which would detect explosives to be set off by ground command once the astronauts left the Moon 67 When operating it could only send useful data to Earth in high bit rate meaning that no other ALSEP experiment could send data then and limiting its operating time It was turned on to detect the liftoff of the ascent stage as well as use of the explosives packages and the ascent stage s impact and thereafter about once a week as well as for some 100 hour periods 73 The LEME had a set of detectors to measure the characteristics of the dust particles it sought 67 It was hoped that the LEME would detect dust impacting the Moon from elsewhere such as from comets or interstellar space but analysis showed that it primarily detected dust moving at slow speeds across the lunar surface 74 All powered ALSEP experiments that remained active were deactivated on September 30 1977 66 principally because of budgetary constraints 75 Other lunar surface science nbsp Apollo 17 s Lunar Roving Vehicle as it was left parked on the Moon at the conclusion of the mission The Surface Electrical Properties SEP experiment receiver is the antenna on the right rear of the vehicleLike Apollo 15 and 16 Apollo 17 carried a Lunar Roving Vehicle In addition to being used by the astronauts for transport from station to station on the mission s three moonwalks the LRV was used to transport the astronauts tools communications equipment and the lunar samples they gathered 76 The Apollo 17 LRV was also used to carry some of the scientific instruments such as the Traverse Gravimeter Experiment TGE and Surface Electrical Properties SEP experiment 71 77 The Apollo 17 LRV traveled a cumulative distance of approximately 35 7 km 22 2 mi in a total drive time of about four hours and twenty six minutes the greatest distance Cernan and Schmitt traveled from the lunar module was about 7 6 km 4 7 mi 78 This was the only mission to carry the TGE which was built by Draper Laboratory at the Massachusetts Institute of Technology As gravimeters had been useful in studying the Earth s internal structure the objective of this experiment was to do the same on the Moon The gravimeter was used to obtain relative gravity measurements at the landing site in the immediate vicinity of the lunar module as well as various locations on the mission s traverse routes Scientists would then use this data to help determine the geological substructure of the landing site and the surrounding vicinity Measurements were taken while the TGE was mounted on the LRV and also while the device was placed on the lunar surface A total of 26 measurements were taken with the TGE during the mission s three moonwalks with productive results 71 The SEP was also unique to Apollo 17 and included two major components a transmitting antenna deployed near the lunar module and a receiver mounted on the LRV At different stops during the mission s traverses electrical signals traveled from the transmitting device through the ground and were received at the LRV The electrical properties of the lunar regolith could be determined by comparison of the transmitted and received electrical signals The results of this experiment which are consistent with lunar rock composition show that there is almost no water in the area of the Moon in which Apollo 17 landed to a depth of 2 km 1 2 mi 77 A 2 4 m 7 9 ft long 2 cm 0 79 in diameter 79 device the Lunar Neutron Probe was inserted into one of the holes drilled into the surface to collect core samples It was designed to measure the quantity of neutrons which penetrated to the detectors it bore along its length This was intended to measure the rate of the gardening process on the lunar surface whereby the regolith on the surface is slowly mixed or buried due to micrometeorites and other events Placed during the first EVA it was retrieved during the third and final EVA The astronauts brought it with them back to Earth and the measurements from it were compared with the evidence of neutron flux in the core that had been removed from the hole it had been placed in Results from the probe and from the cores were instrumental in current theories that the top centimeter of lunar regolith turns over every million years whereas gardening to a depth of one meter takes about a billion years 80 Orbital science Biological experiments Main article Fe Fi Fo Fum and Phooey Apollo 17 s CM carried a biological cosmic ray experiment BIOCORE containing five mice that had been implanted with radiation monitors under their scalps to see whether they suffered damage from cosmic rays These animals were placed in individual metal tubes inside a sealed container that had its own oxygen supply and flown on the mission All five were pocket mice Perognathus longimembris 81 this species was chosen because it was well documented small easy to maintain in an isolated state not requiring drinking water during the mission and with highly concentrated waste and for its ability to withstand environmental stress 82 Officially the mice four male and one female were assigned the identification numbers A3326 A3400 A3305 A3356 and A3352 Unofficially according to Cernan the Apollo 17 crew dubbed them Fe Fi Fo Fum and Phooey 83 Four of the five mice survived the flight though only two of them appeared healthy and active the cause of death of the fifth mouse was not determined Of those that survived the study found lesions in the scalp itself and in one case the liver The scalp lesions and liver lesions appeared to be unrelated to one another nothing was found that could be attributed to cosmic rays 84 The Biostack experiment was similar to one carried on Apollo 16 and was designed to test the effects of the cosmic rays encountered in space travel on microorganisms that were included on seeds and on the eggs of simple animals brine shrimp and beetles which were carried in a sealed container After the mission the microorganisms and seeds showed little effect but many of the eggs of all species failed to hatch or to mature normally many died or displayed abnormalities 85 Scientific Instrument Module nbsp Apollo 17 SIM bay on the service module America seen from the Lunar Module Challenger in orbit around the MoonThe Apollo 17 SM contained the scientific instrument module SIM bay The SIM bay housed three new experiments for use in lunar orbit a lunar sounder an infrared scanning radiometer and a far ultraviolet spectrometer A mapping camera panoramic camera and a laser altimeter which had been carried previously were also included in the SIM bay 86 The lunar sounder was to beam electromagnetic impulses toward the lunar surface which were designed with the objective of obtaining data to assist in developing a geological model of the interior of the Moon to an approximate depth of 1 3 km 0 81 mi 86 The infrared scanning radiometer was designed with the objective of generating a temperature map of the lunar surface to aid in locating surface features such as rock fields structural differences in the lunar crust and volcanic activity The far ultraviolet spectrometer was to be used to obtain information on the composition density and constituency of the lunar atmosphere The spectrometer was also designed to detect far UV radiation emitted by the Sun that had been reflected off the lunar surface The laser altimeter was designed to measure the altitude of the spacecraft above the lunar surface within approximately 2 meters 6 6 feet providing altitude information to the panoramic and mapping cameras which were also in the SIM bay 86 87 Light flash phenomenon and other experiments Main article Cosmic ray visual phenomena Beginning with Apollo 11 crew members observed light flashes that penetrated their closed eyelids These flashes described by the astronauts as streaks or specks of light were usually observed while the spacecraft was darkened during a sleep period These flashes while not observed on the lunar surface would average about two per minute and were observed by the crew members during the trip out to the Moon back to Earth and in lunar orbit 88 The Apollo 17 crew repeated an experiment also conducted on Apollo 16 with the objective of linking these light flashes with cosmic rays Evans wore a device over his eyes that recorded the time strength and path of high energy atomic particles that penetrated the device while the other two wore blindfolds to keep out light Investigators concluded that the available evidence supports the hypothesis that these flashes occur when charged particles travel through the retina in the eye 88 Apollo 17 carried a sodium iodide crystal identical to the ones in the gamma ray spectrometer flown on Apollo 15 and 16 Data from this once it was examined on Earth was to be used to help form a baseline allowing for subtraction of rays from the CM or from cosmic radiation to gain better data from the earlier results 89 In addition the S band transponders in the CSM and LM were pointed at the Moon to gain data on its gravitational field Results from the Lunar Orbiter probes had revealed that lunar gravity varies slightly due to the presence of mass concentrations or mascons Data from the missions and from the lunar subsatellites left by Apollo 15 and 16 were used to map such variations in lunar gravity 90 91 Mission eventsLaunch and outbound trip nbsp Apollo 17 launches on December 7 1972Originally planned to launch on December 6 1972 at 9 53 p m EST 2 53 a m on December 7 UTC 65 Apollo 17 was the final crewed Saturn V launch and the only one to occur at night The launch was delayed by two hours and forty minutes due to an automatic cutoff in the launch sequencer at the T 30 second mark in the countdown The cause of the problem was quickly determined to be the launch sequencer s failure to automatically pressurize the liquid oxygen tank in the third stage of the rocket although launch control noticed this and manually caused the tank to pressurize the sequencer did not recognize the fix and therefore paused the countdown The clock was reset and held at the T 22 minute mark while technicians worked around the malfunction in order to continue with the launch This pause was the only launch delay in the Apollo program caused by a hardware problem The countdown then resumed and the liftoff occurred at 12 33 a m EST on December 7 1972 4 92 The launch window which had begun at the originally planned launch time of 9 53 p m on December 6 remained open until 1 31 a m the latest time at which a launch could have occurred during the December 6 7 window 93 Approximately 500 000 people observed the launch in the immediate vicinity of Kennedy Space Center despite the early morning hour The launch was visible as far away as 800 km 500 mi and observers in Miami Florida reported a red streak crossing the northern sky 92 Among those in attendance at the program s final launch were astronauts Neil Armstrong and Dick Gordon as well as centenarian Charlie Smith who alleged he was 130 years old at the time of Apollo 17 94 The ascent resulted in an orbit with an altitude and velocity almost exactly that which had been planned 95 In the hours following the launch Apollo 17 orbited the Earth while the crew spent time monitoring and checking the spacecraft to ensure its readiness to depart Earth orbit At 3 46 a m EST the S IVB third stage was reignited for the 351 second trans lunar injection burn to propel the spacecraft towards the Moon 11 4 Ground controllers chose a faster trajectory for Apollo 17 than originally planned to allow the vehicle to reach lunar orbit at the planned time despite the launch delay 96 The Command and Service Module separated from the S IVB approximately half an hour following the S IVB trans lunar injection burn after which Evans turned the spacecraft to face the LM still attached to the S IVB The CSM then docked with the LM and extracted it from the S IVB Following the LM extraction Mission Control programmed the S IVB no longer needed to propel the spacecraft to impact the Moon and trip the seismometers left by prior Apollo crews 11 It struck the Moon just under 87 hours into the mission triggering the seismometers from Apollo 12 14 15 and 16 97 Approximately nine hours after launch the crew concluded the mission s first day with a sleep period until waking up to begin the second day 11 nbsp View of Earth from Apollo 17 while in transit to the Moon a photo now known as The Blue MarbleMission Control and the crew decided to shorten the mission s second day the first full day in space in order to adjust the crew s wake up times for the subsequent days in preparation for an early morning EST wake up time on the day of the lunar landing then scheduled for early afternoon EST This was done since the first day of the mission had been extended because of the launch delay Following the second rest period and on the third day of the mission the crew executed the first mid course correction a two second burn of the CSM s service propulsion engine to adjust the spacecraft s Moon bound trajectory Following the burn the crew opened the hatch separating the CSM and LM in order to check the LM s systems and concluded that they were nominal 11 So that events would take place at the time indicated in the flight plan the mission clocks were moved ahead by 2 hours and 40 minutes the amount of the launch delay with one hour of it at 45 00 00 into the mission and the remainder at 65 00 00 98 Among their other activities during the outbound trip the crew photographed the Earth from the spacecraft as it travelled towards the Moon One of these photographs is now known as The Blue Marble 99 The crew found that one of the latches holding the CSM and LM together was unlatched While Schmitt and Cernan were engaged in a second period of LM housekeeping beginning just before sixty hours into the Mission Evans worked on the balky latch He was successful and left it in the position it would need to be in for the CSM LM docking that would occur upon return from the lunar surface 100 Also during the outward journey the crew performed a heat flow and convection demonstration as well as the Apollo light flash experiment A few hours before entry into lunar orbit the SIM door on the SM was jettisoned At approximately 2 47 p m EST on December 10 the service propulsion system engine on the CSM ignited to slow down the CSM LM stack into lunar orbit Following orbit insertion and orbital stabilization the crew began preparations for the landing at Taurus Littrow 4 Lunar landing nbsp The valley of Taurus Littrow as seen from the Lunar Module Challenger on the orbit before powered descent there The Command and Service Module America can just be seen crossing the base of the 2 3 km high South Massif Between the South and North Massifs the valley is 7 km wide Mare Serenitatis the Sea of Serenity is on the horizon The day of the landing began with a checkout of the Lunar Module s systems which revealed no problems preventing continuation of the mission Cernan Evans and Schmitt each donned their spacesuits and Cernan and Schmitt entered the LM in preparation for separating from the CSM and landing The LM undocked from the CSM and the two spacecraft orbited close together for about an hour and a half while the astronauts made visual inspections and conducted their final pre landing checks 11 After finally separating from the CSM the LM Challenger and its crew of two adjusted their orbit such that its lowest point would pass about 10 5 mi 16 9 km above the landing site and began preparations for the descent to Taurus Littrow While Cernan and Schmitt prepared for landing Evans remained in orbit to take observations perform experiments and await the return of his crewmates a few days later 4 11 101 Soon after completing their preparations for landing and just over two hours following the LM s undocking from the CSM Cernan and Schmitt began their descent to the Taurus Littrow valley on the lunar surface with the ignition of the Lunar Module s descent propulsion system DPS engine 101 102 Approximately ten minutes later as planned the LM pitched over giving Cernan and Schmitt their first look at the landing site during the descent phase and allowing Cernan to guide the spacecraft to a desirable landing target while Schmitt provided data from the flight computer essential for landing The LM touched down on the lunar surface at 2 55 p m EST on December 11 just over twelve minutes after DPS ignition 102 Challenger landed about 656 feet 200 m east of the planned landing point 103 Shortly thereafter the two astronauts began re configuring the LM for their stay on the surface and began preparations for the first moonwalk of the mission or EVA 1 4 101 Lunar surface First EVA nbsp Cernan on the lunar surface December 13 1972During their approximately 75 hour stay 104 on the lunar surface Cernan and Schmitt performed three moonwalks EVAs The astronauts deployed the LRV then emplaced the ALSEP and the seismic explosive charges They drove the rover to nine planned geological survey stations to collect samples and make observations Additionally twelve short sampling stops were made at Schmitt s discretion while riding the rover during which the astronauts used a handled scoop to get a sample without dismounting 105 During lunar surface operations Commander Cernan always drove the rover while Lunar Module Pilot Schmitt was a passenger who assisted with navigation This division of responsibilities between the two crew positions was used consistently throughout Apollo s J missions 106 107 108 The first lunar excursion began four hours after landing at 6 54 p m EST on December 11 After exiting through the hatch of the LM and descending the ladder to the footpad Cernan took the first step on the lunar surface of the mission Just before doing so Cernan remarked I m on the footpad And Houston as I step off at the surface at Taurus Littrow we d like to dedicate the first step of Apollo 17 to all those who made it possible 109 After Cernan surveyed the exterior of the LM and commented on the immediate landing site Schmitt joined Cernan on the surface 109 The first task was to offload the rover and other equipment from the LM While working near the rover Cernan caught his hammer under the right rear fender extension accidentally breaking it off A similar incident occurred on Apollo 16 as John Young maneuvered around the rover Although this was not a mission critical issue the loss of the part caused Cernan and Schmitt to be covered with dust stirred up when the rover was in motion 110 The crew made a short lived fix using duct tape at the beginning of the second EVA attaching a paper map to the damaged fender Lunar dust stuck to the tape s surface however preventing it from adhering properly Following deployment and testing the maneuverability of the rover the crew deployed the ALSEP just west of the landing site The ALSEP deployment took longer than had been planned with the drilling of core holes presenting some difficulty meaning the geological portion of the first EVA would need to be shortened cancelling a planned visit to Emory crater Instead following the deployment of the ALSEP Cernan and Schmitt drove to Steno crater to the south of the landing site The objective at Steno was to sample the subsurface material excavated by the impact that formed the crater The astronauts gathered 14 kilograms 31 lb of samples took seven gravimeter measurements and deployed two explosive packages The explosive packages were later detonated remotely the resulting explosions detected by geophones placed by the astronauts and also by seismometers left during previous missions 111 The first EVA ended after seven hours and twelve minutes 4 and the astronauts remained in the pressurized LM for the next 17 hours 112 Second EVA source source source source Astronauts Cernan and Schmitt singing I Was Strolling on the Moon One Day to the words and tune of the 1884 song While Strolling Through the Park One Day On December 12 awakened by a recording of Ride of the Valkyries played from Mission Control 113 Cernan and Schmitt began their second lunar excursion The first order of business was to provide the rover s fender a better fix Overnight the flight controllers devised a procedure communicated by John Young taping together four stiff paper maps 113 to form a replacement fender extension and then clamping it onto the fender 114 The astronauts carried out the new fix which did its job without failing until near the end of the third excursion 115 116 Cernan and Schmitt then departed for station 2 Nansen Crater at the foot of the South Massif When they arrived their range from the Challenger was 7 6 kilometers 4 7 miles 25 029 feet 8 This remains the furthest distance any spacefarers have ever traveled away from the safety of a pressurizable spacecraft while on a planetary body 117 and also during an EVA of any type a The astronauts were at the extremity of their walkback limit a safety constraint meant to ensure that they could walk back to the LM if the rover failed They began a return trip traveling northeast in the rover 119 At station 3 Schmitt fell to the ground while working looking so awkward that Parker jokingly told him that NASA s switchboard had lit up seeking Schmitt s services for Houston s ballet group and the site of station 3 was in 2019 renamed Ballet Crater 120 Cernan took a sample at Station 3 that was to be maintained in vacuum until better analytical techniques became available joking with the CAPCOM Parker about placing a note inside The container remained unopened until 2022 114 121 Stopping at station 4 Shorty crater the astronauts discovered orange soil which proved to be very small beads of volcanic glass formed over 3 5 billion years ago 122 This discovery caused great excitement among the scientists at Mission Control who felt that the astronauts may have discovered a volcanic vent However post mission sample analysis revealed that Shorty is not a volcanic vent but rather an impact crater Analysis also found the orange soil to be a remnant of a fire fountain This fire fountain sprayed molten lava high into the lunar sky in the Moon s early days some 3 5 billion years ago and long before Shorty s creation The orange volcanic beads were droplets of molten lava from the fountain that solidified and were buried by lava deposits until exposed by the impact that formed Shorty less than 20 million years ago 119 The final stop before returning to the LM was Camelot crater throughout the sojourn the astronauts collected 34 kilograms 75 lb of samples took another seven gravimeter measurements and deployed three more explosive packages 4 Concluding the EVA at seven hours and thirty seven minutes Cernan and Schmitt had completed the longest duration EVA in history to date traveling further away from a spacecraft and covering more ground on a planetary body during a single EVA than any other spacefarers 8 The improvised fender had remained intact throughout causing the president of the Auto Body Association of America to award them honorary lifetime membership 123 Third EVA nbsp Composite image of Harrison Schmitt working next to Tracy s Rock during EVA 3The third moonwalk the last of the Apollo program began at 5 25 p m EST on December 13 Cernan and Schmitt rode the rover northeast of the landing site exploring the base of the North Massif and the Sculptured Hills Stopping at station 6 they examined a house sized split boulder dubbed Tracy s Rock or Split Rock after Cernan s daughter The ninth and final planned station was conducted at Van Serg crater The crew collected 66 kilograms 146 lb of lunar samples and took another nine gravimeter measurements 4 Schmitt had seen a fine grained rock unusual for that vicinity earlier in the mission and had stood it on its edge before closing out the EVA he went and got it Subsequently designated Sample 70215 it was at 17 7 pounds 8 0 kg the largest rock brought back by Apollo 17 A small piece of it is on exhibit at the Smithsonian Institution one of the few rocks from the Moon that the public may touch 124 Schmitt also collected a sample designated as Sample 76535 at geology station 6 near the base of the North Massif the sample a troctolite was later identified as the oldest known unshocked lunar rock meaning it has not been damaged by high impact geological events Scientists have therefore used Sample 76535 in thermochronological studies to determine if the Moon formed a metallic core or as study results suggest a core dynamo 125 126 Before concluding the moonwalk the crew collected a breccia rock dedicating it to the nations of Earth 70 of which were represented by students touring the U S and present in Mission Control Center in Houston Texas at the time Portions of this sample known as the Friendship Rock were subsequently distributed to the nations represented by the students A plaque located on the LM commemorating the achievements made during the Apollo program was then unveiled Before reentering the LM for the final time Cernan remarked 4 127 I m on the surface and as I take man s last step from the surface back home for some time to come but we believe not too long into the future I d like to just say what I believe history will record That America s challenge of today has forged man s destiny of tomorrow And as we leave the Moon at Taurus Littrow we leave as we came and God willing as we shall return with peace and hope for all mankind Godspeed the crew of Apollo 17 128 Cernan then followed Schmitt into the LM the final lunar excursion had a duration of seven hours and fifteen minutes 4 Following closing of the LM hatch and repressurization of the LM cabin Cernan and Schmitt removed their spacesuits and reconfigured the cabin for a final rest period on the lunar surface As they did following each of the previous two EVAs Cernan and Schmitt discussed their geological observations from the day s excursion with mission control while preparing to rest 129 Solo activities While Cernan and Schmitt were on the lunar surface Evans remained alone in the CSM in lunar orbit and was assigned a number of observational and scientific tasks to perform while awaiting the return of his crewmates In addition to the operation of the various orbital science equipment contained in the CSM s SIM bay Evans conducted both visual and photographic observation of surface features from his aerial vantage point 130 The orbit of the CSM having been modified to an elliptical orbit in preparation for the LM s departure and eventual descent one of Evans solo tasks in the CSM was to circularize its orbit such that the CSM would remain at approximately the same distance above the surface throughout its orbit 131 Evans observed geological features visible to him and used handheld cameras to record certain visual targets 130 Evans also observed and sketched the solar corona at sunrise or the period of time during which the CSM would pass from the darkened portion of the Moon to the illuminated portion when the Moon itself mostly obscured the sun 132 To photograph portions of the surface that were not illuminated by the sun while Evans passed over them Evans relied in conjunction on exposure and Earthlight Evans photographed such features as the craters Eratosthenes and Copernicus as well as the vicinity of Mare Orientale using this technique 133 According to the Apollo 17 Mission Report Evans was able to capture all scientific photographic targets as well as some other targets of interest 134 nbsp An oblique black and white view of a portion of Mare Orientale from the CSM illustrating the illuminating effect of Earthlight on the lunar terrain below during local nighttime Evans reported seeing a light flash apparently originating from the surface in this areaSimilarly to the crew of Apollo 16 Evans as well as Schmitt while in lunar orbit reported seeing light flashes apparently originating from the lunar surface known as transient lunar phenomena TLP Evans reported seeing these flashes in the vicinity of Grimaldi crater and Mare Orientale The causes of TLP are not well understood and though inconclusive as an explanation both of the sites in which Evans reported seeing TLP are the general locations of outgassing from the Moon s interior Meteorite impacts are another possible explanation 135 136 The flight plan kept Evans busy making him so tired he overslept one morning by an hour despite the efforts of Mission Control to awaken him Before the LM departed for the lunar surface Evans had discovered that he had misplaced his pair of scissors necessary to open food packets Cernan and Schmitt lent him one of theirs 137 The instruments in the SIM bay functioned without significant hindrance during the orbital portion of the mission though the lunar sounder and the mapping camera encountered minor problems 138 Evans spent approximately 148 total hours in lunar orbit including solo time and time spent together with Cernan and Schmitt which is more time than any other individual has spent orbiting the Moon 104 139 Evans was also responsible for piloting the CSM during the orbital phase of the mission maneuvering the spacecraft to alter and maintain its orbital trajectory In addition to the initial orbital recircularization maneuver shortly after the LM s departure one of the solo activities Evans performed in the CSM in preparation for the return of his crewmates from the lunar surface was the plane change maneuver This maneuver was meant to align the CSM s trajectory to the eventual trajectory of the LM to facilitate rendezvous in orbit Evans fired the SPS engine of the CSM for about 20 seconds in successfully adjusting the CSM s orbital plane 9 138 Return to Earth nbsp Apollo 17 post splashdown recovery operationsCernan and Schmitt successfully lifted off from the lunar surface in the ascent stage of the LM on December 14 at 5 54 p m EST The return to lunar orbit took just over seven minutes 140 The LM piloted by Cernan and the CSM piloted by Evans maneuvered and redocked about two hours after liftoff from the surface Once the docking had taken place the crew transferred equipment and lunar samples from the LM to the CSM for return to Earth 102 141 The crew sealed the hatches between the CSM and the LM ascent stage following completion of the transfer and the LM was jettisoned at 11 51 p m EST on December 14 The unoccupied ascent stage was then remotely deorbited crashing it into the Moon with an impact recorded by the seismometers left by Apollo 17 and previous missions 4 141 At 6 35 p m EST on December 16 the CSM s SPS engine was ignited once more to propel the spacecraft away from the Moon on a trajectory back towards Earth The successful trans Earth injection SPS burn lasted just over two minutes 140 During the return to Earth Evans performed a 65 minute EVA to retrieve film cassettes from the service module s SIM bay with assistance from Schmitt who remained at the command module s hatch At approximately 160 000 nautical miles 142 1730 184 000 mi 296 000 km from Earth it was the third deep space EVA in history performed at great distance from any planetary body As of 2024 it remains one of only three such EVAs all performed during Apollo s J missions under similar circumstances It was the last EVA of the Apollo program 4 143 During the trip back to Earth the crew operated the infrared radiometer in the SM as well as the ultraviolet spectrometer One midcourse correction was performed lasting 9 seconds 144 On December 19 the crew jettisoned the no longer needed SM leaving only the CM for return to Earth The Apollo 17 spacecraft reentered Earth s atmosphere and splashed down safely in the Pacific Ocean at 2 25 p m EST 6 4 kilometers 4 0 mi from the recovery ship USS Ticonderoga Cernan Evans and Schmitt were then retrieved by a recovery helicopter piloted by Commander Edward E Dahill III and were safe aboard the recovery ship 52 minutes after splashdown 4 141 145 As the final Apollo mission concluded successfully Mission Control in Houston was filled with many former flight controllers and astronauts who applauded as America returned to Earth 146 Aftermath and spacecraft locations nbsp Apollo 17 command module America on display at Space Center Houston nbsp Lunar Reconnaissance Orbiter image of the Apollo 17 mission site taken in 2011 the Challenger descent stage is in the center the Lunar Roving Vehicle appears in the lower right Following their mission the crew undertook both domestic and international tours visiting 29 states and 11 countries The tour kicked off at Super Bowl VII with the crew leading the crowd in the Pledge of Allegiance the CM America was also displayed during the pregame activities 147 None of the Apollo 17 astronauts flew in space again 148 Cernan retired from NASA and the Navy in 1976 He died in 2017 149 Evans retired from the Navy in 1976 and from NASA in 1977 entering the private sector He died in 1990 150 Schmitt resigned from NASA in 1975 prior to his successful run for a United States Senate seat from New Mexico in 1976 There he served one six year term 151 The Command Module America is currently on display at Space Center Houston at the Lyndon B Johnson Space Center in Houston Texas 152 153 The ascent stage of Lunar Module Challenger impacted the Moon on December 15 1972 at 06 50 20 8 UTC 1 50 a m EST at 19 58 N 30 30 E 19 96 N 30 50 E 19 96 30 50 Apollo 17 LM ascent stage 152 The descent stage remains on the Moon at the landing site 20 11 27 N 30 46 18 E 20 19080 N 30 77168 E 20 19080 30 77168 Apollo 17 LM descent stage 9 In 2023 a study of Apollo era data from the Lunar Seismic Profiling Experiment showed that the descent stage was causing very slight tremors each lunar morning as components expanded in the heat 154 Eugene Cernan s flown Apollo 17 spacesuit is in the collection of the Smithsonian s National Air and Space Museum NASM where it was transferred in 1974 155 and Harrison Schmitt s is in storage at NASM s Paul E Garber Facility Amanda Young of NASM indicated in 2004 that Schmitt s suit is in the best condition of the flown Apollo lunar spacesuits and therefore is not on public display 156 Ron Evans spacesuit was also transferred from NASA in 1974 to the collection of the NASM it remains in storage 157 Since Apollo 17 s return there have been attempts to photograph the landing site where the LM s descent stage LRV and some other mission hardware remain In 2009 and again in 2011 the Lunar Reconnaissance Orbiter photographed the landing site from increasingly low orbits 158 At least one group has indicated an intention to visit the site as well in 2018 the German space company PTScientists said that it planned to land two lunar rovers nearby 159 See alsoList of Apollo missions List of astronauts by year of selection List of human spaceflights List of human spaceflight programs List of landings on extraterrestrial bodies List of crewed spacecraft List of NASA missions List of spacewalks and moonwalks 1965 1999 Moon landing The Case of the Missing Moon Rocks Apollo in Real TimeNotes Apart from the Apollo program s moonwalks and a unique trio of deep space EVAs conducted during the program s J missions all other spacewalks have been conducted in Low Earth orbit of which almost all have involved a safety tether keeping the spacefarer attached to the spacecraft by a short distance The exceptions occurred in 1984 and 1994 when a series of seven EVAs involved untethered activity using the Manned Maneuvering Unit MMU and the Simplified Aid For EVA Rescue Unit SAFER Among this latter group the greatest distance traveled away from a spacecraft during orbital flight was approximately 100 meters 320 feet achieved by Bruce McCandless on STS 41 B during the first test of the MMU 118 References Orloff 2004 Statistical Tables Launch Vehicle Spacecraft Key Facts Orloff amp Harland 2006 p 585 Orloff amp Harland 2006 p 581 a b c d e f g h i j k l m n o Wade Mark Apollo 17 Encyclopedia Astronautica Archived from the original on August 12 2011 Retrieved August 22 2011 a b c d e Orloff Richard W 2000 Apollo 17 pp243 Apollo by the Numbers PDF NASA NASA SP 2000 4029 Retrieved December 12 2022 NASA NSSDC Master Catalog Apollo 17 descent stage NASA Retrieved January 1 2011 a b Astronaut Friday Ronald Evans Space Center Houston December 28 2018 Retrieved February 7 2022 a b c Extravehicular Activity NASA Retrieved January 6 2022 a b c Orloff 2004 Apollo 17 The Eleventh Mission Apollo 17 Crew The Apollo Program Washington D C National Air and Space Museum Archived from the original on July 5 2011 Retrieved August 26 2011 a b c d e f g h Jones Eric M Glover Ken eds A Running Start Apollo 17 up to Powered Descent Initiation Apollo 17 Lunar Surface Journal NASA Archived from the original on March 20 2012 Retrieved August 25 2011 Apollo 14 Crew The Apollo Program National Air and Space Museum Archived from the original on February 8 2022 Retrieved February 8 2022 Astronauts Craters of the Moon National Park Service Retrieved February 8 2022 Wilhelms 1993 pp 309 310 Kraft 2002 pp 346 348 News Released at NASA Headquarters PDF Manned Spacecraft Center Public Information Offie October 18 1971 Archived from the original PDF on February 28 2021 Retrieved January 13 2022 a b News MSC 71 56 PDF Manned Spacecraft Center Public Information Office August 13 1971 Archived from the original PDF on February 28 2021 Retrieved January 13 2022 a b Orloff amp Harland 2006 pp 507 508 Shayler amp Burgess 2017 pp 289 290 Chaikin 1995 p 549 a b Phinney 2015 p 130 Slayton amp Cassutt 1994 p 279 Riley John E May 23 1972 Release No 72 113 Astronauts Mitchell and Irwin to Retire PDF NASA Manned Spacecraft Center Archived PDF from the original on October 9 2022 Retrieved January 13 2022 Shayler amp Burgess 2017 p 296 Orloff amp Harland 2006 p 471 Slayton amp Cassutt 1994 p 184 Hersch Matthew July 19 2009 The fourth crewmember Air amp Space Smithsonian Retrieved October 4 2019 Brooks Grimwood amp Swenson 1979 p 261 Compton 1989 p 377 Orloff amp Harland 2006 p 566 Williams Mike September 13 2012 A legendary tale well told Rice University Office of Public Affairs Archived from the original on August 17 2020 Retrieved October 5 2019 Orloff amp Harland 2006 p 577 a b Apollo Mission Insignias NASA Archived from the original on July 21 2011 Retrieved August 25 2011 Lattimer 1985 p 93 Lattimer 1985 p 94 Chaikin 1995 p 509 Uri John July 31 2020 Mars Kelli ed 50 Years Ago Apollo 14 and 15 Preparations NASA Retrieved January 8 2022 Apollo s schedule shifted by NASA next flight in April The New York Times January 9 1970 p 17 Retrieved October 30 2020 Shayler amp Burgess 2017 p 207 Logsdon 2015 pp 154 159 a b c Landing Site Overview Apollo 17 Mission Lunar and Planetary Institute Retrieved February 7 2022 Wilhelms 1993 p 312 Wilhelms 1993 p 313 a b Wilhelms 1993 p 314 Apollo Site Selection Board Meeting Minutes February 11 1972 PDF NASA Archived PDF from the original on October 9 2022 Retrieved February 3 2022 Mason Betsy July 20 2011 The Incredible Things NASA Did to Train Apollo Astronauts Wired Science Conde Nast Publications Retrieved August 23 2011 a b Phinney 2015 p 95 Wilhelms 1993 pp 316 317 Phinney 2015 pp 129 139 Phinney 2015 p 131 Phinney 2015 p 102 Phinney 2015 pp 147 149 a b Orloff amp Harland 2006 p 508 Apollo 17 Press Kit pp 97 99 Apollo Skylab ASTP and Shuttle Orbiter Major End Items PDF NASA March 1978 p 15 Archived PDF from the original on October 9 2022 Apollo 17 Press Kit p 97 Orloff amp Harland 2006 p 26 Sharp Tim October 17 2018 Saturn V Rockets amp Apollo Spacecraft Space com Retrieved February 7 2022 Saturn V Rocket Park NASA Archived from the original on April 8 2015 Retrieved February 8 2022 Orloff amp Harland 2006 pp 584 585 a b c d Orloff amp Harland 2006 p 512 a b c Benson Charles D Faherty William Barnaby 1978 Ch 23 7 The Apollo Saturn IB Space Vehicle Moonport A History of Apollo Launch Facilities and Operations NASA NASA SP 4204 Archived from the original on January 23 2008 Retrieved November 23 2021 a b Apollo 17 Press Kit p 15 a b Apollo 17 Press Kit p 16 a b Orloff amp Harland 2006 p 510 a b c Orloff amp Harland 2006 pp 601 602 a b c d Orloff 2004 Statistical Tables Lunar Surface Experiments a b Science Experiments Lunar Atmospheric Composition Lunar and Planetary Institute Retrieved February 8 2022 Chaikin 1995 pp 467 469 478 513 Lunsford Christine December 7 2017 Apollo 17 NASA s Last Apollo Moon Landing Mission in Pictures Space com Retrieved February 8 2022 a b c Jones Eric M Glover Ken eds Apollo 17 Traverse Gravimeter Experiment Apollo 17 Lunar Surface Journal NASA Retrieved November 29 2021 Stern S Alan 1999 The Lunar Atmosphere History Status Current Problems and Context Report Southwest Research Institute CiteSeerX 10 1 1 21 9994 Lunar Seismic Profiling Experiment PDF Lunar and Planetary Institute Archived PDF from the original on October 9 2022 Science Experiments Lunar Ejecta and Meteorite Lunar and Planetary Institute Retrieved February 12 2022 Talcott Richard June 21 2019 What did the Apollo astronauts leave behind Astronomy Retrieved February 1 2021 Lunar Roving Vehicle LRV The Apollo Program National Air and Space Museum Archived from the original on February 8 2022 Retrieved February 8 2022 a b Science Experiments Surface Electrical Properties Apollo 17 Mission Lunar and Planetary Institute Retrieved February 7 2022 Orloff 2004 Statistical Tables Extravehicular Activity Apollo 17 Press Kit p 46 Science Experiments Lunar Neutron Probe Apollo 17 Mission Lunar and Planetary Institute 2019 Retrieved February 12 2022 Johnson et al 1975 Ch 4 Apollo 17 Preliminary Science Report pp 26 1 26 14 Burgess amp Dubbs 2007 p 320 Johnson et al 1975 Part IV Ch 4 Johnson et al 1975 Part IV Ch 1 a b c Apollo 17 Lunar Science The Apollo Program National Air and Space Museum Archived from the original on February 8 2022 Retrieved February 8 2022 Apollo 17 Press Kit pp 56 59 a b Osborne W Zachary Pinsky Lawrence S Bailey J Vernon 1975 Apollo Light Flash Investigations In Johnston Richard S Dietlein Lawrence F Berry Charles A eds Biomedical Results of Apollo Foreword by Christopher C Kraft Jr Washington D C NASA NASA SP 368 Archived from the original on September 17 2011 Retrieved August 26 2011 Apollo 17 Preliminary Science Report pp 20 1 20 2 Apollo 17 Preliminary Science Report pp 14 1 14 2 Science Experiments S Band Transponder Apollo 17 Mission Lunar and Planetary Institute 2019 Retrieved February 12 2022 a b Apollo 17 Launch Operations NASA Retrieved November 16 2011 Orloff 2004 Statistical Tables Launch Windows Chaikin 1995 pp 495 498 Orloff amp Harland 2006 p 511 Orloff amp Harland 2006 p 514 Orloff amp Harland 2006 p 214 Woods David Feist Ben eds December 26 2017 Day 4 part 1 Clock update Apollo 17 Flight Journal NASA Retrieved November 24 2021 Cosgrove Ben April 11 2014 Home Sweet Home In Praise of Apollo 17 s Blue Marble Time Archived from the original on June 1 2015 Retrieved December 7 2019 Orloff amp Harland 2006 pp 514 515 a b c Jones Eric M Glover Ken eds Landing at Taurus Littrow Apollo 17 Lunar Surface Journal NASA Retrieved August 22 2011 a b c Orloff amp Harland 2006 p 519 Orloff amp Harland 2006 p 515 a b Orloff 2004 Statistical Tables General Background Apollo 17 Mission Surface Operations Overview Universities Space Research Association Lunar and Planetary Institute Retrieved November 29 2021 Jones Eric M Glover Ken eds Apollo 15 Mission Summary Mountains of the Moon Apollo 15 Lunar Surface Journal NASA Retrieved January 6 2022 Riley Woods amp Dolling 2012 p 165 Gohd Chelsea March 22 2019 The Risk of Apollo Astronauts Swap Harrowing Tales from NASA s Moon Shots Space com Retrieved January 6 2022 a b Jones Eric M Glover Ken eds Down the Ladder Apollo 17 Lunar Surface Journal NASA Retrieved January 6 2022 Jones Eric M Glover Ken eds ALSEP Off load Apollo 17 Lunar Surface Journal NASA Retrieved August 24 2011 Brzostowski Matthew Brzostowski Adam April 2009 Archiving the Apollo active seismic data The Leading Edge Tulsa OK Society of Exploration Geophysicists 28 4 414 416 Bibcode 2009LeaEd 28 414B doi 10 1190 1 3112756 ISSN 1070 485X Retrieved June 12 2014 Orloff amp Harland 2006 p 516 a b Jones Eric M Glover Ken eds May 20 2014 EVA 2 Wake up Apollo 17 Lunar Surface Journal NASA Retrieved January 7 2022 a b Apollo 17 Technical Air to Ground Voice Transcription PDF NASA December 1972 p 977 Archived PDF from the original on October 9 2022 Chaikin 1995 p 542 Swift 2021 pp 1043 1045 1085 Swift 2021 pp 1053 1058 Chaikin Andrew October 2014 Untethered Air and Space Magazine Retrieved January 6 2022 a b Chaikin 1995 pp 527 530 Swift 2021 pp 1062 1063 Wamsley Laurel March 8 2022 NASA is just now opening a vacuum sealed sample it took from the moon 50 years ago National Public Radio Retrieved March 11 2022 Cortright 2019 p 276 Swift 2021 pp 1070 1071 Craddock Bob March 2002 In the Museum The Rock Air amp Space Smithsonian Retrieved December 4 2021 Garrick Bethell Ian et al January 2009 Early Lunar Magnetism Science 323 5912 356 359 Bibcode 2009Sci 323 356G doi 10 1126 science 1166804 PMID 19150839 S2CID 23227936 Lunar Sample 76535 Lunar and Planetary Institute Retrieved December 13 2021 Chaikin 1995 p 543 Jones Eric M Glover Ken eds EVA 3 Close out Apollo 17 Lunar Surface Journal NASA Archived from the original on July 18 2011 Retrieved August 22 2011 Jones Eric M Glover Ken eds Post EVA 3 Activities Apollo 17 Lunar Surface Journal NASA Retrieved December 11 2021 a b Ronald E Evans New Mexico Museum of Space History Retrieved February 8 2022 Fowler Wallace T Apollo Timeline Apollo 17 Lunar Mission Characteristics University of Texas Archived from the original on February 8 2022 Retrieved February 8 2022 Zook H A Potter A E Cooper B L 1995 The Lunar Dust Exosphere and Clementine Lunar Horizon Glow Abstracts of the Lunar and Planetary Science Conference 26 1577 Bibcode 1995LPI 26 1577Z Retrieved February 8 2022 Apollo 17 Mission Report pp 10 34 10 38 Apollo 17 Mission Report p 10 37 Crotts 2014 pp 268 269 Transient Lunar Phenomena Studies Columbia University Retrieved December 12 2021 Chaikin 1995 p 532 a b Apollo 17 Mission Report p 10 38 Howell Elizabeth April 23 2013 Ron Evans Apollo 17 Command Module Pilot Space com Retrieved February 12 2022 a b Orloff amp Harland 2006 p 518 a b c Jones Eric M Glover Ken eds Return to Earth Apollo 17 Lunar Surface Journal NASA Retrieved August 22 2011 Jones Eric M Glover Ken eds Apollo 17 Transcripts Apollo 17 PAO Spacecraft Commentary PDF Apollo 17 Lunar Surface Journal NASA Archived PDF from the original on October 9 2022 LePage Andrew December 17 2017 A History of Deep Space EVAs Drew Ex Machina Retrieved January 5 2022 Orloff amp Harland 2006 p 520 Obituaries Commander Edward E Ted Dahill III ret Coronado Eagle and Journal May 9 15 2007 Retrieved March 14 2022 Chaikin 1995 p 550 Adams Kaitlyn January 4 2023 50 Years Ago Apollo 17 Post Mission Activities NASA Retrieved March 31 2023 Chaikin 1995 pp 587 588 591 Eugene Andrew Cernan 14 March 1934 16 January 2017 Naval History and Heritage Command January 17 2017 Retrieved January 7 2022 Ronald Ellwin Evans 10 November 1933 7 April 1990 Naval History and Heritage Command November 16 2016 Retrieved January 7 2022 SCHMITT Harrison Hagan Biographical Directory of the United States Congress United States Congress Retrieved February 8 2022 a b Apollo Where are they now NASA Archived from the original on July 17 2011 Retrieved August 26 2011 Location of Apollo Command Modules National Air and Space Museum Archived from the original on June 1 2021 Retrieved August 27 2019 The lunar alarm clock new study characterizes regular Moonquakes Caltech September 7 2023 Retrieved September 15 2023 Pressure Suit A7 LB Cernan Apollo 17 Flown National Air and Space Museum Retrieved January 5 2022 Jones Eric M Glover Ken eds Jack Schmitt s Apollo 17 Suit Apollo 17 Lunar Surface Journal NASA Retrieved January 5 2022 Pressure Suit A7 LB Evans Apollo 17 Flown National Air and Space Museum Retrieved February 18 2022 Neal Jones Nancy Zubritsky Elizabeth Cole Steve September 6 2011 Garner Robert ed NASA Spacecraft Images Offer Sharper Views of Apollo Landing Sites NASA Goddard Release No 11 058 co issued as NASA HQ Release No 11 289 Retrieved July 24 2013 Mission to the Moon PTScientists Archived from the original on December 5 2018 Retrieved January 6 2022 BibliographyApollo 17 Mission Report PDF Houston Texas Scientific and Technical Information Branch NASA 1973 Archived PDF from the original on October 9 2022 Apollo 17 Preliminary Science Report PDF Houston Texas Manned Spacecraft Center NASA 1973 Archived PDF from the original on October 9 2022 Apollo 17 Press Kit Washington D C NASA 1972 Brooks Courtney G Grimwood James M Swenson Loyd S Jr 1979 Chariots for Apollo A History of Manned Lunar Spacecraft PDF NASA History Series Washington D C Scientific and Technical Information Branch NASA ISBN 978 0 486 46756 6 LCCN 79001042 OCLC 4664449 NASA SP 4205 Archived PDF from the original on October 9 2022 Burgess Colin Dubbs Chris 2007 Animals in Space From Research Rockets to the Space Shuttle Berlin Germany Springer Science amp Business Media ISBN 978 0 387 49678 8 Chaikin Andrew 1995 1994 A Man on the Moon The Voyages of the Apollo Astronauts Foreword by Tom Hanks New York City Penguin Books ISBN 978 0 14 024146 4 Compton William D 1989 Where No Man Has Gone Before A History of Apollo Lunar Exploration Missions Washington D C U S Government Printing Office OCLC 1045558568 SP 4214 Cortright Edgar M ed 2019 Apollo Expeditions to the Moon Mineola New York Dover Publications ISBN 978 0 486 83652 2 Crotts Arlin 2014 The New Moon Water Exploration and Future Habitation Cambridge United Kingdom Cambridge University Press ISBN 978 0 521 76224 3 Johnston Richard S Berry Charles A Dietlein Lawrence F eds 1975 Biomedical Results of Apollo Washington D C Science and Technical Information Office NASA OCLC 1906749 NASA SP 368 Kraft Christopher C 2002 Flight My Life in Mission Control New York City E P Dutton ISBN 978 0 452 28304 6 Lattimer Dick 1985 All We Did Was Fly to the Moon History alive series Vol 1 Foreword by James A Michener 1st ed Gainesville Florida Whispering Eagle Press ISBN 978 0 9611228 0 5 Logsdon John M 2015 After Apollo Richard Nixon and the American Space Program New York City Palgrave Macmillan ISBN 978 1 137 43853 9 Orloff Richard W 2004 First published 2000 Apollo by the Numbers A Statistical Reference NASA History Series Washington D C NASA ISBN 0 16 050631 X LCCN 00061677 NASA SP 2000 4029 Archived from the original on August 23 2007 Orloff Richard W Harland David M 2006 Apollo The Definitive Sourcebook Chichester United Kingdom Praxis Publishing Company ISBN 978 0 387 30043 6 Phinney William C 2015 Science Training History of the Apollo Astronauts PDF Houston Texas Johnson Space Center NASA SP 2015 626 Archived PDF from the original on October 9 2022 Riley Christopher Woods David Dolling Philip 2012 Lunar Rover Owner s Workshop Manual Sparkford United Kingdom Haynes ISBN 978 0 85733 267 7 Shayler David J Burgess Colin 2017 The Last of NASA s Original Pilot Astronauts Expanding the Space Frontier in the Late Sixties Chichester United Kingdom Springer ISBN 978 3 319 51014 9 Slayton Donald K Deke Cassutt Michael 1994 Deke U S Manned Space From Mercury to the Shuttle 1st ed New York City Forge ISBN 0 312 85503 6 LCCN 94002463 OCLC 29845663 Swift Earl 2021 Across the Airless Wilds eBook ed New York City Custom House ISBN 978 0 06 298653 5 Wilhelms Don E 1993 To a Rocky Moon A Geologist s History of Lunar Exploration Tempe Arizona University of Arizona Press ISBN 978 0 8165 1065 8 External links nbsp Wikimedia Commons has media related to Apollo 17 Apollo 17 Traverses 43D1S2 25 Lunar Photomap at Lunar and Planetary Institute Apollo 17 Detailed mission information by David R Williams NASA Goddard Space Flight Center Table 2 45 Apollo 17 Characteristics from NASA Historical Data Book Volume III Programs and Projects 1969 1978 by Linda Neuman Ezell NASA SP 4012 NASA History Series 1988 Apollo 17 Lunar Surface Journal Archived January 4 2014 at the Wayback Machine Apollo 17 Real Time Mission Experience All mission audio film video and photography presented in real time Apollo 17 Mission Experiments Overview at the Lunar and Planetary Institute Apollo 17 Voice Transcript Pertaining to the Geology of the Landing Site PDF by N G Bailey and G E Ulrich United States Geological Survey 1975 Apollo Program Summary Report PDF NASA JSC 09423 April 1975 The Apollo Spacecraft A Chronology Archived December 9 2017 at the Wayback Machine NASA NASA SP 4009 Apollo 17 On The Shoulders of Giants NASA Space Program and Moon Landings Documentary on YouTube The Final Flight Excerpt from the September 1973 issue of National Geographic magazine Portals nbsp Solar System nbsp Outer space nbsp Spaceflight Retrieved from https en wikipedia org w index php title Apollo 17 amp oldid 1206071494, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.