fbpx
Wikipedia

OSI model

The Open Systems Interconnection model (OSI model) is a conceptual model that 'provides a common basis for the coordination of [ISO] standards development for the purpose of systems interconnection'.[2] In the OSI reference model, the communications between a computing system are split into seven different abstraction layers: Physical, Data Link, Network, Transport, Session, Presentation, and Application.[3]

The model partitions the flow of data in a communication system into seven abstraction layers to describe networked communication from the physical implementation of transmitting bits across a communications medium to the highest-level representation of data of a distributed application. Each intermediate layer serves a class of functionality to the layer above it and is served by the layer below it. Classes of functionality are realized in all software development through all and any standardized communication protocols.

Each layer in the OSI model has its own well-defined functions, and the functions of each layer communicate and interact with the layers immediately above and below it, unless the layer does not have layers below or above.

The Internet protocol suite has a separate model, the layers of which are mentioned in RFC 1122 and RFC 1123. That model combines the physical and data link layers of the OSI model into a single link layer, and has a single application layer for all protocols above the transport layer, as opposed to the separate application, presentation and session layers of the OSI model.

In comparison, several networking models have sought to create an intellectual framework for clarifying networking concepts and activities,[citation needed] but none have been as successful as the OSI reference model in becoming the standard model for discussing, teaching, and learning for the networking procedures in the field of Information technology. Additionally, the model allows transparent communication through equivalent exchange of protocol data units (PDUs) between two parties, through what is known as peer-to-peer networking (also known as peer-to-peer communication). As a result, the OSI reference model has not only become an important piece among professionals and non-professionals alike, but also in all networking between one or many parties, due in large part to its commonly accepted user-friendly framework.[4]

Communication in the OSI-Model (example with layers 3 to 5)

History

The development of the OSI model started in the late 1970s to support the emergence of the diverse computer networking methods that were competing for application in the large national networking efforts in the world (see Protocol Wars). In the 1980s, the model became a working product of the Open Systems Interconnection group at the International Organization for Standardization (ISO). While attempting to provide a comprehensive description of networking, the model failed to garner reliance during the design of the Internet, which is reflected in the less prescriptive Internet Protocol Suite, principally sponsored under the auspices of the Internet Engineering Task Force (IETF).

In the early- and mid-1970s, networking was largely either government-sponsored (NPL network in the UK, ARPANET in the US, CYCLADES in France) or vendor-developed with proprietary standards, such as IBM's Systems Network Architecture and Digital Equipment Corporation's DECnet. Public data networks were only just beginning to emerge, and these began to use the X.25 standard in the late 1970s.[5][6]

The Experimental Packet Switched System in the UK circa 1973–1975 identified the need for defining higher level protocols.[5] The UK National Computing Centre publication 'Why Distributed Computing' which came from considerable research into future configurations for computer systems,[7] resulted in the UK presenting the case for an international standards committee to cover this area at the ISO meeting in Sydney in March 1977.[8][9]

Beginning in 1977, the ISO initiated a program to develop general standards and methods of networking. A similar process evolved at the International Telegraph and Telephone Consultative Committee (CCITT, from French: Comité Consultatif International Téléphonique et Télégraphique). Both bodies developed documents that defined similar networking models. The British Department of Trade and Industry acted as the secretariat and universities in the United Kingdom developed prototypes of the standards.[10]

The OSI model was first defined in raw form in Washington, DC, in February 1978 by Hubert Zimmermann of France and the refined but still draft standard was published by the ISO in 1980.[11]

The drafters of the reference model had to contend with many competing priorities and interests. The rate of technological change made it necessary to define standards that new systems could converge to rather than standardizing procedures after the fact; the reverse of the traditional approach to developing standards.[12] Although not a standard itself, it was a framework in which future standards could be defined.[13]

In 1983, the CCITT and ISO documents were merged to form The Basic Reference Model for Open Systems Interconnection, usually referred to as the Open Systems Interconnection Reference Model, OSI Reference Model, or simply OSI model. It was published in 1984 by both the ISO, as standard ISO 7498, and the renamed CCITT (now called the Telecommunications Standardization Sector of the International Telecommunication Union or ITU-T) as standard X.200.

OSI had two major components, an abstract model of networking, called the Basic Reference Model or seven-layer model, and a set of specific protocols. The OSI reference model was a major advance in the standardisation of network concepts. It promoted the idea of a consistent model of protocol layers, defining interoperability between network devices and software.

The concept of a seven-layer model was provided by the work of Charles Bachman at Honeywell Information Systems.[14] Various aspects of OSI design evolved from experiences with the NPL network, ARPANET, CYCLADES, EIN, and the International Networking Working Group (IFIP WG6.1). In this model, a networking system was divided into layers. Within each layer, one or more entities implement its functionality. Each entity interacted directly only with the layer immediately beneath it and provided facilities for use by the layer above it.

The OSI standards documents are available from the ITU-T as the X.200-series of recommendations.[15] Some of the protocol specifications were also available as part of the ITU-T X series. The equivalent ISO/IEC standards for the OSI model were available from ISO. Not all are free of charge.[16]

OSI was an industry effort, attempting to get industry participants to agree on common network standards to provide multi-vendor interoperability.[17] It was common for large networks to support multiple network protocol suites, with many devices unable to interoperate with other devices because of a lack of common protocols. For a period in the late 1980s and early 1990s, engineers, organizations and nations became polarized over the issue of which standard, the OSI model or the Internet protocol suite, would result in the best and most robust computer networks.[9][18][19] However, while OSI developed its networking standards in the late 1980s,[20][21] TCP/IP came into widespread use on multi-vendor networks for internetworking.

The OSI model is still used as a reference for teaching and documentation;[22] however, the OSI protocols originally conceived for the model did not gain popularity. Some engineers argue the OSI reference model is still relevant to cloud computing.[23] Others say the original OSI model doesn't fit today's networking protocols and have suggested instead a simplified approach.[24][25]

Definitions

Communication protocols enable an entity in one host to interact with a corresponding entity at the same layer in another host. Service definitions, like the OSI Model, abstractly describe the functionality provided to an (N)-layer by an (N-1) layer, where N is one of the seven layers of protocols operating in the local host.

At each level N, two entities at the communicating devices (layer N peers) exchange protocol data units (PDUs) by means of a layer N protocol. Each PDU contains a payload, called the service data unit (SDU), along with protocol-related headers or footers.

Data processing by two communicating OSI-compatible devices proceeds as follows:

  1. The data to be transmitted is composed at the topmost layer of the transmitting device (layer N) into a protocol data unit (PDU).
  2. The PDU is passed to layer N-1, where it is known as the service data unit (SDU).
  3. At layer N-1 the SDU is concatenated with a header, a footer, or both, producing a layer N-1 PDU. It is then passed to layer N-2.
  4. The process continues until reaching the lowermost level, from which the data is transmitted to the receiving device.
  5. At the receiving device the data is passed from the lowest to the highest layer as a series of SDUs while being successively stripped from each layer's header or footer until reaching the topmost layer, where the last of the data is consumed.

Standards documents

The OSI model was defined in ISO/IEC 7498 which consists of the following parts:

  • ISO/IEC 7498-1 The Basic Model
  • ISO/IEC 7498-2 Security Architecture
  • ISO/IEC 7498-3 Naming and addressing
  • ISO/IEC 7498-4 Management framework

ISO/IEC 7498-1 is also published as ITU-T Recommendation X.200.

Layer architecture

The recommendation X.200 describes seven layers, labelled 1 to 7. Layer 1 is the lowest layer in this model.

OSI model
Layer Protocol data unit (PDU) Function[26]
Host
layers
7 Application Data High-level protocols such as for resource sharing or remote file access, e.g. HTTP.
6 Presentation Translation of data between a networking service and an application; including character encoding, data compression and encryption/decryption
5 Session Managing communication sessions, i.e., continuous exchange of information in the form of multiple back-and-forth transmissions between two nodes
4 Transport Segment, Datagram Reliable transmission of data segments between points on a network, including segmentation, acknowledgement and multiplexing
Media
layers
3 Network Packet Structuring and managing a multi-node network, including addressing, routing and traffic control
2 Data link Frame Transmission of data frames between two nodes connected by a physical layer
1 Physical Bit, Symbol Transmission and reception of raw bit streams over a physical medium


Layer 1: Physical layer

The Physical Layer is responsible for the transmission and reception of unstructured raw data between a device, such as a network interface controller, Ethernet hub, or network switch, and a physical transmission medium. It converts the digital bits into electrical, radio, or optical signals. Layer specifications define characteristics such as voltage levels, the timing of voltage changes, physical data rates, maximum transmission distances, modulation scheme, channel access method and physical connectors. This includes the layout of pins, voltages, line impedance, cable specifications, signal timing and frequency for wireless devices. Bit rate control is done at the physical layer and may define transmission mode as simplex, half duplex, and full duplex. The components of a physical layer can be described in terms of a network topology. Physical layer specifications are included in the specifications for the ubiquitous Bluetooth, Ethernet, and USB standards. An example of a less well-known physical layer specification would be for the CAN standard.

The Physical Layer also specifies how encoding occurs over a physical signal, such as electrical voltage or a light pulse. For example, a 1 bit might be represented on a copper wire by the transition from a 0-volt to a 5-volt signal, whereas a 0 bit might be represented by the transition from a 5-volt signal to 0-volt signal. As a result, common problems occurring at the Physical Layer are often related to the incorrect media termination, EMI or noise scrambling, and NICs and hubs that are misconfigured or do not work correctly.

Layer 2: Data link layer

The data link layer provides node-to-node data transfer—a link between two directly connected nodes. It detects and possibly corrects errors that may occur in the physical layer. It defines the protocol to establish and terminate a connection between two physically connected devices. It also defines the protocol for flow control between them.

IEEE 802 divides the data link layer into two sublayers:[27]

  • Medium access control (MAC) layer – responsible for controlling how devices in a network gain access to a medium and permission to transmit data.
  • Logical link control (LLC) layer – responsible for identifying and encapsulating network layer protocols, and controls error checking and frame synchronization.

The MAC and LLC layers of IEEE 802 networks such as 802.3 Ethernet, 802.11 Wi-Fi, and 802.15.4 Zigbee operate at the data link layer.

The Point-to-Point Protocol (PPP) is a data link layer protocol that can operate over several different physical layers, such as synchronous and asynchronous serial lines.

The ITU-T G.hn standard, which provides high-speed local area networking over existing wires (power lines, phone lines and coaxial cables), includes a complete data link layer that provides both error correction and flow control by means of a selective-repeat sliding-window protocol.

Security, specifically (authenticated) encryption, at this layer can be applied with MACSec.

Layer 3: Network layer

The network layer provides the functional and procedural means of transferring packets from one node to another connected in "different networks". A network is a medium to which many nodes can be connected, on which every node has an address and which permits nodes connected to it to transfer messages to other nodes connected to it by merely providing the content of a message and the address of the destination node and letting the network find the way to deliver the message to the destination node, possibly routing it through intermediate nodes. If the message is too large to be transmitted from one node to another on the data link layer between those nodes, the network may implement message delivery by splitting the message into several fragments at one node, sending the fragments independently, and reassembling the fragments at another node. It may, but does not need to, report delivery errors.

Message delivery at the network layer is not necessarily guaranteed to be reliable; a network layer protocol may provide reliable message delivery, but it need not do so.

A number of layer-management protocols, a function defined in the management annex, ISO 7498/4, belong to the network layer. These include routing protocols, multicast group management, network-layer information and error, and network-layer address assignment. It is the function of the payload that makes these belong to the network layer, not the protocol that carries them.[28]

Layer 4: Transport layer

The transport layer provides the functional and procedural means of transferring variable-length data sequences from a source host to a destination host from one application to another across a network, while maintaining the quality-of-service functions. Transport protocols may be connection-oriented or connectionless.

This may require breaking large protocol data units or long data streams into smaller chunks called "segments", since the network layer imposes a maximum packet size called the maximum transmission unit (MTU), which depends on the maximum packet size imposed by all data link layers on the network path between the two hosts. The amount of data in a data segment must be small enough to allow for a network-layer header and a transport-layer header. For example, for data being transferred across Ethernet, the MTU is 1500 bytes, the minimum size of a TCP header is 20 bytes, and the minimum size of an IPv4 header is 20 bytes, so the maximum segment size is 1500-(20+20) bytes, or 1460 bytes. The process of dividing data into segments is called segmentation; it is an optional function of the transport layer. Some connection-oriented transport protocols, such as TCP and the OSI connection-oriented transport protocol (COTP), perform segmentation and reassembly of segments on the receiving side; connectionless transport protocols, such as UDP and the OSI connectionless transport protocol (CLTP), usually do not.

The transport layer also controls the reliability of a given link between a source and destination host through flow control, error control, and acknowledgments of sequence and existence. Some protocols are state- and connection-oriented. This means that the transport layer can keep track of the segments and retransmit those that fail delivery through the acknowledgment hand-shake system. The transport layer will also provide the acknowledgement of the successful data transmission and sends the next data if no errors occurred.

Reliability, however, is not a strict requirement within the transport layer. Protocols like UDP, for example, are used in applications that are willing to accept some packet loss, reordering, errors or duplication. Streaming media, real-time multiplayer games and voice over IP (VoIP) are examples of applications in which loss of packets is not usually a fatal problem.

The OSI connection-oriented transport protocol defines five classes of connection-mode transport protocols ranging from class 0 (which is also known as TP0 and provides the fewest features) to class 4 (TP4, designed for less reliable networks, similar to the Internet). Class 0 contains no error recovery and was designed for use on network layers that provide error-free connections. Class 4 is closest to TCP, although TCP contains functions, such as the graceful close, which OSI assigns to the session layer. Also, all OSI TP connection-mode protocol classes provide expedited data and preservation of record boundaries. Detailed characteristics of TP0-4 classes are shown in the following table:[29]

Feature name TP0 TP1 TP2 TP3 TP4
Connection-oriented network Yes Yes Yes Yes Yes
Connectionless network No No No No Yes
Concatenation and separation No Yes Yes Yes Yes
Segmentation and reassembly Yes Yes Yes Yes Yes
Error recovery No Yes Yes Yes Yes
Reinitiate connectiona No Yes No Yes No
Multiplexing / demultiplexing over single virtual circuit No No Yes Yes Yes
Explicit flow control No No Yes Yes Yes
Retransmission on timeout No No No No Yes
Reliable transport service No Yes No Yes Yes
a If an excessive number of PDUs are unacknowledged.

An easy way to visualize the transport layer is to compare it with a post office, which deals with the dispatch and classification of mail and parcels sent. A post office inspects only the outer envelope of mail to determine its delivery. Higher layers may have the equivalent of double envelopes, such as cryptographic presentation services that can be read by the addressee only. Roughly speaking, tunnelling protocols operate at the transport layer, such as carrying non-IP protocols such as IBM's SNA or Novell's IPX over an IP network, or end-to-end encryption with IPsec. While Generic Routing Encapsulation (GRE) might seem to be a network-layer protocol, if the encapsulation of the payload takes place only at the endpoint, GRE becomes closer to a transport protocol that uses IP headers but contains complete Layer 2 frames or Layer 3 packets to deliver to the endpoint. L2TP carries PPP frames inside transport segments.

Although not developed under the OSI Reference Model and not strictly conforming to the OSI definition of the transport layer, the Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP) of the Internet Protocol Suite are commonly categorized as layer-4 protocols within OSI.

Transport Layer Security (TLS) does not strictly fit inside the model either. It contains characteristics of the transport and presentation layers.[30][31]

Layer 5: Session layer

The Session Layer creates the setup, controls the connections, and ends the teardown, between two or more computers, which is called a "session". Since DNS and other Name Resolution Protocols operate in this part of the layer, common functions of the Session Layer include user logon (establishment), name lookup (management), and user logoff (termination) functions. Including this matter, authentication protocols are also built into most client software, such as FTP Client and NFS Client for Microsoft Networks. Therefore, the Session layer establishes, manages and terminates the connections between the local and remote application. The Session Layer also provides for full-duplex, half-duplex, or simplex operation, and establishes procedures for checkpointing, suspending, restarting, and terminating a session between two related streams of data, such as an audio and a video stream in a web-conferencing application. Therefore, the session layer is commonly implemented explicitly in application environments that use remote procedure calls.

Layer 6: Presentation layer

The Presentation Layer establishes data formatting and data translation into a format specified by the application layer during the encapsulation of outgoing messages while being passed down the protocol stack, and possibly reversed during the deencapsulation of incoming messages when being passed up the protocol stack. For this very reason, outgoing messages during encapsulation are converted into a format specified by the application layer, while the conversation for incoming messages during deencapsulation are reversed.

The Presentation Layer handles protocol conversion, data encryption, data decryption, data compression, data decompression, incompatibility of data representation between OSs, and graphic commands. The presentation layer transforms data into the form that the application layer accepts, to be sent across a network. Since the presentation layer converts data and graphics into a display format for the Application Layer, the Presentation Layer is sometimes called the syntax layer.[32] For this reason, the Presentation Layer negotiates the transfer of syntax structure through the Basic Encoding Rules of Abstract Syntax Notation One (ASN.1), with capabilities such as converting an EBCDIC-coded text file to an ASCII-coded file, or serialization of objects and other data structures from and to XML.[4]

Layer 7: Application layer

The application layer is the layer of the OSI model that is closest to the end user, which means both the OSI Application Layer and the user interact directly with software application that implements a component of communication between the client and server, such as File Explorer and Microsoft Word. Such application programs fall outside the scope of the OSI model unless they are directly integrated into the Application layer through the functions of communication, as is the case with applications such as Web Browsers and Email Programs. Other examples of software are Microsoft Network Software for File and Printer Sharing and Unix/Linux Network File System Client for access to shared file resources.

Application-layer functions typically include file sharing, message handling, and database access, through the most common protocols at the application layer, known as HTTP, FTP, SMB/CIFS, TFTP, and SMTP. When identifying communication partners, the application layer determines the identity and availability of communication partners for an application with data to transmit. The most important distinction in the application layer is the distinction between the application-entity and the application. For example, a reservation website might have two application-entities: one using HTTP to communicate with its users, and one for a remote database protocol to record reservations. Neither of these protocols have anything to do with reservations. That logic is in the application itself. The application layer has no means to determine the availability of resources in the network.[4]

Cross-layer functions

Cross-layer functions are services that are not tied to a given layer, but may affect more than one layer.[33] Some orthogonal aspects, such as management and security, involve all of the layers (See ITU-T X.800 Recommendation[34]). These services are aimed at improving the CIA triadconfidentiality, integrity, and availability—of the transmitted data. Cross-layer functions are the norm, in practice, because the availability of a communication service is determined by the interaction between network design and network management protocols.

Specific examples of cross-layer functions include the following:

  • Security service (telecommunication)[34] as defined by ITU-T X.800 recommendation.
  • Management functions, i.e. functions that permit to configure, instantiate, monitor, terminate the communications of two or more entities: there is a specific application-layer protocol, common management information protocol (CMIP) and its corresponding service, common management information service (CMIS), they need to interact with every layer in order to deal with their instances.
  • Multiprotocol Label Switching (MPLS), ATM, and X.25 are 3a protocols. OSI subdivides the Network Layer into three sublayers: 3a) Subnetwork Access, 3b) Subnetwork Dependent Convergence and 3c) Subnetwork Independent Convergence.[35] It was designed to provide a unified data-carrying service for both circuit-based clients and packet-switching clients which provide a datagram-based service model. It can be used to carry many different kinds of traffic, including IP packets, as well as native ATM, SONET, and Ethernet frames. Sometimes one sees reference to a Layer 2.5.
  • Cross MAC and PHY Scheduling is essential in wireless networks because of the time-varying nature of wireless channels. By scheduling packet transmission only in favourable channel conditions, which requires the MAC layer to obtain channel state information from the PHY layer, network throughput can be significantly improved and energy waste can be avoided.[36]

Programming interfaces

Neither the OSI Reference Model, nor any OSI protocol specifications, outline any programming interfaces, other than deliberately abstract service descriptions. Protocol specifications define a methodology for communication between peers, but the software interfaces are implementation-specific.

For example, the Network Driver Interface Specification (NDIS) and Open Data-Link Interface (ODI) are interfaces between the media (layer 2) and the network protocol (layer 3).

Comparison to other networking suites

The table below presents a list of OSI layers, the original OSI protocols, and some approximate modern matches. It is very important to note that this correspondence is rough: the OSI model contains idiosyncrasies not found in later systems such as the IP stack in modern Internet.[25]

Comparison with TCP/IP model

The design of protocols in the TCP/IP model of the Internet does not concern itself with strict hierarchical encapsulation and layering. RFC 3439 contains a section entitled "Layering considered harmful".[42] TCP/IP does recognize four broad layers of functionality which are derived from the operating scope of their contained protocols: the scope of the software application; the host-to-host transport path; the internetworking range; and the scope of the direct links to other nodes on the local network.[43]

Despite using a different concept for layering than the OSI model, these layers are often compared with the OSI layering scheme in the following manner:

  • The Internet application layer maps to the OSI application layer, presentation layer, and most of the session layer.
  • The TCP/IP transport layer maps to the graceful close function of the OSI session layer as well as the OSI transport layer.
  • The internet layer performs functions as those in a subset of the OSI network layer.
  • The link layer corresponds to the OSI data link layer and may include similar functions as the physical layer, as well as some protocols of the OSI's network layer.

These comparisons are based on the original seven-layer protocol model as defined in ISO 7498, rather than refinements in the internal organization of the network layer.

The OSI protocol suite that was specified as part of the OSI project was considered by many as too complicated and inefficient, and to a large extent unimplementable.[44] Taking the "forklift upgrade" approach to networking, it specified eliminating all existing networking protocols and replacing them at all layers of the stack. This made implementation difficult and was resisted by many vendors and users with significant investments in other network technologies. In addition, the protocols included so many optional features that many vendors' implementations were not interoperable.[44]

Although the OSI model is often still referenced, the Internet protocol suite has become the standard for networking. TCP/IP's pragmatic approach to computer networking and to independent implementations of simplified protocols made it a practical methodology.[44] Some protocols and specifications in the OSI stack remain in use, one example being IS-IS, which was specified for OSI as ISO/IEC 10589:2002 and adapted for Internet use with TCP/IP as RFC 1142.

See also

Further reading

  • John Day, "Patterns in Network Architecture: A Return to Fundamentals" (Prentice Hall 2007, ISBN 978-0-13-225242-3)
  • Marshall Rose, "The Open Book" (Prentice-Hall, Englewood Cliffs, 1990)
  • David M. Piscitello, A. Lyman Chapin, Open Systems Networking (Addison-Wesley, Reading, 1993)
  • Andrew S. Tanenbaum, Computer Networks, 4th Edition, (Prentice-Hall, 2002) ISBN 0-13-066102-3
  • Gary Dickson; Alan Lloyd (July 1992). Open Systems Interconnection/Computer Communications Standards and Gossip Explained. Prentice-Hall. ISBN 978-0136401117.
  • Russell, Andrew L. (2014). Open Standards and the Digital Age: History, Ideology, and Networks. Cambridge University Press. ISBN 978-1-139-91661-5.

References

  1. ^ . Archived from the original on 1 February 2021. Retrieved 24 November 2021.
  2. ^ ISO/IEC 7498-1:1994 Information technology — Open Systems Interconnection — Basic Reference Model: The Basic Model. June 1999. Introduction. Retrieved 26 August 2022.
  3. ^ "What is the OSI Model?". Forcepoint. 10 August 2018. Retrieved 20 May 2022.
  4. ^ a b c Tomsho, Greg (2016). Guide to Networking Essentials (7th ed.). Cengage. Retrieved 3 April 2022.
  5. ^ a b Davies, Howard; Bressan, Beatrice (26 April 2010). A History of International Research Networking: The People who Made it Happen. John Wiley & Sons. pp. 2–3. ISBN 978-3-527-32710-2.
  6. ^ Roberts, Dr. Lawrence G. (November 1978). "The Evolution of Packet Switching" (PDF). IEEE Invited Paper. Retrieved 26 February 2022.
  7. ^ Down, Peter John; Taylor, Frank Edward (1976). Why distributed computing?: An NCC review of potential and experience in the UK. NCC Publications. ISBN 9780850121704.
  8. ^ Radu, Roxana (2019). "Revisiting the Origins: The Internet and its Early Governance". Negotiating Internet Governance. Oxford University Press. doi:10.1093/oso/9780198833079.003.0003. ISBN 9780191871405.
  9. ^ a b Andrew L. Russell (30 July 2013). "OSI: The Internet That Wasn't". IEEE Spectrum. Vol. 50, no. 8.
  10. ^ Campbell-Kelly, Martin; Garcia-Swartz, Daniel D (2013). "The History of the Internet: The Missing Narratives". Journal of Information Technology. 28 (1): 18–33. doi:10.1057/jit.2013.4. ISSN 0268-3962.
  11. ^ "OSI The Internet That Wasn't". IEEE Spectrum. March 2017.
  12. ^ Sunshine, Carl A. (1989). Computer Network Architectures and Protocols. Springer Science & Business Media. p. 35. ISBN 978-1-4613-0809-6.
  13. ^ Hasman, A. (1995). Education and Training in Health Informatics in Europe: State of the Art, Guidelines, Applications. IOS Press. p. 251. ISBN 978-90-5199-234-2.
  14. ^ J. A. N. Lee. "Computer Pioneers by J. A. N. Lee". IEEE Computer Society.
  15. ^ "ITU-T X-Series Recommendations".
  16. ^ "Publicly Available Standards". Standards.iso.org. 30 July 2010. Retrieved 11 September 2010.
  17. ^ Russell, Andrew L. (28 April 2014). Open Standards and the Digital Age: History, Ideology, and Networks. Cambridge University Press. ISBN 978-1-139-91661-5.
  18. ^ Russell, Andrew L. "Rough Consensus and Running Code' and the Internet-OSI Standards War" (PDF). IEEE Annals of the History of Computing.
  19. ^ "Standards Wars" (PDF). 2006.
  20. ^ Network World. IDG Network World Inc. 15 February 1988.
  21. ^ Network World. IDG Network World Inc. 10 October 1988.
  22. ^ Shaw, Keith (22 October 2018). "The OSI model explained: How to understand (and remember) the 7 layer network model". Network World. Retrieved 16 May 2020.
  23. ^ "An OSI Model for Cloud". Cisco Blogs. 24 February 2017. Retrieved 16 May 2020.
  24. ^ Taylor, Steve; Metzler, Jim (23 September 2008). "Why it's time to let the OSI model die". Network World. Retrieved 16 May 2020.
  25. ^ a b Crawford, JB (27 March 2021). "The actual OSI model".
  26. ^ "Windows Network Architecture and the OSI Model". Microsoft Documentation. Retrieved 24 June 2020.
  27. ^ "5.2 RM description for end stations". IEEE Std 802-2014, IEEE Standard for Local and Metropolitan Area Networks: Overview and Architecture. ieee. doi:10.1109/IEEESTD.2014.6847097. ISBN 978-0-7381-9219-2.
  28. ^ International Organization for Standardization (15 November 1989). "ISO/IEC 7498-4:1989 -- Information technology -- Open Systems Interconnection -- Basic Reference Model: Naming and addressing". ISO Standards Maintenance Portal. ISO Central Secretariat. Retrieved 17 August 2015.
  29. ^ "ITU-T Recommendation X.224 (11/1995) ISO/IEC 8073, Open Systems Interconnection - Protocol for providing the connection-mode transport service". ITU.
  30. ^ Hooper, Howard (2012). CCNP Security VPN 642-648 Official Cert Guide (2 ed.). Cisco Press. p. 22. ISBN 9780132966382.
  31. ^ Spott, Andrew; Leek, Tom; et al. "What layer is TLS?". Information Security Stack Exchange.
  32. ^ Grigonis, Richard (2000). Computer telephony- encyclopaedia. CMP. p. 331. ISBN 9781578200450.
  33. ^ Mao, Stephen (13 November 2009). "Chapter 8: Fundamentals of communication networks". In Wyglinski, Alexander; Nekovee, Maziar; Hou, Thomas (eds.). Cognitive Radio Communications and Networks: Principles and Practice. Elsevier. p. 201. ISBN 978-0-08-087932-1.
  34. ^ a b "ITU-T Recommendation X.800 (03/91), Security architecture for Open Systems Interconnection for CCITT applications". ITU. Retrieved 14 August 2015.
  35. ^ Hegering, Heinz-Gerd (24 August 1999). Integrated management of networked systems : concepts, architectures, and their operational application. Morgan Kaufmann. p. 54. ISBN 978-1558605718.
  36. ^ Miao, Guowang; Song, Guocong (2014). Energy and spectrum efficient wireless network design. Cambridge University Press. ISBN 978-1107039889.
  37. ^ "ITU-T Recommendation Q.1400 (03/1993)], Architecture framework for the development of signaling and OA&M protocols using OSI concepts". ITU. pp. 4, 7.
  38. ^ ITU Rec. X.227 (ISO 8650), X.217 (ISO 8649).
  39. ^ X.700 series of recommendations from the ITU-T (in particular X.711) and ISO 9596.
  40. ^ a b "Internetworking Technology Handbook - Internetworking Basics [Internetworking]". Cisco. 15 January 2014. Retrieved 14 August 2015.
  41. ^ "3GPP specification: 36.300". 3gpp.org. Retrieved 14 August 2015.
  42. ^ "Layering Considered Harmful". Some Internet Architectural Guidelines and Philosophy. December 2002. sec. 3. doi:10.17487/RFC3439. RFC 3439. Retrieved 25 April 2022.
  43. ^ Walter Goralski (2009). The Illustrated Network: How TCP/IP Works in a Modern Network (PDF). Morgan Kaufmann. p. 26. ISBN 978-0123745415.
  44. ^ a b c Andrew S. Tanenbaum, Computer Networks, § 1.4.4.

External links

  • Microsoft Knowledge Base: The OSI Model's Seven Layers Defined and Functions Explained
  • ISO/IEC standard 7498-1:1994 (PDF document inside ZIP archive) (requires HTTP cookies in order to accept licence agreement)
  • ITU-T X.200 (the same contents as from ISO)
  • . infchg.appspot.com. The ISO OSI Reference Model, Beluga graph of data units and groups of layers. Archived from the original on 26 May 2012.{{cite web}}: CS1 maint: others (link)
  • Zimmermann, Hubert (April 1980). "OSI Reference Model — The ISO Model of Architecture for Open Systems Interconnection". IEEE Transactions on Communications. 28 (4): 425–432. CiteSeerX 10.1.1.136.9497. doi:10.1109/TCOM.1980.1094702. S2CID 16013989.
  • Cisco Systems Internetworking Technology Handbook
  • What is the OSI Model – 7 Layers of OSI Model Explained
  • Guide to Networking Essentials, 7th Edition - Cengage

model, open, systems, interconnection, model, conceptual, model, that, provides, common, basis, coordination, standards, development, purpose, systems, interconnection, reference, model, communications, between, computing, system, split, into, seven, different. The Open Systems Interconnection model OSI model is a conceptual model that provides a common basis for the coordination of ISO standards development for the purpose of systems interconnection 2 In the OSI reference model the communications between a computing system are split into seven different abstraction layers Physical Data Link Network Transport Session Presentation and Application 3 The model partitions the flow of data in a communication system into seven abstraction layers to describe networked communication from the physical implementation of transmitting bits across a communications medium to the highest level representation of data of a distributed application Each intermediate layer serves a class of functionality to the layer above it and is served by the layer below it Classes of functionality are realized in all software development through all and any standardized communication protocols Each layer in the OSI model has its own well defined functions and the functions of each layer communicate and interact with the layers immediately above and below it unless the layer does not have layers below or above The Internet protocol suite has a separate model the layers of which are mentioned in RFC 1122 and RFC 1123 That model combines the physical and data link layers of the OSI model into a single link layer and has a single application layer for all protocols above the transport layer as opposed to the separate application presentation and session layers of the OSI model In comparison several networking models have sought to create an intellectual framework for clarifying networking concepts and activities citation needed but none have been as successful as the OSI reference model in becoming the standard model for discussing teaching and learning for the networking procedures in the field of Information technology Additionally the model allows transparent communication through equivalent exchange of protocol data units PDUs between two parties through what is known as peer to peer networking also known as peer to peer communication As a result the OSI reference model has not only become an important piece among professionals and non professionals alike but also in all networking between one or many parties due in large part to its commonly accepted user friendly framework 4 Communication in the OSI Model example with layers 3 to 5 Contents 1 History 2 Definitions 2 1 Standards documents 3 Layer architecture 3 1 Layer 1 Physical layer 3 2 Layer 2 Data link layer 3 3 Layer 3 Network layer 3 4 Layer 4 Transport layer 3 5 Layer 5 Session layer 3 6 Layer 6 Presentation layer 3 7 Layer 7 Application layer 4 Cross layer functions 5 Programming interfaces 6 Comparison to other networking suites 6 1 Comparison with TCP IP model 7 See also 8 Further reading 9 References 10 External linksHistory EditThe development of the OSI model started in the late 1970s to support the emergence of the diverse computer networking methods that were competing for application in the large national networking efforts in the world see Protocol Wars In the 1980s the model became a working product of the Open Systems Interconnection group at the International Organization for Standardization ISO While attempting to provide a comprehensive description of networking the model failed to garner reliance during the design of the Internet which is reflected in the less prescriptive Internet Protocol Suite principally sponsored under the auspices of the Internet Engineering Task Force IETF In the early and mid 1970s networking was largely either government sponsored NPL network in the UK ARPANET in the US CYCLADES in France or vendor developed with proprietary standards such as IBM s Systems Network Architecture and Digital Equipment Corporation s DECnet Public data networks were only just beginning to emerge and these began to use the X 25 standard in the late 1970s 5 6 The Experimental Packet Switched System in the UK circa 1973 1975 identified the need for defining higher level protocols 5 The UK National Computing Centre publication Why Distributed Computing which came from considerable research into future configurations for computer systems 7 resulted in the UK presenting the case for an international standards committee to cover this area at the ISO meeting in Sydney in March 1977 8 9 Beginning in 1977 the ISO initiated a program to develop general standards and methods of networking A similar process evolved at the International Telegraph and Telephone Consultative Committee CCITT from French Comite Consultatif International Telephonique et Telegraphique Both bodies developed documents that defined similar networking models The British Department of Trade and Industry acted as the secretariat and universities in the United Kingdom developed prototypes of the standards 10 The OSI model was first defined in raw form in Washington DC in February 1978 by Hubert Zimmermann of France and the refined but still draft standard was published by the ISO in 1980 11 The drafters of the reference model had to contend with many competing priorities and interests The rate of technological change made it necessary to define standards that new systems could converge to rather than standardizing procedures after the fact the reverse of the traditional approach to developing standards 12 Although not a standard itself it was a framework in which future standards could be defined 13 In 1983 the CCITT and ISO documents were merged to form The Basic Reference Model for Open Systems Interconnection usually referred to as the Open Systems Interconnection Reference Model OSI Reference Model or simply OSI model It was published in 1984 by both the ISO as standard ISO 7498 and the renamed CCITT now called the Telecommunications Standardization Sector of the International Telecommunication Union or ITU T as standard X 200 OSI had two major components an abstract model of networking called the Basic Reference Model or seven layer model and a set of specific protocols The OSI reference model was a major advance in the standardisation of network concepts It promoted the idea of a consistent model of protocol layers defining interoperability between network devices and software The concept of a seven layer model was provided by the work of Charles Bachman at Honeywell Information Systems 14 Various aspects of OSI design evolved from experiences with the NPL network ARPANET CYCLADES EIN and the International Networking Working Group IFIP WG6 1 In this model a networking system was divided into layers Within each layer one or more entities implement its functionality Each entity interacted directly only with the layer immediately beneath it and provided facilities for use by the layer above it The OSI standards documents are available from the ITU T as the X 200 series of recommendations 15 Some of the protocol specifications were also available as part of the ITU T X series The equivalent ISO IEC standards for the OSI model were available from ISO Not all are free of charge 16 OSI was an industry effort attempting to get industry participants to agree on common network standards to provide multi vendor interoperability 17 It was common for large networks to support multiple network protocol suites with many devices unable to interoperate with other devices because of a lack of common protocols For a period in the late 1980s and early 1990s engineers organizations and nations became polarized over the issue of which standard the OSI model or the Internet protocol suite would result in the best and most robust computer networks 9 18 19 However while OSI developed its networking standards in the late 1980s 20 21 TCP IP came into widespread use on multi vendor networks for internetworking The OSI model is still used as a reference for teaching and documentation 22 however the OSI protocols originally conceived for the model did not gain popularity Some engineers argue the OSI reference model is still relevant to cloud computing 23 Others say the original OSI model doesn t fit today s networking protocols and have suggested instead a simplified approach 24 25 Definitions EditThis section needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed November 2019 Learn how and when to remove this template message Communication protocols enable an entity in one host to interact with a corresponding entity at the same layer in another host Service definitions like the OSI Model abstractly describe the functionality provided to an N layer by an N 1 layer where N is one of the seven layers of protocols operating in the local host At each level N two entities at the communicating devices layer N peers exchange protocol data units PDUs by means of a layer N protocol Each PDU contains a payload called the service data unit SDU along with protocol related headers or footers Data processing by two communicating OSI compatible devices proceeds as follows The data to be transmitted is composed at the topmost layer of the transmitting device layer N into a protocol data unit PDU The PDU is passed to layer N 1 where it is known as the service data unit SDU At layer N 1 the SDU is concatenated with a header a footer or both producing a layer N 1 PDU It is then passed to layer N 2 The process continues until reaching the lowermost level from which the data is transmitted to the receiving device At the receiving device the data is passed from the lowest to the highest layer as a series of SDUs while being successively stripped from each layer s header or footer until reaching the topmost layer where the last of the data is consumed Standards documents Edit The OSI model was defined in ISO IEC 7498 which consists of the following parts ISO IEC 7498 1 The Basic Model ISO IEC 7498 2 Security Architecture ISO IEC 7498 3 Naming and addressing ISO IEC 7498 4 Management frameworkISO IEC 7498 1 is also published as ITU T Recommendation X 200 Layer architecture EditThe recommendation X 200 describes seven layers labelled 1 to 7 Layer 1 is the lowest layer in this model OSI model Layer Protocol data unit PDU Function 26 Hostlayers 7 Application Data High level protocols such as for resource sharing or remote file access e g HTTP 6 Presentation Translation of data between a networking service and an application including character encoding data compression and encryption decryption5 Session Managing communication sessions i e continuous exchange of information in the form of multiple back and forth transmissions between two nodes4 Transport Segment Datagram Reliable transmission of data segments between points on a network including segmentation acknowledgement and multiplexingMedialayers 3 Network Packet Structuring and managing a multi node network including addressing routing and traffic control2 Data link Frame Transmission of data frames between two nodes connected by a physical layer1 Physical Bit Symbol Transmission and reception of raw bit streams over a physical medium Layer 1 Physical layer Edit The Physical Layer is responsible for the transmission and reception of unstructured raw data between a device such as a network interface controller Ethernet hub or network switch and a physical transmission medium It converts the digital bits into electrical radio or optical signals Layer specifications define characteristics such as voltage levels the timing of voltage changes physical data rates maximum transmission distances modulation scheme channel access method and physical connectors This includes the layout of pins voltages line impedance cable specifications signal timing and frequency for wireless devices Bit rate control is done at the physical layer and may define transmission mode as simplex half duplex and full duplex The components of a physical layer can be described in terms of a network topology Physical layer specifications are included in the specifications for the ubiquitous Bluetooth Ethernet and USB standards An example of a less well known physical layer specification would be for the CAN standard The Physical Layer also specifies how encoding occurs over a physical signal such as electrical voltage or a light pulse For example a 1 bit might be represented on a copper wire by the transition from a 0 volt to a 5 volt signal whereas a 0 bit might be represented by the transition from a 5 volt signal to 0 volt signal As a result common problems occurring at the Physical Layer are often related to the incorrect media termination EMI or noise scrambling and NICs and hubs that are misconfigured or do not work correctly Layer 2 Data link layer Edit The data link layer provides node to node data transfer a link between two directly connected nodes It detects and possibly corrects errors that may occur in the physical layer It defines the protocol to establish and terminate a connection between two physically connected devices It also defines the protocol for flow control between them IEEE 802 divides the data link layer into two sublayers 27 Medium access control MAC layer responsible for controlling how devices in a network gain access to a medium and permission to transmit data Logical link control LLC layer responsible for identifying and encapsulating network layer protocols and controls error checking and frame synchronization The MAC and LLC layers of IEEE 802 networks such as 802 3 Ethernet 802 11 Wi Fi and 802 15 4 Zigbee operate at the data link layer The Point to Point Protocol PPP is a data link layer protocol that can operate over several different physical layers such as synchronous and asynchronous serial lines The ITU T G hn standard which provides high speed local area networking over existing wires power lines phone lines and coaxial cables includes a complete data link layer that provides both error correction and flow control by means of a selective repeat sliding window protocol Security specifically authenticated encryption at this layer can be applied with MACSec Layer 3 Network layer Edit The network layer provides the functional and procedural means of transferring packets from one node to another connected in different networks A network is a medium to which many nodes can be connected on which every node has an address and which permits nodes connected to it to transfer messages to other nodes connected to it by merely providing the content of a message and the address of the destination node and letting the network find the way to deliver the message to the destination node possibly routing it through intermediate nodes If the message is too large to be transmitted from one node to another on the data link layer between those nodes the network may implement message delivery by splitting the message into several fragments at one node sending the fragments independently and reassembling the fragments at another node It may but does not need to report delivery errors Message delivery at the network layer is not necessarily guaranteed to be reliable a network layer protocol may provide reliable message delivery but it need not do so A number of layer management protocols a function defined in the management annex ISO 7498 4 belong to the network layer These include routing protocols multicast group management network layer information and error and network layer address assignment It is the function of the payload that makes these belong to the network layer not the protocol that carries them 28 Layer 4 Transport layer Edit Main article Transport layer The transport layer provides the functional and procedural means of transferring variable length data sequences from a source host to a destination host from one application to another across a network while maintaining the quality of service functions Transport protocols may be connection oriented or connectionless This may require breaking large protocol data units or long data streams into smaller chunks called segments since the network layer imposes a maximum packet size called the maximum transmission unit MTU which depends on the maximum packet size imposed by all data link layers on the network path between the two hosts The amount of data in a data segment must be small enough to allow for a network layer header and a transport layer header For example for data being transferred across Ethernet the MTU is 1500 bytes the minimum size of a TCP header is 20 bytes and the minimum size of an IPv4 header is 20 bytes so the maximum segment size is 1500 20 20 bytes or 1460 bytes The process of dividing data into segments is called segmentation it is an optional function of the transport layer Some connection oriented transport protocols such as TCP and the OSI connection oriented transport protocol COTP perform segmentation and reassembly of segments on the receiving side connectionless transport protocols such as UDP and the OSI connectionless transport protocol CLTP usually do not The transport layer also controls the reliability of a given link between a source and destination host through flow control error control and acknowledgments of sequence and existence Some protocols are state and connection oriented This means that the transport layer can keep track of the segments and retransmit those that fail delivery through the acknowledgment hand shake system The transport layer will also provide the acknowledgement of the successful data transmission and sends the next data if no errors occurred Reliability however is not a strict requirement within the transport layer Protocols like UDP for example are used in applications that are willing to accept some packet loss reordering errors or duplication Streaming media real time multiplayer games and voice over IP VoIP are examples of applications in which loss of packets is not usually a fatal problem The OSI connection oriented transport protocol defines five classes of connection mode transport protocols ranging from class 0 which is also known as TP0 and provides the fewest features to class 4 TP4 designed for less reliable networks similar to the Internet Class 0 contains no error recovery and was designed for use on network layers that provide error free connections Class 4 is closest to TCP although TCP contains functions such as the graceful close which OSI assigns to the session layer Also all OSI TP connection mode protocol classes provide expedited data and preservation of record boundaries Detailed characteristics of TP0 4 classes are shown in the following table 29 Feature name TP0 TP1 TP2 TP3 TP4Connection oriented network Yes Yes Yes Yes YesConnectionless network No No No No YesConcatenation and separation No Yes Yes Yes YesSegmentation and reassembly Yes Yes Yes Yes YesError recovery No Yes Yes Yes YesReinitiate connectiona No Yes No Yes NoMultiplexing demultiplexing over single virtual circuit No No Yes Yes YesExplicit flow control No No Yes Yes YesRetransmission on timeout No No No No YesReliable transport service No Yes No Yes Yesa If an excessive number of PDUs are unacknowledged An easy way to visualize the transport layer is to compare it with a post office which deals with the dispatch and classification of mail and parcels sent A post office inspects only the outer envelope of mail to determine its delivery Higher layers may have the equivalent of double envelopes such as cryptographic presentation services that can be read by the addressee only Roughly speaking tunnelling protocols operate at the transport layer such as carrying non IP protocols such as IBM s SNA or Novell s IPX over an IP network or end to end encryption with IPsec While Generic Routing Encapsulation GRE might seem to be a network layer protocol if the encapsulation of the payload takes place only at the endpoint GRE becomes closer to a transport protocol that uses IP headers but contains complete Layer 2 frames or Layer 3 packets to deliver to the endpoint L2TP carries PPP frames inside transport segments Although not developed under the OSI Reference Model and not strictly conforming to the OSI definition of the transport layer the Transmission Control Protocol TCP and the User Datagram Protocol UDP of the Internet Protocol Suite are commonly categorized as layer 4 protocols within OSI Transport Layer Security TLS does not strictly fit inside the model either It contains characteristics of the transport and presentation layers 30 31 Layer 5 Session layer Edit The Session Layer creates the setup controls the connections and ends the teardown between two or more computers which is called a session Since DNS and other Name Resolution Protocols operate in this part of the layer common functions of the Session Layer include user logon establishment name lookup management and user logoff termination functions Including this matter authentication protocols are also built into most client software such as FTP Client and NFS Client for Microsoft Networks Therefore the Session layer establishes manages and terminates the connections between the local and remote application The Session Layer also provides for full duplex half duplex or simplex operation and establishes procedures for checkpointing suspending restarting and terminating a session between two related streams of data such as an audio and a video stream in a web conferencing application Therefore the session layer is commonly implemented explicitly in application environments that use remote procedure calls Layer 6 Presentation layer Edit The Presentation Layer establishes data formatting and data translation into a format specified by the application layer during the encapsulation of outgoing messages while being passed down the protocol stack and possibly reversed during the deencapsulation of incoming messages when being passed up the protocol stack For this very reason outgoing messages during encapsulation are converted into a format specified by the application layer while the conversation for incoming messages during deencapsulation are reversed The Presentation Layer handles protocol conversion data encryption data decryption data compression data decompression incompatibility of data representation between OSs and graphic commands The presentation layer transforms data into the form that the application layer accepts to be sent across a network Since the presentation layer converts data and graphics into a display format for the Application Layer the Presentation Layer is sometimes called the syntax layer 32 For this reason the Presentation Layer negotiates the transfer of syntax structure through the Basic Encoding Rules of Abstract Syntax Notation One ASN 1 with capabilities such as converting an EBCDIC coded text file to an ASCII coded file or serialization of objects and other data structures from and to XML 4 Layer 7 Application layer Edit The application layer is the layer of the OSI model that is closest to the end user which means both the OSI Application Layer and the user interact directly with software application that implements a component of communication between the client and server such as File Explorer and Microsoft Word Such application programs fall outside the scope of the OSI model unless they are directly integrated into the Application layer through the functions of communication as is the case with applications such as Web Browsers and Email Programs Other examples of software are Microsoft Network Software for File and Printer Sharing and Unix Linux Network File System Client for access to shared file resources Application layer functions typically include file sharing message handling and database access through the most common protocols at the application layer known as HTTP FTP SMB CIFS TFTP and SMTP When identifying communication partners the application layer determines the identity and availability of communication partners for an application with data to transmit The most important distinction in the application layer is the distinction between the application entity and the application For example a reservation website might have two application entities one using HTTP to communicate with its users and one for a remote database protocol to record reservations Neither of these protocols have anything to do with reservations That logic is in the application itself The application layer has no means to determine the availability of resources in the network 4 Cross layer functions EditFurther information Cross layer optimization Cross layer functions are services that are not tied to a given layer but may affect more than one layer 33 Some orthogonal aspects such as management and security involve all of the layers See ITU T X 800 Recommendation 34 These services are aimed at improving the CIA triad confidentiality integrity and availability of the transmitted data Cross layer functions are the norm in practice because the availability of a communication service is determined by the interaction between network design and network management protocols Specific examples of cross layer functions include the following Security service telecommunication 34 as defined by ITU T X 800 recommendation Management functions i e functions that permit to configure instantiate monitor terminate the communications of two or more entities there is a specific application layer protocol common management information protocol CMIP and its corresponding service common management information service CMIS they need to interact with every layer in order to deal with their instances Multiprotocol Label Switching MPLS ATM and X 25 are 3a protocols OSI subdivides the Network Layer into three sublayers 3a Subnetwork Access 3b Subnetwork Dependent Convergence and 3c Subnetwork Independent Convergence 35 It was designed to provide a unified data carrying service for both circuit based clients and packet switching clients which provide a datagram based service model It can be used to carry many different kinds of traffic including IP packets as well as native ATM SONET and Ethernet frames Sometimes one sees reference to a Layer 2 5 Cross MAC and PHY Scheduling is essential in wireless networks because of the time varying nature of wireless channels By scheduling packet transmission only in favourable channel conditions which requires the MAC layer to obtain channel state information from the PHY layer network throughput can be significantly improved and energy waste can be avoided 36 Programming interfaces EditNeither the OSI Reference Model nor any OSI protocol specifications outline any programming interfaces other than deliberately abstract service descriptions Protocol specifications define a methodology for communication between peers but the software interfaces are implementation specific For example the Network Driver Interface Specification NDIS and Open Data Link Interface ODI are interfaces between the media layer 2 and the network protocol layer 3 Comparison to other networking suites EditThe table below presents a list of OSI layers the original OSI protocols and some approximate modern matches It is very important to note that this correspondence is rough the OSI model contains idiosyncrasies not found in later systems such as the IP stack in modern Internet 25 Layer OSI protocols TCP IP protocols SignalingSystem 7 37 AppleTalk IPX SNA UMTS Miscellaneous examplesNo Name7 Application FTAMX 400X 500DAPROSERTSEACSE 38 CMIP 39 HTTPHTTPSFTPSMTP INAPMAPTCAPISUPTUP AFPZIPRTMPNBP SAP APPC HL7ModbusWebSocketCoAP6 Presentation ISO IEC 8823X 226ISO IEC 9576 1X 236 MIMESSL TLSXDR AFP TDIASCIIEBCDICMIDIMPEG5 Session ISO IEC 8327X 225ISO IEC 9548 1X 235 Sockets session establishment in TCP RTP PPTP ASPADSPPAP NWLink DLC Named pipesNetBIOSSAPRPCSOCKS4 Transport ISO IEC 8073TP0TP1TP2TP3TP4 X 224 ISO IEC 8602X 234 TCPUDPSCTPDCCP DDP SPX NBF3 Network ISO IEC 8208X 25 PLP ISO IEC 8878X 223ISO IEC 8473 1CLNP X 233ISO IEC 10589IS IS IPIPsecICMPIGMPOSPFRIP SCCPMTP ATP TokenTalk EtherTalk IPX IBM NCP RRC BMC NBFQ 9312 Data link ISO IEC 7666X 25 LAPB Token BusX 222ISO IEC 8802 2LLC type 1 2 40 PPPSBTVSLIP MTPQ 710 LocalTalkARAPPP IEEE 802 3 framingEthernet II framing SDLC PDCP 41 LLCMAC ARPNDP Neighbor Discovery Protocol ARQATMBit stuffingCDPDOCSISFDDIFDPFibre ChannelFrame RelayHDPHDLCIEEE 802 3 Ethernet MACIEEE 802 11 Wi Fi MACIEEE 802 1Q VLAN ISLITU T G hn DLLLinux interface bondingPPPQ 921Token RingNDP Nortel Discovery Protocol IS IS1 Physical X 25 X 21bisEIA TIA 232EIA TIA 449EIA 530G 703 40 TCP IP stack does not care about the physical medium as long as it provides a way to communicate octets MTPQ 710 RS 232RS 422PhoneNet Twinax UMTS air interfaces RS 232RJ45 8P8C V 35V 34I 430I 431T1E1802 3 PHY 10BASE T100BASE TX1000BASE T POTSSONETSDHDSL802 11 PHYITU T G hn PHYDOCSISDWDMOTNComparison with TCP IP model Edit See also Internet protocol suite Comparison of TCP IP and OSI layering The design of protocols in the TCP IP model of the Internet does not concern itself with strict hierarchical encapsulation and layering RFC 3439 contains a section entitled Layering considered harmful 42 TCP IP does recognize four broad layers of functionality which are derived from the operating scope of their contained protocols the scope of the software application the host to host transport path the internetworking range and the scope of the direct links to other nodes on the local network 43 Despite using a different concept for layering than the OSI model these layers are often compared with the OSI layering scheme in the following manner The Internet application layer maps to the OSI application layer presentation layer and most of the session layer The TCP IP transport layer maps to the graceful close function of the OSI session layer as well as the OSI transport layer The internet layer performs functions as those in a subset of the OSI network layer The link layer corresponds to the OSI data link layer and may include similar functions as the physical layer as well as some protocols of the OSI s network layer These comparisons are based on the original seven layer protocol model as defined in ISO 7498 rather than refinements in the internal organization of the network layer The OSI protocol suite that was specified as part of the OSI project was considered by many as too complicated and inefficient and to a large extent unimplementable 44 Taking the forklift upgrade approach to networking it specified eliminating all existing networking protocols and replacing them at all layers of the stack This made implementation difficult and was resisted by many vendors and users with significant investments in other network technologies In addition the protocols included so many optional features that many vendors implementations were not interoperable 44 Although the OSI model is often still referenced the Internet protocol suite has become the standard for networking TCP IP s pragmatic approach to computer networking and to independent implementations of simplified protocols made it a practical methodology 44 Some protocols and specifications in the OSI stack remain in use one example being IS IS which was specified for OSI as ISO IEC 10589 2002 and adapted for Internet use with TCP IP as RFC 1142 See also EditCommon Management Information Service CMIS GOSIP the U S Government Open Systems Interconnection Profile Hierarchical internetworking model History of the Internet Layer 8 List of information technology initialisms Management plane Recursive Internetwork Architecture Service layer Session multiplexingFurther reading EditJohn Day Patterns in Network Architecture A Return to Fundamentals Prentice Hall 2007 ISBN 978 0 13 225242 3 Marshall Rose The Open Book Prentice Hall Englewood Cliffs 1990 David M Piscitello A Lyman Chapin Open Systems Networking Addison Wesley Reading 1993 Andrew S Tanenbaum Computer Networks 4th Edition Prentice Hall 2002 ISBN 0 13 066102 3 Gary Dickson Alan Lloyd July 1992 Open Systems Interconnection Computer Communications Standards and Gossip Explained Prentice Hall ISBN 978 0136401117 Russell Andrew L 2014 Open Standards and the Digital Age History Ideology and Networks Cambridge University Press ISBN 978 1 139 91661 5 References Edit X 225 Information technology Open Systems Interconnection Connection oriented Session protocol Protocol specification Archived from the original on 1 February 2021 Retrieved 24 November 2021 ISO IEC 7498 1 1994 Information technology Open Systems Interconnection Basic Reference Model The Basic Model June 1999 Introduction Retrieved 26 August 2022 What is the OSI Model Forcepoint 10 August 2018 Retrieved 20 May 2022 a b c Tomsho Greg 2016 Guide to Networking Essentials 7th ed Cengage Retrieved 3 April 2022 a b Davies Howard Bressan Beatrice 26 April 2010 A History of International Research Networking The People who Made it Happen John Wiley amp Sons pp 2 3 ISBN 978 3 527 32710 2 Roberts Dr Lawrence G November 1978 The Evolution of Packet Switching PDF IEEE Invited Paper Retrieved 26 February 2022 Down Peter John Taylor Frank Edward 1976 Why distributed computing An NCC review of potential and experience in the UK NCC Publications ISBN 9780850121704 Radu Roxana 2019 Revisiting the Origins The Internet and its Early Governance Negotiating Internet Governance Oxford University Press doi 10 1093 oso 9780198833079 003 0003 ISBN 9780191871405 a b Andrew L Russell 30 July 2013 OSI The Internet That Wasn t IEEE Spectrum Vol 50 no 8 Campbell Kelly Martin Garcia Swartz Daniel D 2013 The History of the Internet The Missing Narratives Journal of Information Technology 28 1 18 33 doi 10 1057 jit 2013 4 ISSN 0268 3962 OSI The Internet That Wasn t IEEE Spectrum March 2017 Sunshine Carl A 1989 Computer Network Architectures and Protocols Springer Science amp Business Media p 35 ISBN 978 1 4613 0809 6 Hasman A 1995 Education and Training in Health Informatics in Europe State of the Art Guidelines Applications IOS Press p 251 ISBN 978 90 5199 234 2 J A N Lee Computer Pioneers by J A N Lee IEEE Computer Society ITU T X Series Recommendations Publicly Available Standards Standards iso org 30 July 2010 Retrieved 11 September 2010 Russell Andrew L 28 April 2014 Open Standards and the Digital Age History Ideology and Networks Cambridge University Press ISBN 978 1 139 91661 5 Russell Andrew L Rough Consensus and Running Code and the Internet OSI Standards War PDF IEEE Annals of the History of Computing Standards Wars PDF 2006 Network World IDG Network World Inc 15 February 1988 Network World IDG Network World Inc 10 October 1988 Shaw Keith 22 October 2018 The OSI model explained How to understand and remember the 7 layer network model Network World Retrieved 16 May 2020 An OSI Model for Cloud Cisco Blogs 24 February 2017 Retrieved 16 May 2020 Taylor Steve Metzler Jim 23 September 2008 Why it s time to let the OSI model die Network World Retrieved 16 May 2020 a b Crawford JB 27 March 2021 The actual OSI model Windows Network Architecture and the OSI Model Microsoft Documentation Retrieved 24 June 2020 5 2 RM description for end stations IEEE Std 802 2014 IEEE Standard for Local and Metropolitan Area Networks Overview and Architecture ieee doi 10 1109 IEEESTD 2014 6847097 ISBN 978 0 7381 9219 2 International Organization for Standardization 15 November 1989 ISO IEC 7498 4 1989 Information technology Open Systems Interconnection Basic Reference Model Naming and addressing ISO Standards Maintenance Portal ISO Central Secretariat Retrieved 17 August 2015 ITU T Recommendation X 224 11 1995 ISO IEC 8073 Open Systems Interconnection Protocol for providing the connection mode transport service ITU Hooper Howard 2012 CCNP Security VPN 642 648 Official Cert Guide 2 ed Cisco Press p 22 ISBN 9780132966382 Spott Andrew Leek Tom et al What layer is TLS Information Security Stack Exchange Grigonis Richard 2000 Computer telephony encyclopaedia CMP p 331 ISBN 9781578200450 Mao Stephen 13 November 2009 Chapter 8 Fundamentals of communication networks In Wyglinski Alexander Nekovee Maziar Hou Thomas eds Cognitive Radio Communications and Networks Principles and Practice Elsevier p 201 ISBN 978 0 08 087932 1 a b ITU T Recommendation X 800 03 91 Security architecture for Open Systems Interconnection for CCITT applications ITU Retrieved 14 August 2015 Hegering Heinz Gerd 24 August 1999 Integrated management of networked systems concepts architectures and their operational application Morgan Kaufmann p 54 ISBN 978 1558605718 Miao Guowang Song Guocong 2014 Energy and spectrum efficient wireless network design Cambridge University Press ISBN 978 1107039889 ITU T Recommendation Q 1400 03 1993 Architecture framework for the development of signaling and OA amp M protocols using OSI concepts ITU pp 4 7 ITU Rec X 227 ISO 8650 X 217 ISO 8649 X 700 series of recommendations from the ITU T in particular X 711 and ISO 9596 a b Internetworking Technology Handbook Internetworking Basics Internetworking Cisco 15 January 2014 Retrieved 14 August 2015 3GPP specification 36 300 3gpp org Retrieved 14 August 2015 Layering Considered Harmful Some Internet Architectural Guidelines and Philosophy December 2002 sec 3 doi 10 17487 RFC3439 RFC 3439 Retrieved 25 April 2022 Walter Goralski 2009 The Illustrated Network How TCP IP Works in a Modern Network PDF Morgan Kaufmann p 26 ISBN 978 0123745415 a b c Andrew S Tanenbaum Computer Networks 1 4 4 External links Edit Wikimedia Commons has media related to OSI model Microsoft Knowledge Base The OSI Model s Seven Layers Defined and Functions Explained ISO IEC standard 7498 1 1994 PDF document inside ZIP archive requires HTTP cookies in order to accept licence agreement ITU T X 200 the same contents as from ISO INFormation CHanGe Architectures and Flow Charts powered by Google App Engine infchg appspot com The ISO OSI Reference Model Beluga graph of data units and groups of layers Archived from the original on 26 May 2012 a href Template Cite web html title Template Cite web cite web a CS1 maint others link Zimmermann Hubert April 1980 OSI Reference Model The ISO Model of Architecture for Open Systems Interconnection IEEE Transactions on Communications 28 4 425 432 CiteSeerX 10 1 1 136 9497 doi 10 1109 TCOM 1980 1094702 S2CID 16013989 Cisco Systems Internetworking Technology Handbook What is the OSI Model 7 Layers of OSI Model Explained Guide to Networking Essentials 7th Edition Cengage Retrieved from https en wikipedia org w index php title OSI model amp oldid 1136217823, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.