fbpx
Wikipedia

Night-vision device

A night-vision device (NVD), also known as a night optical/observation device (NOD), night-vision goggle (NVG), is an optoelectronic device that allows visualization of images in low levels of light, improving the user's night vision. The device enhances ambient visible light and converts near-infrared light into visible light which can be seen by the user; this is known as I2 (image intensification). By comparison, viewing of infrared thermal radiation is referred to as thermal imaging and operates in a different section of the infrared spectrum. A night vision device usually consists of an image intensifier tube, a protective housing, and may have some type of mounting system. Many NVDs also include a protective sacrificial lens, mounted over the front lens (ie. objective lens) on NVDs to protect the latter from damage by environmental hazards[1] and some can incorporate telescopic lenses. The image produced by an NVD is typically monochrome green, as green was considered to be the easiest color to look at for prolonged periods in the dark.[2] Night vision devices may be passive, relying solely on ambient light, or may be active, using an IR (infrared) illuminator to better visualize the environment.

A US Navy aviator uses a pair of helmet-mounted AN/AVS-6 vision goggles. The effect on the natural night vision of the eye is evident
A standard telescopic sight augmented with a night-vision device in front on the M110. Note that in addition to the image intensifier, the NVD gathers much more light by its much larger aperture
A 1PN51-2 night-vision reticle with markings for range estimation
First person view through night-vision goggles of the FBI Hostage Rescue Team using an airboat.

Night vision devices can be handheld but many are head-mounted and attach to helmets. When used with firearms, an IR laser sight is often mounted to the user's weapon. The laser sight produces an infrared beam that is only visible through an NVD and aids with aiming.[3] Some night vision devices are specially made to be mounted to firearms. These can used in conjunction with weapon sights like rifle scopes or can be used as standalone sights; some thermal weapon sights have been designed to provide similar capabilities.[4]

These devices were first used in World War II and came into wide use during the Vietnam War.[5] The technology has evolved greatly since its introduction, leading to several "generations"[6] of night-vision equipment with performance increases and price reductions. Consequently, though they are commonly used by the military and law enforcement agencies, night vision devices are available to civilian users for a wide range of applications including aviation, driving, demining, etc.[7]

History

Early night vision technology used prior to the end of World War II has been described as Generation 0.[5]

In 1929 Hungarian physicist Kálmán Tihanyi invented an infrared-sensitive electronic television camera for anti-aircraft defense in the UK.[8]

Night-vision devices were introduced in the German Army as early as 1939 and were used in World War II. AEG started developing the first devices in 1935. In mid-1943, the German Army began the first tests with infrared night-vision devices and telescopic rangefinders mounted on Panther tanks. Two different arrangements were constructed and used on Panther tanks. The Sperber FG 1250 ("Sparrow Hawk"), with a range of up to 600 m, had a 30 cm infrared searchlight and an image converter operated by the tank commander.

An experimental Soviet device called the PAU-2 was field-tested in 1942.

From late 1944 to March 1945 the German military conducted successful tests of FG 1250 sets mounted on Panther Ausf. G tanks (and other variants). Before World War II ended in 1945, approximately 50 (or 63) Panthers had been equipped with the FG 1250 and saw combat on both the Eastern and Western Fronts. The "Vampir" man-portable system for infantry was used with StG 44 assault rifles.[9]

Parallel development of night-vision systems occurred in the US. The M1 and M3 infrared night-sighting devices, also known as the "sniperscope" or "snooperscope", saw limited service with the US Army in World War II[10] and in the Korean War, to assist snipers.[5] These were active devices, using a large infrared light source to illuminate targets. Their image-intensifier tubes used an anode and an S-1 photocathode, made primarily of silver, cesium, and oxygen, and electrostatic inversion with electron acceleration was used to achieve gain.[11]

Examples

  • FG 1250 Sperber
  • ZG 1229 Vampir
  • PAU-2
  • PNV-57A tanker goggles
  • SU-49/PAS-5[12]
  • T-120 Sniperscope, 1st model (World War II)
  • M2 Sniperscope, 2nd model (World War II)
  • M3 Sniperscope, 4th model (Korean War)
  • AN/PAS-4 (early Vietnam War)[13]

After World War II, Vladimir K. Zworykin developed the first practical commercial night-vision device at Radio Corporation of America, intended for civilian use. Zworykin's idea came from a former radio-guided missile.[14] At that time, infrared was commonly called black light, a term later restricted to ultraviolet. Zworykin's invention was not a success due to its size and cost.[15]

United States

Generation 1

 
An M16A1 rifle fitted with the AN/PVS-2 Starlight scope

First-generation passive devices developed and patented by the US Army in the 1960s, introduced during the Vietnam War, were an adaptation of earlier active GEN 0 technology and relied on ambient light instead of using an extra infrared light source. Using an S-20 photocathode, their image intensifiers produced a light amplification of around 1,000,[16] but they were quite bulky and required moonlight to function properly.

Examples:

Generation 2 (GEN II)

 
A cut-open and depotted AN/PVS-5, showing the components of a night-vision device. This device was manufactured in 2nd generation (5A to 5C) and 3rd generation (5D)

Second-generation devices developed in the 1970s, featuring an improved image-intensifier tube using a micro-channel plate (MCP)[20] with an S-25 photocathode,[11] and resulted in a much brighter image, especially around the edges of the lens. This led to increased clarity in low ambient-light environments, such as moonless nights. Light amplification was around 20,000.[16] Image resolution and reliability were also improved.

Examples:

Later advances in GEN II technology brought the tactical characteristics of "GEN II+" devices (equipped with better optics, SUPERGEN tubes, improved resolution and better signal-to-noise ratios), though GEN II+ is not formally recognized by the NVESD.[23]

Generation 3 (GEN III)

 
An early development version of the AN/PVS-7 goggle

Third-generation night-vision systems, developed in the late 1980s, maintained the MCP from Gen II, but used a photocathode made with gallium arsenide, which further improved image resolution. Gallium arsenide photocathodes are primarily manufactured by L3Harris Technologies and Elbit Systems of America and image light from 500-900 nm.[24] In addition, the MCP is coated with an ion barrier film to increase tube life. However, the ion barrier causes fewer electrons to pass through, thus diminishing the improvement that the gallium-arsenide photocathode provides. Because of the ion barrier, the "halo" effect around bright spots or light sources is larger as well. Light amplification with these devices is improved to around 30,00050,000.[16] Power consumption is higher than in GEN II tubes.

Examples:

Auto-gating

Autogating (ATG) is a function which rapidly switches the power supply's voltage to the photocathode on and off. However, these switches are rapid enough that they are not detectable to the human eye and peak voltage supplied to the night vision device is maintained.[28] This achieves several purposes: first, it reduces the "duty cycle" (ie. the amount of time that the tube has power running through it) which increases the device's lifespan.[29] Second, autogating enhances the BSP (Bright-Source Protection), which is the built-in system that reduces the voltage supplied to the photocathode in response to ambient light levels. ABC (Automatic Brightness Control) is a similar function which modulates the amount of voltage supplied to the microchannel plate (rather than the photocathode) in response to ambient light. Together, BSP and ABC (alongside the autogating function) serve to prevent temporary blindness for the user and prevent damage to the tube when the night vision device is exposed to sudden bright sources of light,[28] like a muzzle flash or artificial lighting being switched on.[29] These modulation systems also help maintain a steady illumination level in the user's view which improves the ability to keep "eyes on target" in spite of temporary flashes of light. These functions are especially useful for pilots, soldiers in urban environments, and special operations forces who may be exposed to dynamic, rapidly changing light levels.[29][30]

Generation 3+ (GEN III OMNI I–IX)

 
Generation II, III and IV devices use a microchannel plate for amplification. Photons from a dimly lit source enter the objective lens (on the left) and strike the photocathode (gray plate). The photocathode (which is negatively biased) releases electrons, which are accelerated to the higher-voltage microchannel plate (red). Each electron causes multiple electrons to be released from the microchannel plate. The electrons are drawn to the higher-voltage phosphor screen (green). Electrons that strike the phosphor screen cause the phosphor to produce photons of light viewable through the eyepiece lenses.

OMNI, or OMNIBUS, refers to a series of contracts through which the US Army purchased GEN III night vision devices. This started with OMNI I which procured AN/PVS-7A and AN/PVS-7B devices, then continued with OMNI II (1990), OMNI III (1992), OMNI IV (1996), OMNI V (1998), OMNI VI (2002), OMNI VII (2005),[31] OMNI VIII, and OMNI IX.[32]

However, OMNI is not a specification in and of itself. The performance of a particular GEN III OMNI device generally depends upon the tube which is used. For example, a GEN III OMNI III MX-10160A/AVS-6 tube will perform similarly to a GEN III VII MX-10160A/AVS-6 tube, even though the former was manufactured in ~1992 and the latter ~2005.[32][33]

One particular technology, PINNACLE©, is often mentioned as well. It is a proprietary thin-film microchannel plate technology created by ITT (since combined with Exelis, acquired by Harris, then sold to Elbit Systems of America) that was included in the OMNI VII contract. The thin-film improves performance.[33]

That being said, GEN III OMNI V–IX devices developed in the 2000s and onward can differ from standard GEN III and earlier GEN III OMNI I-IV devices in one or both of two important ways:

  1. An automatic gated power supply system regulates the photocathode voltage, allowing the NVD to instantaneously adapt to changing light conditions.[34]
  2. A removed or greatly thinned ion barrier (thin film) which decreases the number of electrons that are usually rejected by the standard GEN III MCP, hence resulting in less image noise.[35] The disadvantage to a thin or removed ion barrier is the overall decrease in tube life from a theoretical 20,000 h mean time to failure (MTTF) for standard Gen III type, to 15,000 h MTTF for thin film types. However, this is largely negated by the low number of image-intensifier tubes that reach 15,000 h of operation before requiring replacement.[citation needed]

While the consumer market sometimes classifies this type of system as generation 4, the United States military describes these systems as generation 3 autogated tubes (GEN III OMNI V-IX). Moreover, as autogating power supplies can now be added to any previous generation of night-vision devices, "autogating" capability does not automatically class the devices as belonging to a particular OMNI classification. Any postnominals appearing after a generation type (i.e., Gen II+, Gen III+) do not change the generation type of the device, but instead indicate improvement(s) over the original specification's requirements.[36]

Examples:

  • AN/PVS-22[37]
  • NVS-22
  • Binocular Night Vision Device (BNVD) (AN/PVS-15, AN/PVS-21, AN/PVS-23, AN/PVS-31A, AN/PVS-31D)
  • Ground Panoramic Night Vision Goggle (GPNVG-18)

Figure of merit

Figure of merit (FoM) is a number which gives a quantitative measure of a night vision device's effectiveness and clarity. It is calculated using the number of line pairs per millimeter which a user can detect while using the device multiplied by the image intensifier's signal-to-noise ratio.[38][32][39]

In the late 1990s, innovations in photocathode technology significantly increased the signal-to-noise ratio, with newly developed tubes starting to surpass the performance of standard Gen 3 tubes.

By 2001, the United States federal government concluded that a tube's "generation" was not a determinant factor of a tube's global performance, making the term "generation" irrelevant in determining the performance of an image-intensifier tube, and therefore eliminated the term as a basis of export regulations.

Though image-intensification technology employed by different manufacturers varies, from the tactical point of view, a night-vision system is an optical device that enables vision in conditions of low light. The US government itself has recognized the fact that the technology itself makes little difference, as long as an operator can see clearly at night. Consequently, the United States bases export regulations not on the generation, but on the figure of merit.

ITAR regulations specify that US-made tubes with a FOM greater than 1400 are not exportable outside the US; however, the Defense Technology Security Administration (DTSA) can waive that policy on a case-by-case basis.

Fusion night vision

 
A comparison of I² only night vision (above) and I² plus thermal fusion (below)

Fusion night vision is a newer advance in night vision technology which combines I² (image intensification) with thermal imaging, which functions in the medium (MWIR 3-5 µm) and/or long (LWIR 8-14 µm) wavelength range.[40] Initial models appeared in the 2000s and progressed in the 2010s.[31] Some devices are dedicated fusion devices while others are clip-on thermal imagers which can add a thermal overlay to standard I² night vision devices.[41] Fusion technologies combines the strengths of traditional I², which is excellent for navigation and discernment of fine details, with the strengths of thermal imaging, which excels in spotting the heat signatures of targets. Fusion systems have offered a number of different imaging modes including "fused" night vision with thermal overlay, night vision only, thermal only, and various special fusion modes like outline (which outlines objects that have thermal signatures) or "decamouflage", which highlights all objects that are of near-human temperatures. Fusion devices do struggle with weight and power usage and are often heavier and have shorter run times than contemporary I²-only devices.[42]

Aside from fusion of I² and thermal imaging within a single device, some users have tried using an I² device over one eye and a thermal device over the other eye, relying on the human visual system to provide a binocular combined view of the two. Some, but not all, thermal imaging systems can also be viewed through a night vision device (ie. lining up the thermal imager in front of the I² night vision device) to produce a form of fusion vision.[41][43]

Examples:

  • AN/PSQ-20 ENVG (Enhanced Night Vision Goggles)
  • AN/PSQ-36 FGE (Fusion Goggle Enhanced, previously FGS for Fusion Goggle System)
  • AN/PSQ-42 ENVG-B (Enhanced Night Vision Goggles-Binocular)
  • AN/PSQ-44 ENVG-B (Enhanced Night Vision Goggles-Binocular)
  • AN/PAS-29 COTI/E-COTI: (Enhanced) Clip-On Thermal Imager

Out of Band (OOB)

Out of Band (OOB) refers to night vision technologies which operate outside of the 500-900 nm NIR (near infrared) range that traditional Gen III gallium arsenide tubes detect. Imaging outside the usual spectrum is possible with dedicated OOB image intensifier tubes or with clip-on devices. Two examples include Photonis' 4G HyMa (Hybrid Multi-Alkali) image intensifier tubes (bandwidth of 350-1100 nm, from near UV to IR) and Safran Optics 1's AN/PAS-34 E-COSI (Enhanced Clip-On SWIR Imager), which clips onto standard night vision devices and provides an overlay (in the 900-1700 nm range), respectively.[44]

OOB provides several advantages. First, OOB imaging makes better use of ambient light; while a standard Gen III/III+ device can only intensify light in the 500-900 nm NIR range, an OOB device also intensifies any UV light or SWIR light in the environment. As a result, an OOB device might be able to see more on a starlit night than a standard GEN III/III+ device could. Second, OOB imaging can help JTACs and other FACs when marking targets with a laser designator. Many laser designators use 1064nm light, which is barely visible to standard Gen III/III+ devices, so ground personnel may need to use a separate "see-spot" device to visually confirm that the designator's targeting laser is on target. OOB night vision devices, however, can easily image the 1064nm range.[24][45]

Third, OOB light is not visible to most commercially available night vision devices. Despite ITAR restrictions, night vision technologies have proliferated among peer and near-peer countries and have also made their way into terrorist hands. For example, there has been documented use of night vision equipment by the Taliban Red Unit.[46] As a result, if friendly forces are using night vision equipment like IR illuminators, IR strobes, IR lasers, etc. then hostile forces using night vision equipment could spot them as well. OOB strobes, illuminators, and lasers, on the other hand, are easily visible when using OOB night vision but much more difficult to spot with current Gen III/III+ night vision equipment as they appear faintly if at all (depending on wavelength and intensity).[47][48]

Additionally, depending on the wavelengths covered by an OOB imaging device, users might be able to observe the lasers used in laser rangefinders as they often operate in the 1550nm range.[49]

Examples (ground personnel, helmet-mounted imagers):

  • Photonis 4G INTENS image intensifier tubes (350-1100 nm)[48][24]
  • Optics 1 AN/PAS-34 E-COSI (Enhanced Clip-On SWIR Imager) (900-1700 nm)[44]
  • Optics 1 COSMO (Clip-On SWIR Monocular)[50]

Examples (ground personnel, weapon-mounted lasers):

  • B.E. Meyers & Co. MAWL-CLAD (Modular Aiming Weapon Laser--Covert Laser Aiming Device) (1064 nm laser)[51][52][53]
  • LA-17/PEQ D-PILS (Dual-band Pointer and Illuminator Laser System) (1400-1600 nm)[54][55]
  • Rheinmetall LM-VAMPIR (Laser Module--VAriable Multi Purpose InfraRed)[56]
  • AN/PSQ-23 STORM, STORM-PI, STORM-SLX, STORM II; and L3Harris SPEAR (1570 nm)[54][49]
  • Optics 1 ICUGR (Integrated Compact Ultralight Gun-mounted Rangefinder) (1550 nm)[57]
  • Rheinmetall FCS-RPAL (Fire Control System--Rheinmetall Precision Aiming Laser) (1550 nm)[58]
  • Rheinmetall FCS-TRB (Fire Control System--TacRay Ballistic) (1550 nm)[59]
  • Wilcox RAPTAR S (Rapid Targeting and Ranging Module) (1550 nm)[60]
  • Wilcox MRF Xe (Micro Range Finder--Enhanced) (1550 nm)[61]
  • B.E. Meyers & Co. IZLID Ultra 1064 and 1550 (Infrared Zoom Laser Illuminator Designator) (1064 nm, 1550 nm)[62]
  • Optics 1 CTAM (Coded Target Acquisition Marker) (1064 nm)[63]

Wide Field of View (WFoV)

 
A US airman tests AN/AVS-10 panoramic night-vision goggles in March 2006.
 
GPNVG-18.

Night vision devices, whether monocular or binocular, typically have a limited field of view (FoV); the commonly used AN/PVS-14 has a FoV of 40°[64] which is rather less than the 95° monocular horizontal FoV and 190° binocular horizontal FoV that humans possess.[65] Due to the limited FoV, users must visually scan about to fully check their surroundings, which is a time consuming process. This limitation is particularly evident when using night vision devices for flying, driving, or CQB where split second decisions must be made. Because of these limitations, many SF/SOF operators preferred to use white light rather than night vision when conducting CQB.[66] As a result, much time and effort has gone into research to develop a wider FoV solution for night vision devices. As of 2021, there were three primary methods for increasing peripheral vision in night vision devices (each with their own advantages and disadvantages):

  • Panoramic night vision goggles (PNVG)
  • Foveated night vision goggles (F-NVG)
  • Diverging image tube night vision goggles (DIT-NVG)[67]

Panoramic night vision goggles (PNVG) increase field of view by increasing the number of sensors: if tubes are generally limited to 40°, then one can add more tubes to increase peripheral vision. This solution works well and does not compromise device performance or visual clarity but comes at the cost of size, weight, power requirements, and complexity.[67] A well-known set of peripheral NVGs is the GPNVG-18 (Ground Peripheral Night Vision Goggle), which was used in the raid in Abottabad that killed Osama bin Laden.[68] These goggles, and the aviation AN/AVS-10 PNVG from which they were derived, offer a 97° FoV.[66]

Foveated night vision (F-NVG) uses specialized WFoV optics to increase the field of view through a night vision intensifier tube. The fovea refers to the part of the retina which is responsible for central vision. These night vision devices have users still look "straight through" the tubes so light passing through the center of the tube falls on the foveal retina, as is the case with traditional binocular NVGs. While these devices increase FoV, it comes at the price of image quality and edge distortions.[67] A US Naval contract for US$47.6 million was awarded to Kent Optronics to retrofit AN/PVS-15 units with WFoV optics that expanded them to 80° FoV with less than 4% distortion.[69][70][71]

 
Diagram of the WFoV BNVD, based on AN/PVS-31A

Diverging image tube (DIT) night vision increases FoV by positioning the night vision tubes so they are no longer parallel but are angled slightly outward. This increases peripheral FoV but causes distortion and reduced image quality. Unfortunately, optical clarity is best when looking through the center of an image intensifier tube. With DIT, users are no longer looking "straight through" the center of the tubes (which provides the clearest images) and light passing through the center of the tubes no longer falls on the fovea (the area of clearest vision). The AN/PVS-25 was one such example of DIT night vision from the late 2000s.[67] The WFoV BNVD is a variant of the AN/PVS-31A which incorporates both F-NVG and DIT-NVG concepts: the foveal WFoV optics increase the FoV of each tube from 40° to 55°, while the slight angulation of the tubes positions them so there is a 40° overlap of binocular vision in the center and a total 70° bi-ocular FoV. With the performance of the modified AN/PVS-31A tubes used, the WFoV BNVD has a FoM of 2706 which is better than the FoM in both the GPNVG-18 and the standard AN/PVS-31A.[72][67]

Examples:

  • Panoramic NVG (PNVG):
    • GPNVG-18
    • AN/AVS-10 (PNVG)
  • Foveated NVG (F-NVG):
    • WFoV F-NVG retrofit AN/PVS-15 goggles
    • WFoV BNVD (combined F-NVG and DIT-NVG variant of AN/PVS-31A)
  • Diverging Image Tube NVG (DIT-NVG)
    • AN/PVS-25
    • WFoV BNVD (combined F-NVG and DIT-NVG variant of AN/PVS-31A)
    • Noise Fighters Panobridge: binocular bridge mount which combines two AN/PVS-14 monoculars and allows them to be angulated outward or positioned parallel for DIT or traditional configuration[73][67]

Digital

Some night vision devices, including several of the ENVG (AN/PSQ-20) models, are "digital". Introduced in the late 2000s, these allow electronic transmission of the device's night vision view, though this often comes at the price of size, weight, power usage.[31]

Advancements in high-sensitivity digital camera technology has made it possible to produce NVGs that use a camera-display pair instead of an image intensifier. At the low end of the market, these devices can offer Gen-1-equivalent quality at a lower cost.[74] At the higher end, SiOnyx has produced digital color NVGs. The "Opsin" of 2022 has a form factor and helmet weight similar to that of a AN/PVS-14, but requires a separate battery pack with a shorter battery life and remains inferior in sensitivity.[75] Being a camera-based design, it can however tolerate bright light and process a wider range of wavelengths.[76]

Other technologies

Ceramic Optical Ruggedized Engine (CORE) is a technology which was first shown at the 2012 SHOT Show in Las Vegas, NV by Armasight.[77] CORE produces a higher-performance Gen 1 tubes. The main difference between CORE tubes and standard Gen 1 tubes is introduction of a ceramic plate instead of a glass one. This plate is produced from specially formulated ceramic and metal alloys. Edge distortion is improved, photo sensitivity is increased, and the resolution can be as high as 60 lp/mm. CORE is still considered[by whom?] Gen 1, as it does not utilize a microchannel plate.

Scientists at the University of Michigan have developed a contact lens that can act as a night-vision device. The lens has a thin strip of graphene between layers of glass that reacts to photons to make dark images look brighter. Current prototypes only absorb 2.3% of light, so the percentage of light pickup has to rise before the lens can be viable. The graphene technology can be expanded into other uses, like car windshields, to improve night-driving. The US. Army is interested in the technology to potentially replace night-vision goggles.[78]

The Sensor and Electron Devices Directorate (SEDD) of the US Army Research Laboratory developed quantum-well infrared detector (QWID) technology. This technology's epitaxial layers, which result in diode formation, compose a gallium arsenide or aluminum gallium arsenide system (GaAs or AlGaAs). It is particularly sensitive to infrared waves that are mid-long lengths. The Corrugated QWIP (CQWIP) broadens detection capacity by using a resonance superstructure to orient more of the electric field parallel, so that it can be absorbed. Although cryogenic cooling between 77 K and 85 K is required, QWID technology is considered[by whom?] for constant surveillance viewing due to its claimed low cost and uniformity in materials.[79]

Materials from the II–VI compounds, such as HgCdTe, are used for high-performing infrared light-sensing cameras. In 2017 the US Army Research Labs in collaboration with Stony Brook University developed an alternative within the III–V family of compounds. InAsSb, a III–V compound, is commonly used commercially for opto-electronics in items such as DVDs and cell phones. Low cost and larger semiconductors frequently cause atomic spacing to decrease leading to size mismatch defects.[clarify] To counteract this possibility in implementing InAsSb, scientists added a graded layer with increased atomic spacing and an intermediate layer of the substrate GaAs to trap any potential defects. This technology was designed with night-time military operations in mind.[80]

Soviet Union and Russia

 
Active night-vision scope NSP-2 mounted on an AKML
 
NSPU (1PN34) 3.5× night-vision scope mounted on an AKS-74U
 
1PN93-2 night-vision scope mounted on a RPG-7D3

The Soviet Union, and after 1991 the Russian Federation, have developed a range of night-vision devices. Models used after 1960 by the Russian/Soviet Army are designated 1PNxx (Russian: 1ПНxx), where 1PN is the GRAU index of night-vision devices. The PN stands for pritsel nochnoy (Russian: прицел ночной), meaning "night sight", and the xx is the model number. Different models introduced around the same time use the same type of batteries and mechanism for mounting on the weapon. The multi-weapon models have replaceable elevation scales, with one scale for the ballistic arc of each supported weapon. The weapons supported include the AK family, sniper rifles, light machine guns and hand-held grenade launchers.

  • 1PN34 refractor-based night sight for a range of small arms and grenade launchers, see photo.
  • 1PN50 refractor-based night observation binoculars.[81]
  • 1PN51 reflector-based night sight for a range of small arms and grenade launchers.[82]
  • 1PN51-2 reflector-based night sight for the RPG-29.[83]
  • 1PN58 refractor-based night sight for a range of small arms and grenade launchers.[84]
  • 1PN93-2 reflector-based night sight for the RPG-7D3, see photo.
  • 1PN110, a more recent (~Gen 3) night sight for the RPG-29.[85]
  • 1PN113, a night sight similar to the 1PN110, for the SV-98 sniper rifle.[85]

The Russian army has also contracted the development of and fielded a series of so-called counter-sniper night sights [ru] (Russian: Антиснайпер, romanizedAntisnayper). The counter-sniper night sight is an active system that uses laser pulses from a laser diode to detect reflections from the focal elements of enemy optical systems and estimate their range. The vendor claims that this system is unparalleled:[86]

  • 1PN106 counter-sniper night sight for the SVD sniper rifle and its SVDS variant.
  • 1PN119 counter-sniper night sight for the PKMN and Pecheneg light machine guns.
  • 1PN120 counter-sniper night sight for the SVDK sniper rifle.
  • 1PN121 counter-sniper night sight for the ASVK large caliber sniper rifle.
  • 1PN123 counter-sniper night sight for the SV-98 sniper rifle.

Legality

  • Belgium: firearms legislation forbids any night-vision device if it can be mounted on a firearm; even if not mounted, they are considered illegal.[87]
  • Czech Republic: not regulated.[88] Previously only available for hunting.[citation needed]
  • Germany: law forbids such devices if their purpose is to be mounted on firearms.[89][90] Due to the African swine fever virus exceptions for hunting wild boars were made around 2021.[91]
  • Iceland: the use of night-vision devices for hunting is prohibited, while there are no restrictions on the devices themselves.[92]
  • India: civilian possession and trading of night-vision scopes is illegal[why?]. Permission is needed from Union home ministry for possession.[93]
  • Netherlands: the possession of night-vision devices is not regulated, night-vision devices mounted on firearms are forbidden unless a permit is granted. The usage of night-vision equipment for night-time hunting (weapon mounted) is allowed only with a special permit in certain areas (the Veluwe) for hunting wild boar.
  • New Zealand: rescue helicopter services use several sets of 3rd-generation night-vision goggles imported from the US, and the country is required to restrict access to the equipment to comply with the strict regulations regarding their export.[94] There are no prohibitions on the ownership or use of night-vision equipment for shooting non-indigenous game animals, such as rabbits, hares, deer, pigs, tahr, chamois, goats, wallabies, etc.
  • United States: a 2010–2011 summary of state hunting regulations for the use of night-vision equipment in hunting[95] listed 13 states in which the equipment is prohibited, 17 states with various restrictions (e.g. only for certain non-game species, and/or in a certain date range), and 20 states without restrictions. It did not summarize the regulations for thermal-imaging equipment.
    • California: it is a misdemeanor to possess a device "designed for or adaptable to use on a firearm which, through the use of a projected infrared light source and electronic telescope, enables the operator thereof to visually determine and locate the presence of objects during the night-time".[96] This essentially covers scopes using Gen0 technology, but not the subsequent generations. There was an effort in 1995[97] to further expand restrictions to forbid night-vision devices that did not incorporate a light source, but it did not become law.
    • Minnesota, as of 2014, "A person may not possess night vision or thermal imaging equipment while taking wild animals or while having in possession [an uncased and loaded weapon] that could be used to take wild animals."[98] There is an exception for law-enforcement and military use. The night-vision prohibition was enacted in 2007, and the thermal-imaging prohibition was added in 2014. Two bills were introduced in the Minnesota Legislature in 2016, proposing to allow night-vision and thermal-imaging equipment for, respectively, 1) "predator" or 2) "unprotected wild animal" hunting.[99]

See also

References

  1. ^ P, Will (10 August 2021). . The Firearm Blog. Archived from the original on 10 August 2021.
  2. ^ Liszewski, Andrew (30 April 2021). . Gizmodo. Archived from the original on 30 April 2021. Retrieved 23 May 2021.
  3. ^ Utley, Sean (2020-06-11). . Firearms News. Archived from the original on 2020-07-27. Retrieved 2021-01-22.
  4. ^ Lynch, Kyle (15 January 2019). . Tactical Life. Archived from the original on 18 September 2021. Retrieved 23 August 2022.
  5. ^ a b c Tyson, Jeff (27 April 2001). . HowStuffWorks. Archived from the original on 9 June 2022. Retrieved 1 March 2011.
  6. ^ as defined by the US Army Night Vision and Electronic Sensors Directorate (NVESD)
  7. ^ . Fort Belvoir, VA: Night Vision & Electronic Sensors Directorate. Archived from the original on 1 February 2010.
  8. ^ Naughton, Russell (10 August 2004). . Monash University. Archived from the original on 8 October 2020. Retrieved 15 March 2013.
  9. ^ . www.achtungpanzer.com. Archived from the original on 2010-01-25. Retrieved 16 March 2018.
  10. ^ "Bull's-eyes in the Night". Popular Science. July 1946. p. 73.
  11. ^ a b . GlobalSecurity.org. Archived from the original on 20 June 2022. Retrieved 2011-03-01.
  12. ^ a b . Modern Forces. Archived from the original on 17 May 2022. Retrieved 9 June 2022.
  13. ^ Fortier, David M. (24 July 2020). . Firearms News. Archived from the original on 21 April 2021. Retrieved 9 June 2022.
  14. ^ Pennsylvania State University. Zworykin, Vladimir 2012-08-31 at the Wayback Machine. Biographical sketch.
  15. ^ "Black-Light Telescope Sees in the Dark". Popular Science Monthly. March 1936. p. 33.
  16. ^ a b c . GlobalSecurity.org. Archived from the original on 22 May 2022. Retrieved 16 March 2018.
  17. ^ a b Utah Gun Collector's Association. . Utah Gun Collectors Association. Archived from the original on 12 April 2022. Retrieved 10 June 2022.
  18. ^ . Part Target. Archived from the original on 3 November 2015. Retrieved 10 June 2022.
  19. ^ . Part Target. Archived from the original on 24 June 2016. Retrieved 10 June 2022.
  20. ^ . pulsar-nv.com. Archived from the original on 23 August 2011. Retrieved 16 March 2018.
  21. ^ . GlobalSecurity.org. Archived from the original on 24 August 2021. Retrieved 16 March 2018.
  22. ^ . GlobalSecurity.org. Archived from the original on 24 August 2021. Retrieved 16 March 2018.
  23. ^ a b Chrzanowski, K (June 2013). (PDF). Opto-Electronics Review. 21 (2): 153–181. Bibcode:2013OERv...21..153C. doi:10.2478/s11772-013-0089-3. S2CID 121662581. Archived from the original (PDF) on 27 May 2021.
  24. ^ a b c (PDF). Photonis Night Vision. October 2020. Archived from the original (PDF) on 5 May 2021. Retrieved 16 July 2022.
  25. ^ . GlobalSecurity.org. Archived from the original on 22 May 2022. Retrieved 16 March 2018.
  26. ^ . GlobalSecurity.org. Archived from the original on 6 May 2022. Retrieved 16 March 2018.
  27. ^ . CANVS. Archived from the original on 29 October 2015. Retrieved 16 March 2018.
  28. ^ a b Montoro, Harry P. . Photonics. Archived from the original on 4 July 2021. Retrieved 19 May 2022.
  29. ^ a b c (PDF). Photonis. March 2019. Archived from the original (PDF) on 6 January 2022. Retrieved 15 July 2022.
  30. ^ (PDF). Chief of Naval Air Training. Department of the Navy. 14 September 2021. pp. 2–5. Archived from the original (PDF) on 19 May 2022. Retrieved 19 May 2022.
  31. ^ a b c Defense Industry Daily staff (6 May 2016). . Defense Industry Daily. Archived from the original on 19 May 2022. Retrieved 19 May 2022.
  32. ^ a b c C, Nicholas (24 April 2020). . The Firearm Blog. Archived from the original on 22 January 2021. Retrieved 19 May 2022.
  33. ^ a b Lasky, Chip (2011). (PDF). TNVC. Archived from the original (PDF) on 19 July 2017. Retrieved 19 May 2022.
  34. ^ Clemens, Candace (May 2007). (PDF). Law Enforcement Technology. Archived from the original (PDF) on 2008-02-28. Retrieved 16 March 2018.
  35. ^ . nivitech.com. Archived from the original on 23 January 2018. Retrieved 16 March 2018.
  36. ^ . ATN Corp. Archived from the original on 18 June 2022. Retrieved 16 March 2018.
  37. ^ . Nightvis. Archived from the original on 13 August 2006. Retrieved 16 March 2018.
  38. ^ . Nite-walker. 26 November 2019. Archived from the original on 15 August 2021. Retrieved 19 May 2022.
  39. ^ Bialos, Jeffrey P.; Koehl, Stuart L. (September 2005). . National Defense University Center for Technology and National Security Policy. Archived from the original on June 29, 2011. Retrieved 2011-03-01.
  40. ^ . Teledyne FLIR. 18 December 2019. Archived from the original on 7 April 2022. Retrieved 16 July 2022.
  41. ^ a b C, Nicholas (17 May 2019). . The Firearm Blog. Archived from the original on 19 May 2022. Retrieved 19 May 2022.
  42. ^ Gao, Charlie (29 March 2019). . The National Interest. Archived from the original on 30 March 2019. Retrieved 3 June 2022.
  43. ^ . Noise Fighters. Archived from the original on 18 July 2022. Retrieved 18 July 2022.
  44. ^ a b Valpolini, Paolo (13 July 2020). . European Defense Review. Archived from the original on 27 May 2021. Retrieved 16 July 2022.
  45. ^ Donval, Ariela; Fisher, Tali; Lipman, Ofir; Oron, Moshe (1 May 2012). "Laser designator protection filter for see-spot thermal imaging systems". Proceedings of SPIE Defense, Security, and Sensing 2012. 8353 (Infrared Technology and Applications XXXVIII): 835324–835324–8. Bibcode:2012SPIE.8353E..24D. doi:10.1117/12.916966. S2CID 122190698. Retrieved 16 July 2022.
  46. ^ Tishman, Jon; Schoen, Dan (22 January 2021). . Modern War Institute at West Point. Archived from the original on 22 January 2021. Retrieved 4 June 2022.
  47. ^ C, Nicholas (11 June 2021). . The Firearm Blog. Archived from the original on 19 May 2022. Retrieved 19 May 2022.
  48. ^ a b Kitson, David (5 September 2016). (PDF). Future Land Forces 2016 (PDF). Archived from the original (PDF) on 13 June 2022.
  49. ^ a b . L3Harris Technologies. Archived from the original on 25 February 2022. Retrieved 2 June 2022.
  50. ^ . Safran Optics 1. Archived from the original on 22 May 2022. Retrieved 17 July 2022.
  51. ^ C, Nicholas (12 October 2017). . The Firearm Blog. Archived from the original on 19 May 2022. Retrieved 19 May 2022.
  52. ^ . B.E. Meyers & Co. Archived from the original on 19 May 2022. Retrieved 19 May 2022.
  53. ^ . Scopex. Archived from the original on 19 May 2022. Retrieved 19 May 2022.
  54. ^ a b Schuster, Kurt; Kelly, Edward (18 September 2018). (PDF). Defense Technical Information Center. Air Force Research Laboratory. p. 14. Archived from the original (PDF) on 10 July 2021. Retrieved 19 May 2022.
  55. ^ . Part Target. Archived from the original on 19 May 2022. Retrieved 19 May 2022.
  56. ^ (PDF). Rheinmetall. Archived from the original (PDF) on 14 July 2021. Retrieved 17 July 2022.
  57. ^ . Safran Optics 1. Archived from the original on 13 March 2022. Retrieved 17 July 2022.
  58. ^ (PDF). Rheinmetall. Archived from the original (PDF) on 17 July 2022. Retrieved 17 July 2022.
  59. ^ (PDF). Rheinmetall. Archived from the original (PDF) on 17 July 2022. Retrieved 17 July 2022.
  60. ^ (PDF). Wilcox Industries. Archived from the original (PDF) on 17 July 2022. Retrieved 17 July 2022.
  61. ^ (PDF). Wilcox Industries. Archived from the original (PDF) on 17 July 2022. Retrieved 17 July 2022.
  62. ^ . B.E. Meyers & Co. Archived from the original on 16 July 2022. Retrieved 16 July 2022.
  63. ^ . Safran Optics 1. Archived from the original on 27 October 2021. Retrieved 17 July 2022.
  64. ^ . TNVC. February 2022. Archived from the original on 22 May 2022. Retrieved 11 June 2022.
  65. ^ Howard, Ian P.; Rogers, Brian J. (1995). Binocular vision and stereopsis. New York: Oxford University Press. p. 32. ISBN 978-0-19-508476-4. Retrieved 3 June 2014.
  66. ^ a b Lasky, Chip (December 2012). (PDF). TNVC. Archived from the original (PDF) on 8 March 2021. Retrieved 19 May 2022.
  67. ^ a b c d e f Kim, Augee (17 July 2017). (PDF). TNVC. Archived from the original (PDF) on 10 June 2022. Retrieved 21 June 2022.
  68. ^ Tarantola, Andrew (6 November 2014). . Gizmodo. Archived from the original on 2 April 2022. Retrieved 19 May 2022.
  69. ^ (PDF). Navy Small Business Innovation Research. 2016. Archived from the original (PDF) on 13 February 2022. Retrieved 21 June 2022.
  70. ^ Keller, John (9 May 2016). . Military Aerospace Electronics. Crane, Indiana. Archived from the original on 21 June 2022. Retrieved 21 June 2022.
  71. ^ . Soldier Systems Daily. 6 January 2017. Archived from the original on 2 February 2020. Retrieved 21 June 2022.
  72. ^ (PDF). NDIA. USASOC. 2017. Archived from the original (PDF) on 15 March 2022. Retrieved 22 May 2022.
  73. ^ . Noise Fighters. Archived from the original on 31 March 2022. Retrieved 18 July 2022.
  74. ^ Reviews, Best Binocular (30 October 2012). "How Digital Night Vision Works". Best Binocular Reviews.
  75. ^ "Night Vision: Digital vs Analog, which is best?". Gloom Group.
  76. ^ T.REX ARMS (Feb 5, 2023). "SiOnyx Opsin: Digital Night Vision HAS ARRIVED". YouTube.
  77. ^ . Outdoors Bay. Archived from the original on 8 May 2012.
  78. ^ Hoffman, Mike (28 March 2014). . Defense Tech. Archived from the original on 28 March 2014.
  79. ^ Ratches, James; Chait, Richard; Lyons, John W. (February 2013). (PDF). National Defense University. Center for Technology and National Security Policy. Archived from the original (PDF) on 6 May 2022.
  80. ^ "Researchers Develop New Material for Army Night-Time Operations". AZO materials. 12 January 2018. Retrieved 5 July 2018.
  81. ^ БИНОКЛЬ НОЧНОЙ 1ПН50 ТЕХНИЧЕСКОЕ ОПИСАНИЕ И ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ [NIGHT BINOCULARS 1PN50 TECHNICAL DESCRIPTION AND OPERATING INSTRUCTIONS] (in Russian). 55 pages.
  82. ^ ИЗДЕЛИЕ 1ПН51 ТЕХНИЧЕСКОЕ ОПИСАНИЕ И ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ [PRODUCT 1PN51 TECHNICAL DESCRIPTION AND OPERATING INSTRUCTIONS] (in Russian). January 1992. 48 pages.
  83. ^ ИЗДЕЛИЕ 1ПН51-2 ТЕХНИЧЕСКОЕ ОПИСАНИЕ И ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ [PRODUCT 1PN51-2 TECHNICAL DESCRIPTION AND OPERATING INSTRUCTIONS] (in Russian). September 1991. 52 pages.
  84. ^ ИЗДЕЛИЕ 1ПН58 ТЕХНИЧЕСКОЕ ОПИСАНИЕ И ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ [PRODUCT 1PN58 TECHNICAL DESCRIPTION AND OPERATING INSTRUCTIONS] (in Russian). February 1991. 53 pages.
  85. ^ a b . gunsru.ru. Archived from the original on 2015-04-26. Retrieved 2014-11-26.
  86. ^ "Anti-Sniper Special Purpose Night Vision Sights". gunsru.ru. Retrieved 2015-03-15.
  87. ^ "Wapenwet – Gecoördineerde versie | Wapenunie Online". Wapenunie.be. Retrieved 2016-12-23.
  88. ^ Gawron, Tomáš (22 December 2020). "Přehledně: Jaké změny přináší novela zákona o zbraních [What changes are coming with the Firearms Act Amendment]". zbrojnice.com (in Czech). Retrieved 22 December 2020.,
  89. ^ Section 19 5a of the German Bundesjagdgesetz (BJagdG) states: "It is forbidden to use artificial light sources, mirrors, devices to illuminate or light targets, or night vision devices with image converters or electronic amplification intended for guns." These aids are not banned for observation purposes but for catching or killing game.
  90. ^ "Lust auf Nachtjagd geht nicht ohne Nachtsichtgeräte Thermalgeräte" (in German). 12 July 2017. Retrieved 21 September 2018.
  91. ^ dpa/lnw (2021-01-30). "Wildschwein-Jagd mit Nachtsichtgeräten in NRW erlaubt". proplanta.de (in German). Retrieved 2022-09-21.
  92. ^ . LYNRED. Archived from the original on 23 November 2021. Retrieved 23 November 2021.
  93. ^ "Available online in India: Military-grade equipment banned for commercial sale". Hindustan Times. 14 December 2016.
  94. ^ "Seeing in the Dark", Vector, magazine of the Civil Aviation Authority of New Zealand, January/February 2008, pages 10–11.
  95. ^ "A 50 State guide – is night vision legal to use for hunting in my State?". High Tech Red Neck. 2010.
  96. ^ "WAIS Document Retrieval". www.leginfo.ca.gov. Retrieved 16 March 2018.
  97. ^ "AB 1059". ca.gov. Archived from the original on 11 July 2012. Retrieved 16 March 2018.
  98. ^ "MN Statutes Section 97B.086". MN Revisor of Statutes. State of MN. Retrieved 31 March 2016.
  99. ^ Orrick, Dave (2016-03-29). "Would night vision make coyote hunting safer? Divisions arise". Pioneer Press.

External links

  • TNVC guide to night vision generations and specifications on 19 July 2021
  • Nitewalker guide to night vision equipment on 15 August 2021
  • Night Vision Devices Modeling and Optimal Design on 6 May 2022
  • . Pointoptics.com. 7 April 2020. Archived from the original on 6 May 2022. Retrieved 2020-04-07.
  • Tyson, Jeff (27 April 2001). . HowStuffWorks. Archived from the original on 9 June 2022. Retrieved 2015-04-11.
  • Night Vision and Electronic Sensors Directorate, CECOM
  • Parush, Avi; Gauthier, Michelle S.; Arseneau, Lise; Tang, Denis (September 2011). "The Human Factors of Night Vision Goggles: Perceptual, Cognitive, and Physical Factors". Reviews of Human Factors and Ergonomics. Sage Journals: 238–279. doi:10.1177/1557234X11410392.

US patents

  • US D248860 - Night vision Pocketscope
  • US 4707595 - Invisible light beam projector and night vision system
  • US 4991183 - Target illuminators and systems employing same
  • US 6075644 - Panoramic night vision goggles
  • US 6158879 - Infrared reflector and illumination system
  • US 6911652 - Low Light Imaging Device

night, vision, device, this, article, require, cleanup, meet, wikipedia, quality, standards, specific, problem, likely, more, organized, weave, generation, classification, with, technological, analogues, done, russian, wikipedia, page, please, help, improve, t. This article may require cleanup to meet Wikipedia s quality standards The specific problem is Likely more organized to weave US generation classification with non US technological analogues as done on the Russian Wikipedia page Please help improve this article if you can October 2021 Learn how and when to remove this template message A night vision device NVD also known as a night optical observation device NOD night vision goggle NVG is an optoelectronic device that allows visualization of images in low levels of light improving the user s night vision The device enhances ambient visible light and converts near infrared light into visible light which can be seen by the user this is known as I2 image intensification By comparison viewing of infrared thermal radiation is referred to as thermal imaging and operates in a different section of the infrared spectrum A night vision device usually consists of an image intensifier tube a protective housing and may have some type of mounting system Many NVDs also include a protective sacrificial lens mounted over the front lens ie objective lens on NVDs to protect the latter from damage by environmental hazards 1 and some can incorporate telescopic lenses The image produced by an NVD is typically monochrome green as green was considered to be the easiest color to look at for prolonged periods in the dark 2 Night vision devices may be passive relying solely on ambient light or may be active using an IR infrared illuminator to better visualize the environment A US Navy aviator uses a pair of helmet mounted AN AVS 6 vision goggles The effect on the natural night vision of the eye is evidentA standard telescopic sight augmented with a night vision device in front on the M110 Note that in addition to the image intensifier the NVD gathers much more light by its much larger apertureA 1PN51 2 night vision reticle with markings for range estimation source source source source source source source source source source source source source source source First person view through night vision goggles of the FBI Hostage Rescue Team using an airboat Night vision devices can be handheld but many are head mounted and attach to helmets When used with firearms an IR laser sight is often mounted to the user s weapon The laser sight produces an infrared beam that is only visible through an NVD and aids with aiming 3 Some night vision devices are specially made to be mounted to firearms These can used in conjunction with weapon sights like rifle scopes or can be used as standalone sights some thermal weapon sights have been designed to provide similar capabilities 4 These devices were first used in World War II and came into wide use during the Vietnam War 5 The technology has evolved greatly since its introduction leading to several generations 6 of night vision equipment with performance increases and price reductions Consequently though they are commonly used by the military and law enforcement agencies night vision devices are available to civilian users for a wide range of applications including aviation driving demining etc 7 Contents 1 History 2 United States 2 1 Generation 1 2 2 Generation 2 GEN II 2 3 Generation 3 GEN III 2 4 Auto gating 2 5 Generation 3 GEN III OMNI I IX 3 Figure of merit 4 Fusion night vision 5 Out of Band OOB 6 Wide Field of View WFoV 7 Digital 8 Other technologies 9 Soviet Union and Russia 10 Legality 11 See also 12 References 13 External links 13 1 US patentsHistory EditEarly night vision technology used prior to the end of World War II has been described as Generation 0 5 In 1929 Hungarian physicist Kalman Tihanyi invented an infrared sensitive electronic television camera for anti aircraft defense in the UK 8 Night vision devices were introduced in the German Army as early as 1939 and were used in World War II AEG started developing the first devices in 1935 In mid 1943 the German Army began the first tests with infrared night vision devices and telescopic rangefinders mounted on Panther tanks Two different arrangements were constructed and used on Panther tanks The Sperber FG 1250 Sparrow Hawk with a range of up to 600 m had a 30 cm infrared searchlight and an image converter operated by the tank commander An experimental Soviet device called the PAU 2 was field tested in 1942 From late 1944 to March 1945 the German military conducted successful tests of FG 1250 sets mounted on Panther Ausf G tanks and other variants Before World War II ended in 1945 approximately 50 or 63 Panthers had been equipped with the FG 1250 and saw combat on both the Eastern and Western Fronts The Vampir man portable system for infantry was used with StG 44 assault rifles 9 Parallel development of night vision systems occurred in the US The M1 and M3 infrared night sighting devices also known as the sniperscope or snooperscope saw limited service with the US Army in World War II 10 and in the Korean War to assist snipers 5 These were active devices using a large infrared light source to illuminate targets Their image intensifier tubes used an anode and an S 1 photocathode made primarily of silver cesium and oxygen and electrostatic inversion with electron acceleration was used to achieve gain 11 Examples FG 1250 Sperber ZG 1229 Vampir PAU 2 PNV 57A tanker goggles SU 49 PAS 5 12 T 120 Sniperscope 1st model World War II M2 Sniperscope 2nd model World War II M3 Sniperscope 4th model Korean War AN PAS 4 early Vietnam War 13 After World War II Vladimir K Zworykin developed the first practical commercial night vision device at Radio Corporation of America intended for civilian use Zworykin s idea came from a former radio guided missile 14 At that time infrared was commonly called black light a term later restricted to ultraviolet Zworykin s invention was not a success due to its size and cost 15 United States EditGeneration 1 Edit An M16A1 rifle fitted with the AN PVS 2 Starlight scopeFirst generation passive devices developed and patented by the US Army in the 1960s introduced during the Vietnam War were an adaptation of earlier active GEN 0 technology and relied on ambient light instead of using an extra infrared light source Using an S 20 photocathode their image intensifiers produced a light amplification of around 1 000 16 but they were quite bulky and required moonlight to function properly Examples AN PVS 1 Starlight scope 17 18 AN PVS 2 Starlight scope 19 17 AN PAS 6 Varo Metascope 12 Generation 2 GEN II Edit A cut open and depotted AN PVS 5 showing the components of a night vision device This device was manufactured in 2nd generation 5A to 5C and 3rd generation 5D Second generation devices developed in the 1970s featuring an improved image intensifier tube using a micro channel plate MCP 20 with an S 25 photocathode 11 and resulted in a much brighter image especially around the edges of the lens This led to increased clarity in low ambient light environments such as moonless nights Light amplification was around 20 000 16 Image resolution and reliability were also improved Examples AN PVS 3 Miniaturized night vision sight AN PVS 4 21 AN PVS 5 22 SUPERGEN 23 Later advances in GEN II technology brought the tactical characteristics of GEN II devices equipped with better optics SUPERGEN tubes improved resolution and better signal to noise ratios though GEN II is not formally recognized by the NVESD 23 Generation 3 GEN III Edit An early development version of the AN PVS 7 goggleThird generation night vision systems developed in the late 1980s maintained the MCP from Gen II but used a photocathode made with gallium arsenide which further improved image resolution Gallium arsenide photocathodes are primarily manufactured by L3Harris Technologies and Elbit Systems of America and image light from 500 900 nm 24 In addition the MCP is coated with an ion barrier film to increase tube life However the ion barrier causes fewer electrons to pass through thus diminishing the improvement that the gallium arsenide photocathode provides Because of the ion barrier the halo effect around bright spots or light sources is larger as well Light amplification with these devices is improved to around 30 000 50 000 16 Power consumption is higher than in GEN II tubes Examples AN PVS 7 25 AN NVS 7 AN PVS 10 AN PVS 14 26 AN PNVS 14 AN PVS 17 CNVS 4949 27 PN 21KAuto gating Edit Autogating ATG is a function which rapidly switches the power supply s voltage to the photocathode on and off However these switches are rapid enough that they are not detectable to the human eye and peak voltage supplied to the night vision device is maintained 28 This achieves several purposes first it reduces the duty cycle ie the amount of time that the tube has power running through it which increases the device s lifespan 29 Second autogating enhances the BSP Bright Source Protection which is the built in system that reduces the voltage supplied to the photocathode in response to ambient light levels ABC Automatic Brightness Control is a similar function which modulates the amount of voltage supplied to the microchannel plate rather than the photocathode in response to ambient light Together BSP and ABC alongside the autogating function serve to prevent temporary blindness for the user and prevent damage to the tube when the night vision device is exposed to sudden bright sources of light 28 like a muzzle flash or artificial lighting being switched on 29 These modulation systems also help maintain a steady illumination level in the user s view which improves the ability to keep eyes on target in spite of temporary flashes of light These functions are especially useful for pilots soldiers in urban environments and special operations forces who may be exposed to dynamic rapidly changing light levels 29 30 Generation 3 GEN III OMNI I IX Edit Generation II III and IV devices use a microchannel plate for amplification Photons from a dimly lit source enter the objective lens on the left and strike the photocathode gray plate The photocathode which is negatively biased releases electrons which are accelerated to the higher voltage microchannel plate red Each electron causes multiple electrons to be released from the microchannel plate The electrons are drawn to the higher voltage phosphor screen green Electrons that strike the phosphor screen cause the phosphor to produce photons of light viewable through the eyepiece lenses OMNI or OMNIBUS refers to a series of contracts through which the US Army purchased GEN III night vision devices This started with OMNI I which procured AN PVS 7A and AN PVS 7B devices then continued with OMNI II 1990 OMNI III 1992 OMNI IV 1996 OMNI V 1998 OMNI VI 2002 OMNI VII 2005 31 OMNI VIII and OMNI IX 32 However OMNI is not a specification in and of itself The performance of a particular GEN III OMNI device generally depends upon the tube which is used For example a GEN III OMNI III MX 10160A AVS 6 tube will perform similarly to a GEN III VII MX 10160A AVS 6 tube even though the former was manufactured in 1992 and the latter 2005 32 33 One particular technology PINNACLE c is often mentioned as well It is a proprietary thin film microchannel plate technology created by ITT since combined with Exelis acquired by Harris then sold to Elbit Systems of America that was included in the OMNI VII contract The thin film improves performance 33 That being said GEN III OMNI V IX devices developed in the 2000s and onward can differ from standard GEN III and earlier GEN III OMNI I IV devices in one or both of two important ways An automatic gated power supply system regulates the photocathode voltage allowing the NVD to instantaneously adapt to changing light conditions 34 A removed or greatly thinned ion barrier thin film which decreases the number of electrons that are usually rejected by the standard GEN III MCP hence resulting in less image noise 35 The disadvantage to a thin or removed ion barrier is the overall decrease in tube life from a theoretical 20 000 h mean time to failure MTTF for standard Gen III type to 15 000 h MTTF for thin film types However this is largely negated by the low number of image intensifier tubes that reach 15 000 h of operation before requiring replacement citation needed While the consumer market sometimes classifies this type of system as generation 4 the United States military describes these systems as generation 3 autogated tubes GEN III OMNI V IX Moreover as autogating power supplies can now be added to any previous generation of night vision devices autogating capability does not automatically class the devices as belonging to a particular OMNI classification Any postnominals appearing after a generation type i e Gen II Gen III do not change the generation type of the device but instead indicate improvement s over the original specification s requirements 36 Examples AN PVS 22 37 NVS 22 Binocular Night Vision Device BNVD AN PVS 15 AN PVS 21 AN PVS 23 AN PVS 31A AN PVS 31D Ground Panoramic Night Vision Goggle GPNVG 18 Figure of merit EditFigure of merit FoM is a number which gives a quantitative measure of a night vision device s effectiveness and clarity It is calculated using the number of line pairs per millimeter which a user can detect while using the device multiplied by the image intensifier s signal to noise ratio 38 32 39 In the late 1990s innovations in photocathode technology significantly increased the signal to noise ratio with newly developed tubes starting to surpass the performance of standard Gen 3 tubes By 2001 the United States federal government concluded that a tube s generation was not a determinant factor of a tube s global performance making the term generation irrelevant in determining the performance of an image intensifier tube and therefore eliminated the term as a basis of export regulations Though image intensification technology employed by different manufacturers varies from the tactical point of view a night vision system is an optical device that enables vision in conditions of low light The US government itself has recognized the fact that the technology itself makes little difference as long as an operator can see clearly at night Consequently the United States bases export regulations not on the generation but on the figure of merit ITAR regulations specify that US made tubes with a FOM greater than 1400 are not exportable outside the US however the Defense Technology Security Administration DTSA can waive that policy on a case by case basis Fusion night vision Edit A comparison of I only night vision above and I plus thermal fusion below Fusion night vision is a newer advance in night vision technology which combines I image intensification with thermal imaging which functions in the medium MWIR 3 5 µm and or long LWIR 8 14 µm wavelength range 40 Initial models appeared in the 2000s and progressed in the 2010s 31 Some devices are dedicated fusion devices while others are clip on thermal imagers which can add a thermal overlay to standard I night vision devices 41 Fusion technologies combines the strengths of traditional I which is excellent for navigation and discernment of fine details with the strengths of thermal imaging which excels in spotting the heat signatures of targets Fusion systems have offered a number of different imaging modes including fused night vision with thermal overlay night vision only thermal only and various special fusion modes like outline which outlines objects that have thermal signatures or decamouflage which highlights all objects that are of near human temperatures Fusion devices do struggle with weight and power usage and are often heavier and have shorter run times than contemporary I only devices 42 Aside from fusion of I and thermal imaging within a single device some users have tried using an I device over one eye and a thermal device over the other eye relying on the human visual system to provide a binocular combined view of the two Some but not all thermal imaging systems can also be viewed through a night vision device ie lining up the thermal imager in front of the I night vision device to produce a form of fusion vision 41 43 Examples AN PSQ 20 ENVG Enhanced Night Vision Goggles AN PSQ 36 FGE Fusion Goggle Enhanced previously FGS for Fusion Goggle System AN PSQ 42 ENVG B Enhanced Night Vision Goggles Binocular AN PSQ 44 ENVG B Enhanced Night Vision Goggles Binocular AN PAS 29 COTI E COTI Enhanced Clip On Thermal ImagerOut of Band OOB EditOut of Band OOB refers to night vision technologies which operate outside of the 500 900 nm NIR near infrared range that traditional Gen III gallium arsenide tubes detect Imaging outside the usual spectrum is possible with dedicated OOB image intensifier tubes or with clip on devices Two examples include Photonis 4G HyMa Hybrid Multi Alkali image intensifier tubes bandwidth of 350 1100 nm from near UV to IR and Safran Optics 1 s AN PAS 34 E COSI Enhanced Clip On SWIR Imager which clips onto standard night vision devices and provides an overlay in the 900 1700 nm range respectively 44 OOB provides several advantages First OOB imaging makes better use of ambient light while a standard Gen III III device can only intensify light in the 500 900 nm NIR range an OOB device also intensifies any UV light or SWIR light in the environment As a result an OOB device might be able to see more on a starlit night than a standard GEN III III device could Second OOB imaging can help JTACs and other FACs when marking targets with a laser designator Many laser designators use 1064nm light which is barely visible to standard Gen III III devices so ground personnel may need to use a separate see spot device to visually confirm that the designator s targeting laser is on target OOB night vision devices however can easily image the 1064nm range 24 45 Third OOB light is not visible to most commercially available night vision devices Despite ITAR restrictions night vision technologies have proliferated among peer and near peer countries and have also made their way into terrorist hands For example there has been documented use of night vision equipment by the Taliban Red Unit 46 As a result if friendly forces are using night vision equipment like IR illuminators IR strobes IR lasers etc then hostile forces using night vision equipment could spot them as well OOB strobes illuminators and lasers on the other hand are easily visible when using OOB night vision but much more difficult to spot with current Gen III III night vision equipment as they appear faintly if at all depending on wavelength and intensity 47 48 Additionally depending on the wavelengths covered by an OOB imaging device users might be able to observe the lasers used in laser rangefinders as they often operate in the 1550nm range 49 Examples ground personnel helmet mounted imagers Photonis 4G INTENS image intensifier tubes 350 1100 nm 48 24 Optics 1 AN PAS 34 E COSI Enhanced Clip On SWIR Imager 900 1700 nm 44 Optics 1 COSMO Clip On SWIR Monocular 50 Examples ground personnel weapon mounted lasers B E Meyers amp Co MAWL CLAD Modular Aiming Weapon Laser Covert Laser Aiming Device 1064 nm laser 51 52 53 LA 17 PEQ D PILS Dual band Pointer and Illuminator Laser System 1400 1600 nm 54 55 Rheinmetall LM VAMPIR Laser Module VAriable Multi Purpose InfraRed 56 AN PSQ 23 STORM STORM PI STORM SLX STORM II and L3Harris SPEAR 1570 nm 54 49 Optics 1 ICUGR Integrated Compact Ultralight Gun mounted Rangefinder 1550 nm 57 Rheinmetall FCS RPAL Fire Control System Rheinmetall Precision Aiming Laser 1550 nm 58 Rheinmetall FCS TRB Fire Control System TacRay Ballistic 1550 nm 59 Wilcox RAPTAR S Rapid Targeting and Ranging Module 1550 nm 60 Wilcox MRF Xe Micro Range Finder Enhanced 1550 nm 61 B E Meyers amp Co IZLID Ultra 1064 and 1550 Infrared Zoom Laser Illuminator Designator 1064 nm 1550 nm 62 Optics 1 CTAM Coded Target Acquisition Marker 1064 nm 63 Wide Field of View WFoV Edit A US airman tests AN AVS 10 panoramic night vision goggles in March 2006 GPNVG 18 Night vision devices whether monocular or binocular typically have a limited field of view FoV the commonly used AN PVS 14 has a FoV of 40 64 which is rather less than the 95 monocular horizontal FoV and 190 binocular horizontal FoV that humans possess 65 Due to the limited FoV users must visually scan about to fully check their surroundings which is a time consuming process This limitation is particularly evident when using night vision devices for flying driving or CQB where split second decisions must be made Because of these limitations many SF SOF operators preferred to use white light rather than night vision when conducting CQB 66 As a result much time and effort has gone into research to develop a wider FoV solution for night vision devices As of 2021 there were three primary methods for increasing peripheral vision in night vision devices each with their own advantages and disadvantages Panoramic night vision goggles PNVG Foveated night vision goggles F NVG Diverging image tube night vision goggles DIT NVG 67 Panoramic night vision goggles PNVG increase field of view by increasing the number of sensors if tubes are generally limited to 40 then one can add more tubes to increase peripheral vision This solution works well and does not compromise device performance or visual clarity but comes at the cost of size weight power requirements and complexity 67 A well known set of peripheral NVGs is the GPNVG 18 Ground Peripheral Night Vision Goggle which was used in the raid in Abottabad that killed Osama bin Laden 68 These goggles and the aviation AN AVS 10 PNVG from which they were derived offer a 97 FoV 66 Foveated night vision F NVG uses specialized WFoV optics to increase the field of view through a night vision intensifier tube The fovea refers to the part of the retina which is responsible for central vision These night vision devices have users still look straight through the tubes so light passing through the center of the tube falls on the foveal retina as is the case with traditional binocular NVGs While these devices increase FoV it comes at the price of image quality and edge distortions 67 A US Naval contract for US 47 6 million was awarded to Kent Optronics to retrofit AN PVS 15 units with WFoV optics that expanded them to 80 FoV with less than 4 distortion 69 70 71 Diagram of the WFoV BNVD based on AN PVS 31ADiverging image tube DIT night vision increases FoV by positioning the night vision tubes so they are no longer parallel but are angled slightly outward This increases peripheral FoV but causes distortion and reduced image quality Unfortunately optical clarity is best when looking through the center of an image intensifier tube With DIT users are no longer looking straight through the center of the tubes which provides the clearest images and light passing through the center of the tubes no longer falls on the fovea the area of clearest vision The AN PVS 25 was one such example of DIT night vision from the late 2000s 67 The WFoV BNVD is a variant of the AN PVS 31A which incorporates both F NVG and DIT NVG concepts the foveal WFoV optics increase the FoV of each tube from 40 to 55 while the slight angulation of the tubes positions them so there is a 40 overlap of binocular vision in the center and a total 70 bi ocular FoV With the performance of the modified AN PVS 31A tubes used the WFoV BNVD has a FoM of 2706 which is better than the FoM in both the GPNVG 18 and the standard AN PVS 31A 72 67 Examples Panoramic NVG PNVG GPNVG 18 AN AVS 10 PNVG Foveated NVG F NVG WFoV F NVG retrofit AN PVS 15 goggles WFoV BNVD combined F NVG and DIT NVG variant of AN PVS 31A Diverging Image Tube NVG DIT NVG AN PVS 25 WFoV BNVD combined F NVG and DIT NVG variant of AN PVS 31A Noise Fighters Panobridge binocular bridge mount which combines two AN PVS 14 monoculars and allows them to be angulated outward or positioned parallel for DIT or traditional configuration 73 67 Digital EditSome night vision devices including several of the ENVG AN PSQ 20 models are digital Introduced in the late 2000s these allow electronic transmission of the device s night vision view though this often comes at the price of size weight power usage 31 Advancements in high sensitivity digital camera technology has made it possible to produce NVGs that use a camera display pair instead of an image intensifier At the low end of the market these devices can offer Gen 1 equivalent quality at a lower cost 74 At the higher end SiOnyx has produced digital color NVGs The Opsin of 2022 has a form factor and helmet weight similar to that of a AN PVS 14 but requires a separate battery pack with a shorter battery life and remains inferior in sensitivity 75 Being a camera based design it can however tolerate bright light and process a wider range of wavelengths 76 Other technologies EditCeramic Optical Ruggedized Engine CORE is a technology which was first shown at the 2012 SHOT Show in Las Vegas NV by Armasight 77 CORE produces a higher performance Gen 1 tubes The main difference between CORE tubes and standard Gen 1 tubes is introduction of a ceramic plate instead of a glass one This plate is produced from specially formulated ceramic and metal alloys Edge distortion is improved photo sensitivity is increased and the resolution can be as high as 60 lp mm CORE is still considered by whom Gen 1 as it does not utilize a microchannel plate Scientists at the University of Michigan have developed a contact lens that can act as a night vision device The lens has a thin strip of graphene between layers of glass that reacts to photons to make dark images look brighter Current prototypes only absorb 2 3 of light so the percentage of light pickup has to rise before the lens can be viable The graphene technology can be expanded into other uses like car windshields to improve night driving The US Army is interested in the technology to potentially replace night vision goggles 78 The Sensor and Electron Devices Directorate SEDD of the US Army Research Laboratory developed quantum well infrared detector QWID technology This technology s epitaxial layers which result in diode formation compose a gallium arsenide or aluminum gallium arsenide system GaAs or AlGaAs It is particularly sensitive to infrared waves that are mid long lengths The Corrugated QWIP CQWIP broadens detection capacity by using a resonance superstructure to orient more of the electric field parallel so that it can be absorbed Although cryogenic cooling between 77 K and 85 K is required QWID technology is considered by whom for constant surveillance viewing due to its claimed low cost and uniformity in materials 79 Materials from the II VI compounds such as HgCdTe are used for high performing infrared light sensing cameras In 2017 the US Army Research Labs in collaboration with Stony Brook University developed an alternative within the III V family of compounds InAsSb a III V compound is commonly used commercially for opto electronics in items such as DVDs and cell phones Low cost and larger semiconductors frequently cause atomic spacing to decrease leading to size mismatch defects clarify To counteract this possibility in implementing InAsSb scientists added a graded layer with increased atomic spacing and an intermediate layer of the substrate GaAs to trap any potential defects This technology was designed with night time military operations in mind 80 Soviet Union and Russia EditThis section is missing information about year of introduction and amplification factor for each model so that a rough comparison with US generations can be made Please expand the section to include this information Further details may exist on the talk page October 2021 Active night vision scope NSP 2 mounted on an AKML NSPU 1PN34 3 5 night vision scope mounted on an AKS 74U 1PN93 2 night vision scope mounted on a RPG 7D3The Soviet Union and after 1991 the Russian Federation have developed a range of night vision devices Models used after 1960 by the Russian Soviet Army are designated 1PNxx Russian 1PN xx where 1PN is the GRAU index of night vision devices The PN stands for pritsel nochnoy Russian pricel nochnoj meaning night sight and the xx is the model number Different models introduced around the same time use the same type of batteries and mechanism for mounting on the weapon The multi weapon models have replaceable elevation scales with one scale for the ballistic arc of each supported weapon The weapons supported include the AK family sniper rifles light machine guns and hand held grenade launchers 1PN34 refractor based night sight for a range of small arms and grenade launchers see photo 1PN50 refractor based night observation binoculars 81 1PN51 reflector based night sight for a range of small arms and grenade launchers 82 1PN51 2 reflector based night sight for the RPG 29 83 1PN58 refractor based night sight for a range of small arms and grenade launchers 84 1PN93 2 reflector based night sight for the RPG 7D3 see photo 1PN110 a more recent Gen 3 night sight for the RPG 29 85 1PN113 a night sight similar to the 1PN110 for the SV 98 sniper rifle 85 The Russian army has also contracted the development of and fielded a series of so called counter sniper night sights ru Russian Antisnajper romanized Antisnayper The counter sniper night sight is an active system that uses laser pulses from a laser diode to detect reflections from the focal elements of enemy optical systems and estimate their range The vendor claims that this system is unparalleled 86 1PN106 counter sniper night sight for the SVD sniper rifle and its SVDS variant 1PN119 counter sniper night sight for the PKMN and Pecheneg light machine guns 1PN120 counter sniper night sight for the SVDK sniper rifle 1PN121 counter sniper night sight for the ASVK large caliber sniper rifle 1PN123 counter sniper night sight for the SV 98 sniper rifle Legality EditBelgium firearms legislation forbids any night vision device if it can be mounted on a firearm even if not mounted they are considered illegal 87 Czech Republic not regulated 88 Previously only available for hunting citation needed Germany law forbids such devices if their purpose is to be mounted on firearms 89 90 Due to the African swine fever virus exceptions for hunting wild boars were made around 2021 91 Iceland the use of night vision devices for hunting is prohibited while there are no restrictions on the devices themselves 92 India civilian possession and trading of night vision scopes is illegal why Permission is needed from Union home ministry for possession 93 Netherlands the possession of night vision devices is not regulated night vision devices mounted on firearms are forbidden unless a permit is granted The usage of night vision equipment for night time hunting weapon mounted is allowed only with a special permit in certain areas the Veluwe for hunting wild boar New Zealand rescue helicopter services use several sets of 3rd generation night vision goggles imported from the US and the country is required to restrict access to the equipment to comply with the strict regulations regarding their export 94 There are no prohibitions on the ownership or use of night vision equipment for shooting non indigenous game animals such as rabbits hares deer pigs tahr chamois goats wallabies etc United States a 2010 2011 summary of state hunting regulations for the use of night vision equipment in hunting 95 listed 13 states in which the equipment is prohibited 17 states with various restrictions e g only for certain non game species and or in a certain date range and 20 states without restrictions It did not summarize the regulations for thermal imaging equipment California it is a misdemeanor to possess a device designed for or adaptable to use on a firearm which through the use of a projected infrared light source and electronic telescope enables the operator thereof to visually determine and locate the presence of objects during the night time 96 This essentially covers scopes using Gen0 technology but not the subsequent generations There was an effort in 1995 97 to further expand restrictions to forbid night vision devices that did not incorporate a light source but it did not become law Minnesota as of 2014 A person may not possess night vision or thermal imaging equipment while taking wild animals or while having in possession an uncased and loaded weapon that could be used to take wild animals 98 There is an exception for law enforcement and military use The night vision prohibition was enacted in 2007 and the thermal imaging prohibition was added in 2014 Two bills were introduced in the Minnesota Legislature in 2016 proposing to allow night vision and thermal imaging equipment for respectively 1 predator or 2 unprotected wild animal hunting 99 See also EditDaly detector Type of gas phase ion detector Image intensifier Vacuum tube device for increasing the intensity of available light Infrared photography Near infrared imaging Low light level television Electronic light sensing device sensitive to wavelengths into the near infrared Photomultiplier Thermal imaging camera Thermal imaging camera in firefighting Laser sight firearms Laser device used to assist the aiming of a firearmReferences Edit P Will 10 August 2021 Night Vision Devices Releases Lightweight Sacrificial Windows The Firearm Blog Archived from the original on 10 August 2021 Liszewski Andrew 30 April 2021 The Army s New Night Vision Goggles Look Like Technology Stolen From Aliens Gizmodo Archived from the original on 30 April 2021 Retrieved 23 May 2021 Utley Sean 2020 06 11 Selecting An IR Laser And Illuminator Firearms News Archived from the original on 2020 07 27 Retrieved 2021 01 22 Lynch Kyle 15 January 2019 Why You Should Consider Adding a Clip On Night Vision Device Tactical Life Archived from the original on 18 September 2021 Retrieved 23 August 2022 a b c Tyson Jeff 27 April 2001 How Night Vision Works HowStuffWorks Archived from the original on 9 June 2022 Retrieved 1 March 2011 as defined by the US Army Night Vision and Electronic Sensors Directorate NVESD NVESD About Us Fort Belvoir VA Night Vision amp Electronic Sensors Directorate Archived from the original on 1 February 2010 Naughton Russell 10 August 2004 Kalman Tihanyi 1897 1947 Monash University Archived from the original on 8 October 2020 Retrieved 15 March 2013 German Infrared Night Vision Devices Infrarot Scheinwerfer www achtungpanzer com Archived from the original on 2010 01 25 Retrieved 16 March 2018 Bull s eyes in the Night Popular Science July 1946 p 73 a b Image Intensification Tube Technology and Evolution GlobalSecurity org Archived from the original on 20 June 2022 Retrieved 2011 03 01 a b Vietnam Era Night Vision SU49 PAS 5 NVG and PAS 6 Infrared Metascope Modern Forces Archived from the original on 17 May 2022 Retrieved 9 June 2022 Fortier David M 24 July 2020 How Does Night Vision Work Firearms News Archived from the original on 21 April 2021 Retrieved 9 June 2022 Pennsylvania State University Zworykin Vladimir Archived 2012 08 31 at the Wayback Machine Biographical sketch Black Light Telescope Sees in the Dark Popular Science Monthly March 1936 p 33 a b c Night Vision Goggles NVG GlobalSecurity org Archived from the original on 22 May 2022 Retrieved 16 March 2018 a b Utah Gun Collector s Association Fight at Night U S Army Night Vision 1945 1980 Utah Gun Collectors Association Archived from the original on 12 April 2022 Retrieved 10 June 2022 5855 00 087 2942 AN PVS 1 Data Part Target Archived from the original on 3 November 2015 Retrieved 10 June 2022 5855 00 087 2947 AN PVS 2 Data Part Target Archived from the original on 24 June 2016 Retrieved 10 June 2022 Night Vision Equipment by Pulsar FAQ pulsar nv com Archived from the original on 23 August 2011 Retrieved 16 March 2018 AN PVS 4 Individual Weapon Night Sight GlobalSecurity org Archived from the original on 24 August 2021 Retrieved 16 March 2018 AN PVS 5 Night Vision Goggles GlobalSecurity org Archived from the original on 24 August 2021 Retrieved 16 March 2018 a b Chrzanowski K June 2013 Review of night vision technology PDF Opto Electronics Review 21 2 153 181 Bibcode 2013OERv 21 153C doi 10 2478 s11772 013 0089 3 S2CID 121662581 Archived from the original PDF on 27 May 2021 a b c Differences between Gen3 and 4G image intensification technology PDF Photonis Night Vision October 2020 Archived from the original PDF on 5 May 2021 Retrieved 16 July 2022 AN PVS 7 Night Vision Goggle GlobalSecurity org Archived from the original on 22 May 2022 Retrieved 16 March 2018 AN PVS 14 MONOCULAR NIGHT VISION DEVICE MNVD GlobalSecurity org Archived from the original on 6 May 2022 Retrieved 16 March 2018 CANVS COLOR NIGHT VISION GOGGLES CANVS Archived from the original on 29 October 2015 Retrieved 16 March 2018 a b Montoro Harry P Image Intensification The Technology of Night Vision Photonics Archived from the original on 4 July 2021 Retrieved 19 May 2022 a b c Photonis Night Vision Auto Gating PDF Photonis March 2019 Archived from the original PDF on 6 January 2022 Retrieved 15 July 2022 P 431 Rev 09 21 FLIGHT TRAINING INSTRUCTION NIGHT VISION GOGGLE PHASE TH 57C 2021 PDF Chief of Naval Air Training Department of the Navy 14 September 2021 pp 2 5 Archived from the original PDF on 19 May 2022 Retrieved 19 May 2022 a b c Defense Industry Daily staff 6 May 2016 Through a Glass Darkly Night Vision Gives US Troops Edge Defense Industry Daily Archived from the original on 19 May 2022 Retrieved 19 May 2022 a b c C Nicholas 24 April 2020 Friday Night Lights Understanding Night Vision Specs And Generations The Firearm Blog Archived from the original on 22 January 2021 Retrieved 19 May 2022 a b Lasky Chip 2011 PVS 14 Buyer s Guide PDF TNVC Archived from the original PDF on 19 July 2017 Retrieved 19 May 2022 Clemens Candace May 2007 From starlight to street light PDF Law Enforcement Technology Archived from the original PDF on 2008 02 28 Retrieved 16 March 2018 www nivitech com Nightvision Technology Principles of Nightvision Devices nivitech com Archived from the original on 23 January 2018 Retrieved 16 March 2018 How Night Vision Works in night vision Goggles Scopes Binoculars Riflescopes ATN Corp Archived from the original on 18 June 2022 Retrieved 16 March 2018 AN PVS 22 Universal Night Sight Attachement Nightvis Archived from the original on 13 August 2006 Retrieved 16 March 2018 Night Vision Specifications 2021 UPDATE Nite walker 26 November 2019 Archived from the original on 15 August 2021 Retrieved 19 May 2022 Bialos Jeffrey P Koehl Stuart L September 2005 The NATO Response Force National Defense University Center for Technology and National Security Policy Archived from the original on June 29 2011 Retrieved 2011 03 01 Thermal Camera Specs You Should Know Before Buying Teledyne FLIR 18 December 2019 Archived from the original on 7 April 2022 Retrieved 16 July 2022 a b C Nicholas 17 May 2019 FRIDAY NIGHT LIGHTS DIY Thermal Fusion By Our Powers Combined The Firearm Blog Archived from the original on 19 May 2022 Retrieved 19 May 2022 Gao Charlie 29 March 2019 This is How the Army Fights Wars In the Dark The National Interest Archived from the original on 30 March 2019 Retrieved 3 June 2022 Adapter for mounting NOX18 to Panobridge Noise Fighters Archived from the original on 18 July 2022 Retrieved 18 July 2022 a b Valpolini Paolo 13 July 2020 Safran completes its night vision portfolio European Defense Review Archived from the original on 27 May 2021 Retrieved 16 July 2022 Donval Ariela Fisher Tali Lipman Ofir Oron Moshe 1 May 2012 Laser designator protection filter for see spot thermal imaging systems Proceedings of SPIE Defense Security and Sensing 2012 8353 Infrared Technology and Applications XXXVIII 835324 835324 8 Bibcode 2012SPIE 8353E 24D doi 10 1117 12 916966 S2CID 122190698 Retrieved 16 July 2022 Tishman Jon Schoen Dan 22 January 2021 WE DON T OWN THE NIGHT ANYMORE Modern War Institute at West Point Archived from the original on 22 January 2021 Retrieved 4 June 2022 C Nicholas 11 June 2021 Friday Night Lights Night Vision OOB Out Of Band Fact Or Fiction The Firearm Blog Archived from the original on 19 May 2022 Retrieved 19 May 2022 a b Kitson David 5 September 2016 OUT OF BAND COUNTERMEASURE CAPABILITIES OF 4G SPECIFICATION IMAGE TUBES PDF Future Land Forces 2016 PDF Archived from the original PDF on 13 June 2022 a b SMALL PRECISION ENHANCED AIMING RANGEFINDER SPEAR L3Harris Technologies Archived from the original on 25 February 2022 Retrieved 2 June 2022 COSMO Clip On SWIR Monocular Safran Optics 1 Archived from the original on 22 May 2022 Retrieved 17 July 2022 C Nicholas 12 October 2017 SWIR MAWL CLAD Now Even More Invisible IR Laser The Firearm Blog Archived from the original on 19 May 2022 Retrieved 19 May 2022 B E MEYERS amp CO RELEASES THE MAWL CLAD A NEW WAVELENGTH FOR THE MAWL SERIES B E Meyers amp Co Archived from the original on 19 May 2022 Retrieved 19 May 2022 MAWL CLAD Laser Pointer Scopex Archived from the original on 19 May 2022 Retrieved 19 May 2022 a b Schuster Kurt Kelly Edward 18 September 2018 Assessment for the Safe Use of Lasers Pabarade Range Lithuania PDF Defense Technical Information Center Air Force Research Laboratory p 14 Archived from the original PDF on 10 July 2021 Retrieved 19 May 2022 5855 01 643 0982 14300 3200 LA 17 PEQ Data Part Target Archived from the original on 19 May 2022 Retrieved 19 May 2022 LM VAMPIR VARIABLE MUTLI PURPOSE INFRARED PDF Rheinmetall Archived from the original PDF on 14 July 2021 Retrieved 17 July 2022 ICUGR Integrated Compact Ultralight Gun Mounted Rangefinder Safran Optics 1 Archived from the original on 13 March 2022 Retrieved 17 July 2022 FCS RPAL TACTICAL LASER RANGE FINDER WITH BALLISTIC COMPUTER PDF Rheinmetall Archived from the original PDF on 17 July 2022 Retrieved 17 July 2022 FCS TACRAY BALLISTIC TACTICAL LASER RANGE FINDER WITH BALLISTIC COMPUTER PDF Rheinmetall Archived from the original PDF on 17 July 2022 Retrieved 17 July 2022 RAPTAR S RAPID TARGETING amp RANGING MODULE HIGH POWER PDF Wilcox Industries Archived from the original PDF on 17 July 2022 Retrieved 17 July 2022 MRF Xe MICRO RANGE FINDER ENHANCED LOW POWER PDF Wilcox Industries Archived from the original PDF on 17 July 2022 Retrieved 17 July 2022 BE MEYERS amp CO RELEASES IZLID ULTRA IN 1064 NM AND 1550 NM SWIR VARIANTS B E Meyers amp Co Archived from the original on 16 July 2022 Retrieved 16 July 2022 CTAM Coded Target Acquisition Marker Safran Optics 1 Archived from the original on 27 October 2021 Retrieved 17 July 2022 L3HARRIS M914A PVS 14 UNFILMED WHITE PHOSPHOR 2376 FOM TNVC February 2022 Archived from the original on 22 May 2022 Retrieved 11 June 2022 Howard Ian P Rogers Brian J 1995 Binocular vision and stereopsis New York Oxford University Press p 32 ISBN 978 0 19 508476 4 Retrieved 3 June 2014 a b Lasky Chip December 2012 GPNVG 18 L 3 Ground Panoramic Night Vision Goggle PDF TNVC Archived from the original PDF on 8 March 2021 Retrieved 19 May 2022 a b c d e f Kim Augee 17 July 2017 TNVC INC WFOV WIDE FIELD OF VIEW NIGHT VISION GOGGLE OVERVIEW PDF TNVC Archived from the original PDF on 10 June 2022 Retrieved 21 June 2022 Tarantola Andrew 6 November 2014 The Four Eyed Night Vision Goggles That Helped Take Down Bin Laden Gizmodo Archived from the original on 2 April 2022 Retrieved 19 May 2022 Navy SBIR STTR Success Wide Field of View Foveal Night Vision Goggle Retrofit PDF Navy Small Business Innovation Research 2016 Archived from the original PDF on 13 February 2022 Retrieved 21 June 2022 Keller John 9 May 2016 Navy asks Kent Optronics to develop wide field of view binocular night vision goggles Military Aerospace Electronics Crane Indiana Archived from the original on 21 June 2022 Retrieved 21 June 2022 N Vision Optics Announces New Wide Field of View PVS 15 Night Vision Binocular Soldier Systems Daily 6 January 2017 Archived from the original on 2 February 2020 Retrieved 21 June 2022 Evolution of USASOC Future Force Capabilities PDF NDIA USASOC 2017 Archived from the original PDF on 15 March 2022 Retrieved 22 May 2022 PANOBRIDGE MK2 Noise Fighters Archived from the original on 31 March 2022 Retrieved 18 July 2022 Reviews Best Binocular 30 October 2012 How Digital Night Vision Works Best Binocular Reviews Night Vision Digital vs Analog which is best Gloom Group T REX ARMS Feb 5 2023 SiOnyx Opsin Digital Night Vision HAS ARRIVED YouTube Armasight Spark Outdoors Bay Archived from the original on 8 May 2012 Hoffman Mike 28 March 2014 Collaboration between DefenseTech and LEON Defense Tech Archived from the original on 28 March 2014 Ratches James Chait Richard Lyons John W February 2013 Some Recent Sensor Related Army Critical Technology Events PDF National Defense University Center for Technology and National Security Policy Archived from the original PDF on 6 May 2022 Researchers Develop New Material for Army Night Time Operations AZO materials 12 January 2018 Retrieved 5 July 2018 BINOKL NOChNOJ 1PN50 TEHNIChESKOE OPISANIE I INSTRUKCIYa PO EKSPLUATACII NIGHT BINOCULARS 1PN50 TECHNICAL DESCRIPTION AND OPERATING INSTRUCTIONS in Russian 55 pages IZDELIE 1PN51 TEHNIChESKOE OPISANIE I INSTRUKCIYa PO EKSPLUATACII PRODUCT 1PN51 TECHNICAL DESCRIPTION AND OPERATING INSTRUCTIONS in Russian January 1992 48 pages IZDELIE 1PN51 2 TEHNIChESKOE OPISANIE I INSTRUKCIYa PO EKSPLUATACII PRODUCT 1PN51 2 TECHNICAL DESCRIPTION AND OPERATING INSTRUCTIONS in Russian September 1991 52 pages IZDELIE 1PN58 TEHNIChESKOE OPISANIE I INSTRUKCIYa PO EKSPLUATACII PRODUCT 1PN58 TECHNICAL DESCRIPTION AND OPERATING INSTRUCTIONS in Russian February 1991 53 pages a b 1PN110 and 1PN113 Night Vision Sights gunsru ru Archived from the original on 2015 04 26 Retrieved 2014 11 26 Anti Sniper Special Purpose Night Vision Sights gunsru ru Retrieved 2015 03 15 Wapenwet Gecoordineerde versie Wapenunie Online Wapenunie be Retrieved 2016 12 23 Gawron Tomas 22 December 2020 Prehledne Jake zmeny prinasi novela zakona o zbranich What changes are coming with the Firearms Act Amendment zbrojnice com in Czech Retrieved 22 December 2020 Section 19 5a of the German Bundesjagdgesetz BJagdG states It is forbidden to use artificial light sources mirrors devices to illuminate or light targets or night vision devices with image converters or electronic amplification intended for guns These aids are not banned for observation purposes but for catching or killing game Lust auf Nachtjagd geht nicht ohne Nachtsichtgerate Thermalgerate in German 12 July 2017 Retrieved 21 September 2018 dpa lnw 2021 01 30 Wildschwein Jagd mit Nachtsichtgeraten in NRW erlaubt proplanta de in German Retrieved 2022 09 21 THERMAL VISION TECHNOLOGY A MAJOR BENEFIT TO THE HUNTING MARKET LYNRED Archived from the original on 23 November 2021 Retrieved 23 November 2021 Available online in India Military grade equipment banned for commercial sale Hindustan Times 14 December 2016 Seeing in the Dark Vector magazine of the Civil Aviation Authority of New Zealand January February 2008 pages 10 11 A 50 State guide is night vision legal to use for hunting in my State High Tech Red Neck 2010 WAIS Document Retrieval www leginfo ca gov Retrieved 16 March 2018 AB 1059 ca gov Archived from the original on 11 July 2012 Retrieved 16 March 2018 MN Statutes Section 97B 086 MN Revisor of Statutes State of MN Retrieved 31 March 2016 Orrick Dave 2016 03 29 Would night vision make coyote hunting safer Divisions arise Pioneer Press External links Edit Wikimedia Commons has media related to Night vision devices TNVC guide to night vision generations and specifications Archived on 19 July 2021 Nitewalker guide to night vision equipment Archived on 15 August 2021 Night Vision Devices Modeling and Optimal Design Archived on 6 May 2022 Night Hunting Laws by State Pointoptics com 7 April 2020 Archived from the original on 6 May 2022 Retrieved 2020 04 07 Tyson Jeff 27 April 2001 How Night Vision Works HowStuffWorks Archived from the original on 9 June 2022 Retrieved 2015 04 11 Night Vision and Electronic Sensors Directorate CECOM Parush Avi Gauthier Michelle S Arseneau Lise Tang Denis September 2011 The Human Factors of Night Vision Goggles Perceptual Cognitive and Physical Factors Reviews of Human Factors and Ergonomics Sage Journals 238 279 doi 10 1177 1557234X11410392 US patents Edit US D248860 Night vision Pocketscope US 4707595 Invisible light beam projector and night vision system US 4991183 Target illuminators and systems employing same US 6075644 Panoramic night vision goggles US 6158879 Infrared reflector and illumination system US 6911652 Low Light Imaging Device Retrieved from https en wikipedia org w index php title Night vision device amp oldid 1171106595, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.