fbpx
Wikipedia

Opisthokont

The opisthokonts (from Ancient Greek ὀπίσθιος (opísthios) 'rear, posterior', and κοντός (kontós) 'pole, i.e. flagellum') are a broad group of eukaryotes, including both the animal and fungus kingdoms.[5] The opisthokonts, previously called the "Fungi/Metazoa group",[6] are generally recognized as a clade. Opisthokonts together with Apusomonadida and Breviata comprise the larger clade Obazoa.[7][8][9][10][11]

Opisthokont
Temporal range: 1300 –0 Ma[1]
Clockwise, from top left: Abeoforma whisleri (Mesomycetozoea); Amanita muscaria (Fungi); Desmarella moniliformis (Choanoflagellatea); bonnet macaque (Metazoa); Nuclearia thermophila (Nucleariida); Ministeria vibrans (Filasterea)
Scientific classification
Domain: Eukaryota
Clade: Amorphea
Clade: Obazoa
(unranked): Opisthokonta
Copeland 1956,[2] emend. Cavalier-Smith 1987,[3] emend. Adl et al., 2005[4]
Subgroups

Flagella and other characteristics edit

A common characteristic of opisthokonts is that flagellate cells, such as the sperm of most animals and the spores of the chytrid fungi, propel themselves with a single posterior flagellum. It is this feature that gives the group its name. In contrast, flagellate cells in other eukaryote groups propel themselves with one or more anterior flagella. However, in some opisthokont groups, including most of the fungi, flagellate cells have been lost.[7]

Opisthokont characteristics include synthesis of extracellular chitin in exoskeleton, cyst/spore wall, or cell wall of filamentous growth and hyphae; the extracellular digestion of substrates with osmotrophic absorption of nutrients; and other cell biosynthetic and metabolic pathways. Genera at the base of each clade are amoeboid and phagotrophic.[12]

History edit

The close relationship between animals and fungi was suggested by Thomas Cavalier-Smith in 1987,[3] who used the informal name opisthokonta (the formal name has been used for the chytrids by Copeland in 1956), and was supported by later genetic studies.[13]

Early phylogenies placed fungi near the plants and other groups that have mitochondria with flat cristae, but this character varies. More recently, it has been said that holozoa (animals) and holomycota (fungi) are much more closely related to each other than either is to plants, because opisthokonts have a triple fusion of carbamoyl phosphate synthetase, dihydroorotase, and aspartate carbamoyltransferase that is not present in plants, and plants have a fusion of thymidylate synthase and dihydrofolate reductase not present in the opisthokonts. Animals and fungi are also more closely related to amoebas than to plants, and plants are more closely related to the SAR supergroup of protists than to animals or fungi.[citation needed] Animals and fungi are both heterotrophs, unlike plants, and while fungi are sessile like plants, there are also sessile animals.

Cavalier-Smith and Stechmann argue that the uniciliate eukaryotes such as opisthokonts and Amoebozoa, collectively called unikonts, split off from the other biciliate eukaryotes, called bikonts, shortly after they evolved.[14]

Taxonomy edit

Opisthokonts are divided into Holomycota or Nucletmycea (fungi and all organisms more closely related to fungi than to animals) and Holozoa (animals and all organisms more closely related to animals than to fungi); no opisthokonts basal to the Holomycota/Holozoa split have yet been identified.[citation needed] The Opisthokonts was largely resolved by Torriella et al.[15] Holomycota and Holozoa are composed of the following groups.[citation needed]

Phylogeny edit

The following phylogenetic tree indicates the evolutionary relationships between the different opisthokont lineages, and the time divergence of the clades in millions of years ago (Mya).[17][18][19]

Gallery edit

References edit

  1. ^ Loron, Corentin C.; François, Camille; Rainbird, Robert H.; Turner, Elizabeth C.; Borensztajn, Stephan; Javaux, Emmanuelle J. (June 2019). "Early fungi from the Proterozoic era in Arctic Canada". Nature. 570 (7760): 232–235. Bibcode:2019Natur.570..232L. doi:10.1038/s41586-019-1217-0. PMID 31118507. S2CID 162180486.
  2. ^ The Classification of Lower Organisms. Palo Alto: Pacific Books. 1956. OCLC 477890.
  3. ^ a b Rayner, Alan D. M., ed. (1987). "The origin of fungi and pseudofungi". Evolutionary biology of Fungi. Cambridge: Cambridge University Press. pp. 339–353. ISBN 0-521-33050-5.
  4. ^ Adl, Sina M.; Simpson, Alastair G. B.; Farmer, Mark A.; Andersen, Robert A.; Anderson, O. Roger; Barta, John R.; et al. (September–October 2005). "The new higher level classification of eukaryotes with emphasis on the taxonomy of protists". The Journal of Eukaryotic Microbiology. 52 (5): 399–451. doi:10.1111/j.1550-7408.2005.00053.x. PMID 16248873.
  5. ^ Shalchian-Tabrizi K, Minge MA, Espelund M, Orr R, Ruden T, Jakobsen KS, Cavalier-Smith T (May 2008). Aramayo R (ed.). "Multigene phylogeny of choanozoa and the origin of animals". PLOS ONE. 3 (5): e2098. Bibcode:2008PLoSO...3.2098S. doi:10.1371/journal.pone.0002098. PMC 2346548. PMID 18461162.
  6. ^ . UniProt. Archived from the original on 17 February 2009. Retrieved 2009-03-08.
  7. ^ a b Steenkamp ET, Wright J, Baldauf SL (January 2006). "The protistan origins of animals and fungi". Molecular Biology and Evolution. 23 (1): 93–106. doi:10.1093/molbev/msj011. PMID 16151185.
  8. ^ Huang, Jinling; Xu, Ying; Gogarten, Johann Peter (November 2005). "The presence of a haloarchaeal type tyrosyl-tRNA synthetase marks the opisthokonts as monophyletic". Molecular Biology and Evolution. 22 (11): 2142–2146. doi:10.1093/molbev/msi221. PMID 16049196.
  9. ^ Parfrey LW, Barbero E, Lasser E, Dunthorn M, Bhattacharya D, Patterson DJ, Katz LA (December 2006). "Evaluating support for the current classification of eukaryotic diversity". PLOS Genetics. 2 (12): e220. doi:10.1371/journal.pgen.0020220. PMC 1713255. PMID 17194223.
  10. ^ Torruella, G.; Derelle, R.; Paps, J.; Lang, B. F.; Roger, A. J.; Shalchian-Tabrizi, K.; Ruiz-Trillo, I. (February 2012). "Phylogenetic relationships within the Opisthokonta based on phylogenomic analyses of conserved single-copy protein domains". Molecular Biology and Evolution. 29 (2): 531–544. doi:10.1093/molbev/msr185. PMC 3350318. PMID 21771718.
  11. ^ Eme, L.; Sharpe, S. C.; Brown, M. W.; Roger, A. J. (August 2014). "On the age of eukaryotes: evaluating evidence from fossils and molecular clocks". Cold Spring Harbor Perspectives in Biology. 6 (8): a016139. doi:10.1101/cshperspect.a016139. PMC 4107988. PMID 25085908.
  12. ^ Adl, Sina M.; Bass, David; Lane, Christopher E.; Lukeš, Julius; Schoch, Conrad L.; Smirnov, Alexey; et al. (January 2019). "Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes". The Journal of Eukaryotic Microbiology. 66 (1): 4–119. doi:10.1111/jeu.12691. PMC 6492006. PMID 30257078.
  13. ^ Wainright PO, Hinkle G, Sogin ML, Stickel SK (April 1993). "Monophyletic origins of the metazoa: an evolutionary link with fungi". Science. 260 (5106): 340–342. Bibcode:1993Sci...260..340W. doi:10.1126/science.8469985. PMID 8469985. S2CID 27373608.
  14. ^ Stechmann, Alexandra; Cavalier-Smith, Thomas (July 2002). "Rooting the eukaryote tree by using a derived gene fusion". Science. 297 (5578): 89–91. Bibcode:2002Sci...297...89S. doi:10.1126/science.1071196. PMID 12098695. S2CID 21064445.
  15. ^ Torruella, Guifré; De Mendoza, Alex; Grau-Bové, Xavier; Antó, Meritxell; Chaplin, Mark A.; Del Campo, Javier; et al. (September 2015). "Phylogenomics Reveals Convergent Evolution of Lifestyles in Close Relatives of Animals and Fungi". Current Biology. 25 (18): 2404–2410. doi:10.1016/j.cub.2015.07.053. PMID 26365255.
  16. ^ Brown, M. W.; Spiegel, F. W.; Silberman, J. D. (December 2009). "Phylogeny of the "forgotten" cellular slime mold, Fonticula alba, reveals a key evolutionary branch within Opisthokonta". Molecular Biology and Evolution. 26 (12): 2699–2709. doi:10.1093/molbev/msp185. PMID 19692665.
  17. ^ Tedersoo, Leho; Sánchez-Ramírez, Santiago; Kõljalg, Urmas; Bahram, Mohammad; Döring, Markus; Schigel, Dmitry; et al. (2018). "High-level classification of the Fungi and a tool for evolutionary ecological analyses". Fungal Diversity. 90 (1): 135–159. doi:10.1007/s13225-018-0401-0. ISSN 1560-2745.
  18. ^ Galindo, Luis Javier; Torruella, Guifré; López-García, Purificación; Ciobanu, Maria; Gutiérrez-Preciado, Ana; Karpov, Sergey A.; Moreira, David (June 2023). "Phylogenomics Supports the Monophyly of Aphelids and Fungi and Identifies New Molecular Synapomorphies". Systematic Biology. 72 (3): 505–515. doi:10.1093/sysbio/syac054. PMID 35900180.
  19. ^ Tikhonenkov, Denis V.; Mikhailov, Kirill V.; Hehenberger, Elisabeth; Karpov, Sergei A.; Prokina, Kristina I.; Esaulov, Anton S.; et al. (November 2020). "New Lineage of Microbial Predators Adds Complexity to Reconstructing the Evolutionary Origin of Animals". Current Biology. 30 (22): 4500–4509.e5. doi:10.1016/j.cub.2020.08.061. PMID 32976804.

External links edit

  • Tree of Life Eukaryotes

opisthokont, opisthokonts, from, ancient, greek, ὀπίσθιος, opísthios, rear, posterior, κοντός, kontós, pole, flagellum, broad, group, eukaryotes, including, both, animal, fungus, kingdoms, opisthokonts, previously, called, fungi, metazoa, group, generally, rec. The opisthokonts from Ancient Greek ὀpis8ios opisthios rear posterior and kontos kontos pole i e flagellum are a broad group of eukaryotes including both the animal and fungus kingdoms 5 The opisthokonts previously called the Fungi Metazoa group 6 are generally recognized as a clade Opisthokonts together with Apusomonadida and Breviata comprise the larger clade Obazoa 7 8 9 10 11 OpisthokontTemporal range 1300 0 Ma 1 Pha Proterozoic Archean Had Clockwise from top left Abeoforma whisleri Mesomycetozoea Amanita muscaria Fungi Desmarella moniliformis Choanoflagellatea bonnet macaque Metazoa Nuclearia thermophila Nucleariida Ministeria vibrans Filasterea Scientific classificationDomain EukaryotaClade AmorpheaClade Obazoa unranked OpisthokontaCopeland 1956 2 emend Cavalier Smith 1987 3 emend Adl et al 2005 4 SubgroupsHolomycota Holozoa Contents 1 Flagella and other characteristics 2 History 3 Taxonomy 3 1 Phylogeny 4 Gallery 5 References 6 External linksFlagella and other characteristics editA common characteristic of opisthokonts is that flagellate cells such as the sperm of most animals and the spores of the chytrid fungi propel themselves with a single posterior flagellum It is this feature that gives the group its name In contrast flagellate cells in other eukaryote groups propel themselves with one or more anterior flagella However in some opisthokont groups including most of the fungi flagellate cells have been lost 7 Opisthokont characteristics include synthesis of extracellular chitin in exoskeleton cyst spore wall or cell wall of filamentous growth and hyphae the extracellular digestion of substrates with osmotrophic absorption of nutrients and other cell biosynthetic and metabolic pathways Genera at the base of each clade are amoeboid and phagotrophic 12 History editThe close relationship between animals and fungi was suggested by Thomas Cavalier Smith in 1987 3 who used the informal name opisthokonta the formal name has been used for the chytrids by Copeland in 1956 and was supported by later genetic studies 13 Early phylogenies placed fungi near the plants and other groups that have mitochondria with flat cristae but this character varies More recently it has been said that holozoa animals and holomycota fungi are much more closely related to each other than either is to plants because opisthokonts have a triple fusion of carbamoyl phosphate synthetase dihydroorotase and aspartate carbamoyltransferase that is not present in plants and plants have a fusion of thymidylate synthase and dihydrofolate reductase not present in the opisthokonts Animals and fungi are also more closely related to amoebas than to plants and plants are more closely related to the SAR supergroup of protists than to animals or fungi citation needed Animals and fungi are both heterotrophs unlike plants and while fungi are sessile like plants there are also sessile animals Cavalier Smith and Stechmann argue that the uniciliate eukaryotes such as opisthokonts and Amoebozoa collectively called unikonts split off from the other biciliate eukaryotes called bikonts shortly after they evolved 14 Taxonomy editOpisthokonts are divided into Holomycota or Nucletmycea fungi and all organisms more closely related to fungi than to animals and Holozoa animals and all organisms more closely related to animals than to fungi no opisthokonts basal to the Holomycota Holozoa split have yet been identified citation needed The Opisthokonts was largely resolved by Torriella et al 15 Holomycota and Holozoa are composed of the following groups citation needed Holomycota Fungus like Fungi Includes chytrids flagellated zoosporic fungi Fonticula 16 more recent work considers this to be part of Cristidiscoidea a sister group to the fungi Hyaloraphidium previously thought to be a green alga now considered a fungus microsporidia previously thought to be apicomplexia Nucleariida more recent work considers this to be part of Cristidiscoidea a sister group to the fungi Excludes labyrinthulomycetes slime nets now included in the SAR supergroup myxomycetes now included in amoebozoans oomycetes water molds now included in the SAR supergroup Rozellida placement uncertain Holozoa Animal like Corallochytrium formerly considered a Heterokont Filozoa Animalia including myxozoa Choanoflagellata flagellates formerly included in protozoa Filasterea Mesomycetozoea Amoebidiales formerly considered trichomycetes Dermocystida formerly considered parasitic fungi or sporozoans Eccrinales formerly considered fungi Ichthyophonida formerly considered parasitic fungi incertae sedis Phylogeny edit The following phylogenetic tree indicates the evolutionary relationships between the different opisthokont lineages and the time divergence of the clades in millions of years ago Mya 17 18 19 Amorphea Amoebozoa nbsp Obazoa Breviatea nbsp Apusomonadida nbsp Opisthokonta Holomycota Nucleariae nbsp Fungi Phytophagea True Fungi nbsp 410 MyaAphelidaOpisthophagea Rozellida nbsp Microsporidia nbsp sensu latoHolozoa Ichthyosporea nbsp Pluriformea Corallochytrium nbsp Syssomonas nbsp TunicaraptorFilozoa Filasterea nbsp Choanozoa Choanoflagellatea nbsp Metazoa nbsp 760 Mya950 mya1300 Mya1500 MyaGallery edit nbsp Nuclearia Nucleariida nbsp Rozella sp Rozellida nbsp Microsporidian spore Microsporidia nbsp Chytrid flagellated fungus nbsp Sphaeroforma sp Mesomycetozoea nbsp Ministeria sp Filasterea nbsp Capsaspora sp Filasterea nbsp Salpingoeca Choanoflagellatea nbsp Desmarella sp colony Choanoflagellatea nbsp Two opisthokonts a human Metazoa and a mushroom Fungi References edit Loron Corentin C Francois Camille Rainbird Robert H Turner Elizabeth C Borensztajn Stephan Javaux Emmanuelle J June 2019 Early fungi from the Proterozoic era in Arctic Canada Nature 570 7760 232 235 Bibcode 2019Natur 570 232L doi 10 1038 s41586 019 1217 0 PMID 31118507 S2CID 162180486 The Classification of Lower Organisms Palo Alto Pacific Books 1956 OCLC 477890 a b Rayner Alan D M ed 1987 The origin of fungi and pseudofungi Evolutionary biology of Fungi Cambridge Cambridge University Press pp 339 353 ISBN 0 521 33050 5 Adl Sina M Simpson Alastair G B Farmer Mark A Andersen Robert A Anderson O Roger Barta John R et al September October 2005 The new higher level classification of eukaryotes with emphasis on the taxonomy of protists The Journal of Eukaryotic Microbiology 52 5 399 451 doi 10 1111 j 1550 7408 2005 00053 x PMID 16248873 Shalchian Tabrizi K Minge MA Espelund M Orr R Ruden T Jakobsen KS Cavalier Smith T May 2008 Aramayo R ed Multigene phylogeny of choanozoa and the origin of animals PLOS ONE 3 5 e2098 Bibcode 2008PLoSO 3 2098S doi 10 1371 journal pone 0002098 PMC 2346548 PMID 18461162 Fungi Metazoa group UniProt Archived from the original on 17 February 2009 Retrieved 2009 03 08 a b Steenkamp ET Wright J Baldauf SL January 2006 The protistan origins of animals and fungi Molecular Biology and Evolution 23 1 93 106 doi 10 1093 molbev msj011 PMID 16151185 Huang Jinling Xu Ying Gogarten Johann Peter November 2005 The presence of a haloarchaeal type tyrosyl tRNA synthetase marks the opisthokonts as monophyletic Molecular Biology and Evolution 22 11 2142 2146 doi 10 1093 molbev msi221 PMID 16049196 Parfrey LW Barbero E Lasser E Dunthorn M Bhattacharya D Patterson DJ Katz LA December 2006 Evaluating support for the current classification of eukaryotic diversity PLOS Genetics 2 12 e220 doi 10 1371 journal pgen 0020220 PMC 1713255 PMID 17194223 Torruella G Derelle R Paps J Lang B F Roger A J Shalchian Tabrizi K Ruiz Trillo I February 2012 Phylogenetic relationships within the Opisthokonta based on phylogenomic analyses of conserved single copy protein domains Molecular Biology and Evolution 29 2 531 544 doi 10 1093 molbev msr185 PMC 3350318 PMID 21771718 Eme L Sharpe S C Brown M W Roger A J August 2014 On the age of eukaryotes evaluating evidence from fossils and molecular clocks Cold Spring Harbor Perspectives in Biology 6 8 a016139 doi 10 1101 cshperspect a016139 PMC 4107988 PMID 25085908 Adl Sina M Bass David Lane Christopher E Lukes Julius Schoch Conrad L Smirnov Alexey et al January 2019 Revisions to the Classification Nomenclature and Diversity of Eukaryotes The Journal of Eukaryotic Microbiology 66 1 4 119 doi 10 1111 jeu 12691 PMC 6492006 PMID 30257078 Wainright PO Hinkle G Sogin ML Stickel SK April 1993 Monophyletic origins of the metazoa an evolutionary link with fungi Science 260 5106 340 342 Bibcode 1993Sci 260 340W doi 10 1126 science 8469985 PMID 8469985 S2CID 27373608 Stechmann Alexandra Cavalier Smith Thomas July 2002 Rooting the eukaryote tree by using a derived gene fusion Science 297 5578 89 91 Bibcode 2002Sci 297 89S doi 10 1126 science 1071196 PMID 12098695 S2CID 21064445 Torruella Guifre De Mendoza Alex Grau Bove Xavier Anto Meritxell Chaplin Mark A Del Campo Javier et al September 2015 Phylogenomics Reveals Convergent Evolution of Lifestyles in Close Relatives of Animals and Fungi Current Biology 25 18 2404 2410 doi 10 1016 j cub 2015 07 053 PMID 26365255 Brown M W Spiegel F W Silberman J D December 2009 Phylogeny of the forgotten cellular slime mold Fonticula alba reveals a key evolutionary branch within Opisthokonta Molecular Biology and Evolution 26 12 2699 2709 doi 10 1093 molbev msp185 PMID 19692665 Tedersoo Leho Sanchez Ramirez Santiago Koljalg Urmas Bahram Mohammad Doring Markus Schigel Dmitry et al 2018 High level classification of the Fungi and a tool for evolutionary ecological analyses Fungal Diversity 90 1 135 159 doi 10 1007 s13225 018 0401 0 ISSN 1560 2745 Galindo Luis Javier Torruella Guifre Lopez Garcia Purificacion Ciobanu Maria Gutierrez Preciado Ana Karpov Sergey A Moreira David June 2023 Phylogenomics Supports the Monophyly of Aphelids and Fungi and Identifies New Molecular Synapomorphies Systematic Biology 72 3 505 515 doi 10 1093 sysbio syac054 PMID 35900180 Tikhonenkov Denis V Mikhailov Kirill V Hehenberger Elisabeth Karpov Sergei A Prokina Kristina I Esaulov Anton S et al November 2020 New Lineage of Microbial Predators Adds Complexity to Reconstructing the Evolutionary Origin of Animals Current Biology 30 22 4500 4509 e5 doi 10 1016 j cub 2020 08 061 PMID 32976804 External links edit nbsp Wikispecies has information related to Opisthokonta nbsp Wikimedia Commons has media related to Opisthokonta Tree of Life Eukaryotes Retrieved from https en wikipedia org w index php title Opisthokont amp oldid 1205597173, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.