fbpx
Wikipedia

Implicit function

In mathematics, an implicit equation is a relation of the form where R is a function of several variables (often a polynomial). For example, the implicit equation of the unit circle is

An implicit function is a function that is defined by an implicit equation, that relates one of the variables, considered as the value of the function, with the others considered as the arguments.[1]: 204–206  For example, the equation of the unit circle defines y as an implicit function of x if −1 ≤ x ≤ 1, and y is restricted to nonnegative values.

The implicit function theorem provides conditions under which some kinds of implicit equations define implicit functions, namely those that are obtained by equating to zero multivariable functions that are continuously differentiable.

Examples edit

Inverse functions edit

A common type of implicit function is an inverse function. Not all functions have a unique inverse function. If g is a function of x that has a unique inverse, then the inverse function of g, called g−1, is the unique function giving a solution of the equation

 

for x in terms of y. This solution can then be written as

 

Defining g−1 as the inverse of g is an implicit definition. For some functions g, g−1(y) can be written out explicitly as a closed-form expression — for instance, if g(x) = 2x − 1, then g−1(y) = 1/2(y + 1). However, this is often not possible, or only by introducing a new notation (as in the product log example below).

Intuitively, an inverse function is obtained from g by interchanging the roles of the dependent and independent variables.

Example: The product log is an implicit function giving the solution for x of the equation yxex = 0.

Algebraic functions edit

An algebraic function is a function that satisfies a polynomial equation whose coefficients are themselves polynomials. For example, an algebraic function in one variable x gives a solution for y of an equation

 

where the coefficients ai(x) are polynomial functions of x. This algebraic function can be written as the right side of the solution equation y = f(x). Written like this, f is a multi-valued implicit function.

Algebraic functions play an important role in mathematical analysis and algebraic geometry. A simple example of an algebraic function is given by the left side of the unit circle equation:

 

Solving for y gives an explicit solution:

 

But even without specifying this explicit solution, it is possible to refer to the implicit solution of the unit circle equation as y = f(x), where f is the multi-valued implicit function.

While explicit solutions can be found for equations that are quadratic, cubic, and quartic in y, the same is not in general true for quintic and higher degree equations, such as

 

Nevertheless, one can still refer to the implicit solution y = f(x) involving the multi-valued implicit function f.

Caveats edit

Not every equation R(x, y) = 0 implies a graph of a single-valued function, the circle equation being one prominent example. Another example is an implicit function given by xC(y) = 0 where C is a cubic polynomial having a "hump" in its graph. Thus, for an implicit function to be a true (single-valued) function it might be necessary to use just part of the graph. An implicit function can sometimes be successfully defined as a true function only after "zooming in" on some part of the x-axis and "cutting away" some unwanted function branches. Then an equation expressing y as an implicit function of the other variables can be written.

The defining equation R(x, y) = 0 can also have other pathologies. For example, the equation x = 0 does not imply a function f(x) giving solutions for y at all; it is a vertical line. In order to avoid a problem like this, various constraints are frequently imposed on the allowable sorts of equations or on the domain. The implicit function theorem provides a uniform way of handling these sorts of pathologies.

Implicit differentiation edit

In calculus, a method called implicit differentiation makes use of the chain rule to differentiate implicitly defined functions.

To differentiate an implicit function y(x), defined by an equation R(x, y) = 0, it is not generally possible to solve it explicitly for y and then differentiate. Instead, one can totally differentiate R(x, y) = 0 with respect to x and y and then solve the resulting linear equation for dy/dx to explicitly get the derivative in terms of x and y. Even when it is possible to explicitly solve the original equation, the formula resulting from total differentiation is, in general, much simpler and easier to use.

Examples edit

Example 1 edit

Consider

 

This equation is easy to solve for y, giving

 

where the right side is the explicit form of the function y(x). Differentiation then gives dy/dx = −1.

Alternatively, one can totally differentiate the original equation:

 

Solving for dy/dx gives

 

the same answer as obtained previously.

Example 2 edit

An example of an implicit function for which implicit differentiation is easier than using explicit differentiation is the function y(x) defined by the equation

 

To differentiate this explicitly with respect to x, one has first to get

 

and then differentiate this function. This creates two derivatives: one for y ≥ 0 and another for y < 0.

It is substantially easier to implicitly differentiate the original equation:

 

giving

 

Example 3 edit

Often, it is difficult or impossible to solve explicitly for y, and implicit differentiation is the only feasible method of differentiation. An example is the equation

 

It is impossible to algebraically express y explicitly as a function of x, and therefore one cannot find dy/dx by explicit differentiation. Using the implicit method, dy/dx can be obtained by differentiating the equation to obtain

 

where dx/dx = 1. Factoring out dy/dx shows that

 

which yields the result

 

which is defined for

 

General formula for derivative of implicit function edit

If R(x, y) = 0, the derivative of the implicit function y(x) is given by[2]: §11.5 

 

where Rx and Ry indicate the partial derivatives of R with respect to x and y.

The above formula comes from using the generalized chain rule to obtain the total derivative — with respect to x — of both sides of R(x, y) = 0:

 

hence

 

which, when solved for dy/dx, gives the expression above.

Implicit function theorem edit

 
The unit circle can be defined implicitly as the set of points (x, y) satisfying x2 + y2 = 1. Around point A, y can be expressed as an implicit function y(x). (Unlike in many cases, here this function can be made explicit as g1(x) = 1 − x2.) No such function exists around point B, where the tangent space is vertical.

Let R(x, y) be a differentiable function of two variables, and (a, b) be a pair of real numbers such that R(a, b) = 0. If R/y ≠ 0, then R(x, y) = 0 defines an implicit function that is differentiable in some small enough neighbourhood of (a, b); in other words, there is a differentiable function f that is defined and differentiable in some neighbourhood of a, such that R(x, f(x)) = 0 for x in this neighbourhood.

The condition R/y ≠ 0 means that (a, b) is a regular point of the implicit curve of implicit equation R(x, y) = 0 where the tangent is not vertical.

In a less technical language, implicit functions exist and can be differentiated, if the curve has a non-vertical tangent.[2]: §11.5 

In algebraic geometry edit

Consider a relation of the form R(x1, …, xn) = 0, where R is a multivariable polynomial. The set of the values of the variables that satisfy this relation is called an implicit curve if n = 2 and an implicit surface if n = 3. The implicit equations are the basis of algebraic geometry, whose basic subjects of study are the simultaneous solutions of several implicit equations whose left-hand sides are polynomials. These sets of simultaneous solutions are called affine algebraic sets.

In differential equations edit

The solutions of differential equations generally appear expressed by an implicit function.[3]

Applications in economics edit

Marginal rate of substitution edit

In economics, when the level set R(x, y) = 0 is an indifference curve for the quantities x and y consumed of two goods, the absolute value of the implicit derivative dy/dx is interpreted as the marginal rate of substitution of the two goods: how much more of y one must receive in order to be indifferent to a loss of one unit of x.

Marginal rate of technical substitution edit

Similarly, sometimes the level set R(L, K) is an isoquant showing various combinations of utilized quantities L of labor and K of physical capital each of which would result in the production of the same given quantity of output of some good. In this case the absolute value of the implicit derivative dK/dL is interpreted as the marginal rate of technical substitution between the two factors of production: how much more capital the firm must use to produce the same amount of output with one less unit of labor.

Optimization edit

Often in economic theory, some function such as a utility function or a profit function is to be maximized with respect to a choice vector x even though the objective function has not been restricted to any specific functional form. The implicit function theorem guarantees that the first-order conditions of the optimization define an implicit function for each element of the optimal vector x* of the choice vector x. When profit is being maximized, typically the resulting implicit functions are the labor demand function and the supply functions of various goods. When utility is being maximized, typically the resulting implicit functions are the labor supply function and the demand functions for various goods.

Moreover, the influence of the problem's parameters on x* — the partial derivatives of the implicit function — can be expressed as total derivatives of the system of first-order conditions found using total differentiation.

See also edit

References edit

  1. ^ Chiang, Alpha C. (1984). Fundamental Methods of Mathematical Economics (Third ed.). New York: McGraw-Hill. ISBN 0-07-010813-7.
  2. ^ a b Stewart, James (1998). Calculus Concepts And Contexts. Brooks/Cole Publishing Company. ISBN 0-534-34330-9.
  3. ^ Kaplan, Wilfred (2003). Advanced Calculus. Boston: Addison-Wesley. ISBN 0-201-79937-5.

Further reading edit

External links edit

  • Archived at Ghostarchive and the : "Implicit Differentiation, What's Going on Here?". 3Blue1Brown. Essence of Calculus. May 3, 2017 – via YouTube.

implicit, function, mathematics, implicit, equation, relation, form, displaystyle, dots, where, function, several, variables, often, polynomial, example, implicit, equation, unit, circle, displaystyle, implicit, function, function, that, defined, implicit, equ. In mathematics an implicit equation is a relation of the form R x 1 x n 0 displaystyle R x 1 dots x n 0 where R is a function of several variables often a polynomial For example the implicit equation of the unit circle is x 2 y 2 1 0 displaystyle x 2 y 2 1 0 An implicit function is a function that is defined by an implicit equation that relates one of the variables considered as the value of the function with the others considered as the arguments 1 204 206 For example the equation x 2 y 2 1 0 displaystyle x 2 y 2 1 0 of the unit circle defines y as an implicit function of x if 1 x 1 and y is restricted to nonnegative values The implicit function theorem provides conditions under which some kinds of implicit equations define implicit functions namely those that are obtained by equating to zero multivariable functions that are continuously differentiable Contents 1 Examples 1 1 Inverse functions 1 2 Algebraic functions 2 Caveats 3 Implicit differentiation 3 1 Examples 3 1 1 Example 1 3 1 2 Example 2 3 1 3 Example 3 3 2 General formula for derivative of implicit function 4 Implicit function theorem 5 In algebraic geometry 6 In differential equations 7 Applications in economics 7 1 Marginal rate of substitution 7 2 Marginal rate of technical substitution 7 3 Optimization 8 See also 9 References 10 Further reading 11 External linksExamples editInverse functions edit A common type of implicit function is an inverse function Not all functions have a unique inverse function If g is a function of x that has a unique inverse then the inverse function of g called g 1 is the unique function giving a solution of the equation y g x displaystyle y g x nbsp for x in terms of y This solution can then be written as x g 1 y displaystyle x g 1 y nbsp Defining g 1 as the inverse of g is an implicit definition For some functions g g 1 y can be written out explicitly as a closed form expression for instance if g x 2x 1 then g 1 y 1 2 y 1 However this is often not possible or only by introducing a new notation as in the product log example below Intuitively an inverse function is obtained from g by interchanging the roles of the dependent and independent variables Example The product log is an implicit function giving the solution for x of the equation y xex 0 Algebraic functions edit Main article Algebraic function An algebraic function is a function that satisfies a polynomial equation whose coefficients are themselves polynomials For example an algebraic function in one variable x gives a solution for y of an equation a n x y n a n 1 x y n 1 a 0 x 0 displaystyle a n x y n a n 1 x y n 1 cdots a 0 x 0 nbsp where the coefficients ai x are polynomial functions of x This algebraic function can be written as the right side of the solution equation y f x Written like this f is a multi valued implicit function Algebraic functions play an important role in mathematical analysis and algebraic geometry A simple example of an algebraic function is given by the left side of the unit circle equation x 2 y 2 1 0 displaystyle x 2 y 2 1 0 nbsp Solving for y gives an explicit solution y 1 x 2 displaystyle y pm sqrt 1 x 2 nbsp But even without specifying this explicit solution it is possible to refer to the implicit solution of the unit circle equation as y f x where f is the multi valued implicit function While explicit solutions can be found for equations that are quadratic cubic and quartic in y the same is not in general true for quintic and higher degree equations such as y 5 2 y 4 7 y 3 3 y 2 6 y x 0 displaystyle y 5 2y 4 7y 3 3y 2 6y x 0 nbsp Nevertheless one can still refer to the implicit solution y f x involving the multi valued implicit function f Caveats editNot every equation R x y 0 implies a graph of a single valued function the circle equation being one prominent example Another example is an implicit function given by x C y 0 where C is a cubic polynomial having a hump in its graph Thus for an implicit function to be a true single valued function it might be necessary to use just part of the graph An implicit function can sometimes be successfully defined as a true function only after zooming in on some part of the x axis and cutting away some unwanted function branches Then an equation expressing y as an implicit function of the other variables can be written The defining equation R x y 0 can also have other pathologies For example the equation x 0 does not imply a function f x giving solutions for y at all it is a vertical line In order to avoid a problem like this various constraints are frequently imposed on the allowable sorts of equations or on the domain The implicit function theorem provides a uniform way of handling these sorts of pathologies Implicit differentiation editIn calculus a method called implicit differentiation makes use of the chain rule to differentiate implicitly defined functions To differentiate an implicit function y x defined by an equation R x y 0 it is not generally possible to solve it explicitly for y and then differentiate Instead one can totally differentiate R x y 0 with respect to x and y and then solve the resulting linear equation for dy dx to explicitly get the derivative in terms of x and y Even when it is possible to explicitly solve the original equation the formula resulting from total differentiation is in general much simpler and easier to use Examples edit Example 1 edit Consider y x 5 0 displaystyle y x 5 0 nbsp This equation is easy to solve for y giving y x 5 displaystyle y x 5 nbsp where the right side is the explicit form of the function y x Differentiation then gives dy dx 1 Alternatively one can totally differentiate the original equation d y d x d x d x d d x 5 0 d y d x 1 0 0 displaystyle begin aligned frac dy dx frac dx dx frac d dx 5 amp 0 6px frac dy dx 1 0 amp 0 end aligned nbsp Solving for dy dx gives d y d x 1 displaystyle frac dy dx 1 nbsp the same answer as obtained previously Example 2 edit An example of an implicit function for which implicit differentiation is easier than using explicit differentiation is the function y x defined by the equation x 4 2 y 2 8 displaystyle x 4 2y 2 8 nbsp To differentiate this explicitly with respect to x one has first to get y x 8 x 4 2 displaystyle y x pm sqrt frac 8 x 4 2 nbsp and then differentiate this function This creates two derivatives one for y 0 and another for y lt 0 It is substantially easier to implicitly differentiate the original equation 4 x 3 4 y d y d x 0 displaystyle 4x 3 4y frac dy dx 0 nbsp giving d y d x 4 x 3 4 y x 3 y displaystyle frac dy dx frac 4x 3 4y frac x 3 y nbsp Example 3 edit Often it is difficult or impossible to solve explicitly for y and implicit differentiation is the only feasible method of differentiation An example is the equation y 5 y x displaystyle y 5 y x nbsp It is impossible to algebraically express y explicitly as a function of x and therefore one cannot find dy dx by explicit differentiation Using the implicit method dy dx can be obtained by differentiating the equation to obtain 5 y 4 d y d x d y d x d x d x displaystyle 5y 4 frac dy dx frac dy dx frac dx dx nbsp where dx dx 1 Factoring out dy dx shows that 5 y 4 1 d y d x 1 displaystyle left 5y 4 1 right frac dy dx 1 nbsp which yields the result d y d x 1 5 y 4 1 displaystyle frac dy dx frac 1 5y 4 1 nbsp which is defined for y 1 5 4 and y i 5 4 displaystyle y neq pm frac 1 sqrt 4 5 quad text and quad y neq pm frac i sqrt 4 5 nbsp General formula for derivative of implicit function edit If R x y 0 the derivative of the implicit function y x is given by 2 11 5 d y d x R x R y R x R y displaystyle frac dy dx frac frac partial R partial x frac partial R partial y frac R x R y nbsp where Rx and Ry indicate the partial derivatives of R with respect to x and y The above formula comes from using the generalized chain rule to obtain the total derivative with respect to x of both sides of R x y 0 R x d x d x R y d y d x 0 displaystyle frac partial R partial x frac dx dx frac partial R partial y frac dy dx 0 nbsp hence R x R y d y d x 0 displaystyle frac partial R partial x frac partial R partial y frac dy dx 0 nbsp which when solved for dy dx gives the expression above Implicit function theorem edit nbsp The unit circle can be defined implicitly as the set of points x y satisfying x2 y2 1 Around point A y can be expressed as an implicit function y x Unlike in many cases here this function can be made explicit as g1 x 1 x2 No such function exists around point B where the tangent space is vertical Main article Implicit function theorem Let R x y be a differentiable function of two variables and a b be a pair of real numbers such that R a b 0 If R y 0 then R x y 0 defines an implicit function that is differentiable in some small enough neighbourhood of a b in other words there is a differentiable function f that is defined and differentiable in some neighbourhood of a such that R x f x 0 for x in this neighbourhood The condition R y 0 means that a b is a regular point of the implicit curve of implicit equation R x y 0 where the tangent is not vertical In a less technical language implicit functions exist and can be differentiated if the curve has a non vertical tangent 2 11 5 In algebraic geometry editConsider a relation of the form R x1 xn 0 where R is a multivariable polynomial The set of the values of the variables that satisfy this relation is called an implicit curve if n 2 and an implicit surface if n 3 The implicit equations are the basis of algebraic geometry whose basic subjects of study are the simultaneous solutions of several implicit equations whose left hand sides are polynomials These sets of simultaneous solutions are called affine algebraic sets In differential equations editThe solutions of differential equations generally appear expressed by an implicit function 3 Applications in economics editMarginal rate of substitution edit In economics when the level set R x y 0 is an indifference curve for the quantities x and y consumed of two goods the absolute value of the implicit derivative dy dx is interpreted as the marginal rate of substitution of the two goods how much more of y one must receive in order to be indifferent to a loss of one unit of x Marginal rate of technical substitution edit Similarly sometimes the level set R L K is an isoquant showing various combinations of utilized quantities L of labor and K of physical capital each of which would result in the production of the same given quantity of output of some good In this case the absolute value of the implicit derivative dK dL is interpreted as the marginal rate of technical substitution between the two factors of production how much more capital the firm must use to produce the same amount of output with one less unit of labor Optimization edit Main article Mathematical economics Mathematical optimization Often in economic theory some function such as a utility function or a profit function is to be maximized with respect to a choice vector x even though the objective function has not been restricted to any specific functional form The implicit function theorem guarantees that the first order conditions of the optimization define an implicit function for each element of the optimal vector x of the choice vector x When profit is being maximized typically the resulting implicit functions are the labor demand function and the supply functions of various goods When utility is being maximized typically the resulting implicit functions are the labor supply function and the demand functions for various goods Moreover the influence of the problem s parameters on x the partial derivatives of the implicit function can be expressed as total derivatives of the system of first order conditions found using total differentiation See also editImplicit curve Functional equation Level set Contour line Isosurface Marginal rate of substitution Implicit function theorem Logarithmic differentiation Polygonizer Related ratesReferences edit Chiang Alpha C 1984 Fundamental Methods of Mathematical Economics Third ed New York McGraw Hill ISBN 0 07 010813 7 a b Stewart James 1998 Calculus Concepts And Contexts Brooks Cole Publishing Company ISBN 0 534 34330 9 Kaplan Wilfred 2003 Advanced Calculus Boston Addison Wesley ISBN 0 201 79937 5 Further reading editBinmore K G 1983 Implicit Functions Calculus New York Cambridge University Press pp 198 211 ISBN 0 521 28952 1 Rudin Walter 1976 Principles of Mathematical Analysis Boston McGraw Hill pp 223 228 ISBN 0 07 054235 X Simon Carl P Blume Lawrence 1994 Implicit Functions and Their Derivatives Mathematics for Economists New York W W Norton pp 334 371 ISBN 0 393 95733 0 External links editArchived at Ghostarchive and the Wayback Machine Implicit Differentiation What s Going on Here 3Blue1Brown Essence of Calculus May 3 2017 via YouTube Retrieved from https en wikipedia org w index php title Implicit function amp oldid 1182821579 Implicit differentiation, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.