fbpx
Wikipedia

Aperture

In optics, an aperture is a hole or an opening through which light travels. More specifically, the aperture and focal length of an optical system determine the cone angle of a bundle of rays that come to a focus in the image plane.

Different apertures of a lens
A camera aperture
Definitions of Aperture in the 1707 Glossographia Anglicana Nova[1]
Aperture icon

An optical system typically has many openings or structures that limit the ray bundles (ray bundles are also known as pencils of light). These structures may be the edge of a lens or mirror, or a ring or other fixture that holds an optical element in place, or may be a special element such as a diaphragm placed in the optical path to limit the light admitted by the system. In general, these structures are called stops,[2] and the aperture stop is the stop that primarily determines the ray cone angle and brightness at the image point.

In some contexts, especially in photography and astronomy, aperture refers to the diameter of the aperture stop rather than the physical stop or the opening itself. For example, in a telescope, the aperture stop is typically the edges of the objective lens or mirror (or of the mount that holds it). One then speaks of a telescope as having, for example, a 100-centimeter aperture. The aperture stop is not necessarily the smallest stop in the system. Magnification and demagnification by lenses and other elements can cause a relatively large stop to be the aperture stop for the system. In astrophotography, the aperture may be given as a linear measure (for example in inches or mm) or as the dimensionless ratio between that measure and the focal length. In other photography, it is usually given as a ratio.

Sometimes stops and diaphragms are called apertures, even when they are not the aperture stop of the system.

The word aperture is also used in other contexts to indicate a system which blocks off light outside a certain region. In astronomy, for example, a photometric aperture around a star usually corresponds to a circular window around the image of a star within which the light intensity is assumed.[3] The word "aperture" is also used as a small hole, similar to a peek-hole. For example, in military terms, a bunker's aperture means a small peeking hole made artificially or by natural means. A bunker's aperture can be used for preserving the body from enemy fire while achieving a clear line of sight. (Infantry Combat/The Rifle Platoon/John F. Antal p.91)

Application

 
Alvin Clark polishes the big Yerkes Observatory Great Refractor objective lens, with 40 inches 102 cm across, in 1896.

The aperture stop is an important element in most optical designs. Its most obvious feature is that it limits the amount of light that can reach the image/film plane. This can be either unavoidable, as in a telescope where one wants to collect as much light as possible; or deliberate, to prevent saturation of a detector or overexposure of film. In both cases, the size of the aperture stop is constrained by things other than the amount of light admitted; however:

  • The size of the stop is one factor that affects depth of field. Smaller stops (larger f numbers) produce a longer depth of field, allowing objects at a wide range of distances from the viewer to all be in focus at the same time.
  • The stop limits the effect of optical aberrations. If the stop is too large, the image will be distorted. More sophisticated optical system designs can mitigate the effect of aberrations, allowing a larger stop and therefore greater light collecting ability.
  • The stop determines whether the image will be vignetted. Larger stops can cause the intensity reaching the film or detector to fall off toward the edges of the picture, especially when, for off-axis points, a different stop becomes the aperture stop by virtue of cutting off more light than did the stop that was the aperture stop on the optic axis.
  • A larger aperture stop requires larger diameter optics, which are heavier and more expensive.

In addition to an aperture stop, a photographic lens may have one or more field stops, which limit the system's field of view. When the field of view is limited by a field stop in the lens (rather than at the film or sensor) vignetting results; this is only a problem if the resulting field of view is less than was desired.

The biological pupil of the eye is its aperture in optics nomenclature; the iris is the diaphragm that serves as the aperture stop. Refraction in the cornea causes the effective aperture (the entrance pupil in optics parlance) to differ slightly from the physical pupil diameter. The entrance pupil is typically about 4 mm in diameter, although it can range from 2 mm (f/8.3) in a brightly lit place to 8 mm (f/2.1) in the dark.

In astronomy, the diameter of the aperture stop (called the aperture) is a critical parameter in the design of a telescope. Generally, one would want the aperture to be as large as possible, to collect the maximum amount of light from the distant objects being imaged. The size of the aperture is limited, however, in practice by considerations of cost and weight, as well as prevention of aberrations (as mentioned above).

Apertures are also used in laser energy control, close aperture z-scan technique, diffractions/patterns, and beam cleaning.[4] Laser applications include spatial filters, Q-switching, high intensity x-ray control.

In light microscopy, the word aperture may be used with reference to either the condenser (changes angle of light onto specimen field), field iris (changes area of illumination) or possibly objective lens (forms primary image). See Optical microscope.

In photography

The aperture stop of a photographic lens can be adjusted to control the amount of light reaching the film or image sensor. In combination with variation of shutter speed, the aperture size will regulate the film's or image sensor's degree of exposure to light. Typically, a fast shutter will require a larger aperture to ensure sufficient light exposure, and a slow shutter will require a smaller aperture to avoid excessive exposure.

 
Diagram of decreasing aperture sizes (increasing f-numbers) for "full stop" increments (factor of two aperture area per stop)

A device called a diaphragm usually serves as the aperture stop, and controls the aperture. The diaphragm functions much like the iris of the eye – it controls the effective diameter of the lens opening. Reducing the aperture size (increasing the f-number) provides less light to sensor and also increases the depth of field, which describes the extent to which subject matter lying closer than or farther from the actual plane of focus appears to be in focus. In general, the smaller the aperture (the larger the f-number), the greater the distance from the plane of focus the subject matter may be while still appearing in focus.

The lens aperture is usually specified as an f-number, the ratio of focal length to effective aperture diameter. A lens typically has a set of marked "f-stops" that the f-number can be set to. A lower f-number denotes a greater aperture opening which allows more light to reach the film or image sensor. The photography term "one f-stop" refers to a factor of 2 (approx. 1.41) change in f-number, which in turn corresponds to a factor of 2 change in light intensity.

Aperture priority is a semi-automatic shooting mode used in cameras. It permits the photographer to select an aperture setting and let the camera decide the shutter speed and sometimes also ISO sensitivity for the correct exposure. This is also referred to as Aperture Priority Auto Exposure, A mode, AV mode (aperture-value mode), or semi-auto mode.[5]

Typical ranges of apertures used in photography are about f/2.8–f/22 or f/2–f/16,[6] covering six stops, which may be divided into wide, middle, and narrow of two stops each, roughly (using round numbers) f/2–f/4, f/4–f/8, and f/8–f/16 or (for a slower lens) f/2.8–f/5.6, f/5.6–f/11, and f/11–f/22. These are not sharp divisions, and ranges for specific lenses vary.

Maximum and minimum apertures

The specifications for a given lens typically include the maximum and minimum aperture sizes, for example, f/0.95–f/22. In this case, f/0.95 is currently the maximum aperture (the widest opening on a full-frame format for practical use[7]), and f/22 is the minimum aperture (the smallest opening). The maximum aperture opening tends to be of most interest and is always included when describing a lens. This value is also known as the lens "speed", as it affects the exposure time. The aperture is proportional to the square root of the light admitted, and thus inversely proportional to the square root of required exposure time, such that an aperture of f/2 allows for exposure times one quarter that of f/4.

 
The aperture range of a 50mm Minolta lens, f/1.4–f/16

Lenses with apertures opening f/2.8 or wider are referred to as "fast" lenses, although the specific point has changed over time (for example, in the early 20th century aperture openings wider than f/6 were considered fast.[8] The fastest lenses for the common 35 mm film format in general production have apertures of f/1.2 or f/1.4, with more at f/1.8 and f/2.0, and many at f/2.8 or slower; f/1.0 is unusual, though sees some use. When comparing "fast" lenses, the image format used must be considered. Lenses designed for a small format such as half frame or APS-C need to project a much smaller image circle than a lens used for large format photography. Thus the optical elements built into the lens can be far smaller and cheaper.

In exceptional circumstances lenses can have even wider apertures with f-numbers smaller than 1.0; see lens speed: fast lenses for a detailed list. For instance, both the current Leica Noctilux-M 50mm ASPH and a 1960s-era Canon 50mm rangefinder lens have a maximum aperture of f/0.95.[9] Cheaper alternatives have appeared in recent years, such as the Cosina Voigtländer 17.5mm f/0.95, 25mm f/0.95 and 42.5mm f/0.95 manual focus lenses for the Micro Four-Thirds System.[10][11][12] For a long time, the f/0.95 fast f-number for full-frame stopped around 50mm or longer focal length. Until 2021, the lens manufacturer Venus Optics (Laowa) announced the Argus 35mm f/0.95 FF.[7] This is currently the fastest lens with a focal length of 35mm and the widest lens for f/0.95.

Professional lenses for some movie cameras have f-numbers as small as f/0.75. Stanley Kubrick's film Barry Lyndon has scenes shot by candlelight with a NASA/Zeiss 50mm f/0.7,[13] the fastest lens in film history. Beyond the expense, these lenses have limited application due to the correspondingly shallower depth of field – the scene must either be shallow, shot from a distance, or will be significantly defocused, though this may be the desired effect.

Zoom lenses typically have a maximum relative aperture (minimum f-number) of f/2.8 to f/6.3 through their range. High-end lenses will have a constant aperture, such as f/2.8 or f/4, which means that the relative aperture will stay the same throughout the zoom range. A more typical consumer zoom will have a variable maximum relative aperture since it is harder and more expensive to keep the maximum relative aperture proportional to the focal length at long focal lengths; f/3.5 to f/5.6 is an example of a common variable aperture range in a consumer zoom lens.

By contrast, the minimum aperture does not depend on the focal length – it is limited by how narrowly the aperture closes, not the lens design – and is instead generally chosen based on practicality: very small apertures have lower sharpness due to diffraction, while the added depth of field is not generally useful, and thus there is generally little benefit in using such apertures. Accordingly, DSLR lens typically have minimum aperture of f/16, f/22, or f/32, while large format may go down to f/64, as reflected in the name of Group f/64. Depth of field is a significant concern in macro photography, however, and there one sees smaller apertures. For example, the Canon MP-E 65mm can have effective aperture (due to magnification) as small as f/96. The pinhole optic for Lensbaby creative lenses has an aperture of just f/177.[14]

Aperture area

The amount of light captured by a lens is proportional to the area of the aperture, equal to:

 

Where the two equivalent forms are related via the f-number N = f / D, with focal length f and aperture diameter D.

The focal length value is not required when comparing two lenses of the same focal length; a value of 1 can be used instead, and the other factors can be dropped as well, leaving area proportion to the reciprocal square of the f-number N.

If two cameras of different format sizes and focal lengths have the same angle of view, and the same aperture area, they gather the same amount of light from the scene. In that case, the relative focal-plane illuminance, however, would depend only on the f-number N, so it is less in the camera with the larger format, longer focal length, and higher f-number. This assumes both lenses have identical transmissivity.

Aperture control

 
Aperture mechanism of Canon 50mm f/1.8 II lens, with five blades

Though as early as 1933 Torkel Korling had invented and patented for the Graflex large format reflex camera an automatic aperture control,[15] not all early 35mm single lens reflex cameras had the feature. With a small aperture, this darkened the viewfinder, making viewing, focusing, and composition difficult.[16] Korling's design enabled full-aperture viewing for accurate focus, closing to the pre-selected aperture opening when the shutter was fired and simultaneously synchronising the firing of a flash unit. From 1956 SLR camera manufacturers separately developed automatic aperture control (the Miranda T 'Pressure Automatic Diaphragm', and other solutions on the Exakta Varex IIa and Praktica FX2) allowing viewing at the lens's maximum aperture, stopping the lens down to the working aperture at the moment of exposure, and returning the lens to maximum aperture afterward.[17] The first SLR cameras with internal ("through-the-lens" or "TTL") meters (e.g., the Pentax Spotmatic) required that the lens be stopped down to the working aperture when taking a meter reading. Subsequent models soon incorporated mechanical coupling between the lens and the camera body, indicating the working aperture to the camera for exposure while allowing the lens to be at its maximum aperture for composition and focusing;[17] this feature became known as open-aperture metering.

For some lenses, including a few long telephotos, lenses mounted on bellows, and perspective-control and tilt/shift lenses, the mechanical linkage was impractical,[17] and automatic aperture control was not provided. Many such lenses incorporated a feature known as a "preset" aperture,[17][18] which allows the lens to be set to working aperture and then quickly switched between working aperture and full aperture without looking at the aperture control. A typical operation might be to establish rough composition, set the working aperture for metering, return to full aperture for a final check of focus and composition, and focusing, and finally, return to working aperture just before exposure. Although slightly easier than stopped-down metering, operation is less convenient than automatic operation. Preset aperture controls have taken several forms; the most common has been the use of essentially two lens aperture rings, with one ring setting the aperture and the other serving as a limit stop when switching to working aperture. Examples of lenses with this type of preset aperture control are the Nikon PC Nikkor 28 mm f/3.5 and the SMC Pentax Shift 6×7 75 mm f/4.5. The Nikon PC Micro-Nikkor 85 mm f/2.8D lens incorporates a mechanical pushbutton that sets working aperture when pressed and restores full aperture when pressed a second time.

Canon EF lenses, introduced in 1987,[19] have electromagnetic diaphragms,[20] eliminating the need for a mechanical linkage between the camera and the lens, and allowing automatic aperture control with the Canon TS-E tilt/shift lenses. Nikon PC-E perspective-control lenses,[21] introduced in 2008, also have electromagnetic diaphragms,[22] a feature extended to their E-type range in 2013.

Optimal aperture

Optimal aperture depends both on optics (the depth of the scene versus diffraction), and on the performance of the lens.

Optically, as a lens is stopped down, the defocus blur at the Depth of Field (DOF) limits decreases but diffraction blur increases. The presence of these two opposing factors implies a point at which the combined blur spot is minimized (Gibson 1975, 64); at that point, the f-number is optimal for image sharpness, for this given depth of field[23] – a wider aperture (lower f-number) causes more defocus, while a narrower aperture (higher f-number) causes more diffraction.

As a matter of performance, lenses often do not perform optimally when fully opened, and thus generally have better sharpness when stopped down some – this is sharpness in the plane of critical focus, setting aside issues of depth of field. Beyond a certain point, there is no further sharpness benefit to stopping down, and the diffraction begins to become significant. There is accordingly a sweet spot, generally in the f/4 – f/8 range, depending on lens, where sharpness is optimal, though some lenses are designed to perform optimally when wide open. How significant this varies between lenses, and opinions differ on how much practical impact this has.

While optimal aperture can be determined mechanically, how much sharpness is required depends on how the image will be used – if the final image is viewed under normal conditions (e.g., an 8″×10″ image viewed at 10″), it may suffice to determine the f-number using criteria for minimum required sharpness, and there may be no practical benefit from further reducing the size of the blur spot. But this may not be true if the final image is viewed under more demanding conditions, e.g., a very large final image viewed at normal distance, or a portion of an image enlarged to normal size (Hansma 1996). Hansma also suggests that the final-image size may not be known when a photograph is taken, and obtaining the maximum practicable sharpness allows the decision to make a large final image to be made at a later time; see also critical sharpness.

Equivalent aperture range

In digital photography, the 35mm-equivalent aperture range is sometimes considered to be more important than the actual f-number. Equivalent aperture is the f-number adjusted to correspond to the f-number of the same size absolute aperture diameter on a lens with a 35mm equivalent focal length. Smaller equivalent f-numbers are expected to lead to higher image quality based on more total light from the subject, as well as lead to reduced depth of field. For example, a Sony Cyber-shot DSC-RX10 uses a 1" sensor, 24–200 mm with maximum aperture constant along the zoom range; f/2.8 has equivalent aperture range f/7.6, which is a lower equivalent f-number than some other f/2.8 cameras with smaller sensors.[24]

In scanning or sampling

The terms scanning aperture and sampling aperture are often used to refer to the opening through which an image is sampled, or scanned, for example in a Drum scanner, an image sensor, or a television pickup apparatus. The sampling aperture can be a literal optical aperture, that is, a small opening in space, or it can be a time-domain aperture for sampling a signal waveform.

For example, film grain is quantified as graininess via a measurement of film density fluctuations as seen through a 0.048 mm sampling aperture.

See also

References

  1. ^ Thomas Blount, Glossographia Anglicana Nova: Or, A Dictionary, Interpreting Such Hard Words of whatever Language, as are at present used in the English Tongue, with their Etymologies, Definitions, &c. Also, The Terms of Divinity, Law, Physick, Mathematics, History, Agriculture, Logick, Metaphysicks, Grammar, Poetry, Musick, Heraldry, Architecture, Painting, War, and all other Arts and Sciences are herein explain'd, from the best Modern Authors, as, Sir Isaac Newton, Dr. Harris, Dr. Gregory, Mr. Lock, Mr. Evelyn, Mr. Dryden, Mr. Blunt, &c., London, 1707.
  2. ^ "Exposure Stops in Photography - A Beginner's Guide". Photography Life. 16 January 2015. Retrieved 10 May 2019.
  3. ^ Nicholas Eaton, Peter W. Draper & Alasdair Allan, Techniques of aperture photometry 11 March 2007 at the Wayback Machine in PHOTOM – A Photometry Package, 20 August 2002
  4. ^ Rashidian Vaziri, M R (2015). "Role of the aperture in Z-scan experiments: A parametric study". Chinese Physics B. 24 (11): 114206. Bibcode:2015ChPhB..24k4206R. doi:10.1088/1674-1056/24/11/114206. S2CID 250753283.
  5. ^ . elite-cameras.com. Archived from the original on 20 June 2006. Retrieved 20 June 2006. (original link no longer works, but page was saved by archive.org)
  6. ^ "What is... Aperture?".
  7. ^ a b wayne (3 May 2021). "Argus -Laowa f/0.95 Large Aperture Lenses - Ultra-fast lens". Retrieved 6 September 2021.
  8. ^ "Basics of Photography : A beginner's guide". 31 August 2021.
  9. ^ Mahoney, John (10 September 2008). "Leica's $11,000 Noctilux 50mm f/0.95 Lens Is a Nightvision Owl Eye For Your Camera". gizmodo.com. Retrieved 15 April 2018.
  10. ^ "Voigtlander Nokton 17.5mm f/0.95 Lens for Micro Four BA175M B&H". www.bhphotovideo.com. Retrieved 15 April 2018.
  11. ^ "Voigtlander BA259M2 Replacement for Voigtlander BA259M – B&H". www.bhphotovideo.com. Retrieved 15 April 2018.
  12. ^ "Voigtlander Nokton 42.5mm f/0.95 Micro Four-Thirds Lens BA425M". www.bhphotovideo.com. Retrieved 15 April 2018.
  13. ^ Ed DiGiulio (President, Cinema Products Corporation). "Two Special Lenses for Barry Lyndon"
  14. ^ . Lensbaby Pinhole optic. Archived from the original on 1 May 2011.
  15. ^ "US patent 2,029,238 Camera Mechanism, Application June 4, 1933" (PDF).
  16. ^ Shipman, Carl (1977). SLR Photographers Handbook. Tucson, AZ: HP Books. pp. 53. ISBN 0-912656-59-X.
  17. ^ a b c d Sidney F. Ray. The geometry of image formation. In The Manual of Photography: Photographic and Digital Imaging, 9th ed, pp. 136–137. Ed. Ralph E. Jacobson, Sidney F. Ray, Geoffrey G. Atteridge, and Norman R. Axford. Oxford: Focal Press, 2000. ISBN 0-240-51574-9
  18. ^ B. "Moose" Peterson. Nikon System Handbook. New York: Images Press, 1997, pp. 42–43. ISBN 0-929667-03-4
  19. ^ Canon Camera Museum. Accessed 12 December 2008.
  20. ^ EF Lens Work III: The Eyes of EOS. Tokyo: Canon Inc., 2003, pp. 190–191.
  21. ^ Nikon USA web site 12 December 2008 at the Wayback Machine. Accessed 12 December 2008.
  22. ^ Nikon PC-E product comparison brochure 17 December 2008 at the Wayback Machine. Accessed 12 December 2008.
  23. ^ "Diffraction and Optimum Aperture – Format size and diffraction limitations on sharpness". www.bobatkins.com. Retrieved 15 April 2018.
  24. ^ R Butler. "Sony Cyber-shot DSC RX10 First Impressions Review". Retrieved 19 January 2014.
  • Gibson, H. Lou. 1975. Close-Up Photography and Photomacrography. 2nd combined ed. Kodak Publication No. N-16. Rochester, NY: Eastman Kodak Company, Vol II: Photomacrography. ISBN 0-87985-160-0
  • Hansma, Paul K. 1996. View Camera Focusing in Practice. Photo Techniques, March/April 1996, 54–57. Available as GIF images on the Large Format page.

External links

  • Stops and Apertures

aperture, other, uses, disambiguation, optics, aperture, hole, opening, through, which, light, travels, more, specifically, aperture, focal, length, optical, system, determine, cone, angle, bundle, rays, that, come, focus, image, plane, different, apertures, l. For other uses see Aperture disambiguation In optics an aperture is a hole or an opening through which light travels More specifically the aperture and focal length of an optical system determine the cone angle of a bundle of rays that come to a focus in the image plane Different apertures of a lens A camera aperture Definitions of Aperture in the 1707 Glossographia Anglicana Nova 1 Aperture icon An optical system typically has many openings or structures that limit the ray bundles ray bundles are also known as pencils of light These structures may be the edge of a lens or mirror or a ring or other fixture that holds an optical element in place or may be a special element such as a diaphragm placed in the optical path to limit the light admitted by the system In general these structures are called stops 2 and the aperture stop is the stop that primarily determines the ray cone angle and brightness at the image point In some contexts especially in photography and astronomy aperture refers to the diameter of the aperture stop rather than the physical stop or the opening itself For example in a telescope the aperture stop is typically the edges of the objective lens or mirror or of the mount that holds it One then speaks of a telescope as having for example a 100 centimeter aperture The aperture stop is not necessarily the smallest stop in the system Magnification and demagnification by lenses and other elements can cause a relatively large stop to be the aperture stop for the system In astrophotography the aperture may be given as a linear measure for example in inches or mm or as the dimensionless ratio between that measure and the focal length In other photography it is usually given as a ratio Sometimes stops and diaphragms are called apertures even when they are not the aperture stop of the system The word aperture is also used in other contexts to indicate a system which blocks off light outside a certain region In astronomy for example a photometric aperture around a star usually corresponds to a circular window around the image of a star within which the light intensity is assumed 3 The word aperture is also used as a small hole similar to a peek hole For example in military terms a bunker s aperture means a small peeking hole made artificially or by natural means A bunker s aperture can be used for preserving the body from enemy fire while achieving a clear line of sight Infantry Combat The Rifle Platoon John F Antal p 91 Contents 1 Application 2 In photography 2 1 Maximum and minimum apertures 2 2 Aperture area 2 3 Aperture control 2 4 Optimal aperture 3 Equivalent aperture range 4 In scanning or sampling 5 See also 6 References 7 External linksApplication Edit Alvin Clark polishes the big Yerkes Observatory Great Refractor objective lens with 40 inches 102 cm across in 1896 The aperture stop is an important element in most optical designs Its most obvious feature is that it limits the amount of light that can reach the image film plane This can be either unavoidable as in a telescope where one wants to collect as much light as possible or deliberate to prevent saturation of a detector or overexposure of film In both cases the size of the aperture stop is constrained by things other than the amount of light admitted however The size of the stop is one factor that affects depth of field Smaller stops larger f numbers produce a longer depth of field allowing objects at a wide range of distances from the viewer to all be in focus at the same time The stop limits the effect of optical aberrations If the stop is too large the image will be distorted More sophisticated optical system designs can mitigate the effect of aberrations allowing a larger stop and therefore greater light collecting ability The stop determines whether the image will be vignetted Larger stops can cause the intensity reaching the film or detector to fall off toward the edges of the picture especially when for off axis points a different stop becomes the aperture stop by virtue of cutting off more light than did the stop that was the aperture stop on the optic axis A larger aperture stop requires larger diameter optics which are heavier and more expensive In addition to an aperture stop a photographic lens may have one or more field stops which limit the system s field of view When the field of view is limited by a field stop in the lens rather than at the film or sensor vignetting results this is only a problem if the resulting field of view is less than was desired The biological pupil of the eye is its aperture in optics nomenclature the iris is the diaphragm that serves as the aperture stop Refraction in the cornea causes the effective aperture the entrance pupil in optics parlance to differ slightly from the physical pupil diameter The entrance pupil is typically about 4 mm in diameter although it can range from 2 mm f 8 3 in a brightly lit place to 8 mm f 2 1 in the dark In astronomy the diameter of the aperture stop called the aperture is a critical parameter in the design of a telescope Generally one would want the aperture to be as large as possible to collect the maximum amount of light from the distant objects being imaged The size of the aperture is limited however in practice by considerations of cost and weight as well as prevention of aberrations as mentioned above Apertures are also used in laser energy control close aperture z scan technique diffractions patterns and beam cleaning 4 Laser applications include spatial filters Q switching high intensity x ray control In light microscopy the word aperture may be used with reference to either the condenser changes angle of light onto specimen field field iris changes area of illumination or possibly objective lens forms primary image See Optical microscope In photography EditThe aperture stop of a photographic lens can be adjusted to control the amount of light reaching the film or image sensor In combination with variation of shutter speed the aperture size will regulate the film s or image sensor s degree of exposure to light Typically a fast shutter will require a larger aperture to ensure sufficient light exposure and a slow shutter will require a smaller aperture to avoid excessive exposure Diagram of decreasing aperture sizes increasing f numbers for full stop increments factor of two aperture area per stop A device called a diaphragm usually serves as the aperture stop and controls the aperture The diaphragm functions much like the iris of the eye it controls the effective diameter of the lens opening Reducing the aperture size increasing the f number provides less light to sensor and also increases the depth of field which describes the extent to which subject matter lying closer than or farther from the actual plane of focus appears to be in focus In general the smaller the aperture the larger the f number the greater the distance from the plane of focus the subject matter may be while still appearing in focus The lens aperture is usually specified as an f number the ratio of focal length to effective aperture diameter A lens typically has a set of marked f stops that the f number can be set to A lower f number denotes a greater aperture opening which allows more light to reach the film or image sensor The photography term one f stop refers to a factor of 2 approx 1 41 change in f number which in turn corresponds to a factor of 2 change in light intensity Aperture priority is a semi automatic shooting mode used in cameras It permits the photographer to select an aperture setting and let the camera decide the shutter speed and sometimes also ISO sensitivity for the correct exposure This is also referred to as Aperture Priority Auto Exposure A mode AV mode aperture value mode or semi auto mode 5 Typical ranges of apertures used in photography are about f 2 8 f 22 or f 2 f 16 6 covering six stops which may be divided into wide middle and narrow of two stops each roughly using round numbers f 2 f 4 f 4 f 8 and f 8 f 16 or for a slower lens f 2 8 f 5 6 f 5 6 f 11 and f 11 f 22 These are not sharp divisions and ranges for specific lenses vary Maximum and minimum apertures Edit Further information Lens speed The specifications for a given lens typically include the maximum and minimum aperture sizes for example f 0 95 f 22 In this case f 0 95 is currently the maximum aperture the widest opening on a full frame format for practical use 7 and f 22 is the minimum aperture the smallest opening The maximum aperture opening tends to be of most interest and is always included when describing a lens This value is also known as the lens speed as it affects the exposure time The aperture is proportional to the square root of the light admitted and thus inversely proportional to the square root of required exposure time such that an aperture of f 2 allows for exposure times one quarter that of f 4 The aperture range of a 50mm Minolta lens f 1 4 f 16 Lenses with apertures opening f 2 8 or wider are referred to as fast lenses although the specific point has changed over time for example in the early 20th century aperture openings wider than f 6 were considered fast 8 The fastest lenses for the common 35 mm film format in general production have apertures of f 1 2 or f 1 4 with more at f 1 8 and f 2 0 and many at f 2 8 or slower f 1 0 is unusual though sees some use When comparing fast lenses the image format used must be considered Lenses designed for a small format such as half frame or APS C need to project a much smaller image circle than a lens used for large format photography Thus the optical elements built into the lens can be far smaller and cheaper In exceptional circumstances lenses can have even wider apertures with f numbers smaller than 1 0 see lens speed fast lenses for a detailed list For instance both the current Leica Noctilux M 50mm ASPH and a 1960s era Canon 50mm rangefinder lens have a maximum aperture of f 0 95 9 Cheaper alternatives have appeared in recent years such as the Cosina Voigtlander 17 5mm f 0 95 25mm f 0 95 and 42 5mm f 0 95 manual focus lenses for the Micro Four Thirds System 10 11 12 For a long time the f 0 95 fast f number for full frame stopped around 50mm or longer focal length Until 2021 the lens manufacturer Venus Optics Laowa announced the Argus 35mm f 0 95 FF 7 This is currently the fastest lens with a focal length of 35mm and the widest lens for f 0 95 Professional lenses for some movie cameras have f numbers as small as f 0 75 Stanley Kubrick s film Barry Lyndon has scenes shot by candlelight with a NASA Zeiss 50mm f 0 7 13 the fastest lens in film history Beyond the expense these lenses have limited application due to the correspondingly shallower depth of field the scene must either be shallow shot from a distance or will be significantly defocused though this may be the desired effect Zoom lenses typically have a maximum relative aperture minimum f number of f 2 8 to f 6 3 through their range High end lenses will have a constant aperture such as f 2 8 or f 4 which means that the relative aperture will stay the same throughout the zoom range A more typical consumer zoom will have a variable maximum relative aperture since it is harder and more expensive to keep the maximum relative aperture proportional to the focal length at long focal lengths f 3 5 to f 5 6 is an example of a common variable aperture range in a consumer zoom lens By contrast the minimum aperture does not depend on the focal length it is limited by how narrowly the aperture closes not the lens design and is instead generally chosen based on practicality very small apertures have lower sharpness due to diffraction while the added depth of field is not generally useful and thus there is generally little benefit in using such apertures Accordingly DSLR lens typically have minimum aperture of f 16 f 22 or f 32 while large format may go down to f 64 as reflected in the name of Group f 64 Depth of field is a significant concern in macro photography however and there one sees smaller apertures For example the Canon MP E 65mm can have effective aperture due to magnification as small as f 96 The pinhole optic for Lensbaby creative lenses has an aperture of just f 177 14 f 32 small aperture and slow shutter f 5 6 large aperture and fast shutter f 22 small aperture and slower shutter Exposure time 1 80 f 3 5 large aperture and faster shutter Exposure time 1 2500 Changing a camera s aperture value in half stops beginning with f 256 and ending with f 1 Changing a camera s aperture diameter from zero to infinityAperture area Edit The amount of light captured by a lens is proportional to the area of the aperture equal to A r e a p D 2 2 p f 2 N 2 displaystyle mathrm Area pi left D over 2 right 2 pi left f over 2N right 2 Where the two equivalent forms are related via the f number N f D with focal length f and aperture diameter D The focal length value is not required when comparing two lenses of the same focal length a value of 1 can be used instead and the other factors can be dropped as well leaving area proportion to the reciprocal square of the f number N If two cameras of different format sizes and focal lengths have the same angle of view and the same aperture area they gather the same amount of light from the scene In that case the relative focal plane illuminance however would depend only on the f number N so it is less in the camera with the larger format longer focal length and higher f number This assumes both lenses have identical transmissivity Aperture control Edit Aperture mechanism of Canon 50mm f 1 8 II lens with five blades Though as early as 1933 Torkel Korling had invented and patented for the Graflex large format reflex camera an automatic aperture control 15 not all early 35mm single lens reflex cameras had the feature With a small aperture this darkened the viewfinder making viewing focusing and composition difficult 16 Korling s design enabled full aperture viewing for accurate focus closing to the pre selected aperture opening when the shutter was fired and simultaneously synchronising the firing of a flash unit From 1956 SLR camera manufacturers separately developed automatic aperture control the Miranda T Pressure Automatic Diaphragm and other solutions on the Exakta Varex IIa and Praktica FX2 allowing viewing at the lens s maximum aperture stopping the lens down to the working aperture at the moment of exposure and returning the lens to maximum aperture afterward 17 The first SLR cameras with internal through the lens or TTL meters e g the Pentax Spotmatic required that the lens be stopped down to the working aperture when taking a meter reading Subsequent models soon incorporated mechanical coupling between the lens and the camera body indicating the working aperture to the camera for exposure while allowing the lens to be at its maximum aperture for composition and focusing 17 this feature became known as open aperture metering For some lenses including a few long telephotos lenses mounted on bellows and perspective control and tilt shift lenses the mechanical linkage was impractical 17 and automatic aperture control was not provided Many such lenses incorporated a feature known as a preset aperture 17 18 which allows the lens to be set to working aperture and then quickly switched between working aperture and full aperture without looking at the aperture control A typical operation might be to establish rough composition set the working aperture for metering return to full aperture for a final check of focus and composition and focusing and finally return to working aperture just before exposure Although slightly easier than stopped down metering operation is less convenient than automatic operation Preset aperture controls have taken several forms the most common has been the use of essentially two lens aperture rings with one ring setting the aperture and the other serving as a limit stop when switching to working aperture Examples of lenses with this type of preset aperture control are the Nikon PC Nikkor 28 mm f 3 5 and the SMC Pentax Shift 6 7 75 mm f 4 5 The Nikon PC Micro Nikkor 85 mm f 2 8D lens incorporates a mechanical pushbutton that sets working aperture when pressed and restores full aperture when pressed a second time Canon EF lenses introduced in 1987 19 have electromagnetic diaphragms 20 eliminating the need for a mechanical linkage between the camera and the lens and allowing automatic aperture control with the Canon TS E tilt shift lenses Nikon PC E perspective control lenses 21 introduced in 2008 also have electromagnetic diaphragms 22 a feature extended to their E type range in 2013 Optimal aperture Edit Optimal aperture depends both on optics the depth of the scene versus diffraction and on the performance of the lens Optically as a lens is stopped down the defocus blur at the Depth of Field DOF limits decreases but diffraction blur increases The presence of these two opposing factors implies a point at which the combined blur spot is minimized Gibson 1975 64 at that point the f number is optimal for image sharpness for this given depth of field 23 a wider aperture lower f number causes more defocus while a narrower aperture higher f number causes more diffraction As a matter of performance lenses often do not perform optimally when fully opened and thus generally have better sharpness when stopped down some this is sharpness in the plane of critical focus setting aside issues of depth of field Beyond a certain point there is no further sharpness benefit to stopping down and the diffraction begins to become significant There is accordingly a sweet spot generally in the f 4 f 8 range depending on lens where sharpness is optimal though some lenses are designed to perform optimally when wide open How significant this varies between lenses and opinions differ on how much practical impact this has While optimal aperture can be determined mechanically how much sharpness is required depends on how the image will be used if the final image is viewed under normal conditions e g an 8 10 image viewed at 10 it may suffice to determine the f number using criteria for minimum required sharpness and there may be no practical benefit from further reducing the size of the blur spot But this may not be true if the final image is viewed under more demanding conditions e g a very large final image viewed at normal distance or a portion of an image enlarged to normal size Hansma 1996 Hansma also suggests that the final image size may not be known when a photograph is taken and obtaining the maximum practicable sharpness allows the decision to make a large final image to be made at a later time see also critical sharpness Equivalent aperture range EditSee also Image sensor format In digital photography the 35mm equivalent aperture range is sometimes considered to be more important than the actual f number Equivalent aperture is the f number adjusted to correspond to the f number of the same size absolute aperture diameter on a lens with a 35mm equivalent focal length Smaller equivalent f numbers are expected to lead to higher image quality based on more total light from the subject as well as lead to reduced depth of field For example a Sony Cyber shot DSC RX10 uses a 1 sensor 24 200 mm with maximum aperture constant along the zoom range f 2 8 has equivalent aperture range f 7 6 which is a lower equivalent f number than some other f 2 8 cameras with smaller sensors 24 In scanning or sampling EditThe terms scanning aperture and sampling aperture are often used to refer to the opening through which an image is sampled or scanned for example in a Drum scanner an image sensor or a television pickup apparatus The sampling aperture can be a literal optical aperture that is a small opening in space or it can be a time domain aperture for sampling a signal waveform For example film grain is quantified as graininess via a measurement of film density fluctuations as seen through a 0 048 mm sampling aperture See also EditNumerical aperture Antenna aperture Angular resolution Diaphragm optics Waterhouse stop Bokeh Shallow focus Deep focus Entrance pupil Exit pupil Lyot stopReferences Edit Thomas Blount Glossographia Anglicana Nova Or A Dictionary Interpreting Such Hard Words of whatever Language as are at present used in the English Tongue with their Etymologies Definitions amp c Also The Terms of Divinity Law Physick Mathematics History Agriculture Logick Metaphysicks Grammar Poetry Musick Heraldry Architecture Painting War and all other Arts and Sciences are herein explain d from the best Modern Authors as Sir Isaac Newton Dr Harris Dr Gregory Mr Lock Mr Evelyn Mr Dryden Mr Blunt amp c London 1707 Exposure Stops in Photography A Beginner s Guide Photography Life 16 January 2015 Retrieved 10 May 2019 Nicholas Eaton Peter W Draper amp Alasdair Allan Techniques of aperture photometry Archived 11 March 2007 at the Wayback Machine in PHOTOM A Photometry Package 20 August 2002 Rashidian Vaziri M R 2015 Role of the aperture in Z scan experiments A parametric study Chinese Physics B 24 11 114206 Bibcode 2015ChPhB 24k4206R doi 10 1088 1674 1056 24 11 114206 S2CID 250753283 Aperture and shutter speed in digital cameras elite cameras com Archived from the original on 20 June 2006 Retrieved 20 June 2006 original link no longer works but page was saved by archive org What is Aperture a b wayne 3 May 2021 Argus Laowa f 0 95 Large Aperture Lenses Ultra fast lens Retrieved 6 September 2021 Basics of Photography A beginner s guide 31 August 2021 Mahoney John 10 September 2008 Leica s 11 000 Noctilux 50mm f 0 95 Lens Is a Nightvision Owl Eye For Your Camera gizmodo com Retrieved 15 April 2018 Voigtlander Nokton 17 5mm f 0 95 Lens for Micro Four BA175M B amp H www bhphotovideo com Retrieved 15 April 2018 Voigtlander BA259M2 Replacement for Voigtlander BA259M B amp H www bhphotovideo com Retrieved 15 April 2018 Voigtlander Nokton 42 5mm f 0 95 Micro Four Thirds Lens BA425M www bhphotovideo com Retrieved 15 April 2018 Ed DiGiulio President Cinema Products Corporation Two Special Lenses for Barry Lyndon Pinhole and Zone Plate Photography for SLR Cameras Lensbaby Pinhole optic Archived from the original on 1 May 2011 US patent 2 029 238 Camera Mechanism Application June 4 1933 PDF Shipman Carl 1977 SLR Photographers Handbook Tucson AZ HP Books pp 53 ISBN 0 912656 59 X a b c d Sidney F Ray The geometry of image formation In The Manual of Photography Photographic and Digital Imaging 9th ed pp 136 137 Ed Ralph E Jacobson Sidney F Ray Geoffrey G Atteridge and Norman R Axford Oxford Focal Press 2000 ISBN 0 240 51574 9 B Moose Peterson Nikon System Handbook New York Images Press 1997 pp 42 43 ISBN 0 929667 03 4 Canon Camera Museum Accessed 12 December 2008 EF Lens Work III The Eyes of EOS Tokyo Canon Inc 2003 pp 190 191 Nikon USA web site Archived 12 December 2008 at the Wayback Machine Accessed 12 December 2008 Nikon PC E product comparison brochure Archived 17 December 2008 at the Wayback Machine Accessed 12 December 2008 Diffraction and Optimum Aperture Format size and diffraction limitations on sharpness www bobatkins com Retrieved 15 April 2018 R Butler Sony Cyber shot DSC RX10 First Impressions Review Retrieved 19 January 2014 Gibson H Lou 1975 Close Up Photography and Photomacrography 2nd combined ed Kodak Publication No N 16 Rochester NY Eastman Kodak Company Vol II Photomacrography ISBN 0 87985 160 0 Hansma Paul K 1996 View Camera Focusing in Practice Photo Techniques March April 1996 54 57 Available as GIF images on the Large Format page External links EditStops and Apertures Retrieved from https en wikipedia org w index php title Aperture amp oldid 1135193092, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.