fbpx
Wikipedia

Electric potential

Electric potential (also called the electric field potential, potential drop, the electrostatic potential) is defined as the amount of work energy needed per unit of electric charge to move the charge from a reference point to a specific point in an electric field. More precisely, the electric potential is the energy per unit charge for a test charge that is so small that the disturbance of the field under consideration is negligible. The motion across the field is supposed to proceed with negligible acceleration, so as to avoid the test charge acquiring kinetic energy or producing radiation. By definition, the electric potential at the reference point is zero units. Typically, the reference point is earth or a point at infinity, although any point can be used.

Electric potential
Electric potential around two oppositely charged conducting spheres. Purple represents the highest potential, yellow zero, and cyan the lowest potential. The electric field lines are shown leaving perpendicularly to the surface of each sphere.
Common symbols
V, φ
SI unitvolt
Other units
statvolt
In SI base unitsV = kg⋅m2⋅s−3⋅A−1
Extensive?yes
DimensionM L2 T−3 I−1

In classical electrostatics, the electrostatic field is a vector quantity expressed as the gradient of the electrostatic potential, which is a scalar quantity denoted by V or occasionally φ,[1] equal to the electric potential energy of any charged particle at any location (measured in joules) divided by the charge of that particle (measured in coulombs). By dividing out the charge on the particle a quotient is obtained that is a property of the electric field itself. In short, an electric potential is the electric potential energy per unit charge.

This value can be calculated in either a static (time-invariant) or a dynamic (time-varying) electric field at a specific time with the unit joules per coulomb (J⋅C−1) or volt (V). The electric potential at infinity is assumed to be zero.

In electrodynamics, when time-varying fields are present, the electric field cannot be expressed only as a scalar potential. Instead, the electric field can be expressed as both the scalar electric potential and the magnetic vector potential.[2] The electric potential and the magnetic vector potential together form a four-vector, so that the two kinds of potential are mixed under Lorentz transformations.

Practically, the electric potential is a continuous function in all space, because a spatial derivative of a discontinuous electric potential yields an electric field of impossibly infinite magnitude. Notably, the electric potential due to an idealized point charge (proportional to 1 ⁄ r, with r the distance from the point charge) is continuous in all space except at the location of the point charge. Though electric field is not continuous across an idealized surface charge, it is not infinite at any point. Therefore, the electric potential is continuous across an idealized surface charge. Additionally, an idealized line of charge has electric potential (proportional to ln(r), with r the radial distance from the line of charge) is continuous everywhere except on the line of charge.

Introduction edit

Classical mechanics explores concepts such as force, energy, and potential.[3] Force and potential energy are directly related. A net force acting on any object will cause it to accelerate. As an object moves in the direction of a force acting on it, its potential energy decreases. For example, the gravitational potential energy of a cannonball at the top of a hill is greater than at the base of the hill. As it rolls downhill, its potential energy decreases and is being translated to motion – kinetic energy.

It is possible to define the potential of certain force fields so that the potential energy of an object in that field depends only on the position of the object with respect to the field. Two such force fields are a gravitational field and an electric field (in the absence of time-varying magnetic fields). Such fields affect objects because of the intrinsic properties (e.g., mass or charge) and positions of the objects.

An object may possess a property known as electric charge. Since an electric field exerts force on a charged object, if the object has a positive charge, the force will be in the direction of the electric field vector at the location of the charge; if the charge is negative, the force will be in the opposite direction.

The magnitude of force is given by the quantity of the charge multiplied by the magnitude of the electric field vector,

 

Electrostatics edit

 
 
Electric potential of separate positive and negative point charges shown as color range from magenta (+), through yellow (0), to cyan (−). Circular contours are equipotential lines. Electric field lines leave the positive charge and enter the negative charge.
 
Electric potential in the vicinity of two opposite point charges.

An electric potential at a point r in a static electric field E is given by the line integral

 

where C is an arbitrary path from some fixed reference point to r; it is uniquely determined up to a constant that is added or subtracted from the integral. In electrostatics, the Maxwell-Faraday equation reveals that the curl   is zero, making the electric field conservative. Thus, the line integral above does not depend on the specific path C chosen but only on its endpoints, making   well-defined everywhere. The gradient theorem then allows us to write:

 

This states that the electric field points "downhill" towards lower voltages. By Gauss's law, the potential can also be found to satisfy Poisson's equation:

 

where ρ is the total charge density and   denotes the divergence.

The concept of electric potential is closely linked with potential energy. A test charge, q, has an electric potential energy, UE, given by

 

The potential energy and hence, also the electric potential, is only defined up to an additive constant: one must arbitrarily choose a position where the potential energy and the electric potential are zero.

These equations cannot be used if  , i.e., in the case of a non-conservative electric field (caused by a changing magnetic field; see Maxwell's equations). The generalization of electric potential to this case is described in the section § Generalization to electrodynamics.

Electric potential due to a point charge edit

 
The electric potential created by a charge, Q, is V = Q/(4πε0r). Different values of Q yield different values of electric potential, V, (shown in the image).

The electric potential arising from a point charge, Q, at a distance, r, from the location of Q is observed to be

 
where ε0 is the permittivity of vacuum[4], VE is known as the Coulomb potential. Note that, in contrast to the magnitude of an electric field due to a point charge, the electric potential scales respective to the reciprocal of the radius, rather than the radius squared.

The electric potential at any location, r, in a system of point charges is equal to the sum of the individual electric potentials due to every point charge in the system. This fact simplifies calculations significantly, because addition of potential (scalar) fields is much easier than addition of the electric (vector) fields. Specifically, the potential of a set of discrete point charges qi at points ri becomes

 

where

  • r is a point at which the potential is evaluated;
  • ri is a point at which there is a nonzero charge; and
  • qi is the charge at the point ri.

And the potential of a continuous charge distribution ρ(r) becomes

 

where

  • r is a point at which the potential is evaluated;
  • R is a region containing all the points at which the charge density is nonzero;
  • r' is a point inside R; and
  • ρ(r') is the charge density at the point r'.

The equations given above for the electric potential (and all the equations used here) are in the forms required by SI units. In some other (less common) systems of units, such as CGS-Gaussian, many of these equations would be altered.

Generalization to electrodynamics edit

When time-varying magnetic fields are present (which is true whenever there are time-varying electric fields and vice versa), it is not possible to describe the electric field simply as a scalar potential V because the electric field is no longer conservative:   is path-dependent because   (due to the Maxwell-Faraday equation).

Instead, one can still define a scalar potential by also including the magnetic vector potential A. In particular, A is defined to satisfy:

 

where B is the magnetic field. By the fundamental theorem of vector calculus, such an A can always be found, since the divergence of the magnetic field is always zero due to the absence of magnetic monopoles. Now, the quantity

 
is a conservative field, since the curl of   is canceled by the curl of   according to the Maxwell–Faraday equation. One can therefore write
 

where V is the scalar potential defined by the conservative field F.

The electrostatic potential is simply the special case of this definition where A is time-invariant. On the other hand, for time-varying fields,

 
unlike electrostatics.

Gauge freedom edit

The electrostatic potential could have any constant added to it without affecting the electric field. In electrodynamics, the electric potential has infinitely many degrees of freedom. For any (possibly time-varying or space-varying) scalar field, 𝜓, we can perform the following gauge transformation to find a new set of potentials that produce exactly the same electric and magnetic fields:[5]

 

Given different choices of gauge, the electric potential could have quite different properties. In the Coulomb gauge, the electric potential is given by Poisson's equation

 

just like in electrostatics. However, in the Lorenz gauge, the electric potential is a retarded potential that propagates at the speed of light and is the solution to an inhomogeneous wave equation:

 

Units edit

The SI derived unit of electric potential is the volt (in honor of Alessandro Volta), denoted as V, which is why the electric potential difference between two points in space is known as a voltage. Older units are rarely used today. Variants of the centimetre–gram–second system of units included a number of different units for electric potential, including the abvolt and the statvolt.

Galvani potential versus electrochemical potential edit

Inside metals (and other solids and liquids), the energy of an electron is affected not only by the electric potential, but also by the specific atomic environment that it is in. When a voltmeter is connected between two different types of metal, it measures the potential difference corrected for the different atomic environments.[6] The quantity measured by a voltmeter is called electrochemical potential or fermi level, while the pure unadjusted electric potential, V, is sometimes called the Galvani potential, ϕ. The terms "voltage" and "electric potential" are a bit ambiguous but one may refer to either of these in different contexts.

See also edit

References edit

  1. ^ Goldstein, Herbert (June 1959). Classical Mechanics. United States: Addison-Wesley. p. 383. ISBN 0201025108.
  2. ^ Griffiths, David J. (1999). Introduction to Electrodynamics. Pearson Prentice Hall. pp. 416–417. ISBN 978-81-203-1601-0.
  3. ^ Young, Hugh A.; Freedman, Roger D. (2012). Sears and Zemansky's University Physics with Modern Physics (13th ed.). Boston: Addison-Wesley. p. 754.
  4. ^ "2018 CODATA Value: vacuum electric permittivity". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 2019-05-20.
  5. ^ Griffiths, David J. (1999). Introduction to Electrodynamics (3rd ed.). Prentice Hall. p. 420. ISBN 013805326X.
  6. ^ Bagotskii VS (2006). Fundamentals of electrochemistry. p. 22. ISBN 978-0-471-70058-6.

Further reading edit

  • Politzer P, Truhlar DG (1981). Chemical Applications of Atomic and Molecular Electrostatic Potentials: Reactivity, Structure, Scattering, and Energetics of Organic, Inorganic, and Biological Systems. Boston, MA: Springer US. ISBN 978-1-4757-9634-6.
  • Sen K, Murray JS (1996). Molecular Electrostatic Potentials: Concepts and Applications. Amsterdam: Elsevier. ISBN 978-0-444-82353-3.
  • Griffiths DJ (1999). Introduction to Electrodynamics (3rd. ed.). Prentice Hall. ISBN 0-13-805326-X.
  • Jackson JD (1999). Classical Electrodynamics (3rd. ed.). USA: John Wiley & Sons, Inc. ISBN 978-0-471-30932-1.
  • Wangsness RK (1986). Electromagnetic Fields (2nd., Revised, illustrated ed.). Wiley. ISBN 978-0-471-81186-2.

electric, potential, confused, with, voltage, also, called, electric, field, potential, potential, drop, electrostatic, potential, defined, amount, work, energy, needed, unit, electric, charge, move, charge, from, reference, point, specific, point, electric, f. Not to be confused with Voltage Electric potential also called the electric field potential potential drop the electrostatic potential is defined as the amount of work energy needed per unit of electric charge to move the charge from a reference point to a specific point in an electric field More precisely the electric potential is the energy per unit charge for a test charge that is so small that the disturbance of the field under consideration is negligible The motion across the field is supposed to proceed with negligible acceleration so as to avoid the test charge acquiring kinetic energy or producing radiation By definition the electric potential at the reference point is zero units Typically the reference point is earth or a point at infinity although any point can be used Electric potentialElectric potential around two oppositely charged conducting spheres Purple represents the highest potential yellow zero and cyan the lowest potential The electric field lines are shown leaving perpendicularly to the surface of each sphere Common symbolsV fSI unitvoltOther unitsstatvoltIn SI base unitsV kg m2 s 3 A 1Extensive yesDimensionM L2 T 3 I 1 In classical electrostatics the electrostatic field is a vector quantity expressed as the gradient of the electrostatic potential which is a scalar quantity denoted by V or occasionally f 1 equal to the electric potential energy of any charged particle at any location measured in joules divided by the charge of that particle measured in coulombs By dividing out the charge on the particle a quotient is obtained that is a property of the electric field itself In short an electric potential is the electric potential energy per unit charge This value can be calculated in either a static time invariant or a dynamic time varying electric field at a specific time with the unit joules per coulomb J C 1 or volt V The electric potential at infinity is assumed to be zero In electrodynamics when time varying fields are present the electric field cannot be expressed only as a scalar potential Instead the electric field can be expressed as both the scalar electric potential and the magnetic vector potential 2 The electric potential and the magnetic vector potential together form a four vector so that the two kinds of potential are mixed under Lorentz transformations Practically the electric potential is a continuous function in all space because a spatial derivative of a discontinuous electric potential yields an electric field of impossibly infinite magnitude Notably the electric potential due to an idealized point charge proportional to 1 r with r the distance from the point charge is continuous in all space except at the location of the point charge Though electric field is not continuous across an idealized surface charge it is not infinite at any point Therefore the electric potential is continuous across an idealized surface charge Additionally an idealized line of charge has electric potential proportional to ln r with r the radial distance from the line of charge is continuous everywhere except on the line of charge Contents 1 Introduction 2 Electrostatics 2 1 Electric potential due to a point charge 3 Generalization to electrodynamics 3 1 Gauge freedom 4 Units 5 Galvani potential versus electrochemical potential 6 See also 7 References 8 Further readingIntroduction editClassical mechanics explores concepts such as force energy and potential 3 Force and potential energy are directly related A net force acting on any object will cause it to accelerate As an object moves in the direction of a force acting on it its potential energy decreases For example the gravitational potential energy of a cannonball at the top of a hill is greater than at the base of the hill As it rolls downhill its potential energy decreases and is being translated to motion kinetic energy It is possible to define the potential of certain force fields so that the potential energy of an object in that field depends only on the position of the object with respect to the field Two such force fields are a gravitational field and an electric field in the absence of time varying magnetic fields Such fields affect objects because of the intrinsic properties e g mass or charge and positions of the objects An object may possess a property known as electric charge Since an electric field exerts force on a charged object if the object has a positive charge the force will be in the direction of the electric field vector at the location of the charge if the charge is negative the force will be in the opposite direction The magnitude of force is given by the quantity of the charge multiplied by the magnitude of the electric field vector F q E displaystyle mathbf F q mathbf E nbsp Electrostatics editMain article Electrostatics nbsp nbsp Electric potential of separate positive and negative point charges shown as color range from magenta through yellow 0 to cyan Circular contours are equipotential lines Electric field lines leave the positive charge and enter the negative charge nbsp Electric potential in the vicinity of two opposite point charges An electric potential at a point r in a static electric field E is given by the line integral V E C E d ℓ displaystyle V mathbf E int mathcal C mathbf E cdot mathrm d boldsymbol ell nbsp where C is an arbitrary path from some fixed reference point to r it is uniquely determined up to a constant that is added or subtracted from the integral In electrostatics the Maxwell Faraday equation reveals that the curl E textstyle nabla times mathbf E nbsp is zero making the electric field conservative Thus the line integral above does not depend on the specific path C chosen but only on its endpoints making V E textstyle V mathbf E nbsp well defined everywhere The gradient theorem then allows us to write E V E displaystyle mathbf E mathbf nabla V mathbf E nbsp This states that the electric field points downhill towards lower voltages By Gauss s law the potential can also be found to satisfy Poisson s equation E V E 2 V E r e 0 displaystyle mathbf nabla cdot mathbf E mathbf nabla cdot left mathbf nabla V mathbf E right nabla 2 V mathbf E rho varepsilon 0 nbsp where r is the total charge density and textstyle mathbf nabla cdot nbsp denotes the divergence The concept of electric potential is closely linked with potential energy A test charge q has an electric potential energy UE given byU E q V displaystyle U mathbf E q V nbsp The potential energy and hence also the electric potential is only defined up to an additive constant one must arbitrarily choose a position where the potential energy and the electric potential are zero These equations cannot be used if E 0 textstyle nabla times mathbf E neq mathbf 0 nbsp i e in the case of a non conservative electric field caused by a changing magnetic field see Maxwell s equations The generalization of electric potential to this case is described in the section Generalization to electrodynamics Electric potential due to a point charge edit See also Coulomb s law nbsp The electric potential created by a charge Q is V Q 4pe0r Different values of Q yield different values of electric potential V shown in the image The electric potential arising from a point charge Q at a distance r from the location of Q is observed to beV E 1 4 p e 0 Q r displaystyle V mathbf E frac 1 4 pi varepsilon 0 frac Q r nbsp where e0 is the permittivity of vacuum 4 VE is known as the Coulomb potential Note that in contrast to the magnitude of an electric field due to a point charge the electric potential scales respective to the reciprocal of the radius rather than the radius squared The electric potential at any location r in a system of point charges is equal to the sum of the individual electric potentials due to every point charge in the system This fact simplifies calculations significantly because addition of potential scalar fields is much easier than addition of the electric vector fields Specifically the potential of a set of discrete point charges qi at points ri becomesV E r 1 4 p e 0 i 1 n q i r r i displaystyle V mathbf E mathbf r frac 1 4 pi varepsilon 0 sum i 1 n frac q i mathbf r mathbf r i nbsp where r is a point at which the potential is evaluated ri is a point at which there is a nonzero charge and qi is the charge at the point ri And the potential of a continuous charge distribution r r becomesV E r 1 4 p e 0 R r r r r d 3 r displaystyle V mathbf E mathbf r frac 1 4 pi varepsilon 0 int R frac rho mathbf r mathbf r mathbf r mathrm d 3 r nbsp where r is a point at which the potential is evaluated R is a region containing all the points at which the charge density is nonzero r is a point inside R and r r is the charge density at the point r The equations given above for the electric potential and all the equations used here are in the forms required by SI units In some other less common systems of units such as CGS Gaussian many of these equations would be altered Generalization to electrodynamics editWhen time varying magnetic fields are present which is true whenever there are time varying electric fields and vice versa it is not possible to describe the electric field simply as a scalar potential V because the electric field is no longer conservative C E d ℓ displaystyle textstyle int C mathbf E cdot mathrm d boldsymbol ell nbsp is path dependent because E 0 displaystyle mathbf nabla times mathbf E neq mathbf 0 nbsp due to the Maxwell Faraday equation Instead one can still define a scalar potential by also including the magnetic vector potential A In particular A is defined to satisfy B A displaystyle mathbf B mathbf nabla times mathbf A nbsp where B is the magnetic field By the fundamental theorem of vector calculus such an A can always be found since the divergence of the magnetic field is always zero due to the absence of magnetic monopoles Now the quantityF E A t displaystyle mathbf F mathbf E frac partial mathbf A partial t nbsp is a conservative field since the curl of E displaystyle mathbf E nbsp is canceled by the curl of A t displaystyle frac partial mathbf A partial t nbsp according to the Maxwell Faraday equation One can therefore write E V A t displaystyle mathbf E mathbf nabla V frac partial mathbf A partial t nbsp where V is the scalar potential defined by the conservative field F The electrostatic potential is simply the special case of this definition where A is time invariant On the other hand for time varying fields a b E d ℓ V b V a displaystyle int a b mathbf E cdot mathrm d boldsymbol ell neq V b V a nbsp unlike electrostatics Gauge freedom edit Main article Gauge fixing The electrostatic potential could have any constant added to it without affecting the electric field In electrodynamics the electric potential has infinitely many degrees of freedom For any possibly time varying or space varying scalar field 𝜓 we can perform the following gauge transformation to find a new set of potentials that produce exactly the same electric and magnetic fields 5 V V ps t A A ps displaystyle begin aligned V prime amp V frac partial psi partial t mathbf A prime amp mathbf A nabla psi end aligned nbsp Given different choices of gauge the electric potential could have quite different properties In the Coulomb gauge the electric potential is given by Poisson s equation 2 V r e 0 displaystyle nabla 2 V frac rho varepsilon 0 nbsp just like in electrostatics However in the Lorenz gauge the electric potential is a retarded potential that propagates at the speed of light and is the solution to an inhomogeneous wave equation 2 V 1 c 2 2 V t 2 r e 0 displaystyle nabla 2 V frac 1 c 2 frac partial 2 V partial t 2 frac rho varepsilon 0 nbsp Units editThe SI derived unit of electric potential is the volt in honor of Alessandro Volta denoted as V which is why the electric potential difference between two points in space is known as a voltage Older units are rarely used today Variants of the centimetre gram second system of units included a number of different units for electric potential including the abvolt and the statvolt Galvani potential versus electrochemical potential editMain articles Galvani potential Electrochemical potential and Fermi level Inside metals and other solids and liquids the energy of an electron is affected not only by the electric potential but also by the specific atomic environment that it is in When a voltmeter is connected between two different types of metal it measures the potential difference corrected for the different atomic environments 6 The quantity measured by a voltmeter is called electrochemical potential or fermi level while the pure unadjusted electric potential V is sometimes called the Galvani potential ϕ The terms voltage and electric potential are a bit ambiguous but one may refer to either of these in different contexts See also editAbsolute electrode potential Electrochemical potential Electrode potentialReferences edit Goldstein Herbert June 1959 Classical Mechanics United States Addison Wesley p 383 ISBN 0201025108 Griffiths David J 1999 Introduction to Electrodynamics Pearson Prentice Hall pp 416 417 ISBN 978 81 203 1601 0 Young Hugh A Freedman Roger D 2012 Sears and Zemansky s University Physics with Modern Physics 13th ed Boston Addison Wesley p 754 2018 CODATA Value vacuum electric permittivity The NIST Reference on Constants Units and Uncertainty NIST 20 May 2019 Retrieved 2019 05 20 Griffiths David J 1999 Introduction to Electrodynamics 3rd ed Prentice Hall p 420 ISBN 013805326X Bagotskii VS 2006 Fundamentals of electrochemistry p 22 ISBN 978 0 471 70058 6 Further reading edit nbsp Wikimedia Commons has media related to Electric potential Politzer P Truhlar DG 1981 Chemical Applications of Atomic and Molecular Electrostatic Potentials Reactivity Structure Scattering and Energetics of Organic Inorganic and Biological Systems Boston MA Springer US ISBN 978 1 4757 9634 6 Sen K Murray JS 1996 Molecular Electrostatic Potentials Concepts and Applications Amsterdam Elsevier ISBN 978 0 444 82353 3 Griffiths DJ 1999 Introduction to Electrodynamics 3rd ed Prentice Hall ISBN 0 13 805326 X Jackson JD 1999 Classical Electrodynamics 3rd ed USA John Wiley amp Sons Inc ISBN 978 0 471 30932 1 Wangsness RK 1986 Electromagnetic Fields 2nd Revised illustrated ed Wiley ISBN 978 0 471 81186 2 Retrieved from https en wikipedia org w index php title Electric potential amp oldid 1216284014, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.