fbpx
Wikipedia

Statistical mechanics

In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. Sometimes called statistical physics or statistical thermodynamics, its applications include many problems in the fields of physics, biology,[1] chemistry, neuroscience,[2] computer science,[3][4] information theory[5] and sociology.[6] Its main purpose is to clarify the properties of matter in aggregate, in terms of physical laws governing atomic motion.[7][8]

Statistical mechanics arose out of the development of classical thermodynamics, a field for which it was successful in explaining macroscopic physical properties—such as temperature, pressure, and heat capacity—in terms of microscopic parameters that fluctuate about average values and are characterized by probability distributions.[citation needed]

While classical thermodynamics is primarily concerned with thermodynamic equilibrium, statistical mechanics has been applied in non-equilibrium statistical mechanics to the issues of microscopically modeling the speed of irreversible processes that are driven by imbalances. Examples of such processes include chemical reactions and flows of particles and heat. The fluctuation–dissipation theorem is the basic knowledge obtained from applying non-equilibrium statistical mechanics to study the simplest non-equilibrium situation of a steady state current flow in a system of many particles.[citation needed]

History edit

In 1738, Swiss physicist and mathematician Daniel Bernoulli published Hydrodynamica which laid the basis for the kinetic theory of gases. In this work, Bernoulli posited the argument, still used to this day, that gases consist of great numbers of molecules moving in all directions, that their impact on a surface causes the gas pressure that we feel, and that what we experience as heat is simply the kinetic energy of their motion.[9]

The founding of the field of statistical mechanics is generally credited to three physicists:

In 1859, after reading a paper on the diffusion of molecules by Rudolf Clausius, Scottish physicist James Clerk Maxwell formulated the Maxwell distribution of molecular velocities, which gave the proportion of molecules having a certain velocity in a specific range.[10] This was the first-ever statistical law in physics.[11] Maxwell also gave the first mechanical argument that molecular collisions entail an equalization of temperatures and hence a tendency towards equilibrium.[12] Five years later, in 1864, Ludwig Boltzmann, a young student in Vienna, came across Maxwell's paper and spent much of his life developing the subject further.

Statistical mechanics was initiated in the 1870s with the work of Boltzmann, much of which was collectively published in his 1896 Lectures on Gas Theory.[13] Boltzmann's original papers on the statistical interpretation of thermodynamics, the H-theorem, transport theory, thermal equilibrium, the equation of state of gases, and similar subjects, occupy about 2,000 pages in the proceedings of the Vienna Academy and other societies. Boltzmann introduced the concept of an equilibrium statistical ensemble and also investigated for the first time non-equilibrium statistical mechanics, with his H-theorem.

The term "statistical mechanics" was coined by the American mathematical physicist J. Willard Gibbs in 1884.[14] According to Gibbs, the term "statistical", in the context of mechanics, i.e. statistical mechanics, was first used by the Scottish physicist James Clerk Maxwell in 1871:

"In dealing with masses of matter, while we do not perceive the individual molecules, we are compelled to adopt what I have described as the statistical method of calculation, and to abandon the strict dynamical method, in which we follow every motion by the calculus."

— J. Clerk Maxwell[15]

"Probabilistic mechanics" might today seem a more appropriate term, but "statistical mechanics" is firmly entrenched.[16] Shortly before his death, Gibbs published in 1902 Elementary Principles in Statistical Mechanics, a book which formalized statistical mechanics as a fully general approach to address all mechanical systems—macroscopic or microscopic, gaseous or non-gaseous.[17] Gibbs' methods were initially derived in the framework classical mechanics, however they were of such generality that they were found to adapt easily to the later quantum mechanics, and still form the foundation of statistical mechanics to this day.[18]

Principles: mechanics and ensembles edit

In physics, two types of mechanics are usually examined: classical mechanics and quantum mechanics. For both types of mechanics, the standard mathematical approach is to consider two concepts:

Using these two concepts, the state at any other time, past or future, can in principle be calculated. There is however a disconnect between these laws and everyday life experiences, as we do not find it necessary (nor even theoretically possible) to know exactly at a microscopic level the simultaneous positions and velocities of each molecule while carrying out processes at the human scale (for example, when performing a chemical reaction). Statistical mechanics fills this disconnection between the laws of mechanics and the practical experience of incomplete knowledge, by adding some uncertainty about which state the system is in.

Whereas ordinary mechanics only considers the behaviour of a single state, statistical mechanics introduces the statistical ensemble, which is a large collection of virtual, independent copies of the system in various states. The statistical ensemble is a probability distribution over all possible states of the system. In classical statistical mechanics, the ensemble is a probability distribution over phase points (as opposed to a single phase point in ordinary mechanics), usually represented as a distribution in a phase space with canonical coordinate axes. In quantum statistical mechanics, the ensemble is a probability distribution over pure states and can be compactly summarized as a density matrix.

As is usual for probabilities, the ensemble can be interpreted in different ways:[17]

  • an ensemble can be taken to represent the various possible states that a single system could be in (epistemic probability, a form of knowledge), or
  • the members of the ensemble can be understood as the states of the systems in experiments repeated on independent systems which have been prepared in a similar but imperfectly controlled manner (empirical probability), in the limit of an infinite number of trials.

These two meanings are equivalent for many purposes, and will be used interchangeably in this article.

However the probability is interpreted, each state in the ensemble evolves over time according to the equation of motion. Thus, the ensemble itself (the probability distribution over states) also evolves, as the virtual systems in the ensemble continually leave one state and enter another. The ensemble evolution is given by the Liouville equation (classical mechanics) or the von Neumann equation (quantum mechanics). These equations are simply derived by the application of the mechanical equation of motion separately to each virtual system contained in the ensemble, with the probability of the virtual system being conserved over time as it evolves from state to state.

One special class of ensemble is those ensembles that do not evolve over time. These ensembles are known as equilibrium ensembles and their condition is known as statistical equilibrium. Statistical equilibrium occurs if, for each state in the ensemble, the ensemble also contains all of its future and past states with probabilities equal to the probability of being in that state. (By contrast, mechanical equilibrium is a state with a balance of forces that has ceased to evolve.) The study of equilibrium ensembles of isolated systems is the focus of statistical thermodynamics. Non-equilibrium statistical mechanics addresses the more general case of ensembles that change over time, and/or ensembles of non-isolated systems.

Statistical thermodynamics edit

The primary goal of statistical thermodynamics (also known as equilibrium statistical mechanics) is to derive the classical thermodynamics of materials in terms of the properties of their constituent particles and the interactions between them. In other words, statistical thermodynamics provides a connection between the macroscopic properties of materials in thermodynamic equilibrium, and the microscopic behaviours and motions occurring inside the material.

Whereas statistical mechanics proper involves dynamics, here the attention is focussed on statistical equilibrium (steady state). Statistical equilibrium does not mean that the particles have stopped moving (mechanical equilibrium), rather, only that the ensemble is not evolving.

Fundamental postulate edit

A sufficient (but not necessary) condition for statistical equilibrium with an isolated system is that the probability distribution is a function only of conserved properties (total energy, total particle numbers, etc.).[17] There are many different equilibrium ensembles that can be considered, and only some of them correspond to thermodynamics.[17] Additional postulates are necessary to motivate why the ensemble for a given system should have one form or another.

A common approach found in many textbooks is to take the equal a priori probability postulate.[18] This postulate states that

For an isolated system with an exactly known energy and exactly known composition, the system can be found with equal probability in any microstate consistent with that knowledge.

The equal a priori probability postulate therefore provides a motivation for the microcanonical ensemble described below. There are various arguments in favour of the equal a priori probability postulate:

  • Ergodic hypothesis: An ergodic system is one that evolves over time to explore "all accessible" states: all those with the same energy and composition. In an ergodic system, the microcanonical ensemble is the only possible equilibrium ensemble with fixed energy. This approach has limited applicability, since most systems are not ergodic.
  • Principle of indifference: In the absence of any further information, we can only assign equal probabilities to each compatible situation.
  • Maximum information entropy: A more elaborate version of the principle of indifference states that the correct ensemble is the ensemble that is compatible with the known information and that has the largest Gibbs entropy (information entropy).[19]

Other fundamental postulates for statistical mechanics have also been proposed.[9][20][21] For example, recent studies shows that the theory of statistical mechanics can be built without the equal a priori probability postulate.[20][21] One such formalism is based on the fundamental thermodynamic relation together with the following set of postulates:[20]

  1. The probability density function is proportional to some function of the ensemble parameters and random variables.
  2. Thermodynamic state functions are described by ensemble averages of random variables.
  3. The entropy as defined by Gibbs entropy formula matches with the entropy as defined in classical thermodynamics.

where the third postulate can be replaced by the following:[21]

  1. At infinite temperature, all the microstates have the same probability.

Three thermodynamic ensembles edit

There are three equilibrium ensembles with a simple form that can be defined for any isolated system bounded inside a finite volume.[17] These are the most often discussed ensembles in statistical thermodynamics. In the macroscopic limit (defined below) they all correspond to classical thermodynamics.

Microcanonical ensemble
describes a system with a precisely given energy and fixed composition (precise number of particles). The microcanonical ensemble contains with equal probability each possible state that is consistent with that energy and composition.
Canonical ensemble
describes a system of fixed composition that is in thermal equilibrium with a heat bath of a precise temperature. The canonical ensemble contains states of varying energy but identical composition; the different states in the ensemble are accorded different probabilities depending on their total energy.
Grand canonical ensemble
describes a system with non-fixed composition (uncertain particle numbers) that is in thermal and chemical equilibrium with a thermodynamic reservoir. The reservoir has a precise temperature, and precise chemical potentials for various types of particle. The grand canonical ensemble contains states of varying energy and varying numbers of particles; the different states in the ensemble are accorded different probabilities depending on their total energy and total particle numbers.

For systems containing many particles (the thermodynamic limit), all three of the ensembles listed above tend to give identical behaviour. It is then simply a matter of mathematical convenience which ensemble is used.[22] The Gibbs theorem about equivalence of ensembles[23] was developed into the theory of concentration of measure phenomenon,[24] which has applications in many areas of science, from functional analysis to methods of artificial intelligence and big data technology.[25]

Important cases where the thermodynamic ensembles do not give identical results include:

  • Microscopic systems.
  • Large systems at a phase transition.
  • Large systems with long-range interactions.

In these cases the correct thermodynamic ensemble must be chosen as there are observable differences between these ensembles not just in the size of fluctuations, but also in average quantities such as the distribution of particles. The correct ensemble is that which corresponds to the way the system has been prepared and characterized—in other words, the ensemble that reflects the knowledge about that system.[18]

Thermodynamic ensembles[17]
Microcanonical Canonical Grand canonical
Fixed variables      
Microscopic features Number of microstates Canonical partition function Grand partition function
     
Macroscopic function Boltzmann entropy Helmholtz free energy Grand potential
     

Calculation methods edit

Once the characteristic state function for an ensemble has been calculated for a given system, that system is 'solved' (macroscopic observables can be extracted from the characteristic state function). Calculating the characteristic state function of a thermodynamic ensemble is not necessarily a simple task, however, since it involves considering every possible state of the system. While some hypothetical systems have been exactly solved, the most general (and realistic) case is too complex for an exact solution. Various approaches exist to approximate the true ensemble and allow calculation of average quantities.

Exact edit

There are some cases which allow exact solutions.

Monte Carlo edit

Although some problems in statistical physics can be solved analytically using approximations and expansions, most current research utilizes the large processing power of modern computers to simulate or approximate solutions. A common approach to statistical problems is to use a Monte Carlo simulation to yield insight into the properties of a complex system. Monte Carlo methods are important in computational physics, physical chemistry, and related fields, and have diverse applications including medical physics, where they are used to model radiation transport for radiation dosimetry calculations.[27][28][29]

The Monte Carlo method examines just a few of the possible states of the system, with the states chosen randomly (with a fair weight). As long as these states form a representative sample of the whole set of states of the system, the approximate characteristic function is obtained. As more and more random samples are included, the errors are reduced to an arbitrarily low level.

Other edit

  • For rarefied non-ideal gases, approaches such as the cluster expansion use perturbation theory to include the effect of weak interactions, leading to a virial expansion.[30]
  • For dense fluids, another approximate approach is based on reduced distribution functions, in particular the radial distribution function.[30]
  • Molecular dynamics computer simulations can be used to calculate microcanonical ensemble averages, in ergodic systems. With the inclusion of a connection to a stochastic heat bath, they can also model canonical and grand canonical conditions.
  • Mixed methods involving non-equilibrium statistical mechanical results (see below) may be useful.

Non-equilibrium statistical mechanics edit

Many physical phenomena involve quasi-thermodynamic processes out of equilibrium, for example:

All of these processes occur over time with characteristic rates. These rates are important in engineering. The field of non-equilibrium statistical mechanics is concerned with understanding these non-equilibrium processes at the microscopic level. (Statistical thermodynamics can only be used to calculate the final result, after the external imbalances have been removed and the ensemble has settled back down to equilibrium.)

In principle, non-equilibrium statistical mechanics could be mathematically exact: ensembles for an isolated system evolve over time according to deterministic equations such as Liouville's equation or its quantum equivalent, the von Neumann equation. These equations are the result of applying the mechanical equations of motion independently to each state in the ensemble. These ensemble evolution equations inherit much of the complexity of the underlying mechanical motion, and so exact solutions are very difficult to obtain. Moreover, the ensemble evolution equations are fully reversible and do not destroy information (the ensemble's Gibbs entropy is preserved). In order to make headway in modelling irreversible processes, it is necessary to consider additional factors besides probability and reversible mechanics.

Non-equilibrium mechanics is therefore an active area of theoretical research as the range of validity of these additional assumptions continues to be explored. A few approaches are described in the following subsections.

Stochastic methods edit

One approach to non-equilibrium statistical mechanics is to incorporate stochastic (random) behaviour into the system. Stochastic behaviour destroys information contained in the ensemble. While this is technically inaccurate (aside from hypothetical situations involving black holes, a system cannot in itself cause loss of information), the randomness is added to reflect that information of interest becomes converted over time into subtle correlations within the system, or to correlations between the system and environment. These correlations appear as chaotic or pseudorandom influences on the variables of interest. By replacing these correlations with randomness proper, the calculations can be made much easier.

  • Boltzmann transport equation: An early form of stochastic mechanics appeared even before the term "statistical mechanics" had been coined, in studies of kinetic theory. James Clerk Maxwell had demonstrated that molecular collisions would lead to apparently chaotic motion inside a gas. Ludwig Boltzmann subsequently showed that, by taking this molecular chaos for granted as a complete randomization, the motions of particles in a gas would follow a simple Boltzmann transport equation that would rapidly restore a gas to an equilibrium state (see H-theorem).

    The Boltzmann transport equation and related approaches are important tools in non-equilibrium statistical mechanics due to their extreme simplicity. These approximations work well in systems where the "interesting" information is immediately (after just one collision) scrambled up into subtle correlations, which essentially restricts them to rarefied gases. The Boltzmann transport equation has been found to be very useful in simulations of electron transport in lightly doped semiconductors (in transistors), where the electrons are indeed analogous to a rarefied gas.

    A quantum technique related in theme is the random phase approximation.
  • BBGKY hierarchy: In liquids and dense gases, it is not valid to immediately discard the correlations between particles after one collision. The BBGKY hierarchy (Bogoliubov–Born–Green–Kirkwood–Yvon hierarchy) gives a method for deriving Boltzmann-type equations but also extending them beyond the dilute gas case, to include correlations after a few collisions.
  • Keldysh formalism (a.k.a. NEGF—non-equilibrium Green functions): A quantum approach to including stochastic dynamics is found in the Keldysh formalism. This approach is often used in electronic quantum transport calculations.
  • Stochastic Liouville equation.

Near-equilibrium methods edit

Another important class of non-equilibrium statistical mechanical models deals with systems that are only very slightly perturbed from equilibrium. With very small perturbations, the response can be analysed in linear response theory. A remarkable result, as formalized by the fluctuation–dissipation theorem, is that the response of a system when near equilibrium is precisely related to the fluctuations that occur when the system is in total equilibrium. Essentially, a system that is slightly away from equilibrium—whether put there by external forces or by fluctuations—relaxes towards equilibrium in the same way, since the system cannot tell the difference or "know" how it came to be away from equilibrium.[30]: 664 

This provides an indirect avenue for obtaining numbers such as ohmic conductivity and thermal conductivity by extracting results from equilibrium statistical mechanics. Since equilibrium statistical mechanics is mathematically well defined and (in some cases) more amenable for calculations, the fluctuation–dissipation connection can be a convenient shortcut for calculations in near-equilibrium statistical mechanics.

A few of the theoretical tools used to make this connection include:

Hybrid methods edit

An advanced approach uses a combination of stochastic methods and linear response theory. As an example, one approach to compute quantum coherence effects (weak localization, conductance fluctuations) in the conductance of an electronic system is the use of the Green–Kubo relations, with the inclusion of stochastic dephasing by interactions between various electrons by use of the Keldysh method.[31][32]

Applications edit

The ensemble formalism can be used to analyze general mechanical systems with uncertainty in knowledge about the state of a system. Ensembles are also used in:

Statistical physics explains and quantitatively describes superconductivity, superfluidity, turbulence, collective phenomena in solids and plasma, and the structural features of liquid. It underlies the modern astrophysics. In solid state physics, statistical physics aids the study of liquid crystals, phase transitions, and critical phenomena. Many experimental studies of matter are entirely based on the statistical description of a system. These include the scattering of cold neutrons, X-ray, visible light, and more. Statistical physics also plays a role in materials science, nuclear physics, astrophysics, chemistry, biology and medicine (e.g. study of the spread of infectious diseases).[citation needed]

Analytical and computational techniques derived from statistical physics of disordered systems, can be extended to large-scale problems, including machine learning, e.g., to analyze the weight space of deep neural networks.[33] Statistical physics is thus finding applications in the area of medical diagnostics.[34]

Quantum statistical mechanics edit

Quantum statistical mechanics is statistical mechanics applied to quantum mechanical systems. In quantum mechanics, a statistical ensemble (probability distribution over possible quantum states) is described by a density operator S, which is a non-negative, self-adjoint, trace-class operator of trace 1 on the Hilbert space H describing the quantum system. This can be shown under various mathematical formalisms for quantum mechanics. One such formalism is provided by quantum logic.[citation needed]

See also edit

References edit

  1. ^ Teschendorff, Andrew E.; Feinberg, Andrew P. (July 2021). "Statistical mechanics meets single-cell biology". Nature Reviews Genetics. 22 (7): 459–476. doi:10.1038/s41576-021-00341-z. PMC 10152720. PMID 33875884.
  2. ^ Advani, Madhu; Lahiri, Subhaneil; Ganguli, Surya (March 12, 2013). "Statistical mechanics of complex neural systems and high dimensional data". Journal of Statistical Mechanics: Theory and Experiment. 2013 (3): P03014. arXiv:1301.7115. Bibcode:2013JSMTE..03..014A. doi:10.1088/1742-5468/2013/03/P03014.
  3. ^ Huang, Haiping (2021). Statistical Mechanics of Neural Networks. doi:10.1007/978-981-16-7570-6. ISBN 978-981-16-7569-0.
  4. ^ Berger, Adam L.; Pietra, Vincent J. Della; Pietra, Stephen A. Della (March 1996). "A maximum entropy approach to natural language processing" (PDF). Computational Linguistics. 22 (1): 39–71. INIST 3283782.
  5. ^ Jaynes, E. T. (May 15, 1957). "Information Theory and Statistical Mechanics". Physical Review. 106 (4): 620–630. Bibcode:1957PhRv..106..620J. doi:10.1103/PhysRev.106.620.
  6. ^ Durlauf, Steven N. (September 14, 1999). "How can statistical mechanics contribute to social science?". Proceedings of the National Academy of Sciences. 96 (19): 10582–10584. Bibcode:1999PNAS...9610582D. doi:10.1073/pnas.96.19.10582. PMC 33748. PMID 10485867.
  7. ^ Huang, Kerson (September 21, 2009). Introduction to Statistical Physics (2nd ed.). CRC Press. p. 15. ISBN 978-1-4200-7902-9.
  8. ^ Germano, R. (2022). Física Estatística do Equilíbrio: um curso introdutório (in Portuguese). Rio de Janeiro: Ciência Moderna. p. 156. ISBN 978-65-5842-144-3.
  9. ^ a b Uffink, Jos (March 2006). Compendium of the foundations of classical statistical physics (Preprint).
  10. ^ See:
    • Maxwell, J.C. (1860) "Illustrations of the dynamical theory of gases. Part I. On the motions and collisions of perfectly elastic spheres," Philosophical Magazine, 4th series, 19 : 19–32.
    • Maxwell, J.C. (1860) "Illustrations of the dynamical theory of gases. Part II. On the process of diffusion of two or more kinds of moving particles among one another," Philosophical Magazine, 4th series, 20 : 21–37.
  11. ^ Mahon, Basil (2003). The Man Who Changed Everything – the Life of James Clerk Maxwell. Hoboken, NJ: Wiley. ISBN 978-0-470-86171-4. OCLC 52358254.
  12. ^ Gyenis, Balazs (2017). "Maxwell and the normal distribution: A colored story of probability, independence, and tendency towards equilibrium". Studies in History and Philosophy of Modern Physics. 57: 53–65. arXiv:1702.01411. Bibcode:2017SHPMP..57...53G. doi:10.1016/j.shpsb.2017.01.001. S2CID 38272381.
  13. ^ Ebeling, Werner; Sokolov, Igor M. (2005). Statistical Thermodynamics and Stochastic Theory of Nonequilibrium Systems. Series on Advances in Statistical Mechanics. Vol. 8. Bibcode:2005stst.book.....E. doi:10.1142/2012. ISBN 978-981-02-1382-4.
  14. ^ Gibbs, J. W. (1885). On the Fundamental Formula of Statistical Mechanics, with Applications to Astronomy and Thermodynamics. OCLC 702360353.
  15. ^ James Clerk Maxwell ,Theory of Heat (London, England: Longmans, Green, and Co., 1871), p. 309
  16. ^ Mayants, Lazar (1984). The enigma of probability and physics. Springer. p. 174. ISBN 978-90-277-1674-3.
  17. ^ a b c d e f g Gibbs, Josiah Willard (1902). Elementary Principles in Statistical Mechanics. New York: Charles Scribner's Sons.
  18. ^ a b c d Tolman, Richard Chace (1979). The Principles of Statistical Mechanics. Courier Corporation. ISBN 978-0-486-63896-6.[page needed]
  19. ^ Jaynes, E. (1957). "Information Theory and Statistical Mechanics". Physical Review. 106 (4): 620–630. Bibcode:1957PhRv..106..620J. doi:10.1103/PhysRev.106.620.
  20. ^ a b c Gao, Xiang; Gallicchio, Emilio; Roitberg, Adrian E. (July 21, 2019). "The generalized Boltzmann distribution is the only distribution in which the Gibbs-Shannon entropy equals the thermodynamic entropy". The Journal of Chemical Physics. 151 (3): 034113. arXiv:1903.02121. Bibcode:2019JChPh.151c4113G. doi:10.1063/1.5111333. PMID 31325924.
  21. ^ a b c Gao, Xiang (March 2022). "The Mathematics of the Ensemble Theory". Results in Physics. 34: 105230. arXiv:2006.00485. Bibcode:2022ResPh..3405230G. doi:10.1016/j.rinp.2022.105230. S2CID 221978379.
  22. ^ Reif, F. (1965). Fundamentals of Statistical and Thermal Physics. McGraw–Hill. p. 227. ISBN 978-0-07-051800-1.
  23. ^ Touchette, Hugo (2015). "Equivalence and Nonequivalence of Ensembles: Thermodynamic, Macrostate, and Measure Levels". Journal of Statistical Physics. 159 (5): 987–1016. arXiv:1403.6608. Bibcode:2015JSP...159..987T. doi:10.1007/s10955-015-1212-2. S2CID 118534661.
  24. ^ The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs. Vol. 89. 2005. doi:10.1090/surv/089. ISBN 978-0-8218-3792-4.[page needed]
  25. ^ Gorban, A. N.; Tyukin, I. Y. (April 28, 2018). "Blessing of dimensionality: mathematical foundations of the statistical physics of data". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 376 (2118): 20170237. arXiv:1801.03421. Bibcode:2018RSPTA.37670237G. doi:10.1098/rsta.2017.0237. PMC 5869543. PMID 29555807.
  26. ^ Baxter, Rodney J. (1982). Exactly solved models in statistical mechanics. Academic Press Inc. ISBN 978-0-12-083180-7.[page needed]
  27. ^ Jia, Xun; Ziegenhein, Peter; Jiang, Steve B (2014). "GPU-based high-performance computing for radiation therapy". Physics in Medicine and Biology. 59 (4): R151–R182. Bibcode:2014PMB....59R.151J. doi:10.1088/0031-9155/59/4/R151. PMC 4003902. PMID 24486639.
  28. ^ Hill, R; Healy, B; Holloway, L; Kuncic, Z; Thwaites, D; Baldock, C (March 2014). "Advances in kilovoltage x-ray beam dosimetry". Physics in Medicine and Biology. 59 (6): R183–R231. Bibcode:2014PMB....59R.183H. doi:10.1088/0031-9155/59/6/R183. PMID 24584183. S2CID 18082594.
  29. ^ Rogers, D W O (2006). "Fifty years of Monte Carlo simulations for medical physics". Physics in Medicine and Biology. 51 (13): R287–R301. Bibcode:2006PMB....51R.287R. doi:10.1088/0031-9155/51/13/R17. PMID 16790908. S2CID 12066026.
  30. ^ a b c Balescu, Radu (1975). Equilibrium and Non-Equilibrium Statistical Mechanics. Wiley. ISBN 978-0-471-04600-4.[page needed]
  31. ^ Altshuler, B L; Aronov, A G; Khmelnitsky, D E (December 30, 1982). "Effects of electron-electron collisions with small energy transfers on quantum localisation". Journal of Physics C: Solid State Physics. 15 (36): 7367–7386. Bibcode:1982JPhC...15.7367A. doi:10.1088/0022-3719/15/36/018.
  32. ^ Aleiner, I. L.; Blanter, Ya. M. (February 28, 2002). "Inelastic scattering time for conductance fluctuations". Physical Review B. 65 (11): 115317. arXiv:cond-mat/0105436. Bibcode:2002PhRvB..65k5317A. doi:10.1103/PhysRevB.65.115317.
  33. ^ Ramezanpour, Abolfazl; Beam, Andrew L.; Chen, Jonathan H.; Mashaghi, Alireza (November 19, 2020). "Statistical Physics for Medical Diagnostics: Learning, Inference, and Optimization Algorithms". Diagnostics. 10 (11): 972. doi:10.3390/diagnostics10110972. PMC 7699346. PMID 33228143.
  34. ^ Mashaghi, Alireza; Ramezanpour, Abolfazl (March 16, 2018). "Statistical physics of medical diagnostics: Study of a probabilistic model". Physical Review E. 97 (3): 032118. arXiv:1803.10019. Bibcode:2018PhRvE..97c2118M. doi:10.1103/PhysRevE.97.032118. PMID 29776109.

Further reading edit

  • Reif, F. (2009). Fundamentals of Statistical and Thermal Physics. Waveland Press. ISBN 978-1-4786-1005-2.
  • Müller-Kirsten, Harald J W. (2013). Basics of Statistical Physics (PDF). doi:10.1142/8709. ISBN 978-981-4449-53-3.
  • Kadanoff, Leo P. . Archived from the original on August 12, 2021. Retrieved June 18, 2023.
  • Kadanoff, Leo P. (2000). Statistical Physics: Statics, Dynamics and Renormalization. World Scientific. ISBN 978-981-02-3764-6.
  • Flamm, Dieter (1998). "History and outlook of statistical physics". arXiv:physics/9803005.

External links edit

  • Philosophy of Statistical Mechanics article by Lawrence Sklar for the Stanford Encyclopedia of Philosophy.
  • Sklogwiki - Thermodynamics, statistical mechanics, and the computer simulation of materials. SklogWiki is particularly orientated towards liquids and soft condensed matter.
  • Thermodynamics and Statistical Mechanics by Richard Fitzpatrick
  • Cohen, Doron (2011). "Lecture Notes in Statistical Mechanics and Mesoscopics". arXiv:1107.0568.
  • Videos of lecture series in statistical mechanics on YouTube taught by Leonard Susskind.
  • Vu-Quoc, L., Configuration integral (statistical mechanics), 2008. this wiki site is down; see .

statistical, mechanics, physics, statistical, mechanics, mathematical, framework, that, applies, statistical, methods, probability, theory, large, assemblies, microscopic, entities, sometimes, called, statistical, physics, statistical, thermodynamics, applicat. In physics statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities Sometimes called statistical physics or statistical thermodynamics its applications include many problems in the fields of physics biology 1 chemistry neuroscience 2 computer science 3 4 information theory 5 and sociology 6 Its main purpose is to clarify the properties of matter in aggregate in terms of physical laws governing atomic motion 7 8 Statistical mechanics arose out of the development of classical thermodynamics a field for which it was successful in explaining macroscopic physical properties such as temperature pressure and heat capacity in terms of microscopic parameters that fluctuate about average values and are characterized by probability distributions citation needed While classical thermodynamics is primarily concerned with thermodynamic equilibrium statistical mechanics has been applied in non equilibrium statistical mechanics to the issues of microscopically modeling the speed of irreversible processes that are driven by imbalances Examples of such processes include chemical reactions and flows of particles and heat The fluctuation dissipation theorem is the basic knowledge obtained from applying non equilibrium statistical mechanics to study the simplest non equilibrium situation of a steady state current flow in a system of many particles citation needed Contents 1 History 2 Principles mechanics and ensembles 3 Statistical thermodynamics 3 1 Fundamental postulate 3 2 Three thermodynamic ensembles 3 3 Calculation methods 3 3 1 Exact 3 3 2 Monte Carlo 3 3 3 Other 4 Non equilibrium statistical mechanics 4 1 Stochastic methods 4 2 Near equilibrium methods 4 3 Hybrid methods 5 Applications 5 1 Quantum statistical mechanics 6 See also 7 References 8 Further reading 9 External linksHistory editIn 1738 Swiss physicist and mathematician Daniel Bernoulli published Hydrodynamica which laid the basis for the kinetic theory of gases In this work Bernoulli posited the argument still used to this day that gases consist of great numbers of molecules moving in all directions that their impact on a surface causes the gas pressure that we feel and that what we experience as heat is simply the kinetic energy of their motion 9 The founding of the field of statistical mechanics is generally credited to three physicists Ludwig Boltzmann who developed the fundamental interpretation of entropy in terms of a collection of microstates James Clerk Maxwell who developed models of probability distribution of such states Josiah Willard Gibbs who coined the name of the field in 1884 In 1859 after reading a paper on the diffusion of molecules by Rudolf Clausius Scottish physicist James Clerk Maxwell formulated the Maxwell distribution of molecular velocities which gave the proportion of molecules having a certain velocity in a specific range 10 This was the first ever statistical law in physics 11 Maxwell also gave the first mechanical argument that molecular collisions entail an equalization of temperatures and hence a tendency towards equilibrium 12 Five years later in 1864 Ludwig Boltzmann a young student in Vienna came across Maxwell s paper and spent much of his life developing the subject further Statistical mechanics was initiated in the 1870s with the work of Boltzmann much of which was collectively published in his 1896 Lectures on Gas Theory 13 Boltzmann s original papers on the statistical interpretation of thermodynamics the H theorem transport theory thermal equilibrium the equation of state of gases and similar subjects occupy about 2 000 pages in the proceedings of the Vienna Academy and other societies Boltzmann introduced the concept of an equilibrium statistical ensemble and also investigated for the first time non equilibrium statistical mechanics with his H theorem The term statistical mechanics was coined by the American mathematical physicist J Willard Gibbs in 1884 14 According to Gibbs the term statistical in the context of mechanics i e statistical mechanics was first used by the Scottish physicist James Clerk Maxwell in 1871 In dealing with masses of matter while we do not perceive the individual molecules we are compelled to adopt what I have described as the statistical method of calculation and to abandon the strict dynamical method in which we follow every motion by the calculus J Clerk Maxwell 15 Probabilistic mechanics might today seem a more appropriate term but statistical mechanics is firmly entrenched 16 Shortly before his death Gibbs published in 1902 Elementary Principles in Statistical Mechanics a book which formalized statistical mechanics as a fully general approach to address all mechanical systems macroscopic or microscopic gaseous or non gaseous 17 Gibbs methods were initially derived in the framework classical mechanics however they were of such generality that they were found to adapt easily to the later quantum mechanics and still form the foundation of statistical mechanics to this day 18 Principles mechanics and ensembles editMain articles Mechanics and Statistical ensemble In physics two types of mechanics are usually examined classical mechanics and quantum mechanics For both types of mechanics the standard mathematical approach is to consider two concepts The complete state of the mechanical system at a given time mathematically encoded as a phase point classical mechanics or a pure quantum state vector quantum mechanics An equation of motion which carries the state forward in time Hamilton s equations classical mechanics or the Schrodinger equation quantum mechanics Using these two concepts the state at any other time past or future can in principle be calculated There is however a disconnect between these laws and everyday life experiences as we do not find it necessary nor even theoretically possible to know exactly at a microscopic level the simultaneous positions and velocities of each molecule while carrying out processes at the human scale for example when performing a chemical reaction Statistical mechanics fills this disconnection between the laws of mechanics and the practical experience of incomplete knowledge by adding some uncertainty about which state the system is in Whereas ordinary mechanics only considers the behaviour of a single state statistical mechanics introduces the statistical ensemble which is a large collection of virtual independent copies of the system in various states The statistical ensemble is a probability distribution over all possible states of the system In classical statistical mechanics the ensemble is a probability distribution over phase points as opposed to a single phase point in ordinary mechanics usually represented as a distribution in a phase space with canonical coordinate axes In quantum statistical mechanics the ensemble is a probability distribution over pure states and can be compactly summarized as a density matrix As is usual for probabilities the ensemble can be interpreted in different ways 17 an ensemble can be taken to represent the various possible states that a single system could be in epistemic probability a form of knowledge or the members of the ensemble can be understood as the states of the systems in experiments repeated on independent systems which have been prepared in a similar but imperfectly controlled manner empirical probability in the limit of an infinite number of trials These two meanings are equivalent for many purposes and will be used interchangeably in this article However the probability is interpreted each state in the ensemble evolves over time according to the equation of motion Thus the ensemble itself the probability distribution over states also evolves as the virtual systems in the ensemble continually leave one state and enter another The ensemble evolution is given by the Liouville equation classical mechanics or the von Neumann equation quantum mechanics These equations are simply derived by the application of the mechanical equation of motion separately to each virtual system contained in the ensemble with the probability of the virtual system being conserved over time as it evolves from state to state One special class of ensemble is those ensembles that do not evolve over time These ensembles are known as equilibrium ensembles and their condition is known as statistical equilibrium Statistical equilibrium occurs if for each state in the ensemble the ensemble also contains all of its future and past states with probabilities equal to the probability of being in that state By contrast mechanical equilibrium is a state with a balance of forces that has ceased to evolve The study of equilibrium ensembles of isolated systems is the focus of statistical thermodynamics Non equilibrium statistical mechanics addresses the more general case of ensembles that change over time and or ensembles of non isolated systems Statistical thermodynamics editThe primary goal of statistical thermodynamics also known as equilibrium statistical mechanics is to derive the classical thermodynamics of materials in terms of the properties of their constituent particles and the interactions between them In other words statistical thermodynamics provides a connection between the macroscopic properties of materials in thermodynamic equilibrium and the microscopic behaviours and motions occurring inside the material Whereas statistical mechanics proper involves dynamics here the attention is focussed on statistical equilibrium steady state Statistical equilibrium does not mean that the particles have stopped moving mechanical equilibrium rather only that the ensemble is not evolving Fundamental postulate edit A sufficient but not necessary condition for statistical equilibrium with an isolated system is that the probability distribution is a function only of conserved properties total energy total particle numbers etc 17 There are many different equilibrium ensembles that can be considered and only some of them correspond to thermodynamics 17 Additional postulates are necessary to motivate why the ensemble for a given system should have one form or another A common approach found in many textbooks is to take the equal a priori probability postulate 18 This postulate states that For an isolated system with an exactly known energy and exactly known composition the system can be found withequal probabilityin any microstate consistent with that knowledge The equal a priori probability postulate therefore provides a motivation for the microcanonical ensemble described below There are various arguments in favour of the equal a priori probability postulate Ergodic hypothesis An ergodic system is one that evolves over time to explore all accessible states all those with the same energy and composition In an ergodic system the microcanonical ensemble is the only possible equilibrium ensemble with fixed energy This approach has limited applicability since most systems are not ergodic Principle of indifference In the absence of any further information we can only assign equal probabilities to each compatible situation Maximum information entropy A more elaborate version of the principle of indifference states that the correct ensemble is the ensemble that is compatible with the known information and that has the largest Gibbs entropy information entropy 19 Other fundamental postulates for statistical mechanics have also been proposed 9 20 21 For example recent studies shows that the theory of statistical mechanics can be built without the equal a priori probability postulate 20 21 One such formalism is based on the fundamental thermodynamic relation together with the following set of postulates 20 The probability density function is proportional to some function of the ensemble parameters and random variables Thermodynamic state functions are described by ensemble averages of random variables The entropy as defined by Gibbs entropy formula matches with the entropy as defined in classical thermodynamics where the third postulate can be replaced by the following 21 At infinite temperature all the microstates have the same probability Three thermodynamic ensembles edit Main articles Ensemble mathematical physics Microcanonical ensemble Canonical ensemble and Grand canonical ensemble There are three equilibrium ensembles with a simple form that can be defined for any isolated system bounded inside a finite volume 17 These are the most often discussed ensembles in statistical thermodynamics In the macroscopic limit defined below they all correspond to classical thermodynamics Microcanonical ensemble describes a system with a precisely given energy and fixed composition precise number of particles The microcanonical ensemble contains with equal probability each possible state that is consistent with that energy and composition Canonical ensemble describes a system of fixed composition that is in thermal equilibrium with a heat bath of a precise temperature The canonical ensemble contains states of varying energy but identical composition the different states in the ensemble are accorded different probabilities depending on their total energy Grand canonical ensemble describes a system with non fixed composition uncertain particle numbers that is in thermal and chemical equilibrium with a thermodynamic reservoir The reservoir has a precise temperature and precise chemical potentials for various types of particle The grand canonical ensemble contains states of varying energy and varying numbers of particles the different states in the ensemble are accorded different probabilities depending on their total energy and total particle numbers For systems containing many particles the thermodynamic limit all three of the ensembles listed above tend to give identical behaviour It is then simply a matter of mathematical convenience which ensemble is used 22 The Gibbs theorem about equivalence of ensembles 23 was developed into the theory of concentration of measure phenomenon 24 which has applications in many areas of science from functional analysis to methods of artificial intelligence and big data technology 25 Important cases where the thermodynamic ensembles do not give identical results include Microscopic systems Large systems at a phase transition Large systems with long range interactions In these cases the correct thermodynamic ensemble must be chosen as there are observable differences between these ensembles not just in the size of fluctuations but also in average quantities such as the distribution of particles The correct ensemble is that which corresponds to the way the system has been prepared and characterized in other words the ensemble that reflects the knowledge about that system 18 Thermodynamic ensembles 17 Microcanonical Canonical Grand canonical Fixed variables E N V displaystyle E N V nbsp T N V displaystyle T N V nbsp T m V displaystyle T mu V nbsp Microscopic features Number of microstates Canonical partition function Grand partition function W displaystyle W nbsp Z k e E k k B T displaystyle Z sum k e E k k B T nbsp Z k e E k m N k k B T displaystyle mathcal Z sum k e E k mu N k k B T nbsp Macroscopic function Boltzmann entropy Helmholtz free energy Grand potential S k B log W displaystyle S k B log W nbsp F k B T log Z displaystyle F k B T log Z nbsp W k B T log Z displaystyle Omega k B T log mathcal Z nbsp Calculation methods edit Once the characteristic state function for an ensemble has been calculated for a given system that system is solved macroscopic observables can be extracted from the characteristic state function Calculating the characteristic state function of a thermodynamic ensemble is not necessarily a simple task however since it involves considering every possible state of the system While some hypothetical systems have been exactly solved the most general and realistic case is too complex for an exact solution Various approaches exist to approximate the true ensemble and allow calculation of average quantities Exact edit There are some cases which allow exact solutions For very small microscopic systems the ensembles can be directly computed by simply enumerating over all possible states of the system using exact diagonalization in quantum mechanics or integral over all phase space in classical mechanics Some large systems consist of many separable microscopic systems and each of the subsystems can be analysed independently Notably idealized gases of non interacting particles have this property allowing exact derivations of Maxwell Boltzmann statistics Fermi Dirac statistics and Bose Einstein statistics 18 A few large systems with interaction have been solved By the use of subtle mathematical techniques exact solutions have been found for a few toy models 26 Some examples include the Bethe ansatz square lattice Ising model in zero field hard hexagon model Monte Carlo edit Main article Monte Carlo method in statistical mechanics Although some problems in statistical physics can be solved analytically using approximations and expansions most current research utilizes the large processing power of modern computers to simulate or approximate solutions A common approach to statistical problems is to use a Monte Carlo simulation to yield insight into the properties of a complex system Monte Carlo methods are important in computational physics physical chemistry and related fields and have diverse applications including medical physics where they are used to model radiation transport for radiation dosimetry calculations 27 28 29 The Monte Carlo method examines just a few of the possible states of the system with the states chosen randomly with a fair weight As long as these states form a representative sample of the whole set of states of the system the approximate characteristic function is obtained As more and more random samples are included the errors are reduced to an arbitrarily low level The Metropolis Hastings algorithm is a classic Monte Carlo method which was initially used to sample the canonical ensemble Path integral Monte Carlo also used to sample the canonical ensemble Other edit For rarefied non ideal gases approaches such as the cluster expansion use perturbation theory to include the effect of weak interactions leading to a virial expansion 30 For dense fluids another approximate approach is based on reduced distribution functions in particular the radial distribution function 30 Molecular dynamics computer simulations can be used to calculate microcanonical ensemble averages in ergodic systems With the inclusion of a connection to a stochastic heat bath they can also model canonical and grand canonical conditions Mixed methods involving non equilibrium statistical mechanical results see below may be useful Non equilibrium statistical mechanics editSee also Non equilibrium thermodynamics Many physical phenomena involve quasi thermodynamic processes out of equilibrium for example heat transport by the internal motions in a material driven by a temperature imbalance electric currents carried by the motion of charges in a conductor driven by a voltage imbalance spontaneous chemical reactions driven by a decrease in free energy friction dissipation quantum decoherence systems being pumped by external forces optical pumping etc and irreversible processes in general All of these processes occur over time with characteristic rates These rates are important in engineering The field of non equilibrium statistical mechanics is concerned with understanding these non equilibrium processes at the microscopic level Statistical thermodynamics can only be used to calculate the final result after the external imbalances have been removed and the ensemble has settled back down to equilibrium In principle non equilibrium statistical mechanics could be mathematically exact ensembles for an isolated system evolve over time according to deterministic equations such as Liouville s equation or its quantum equivalent the von Neumann equation These equations are the result of applying the mechanical equations of motion independently to each state in the ensemble These ensemble evolution equations inherit much of the complexity of the underlying mechanical motion and so exact solutions are very difficult to obtain Moreover the ensemble evolution equations are fully reversible and do not destroy information the ensemble s Gibbs entropy is preserved In order to make headway in modelling irreversible processes it is necessary to consider additional factors besides probability and reversible mechanics Non equilibrium mechanics is therefore an active area of theoretical research as the range of validity of these additional assumptions continues to be explored A few approaches are described in the following subsections Stochastic methods edit One approach to non equilibrium statistical mechanics is to incorporate stochastic random behaviour into the system Stochastic behaviour destroys information contained in the ensemble While this is technically inaccurate aside from hypothetical situations involving black holes a system cannot in itself cause loss of information the randomness is added to reflect that information of interest becomes converted over time into subtle correlations within the system or to correlations between the system and environment These correlations appear as chaotic or pseudorandom influences on the variables of interest By replacing these correlations with randomness proper the calculations can be made much easier Boltzmann transport equation An early form of stochastic mechanics appeared even before the term statistical mechanics had been coined in studies of kinetic theory James Clerk Maxwell had demonstrated that molecular collisions would lead to apparently chaotic motion inside a gas Ludwig Boltzmann subsequently showed that by taking this molecular chaos for granted as a complete randomization the motions of particles in a gas would follow a simple Boltzmann transport equation that would rapidly restore a gas to an equilibrium state see H theorem The Boltzmann transport equation and related approaches are important tools in non equilibrium statistical mechanics due to their extreme simplicity These approximations work well in systems where the interesting information is immediately after just one collision scrambled up into subtle correlations which essentially restricts them to rarefied gases The Boltzmann transport equation has been found to be very useful in simulations of electron transport in lightly doped semiconductors in transistors where the electrons are indeed analogous to a rarefied gas A quantum technique related in theme is the random phase approximation BBGKY hierarchy In liquids and dense gases it is not valid to immediately discard the correlations between particles after one collision The BBGKY hierarchy Bogoliubov Born Green Kirkwood Yvon hierarchy gives a method for deriving Boltzmann type equations but also extending them beyond the dilute gas case to include correlations after a few collisions Keldysh formalism a k a NEGF non equilibrium Green functions A quantum approach to including stochastic dynamics is found in the Keldysh formalism This approach is often used in electronic quantum transport calculations Stochastic Liouville equation Near equilibrium methods edit Another important class of non equilibrium statistical mechanical models deals with systems that are only very slightly perturbed from equilibrium With very small perturbations the response can be analysed in linear response theory A remarkable result as formalized by the fluctuation dissipation theorem is that the response of a system when near equilibrium is precisely related to the fluctuations that occur when the system is in total equilibrium Essentially a system that is slightly away from equilibrium whether put there by external forces or by fluctuations relaxes towards equilibrium in the same way since the system cannot tell the difference or know how it came to be away from equilibrium 30 664 This provides an indirect avenue for obtaining numbers such as ohmic conductivity and thermal conductivity by extracting results from equilibrium statistical mechanics Since equilibrium statistical mechanics is mathematically well defined and in some cases more amenable for calculations the fluctuation dissipation connection can be a convenient shortcut for calculations in near equilibrium statistical mechanics A few of the theoretical tools used to make this connection include Fluctuation dissipation theorem Onsager reciprocal relations Green Kubo relations Landauer Buttiker formalism Mori Zwanzig formalism Hybrid methods edit An advanced approach uses a combination of stochastic methods and linear response theory As an example one approach to compute quantum coherence effects weak localization conductance fluctuations in the conductance of an electronic system is the use of the Green Kubo relations with the inclusion of stochastic dephasing by interactions between various electrons by use of the Keldysh method 31 32 Applications editThe ensemble formalism can be used to analyze general mechanical systems with uncertainty in knowledge about the state of a system Ensembles are also used in propagation of uncertainty over time 17 regression analysis of gravitational orbits ensemble forecasting of weather dynamics of neural networks bounded rational potential games in game theory and economics Statistical physics explains and quantitatively describes superconductivity superfluidity turbulence collective phenomena in solids and plasma and the structural features of liquid It underlies the modern astrophysics In solid state physics statistical physics aids the study of liquid crystals phase transitions and critical phenomena Many experimental studies of matter are entirely based on the statistical description of a system These include the scattering of cold neutrons X ray visible light and more Statistical physics also plays a role in materials science nuclear physics astrophysics chemistry biology and medicine e g study of the spread of infectious diseases citation needed Analytical and computational techniques derived from statistical physics of disordered systems can be extended to large scale problems including machine learning e g to analyze the weight space of deep neural networks 33 Statistical physics is thus finding applications in the area of medical diagnostics 34 Quantum statistical mechanics edit Quantum statistical mechanics is statistical mechanics applied to quantum mechanical systems In quantum mechanics a statistical ensemble probability distribution over possible quantum states is described by a density operator S which is a non negative self adjoint trace class operator of trace 1 on the Hilbert space H describing the quantum system This can be shown under various mathematical formalisms for quantum mechanics One such formalism is provided by quantum logic citation needed See also editQuantum statistical mechanics List of textbooks in thermodynamics and statistical mechanics Laplace transformReferences edit Teschendorff Andrew E Feinberg Andrew P July 2021 Statistical mechanics meets single cell biology Nature Reviews Genetics 22 7 459 476 doi 10 1038 s41576 021 00341 z PMC 10152720 PMID 33875884 Advani Madhu Lahiri Subhaneil Ganguli Surya March 12 2013 Statistical mechanics of complex neural systems and high dimensional data Journal of Statistical Mechanics Theory and Experiment 2013 3 P03014 arXiv 1301 7115 Bibcode 2013JSMTE 03 014A doi 10 1088 1742 5468 2013 03 P03014 Huang Haiping 2021 Statistical Mechanics of Neural Networks doi 10 1007 978 981 16 7570 6 ISBN 978 981 16 7569 0 Berger Adam L Pietra Vincent J Della Pietra Stephen A Della March 1996 A maximum entropy approach to natural language processing PDF Computational Linguistics 22 1 39 71 INIST 3283782 Jaynes E T May 15 1957 Information Theory and Statistical Mechanics Physical Review 106 4 620 630 Bibcode 1957PhRv 106 620J doi 10 1103 PhysRev 106 620 Durlauf Steven N September 14 1999 How can statistical mechanics contribute to social science Proceedings of the National Academy of Sciences 96 19 10582 10584 Bibcode 1999PNAS 9610582D doi 10 1073 pnas 96 19 10582 PMC 33748 PMID 10485867 Huang Kerson September 21 2009 Introduction to Statistical Physics 2nd ed CRC Press p 15 ISBN 978 1 4200 7902 9 Germano R 2022 Fisica Estatistica do Equilibrio um curso introdutorio in Portuguese Rio de Janeiro Ciencia Moderna p 156 ISBN 978 65 5842 144 3 a b Uffink Jos March 2006 Compendium of the foundations of classical statistical physics Preprint See Maxwell J C 1860 Illustrations of the dynamical theory of gases Part I On the motions and collisions of perfectly elastic spheres Philosophical Magazine 4th series 19 19 32 Maxwell J C 1860 Illustrations of the dynamical theory of gases Part II On the process of diffusion of two or more kinds of moving particles among one another Philosophical Magazine 4th series 20 21 37 Mahon Basil 2003 The Man Who Changed Everything the Life of James Clerk Maxwell Hoboken NJ Wiley ISBN 978 0 470 86171 4 OCLC 52358254 Gyenis Balazs 2017 Maxwell and the normal distribution A colored story of probability independence and tendency towards equilibrium Studies in History and Philosophy of Modern Physics 57 53 65 arXiv 1702 01411 Bibcode 2017SHPMP 57 53G doi 10 1016 j shpsb 2017 01 001 S2CID 38272381 Ebeling Werner Sokolov Igor M 2005 Statistical Thermodynamics and Stochastic Theory of Nonequilibrium Systems Series on Advances in Statistical Mechanics Vol 8 Bibcode 2005stst book E doi 10 1142 2012 ISBN 978 981 02 1382 4 Gibbs J W 1885 On the Fundamental Formula of Statistical Mechanics with Applications to Astronomy and Thermodynamics OCLC 702360353 James Clerk Maxwell Theory of Heat London England Longmans Green and Co 1871 p 309 Mayants Lazar 1984 The enigma of probability and physics Springer p 174 ISBN 978 90 277 1674 3 a b c d e f g Gibbs Josiah Willard 1902 Elementary Principles in Statistical Mechanics New York Charles Scribner s Sons a b c d Tolman Richard Chace 1979 The Principles of Statistical Mechanics Courier Corporation ISBN 978 0 486 63896 6 page needed Jaynes E 1957 Information Theory and Statistical Mechanics Physical Review 106 4 620 630 Bibcode 1957PhRv 106 620J doi 10 1103 PhysRev 106 620 a b c Gao Xiang Gallicchio Emilio Roitberg Adrian E July 21 2019 The generalized Boltzmann distribution is the only distribution in which the Gibbs Shannon entropy equals the thermodynamic entropy The Journal of Chemical Physics 151 3 034113 arXiv 1903 02121 Bibcode 2019JChPh 151c4113G doi 10 1063 1 5111333 PMID 31325924 a b c Gao Xiang March 2022 The Mathematics of the Ensemble Theory Results in Physics 34 105230 arXiv 2006 00485 Bibcode 2022ResPh 3405230G doi 10 1016 j rinp 2022 105230 S2CID 221978379 Reif F 1965 Fundamentals of Statistical and Thermal Physics McGraw Hill p 227 ISBN 978 0 07 051800 1 Touchette Hugo 2015 Equivalence and Nonequivalence of Ensembles Thermodynamic Macrostate and Measure Levels Journal of Statistical Physics 159 5 987 1016 arXiv 1403 6608 Bibcode 2015JSP 159 987T doi 10 1007 s10955 015 1212 2 S2CID 118534661 The Concentration of Measure Phenomenon Mathematical Surveys and Monographs Vol 89 2005 doi 10 1090 surv 089 ISBN 978 0 8218 3792 4 page needed Gorban A N Tyukin I Y April 28 2018 Blessing of dimensionality mathematical foundations of the statistical physics of data Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences 376 2118 20170237 arXiv 1801 03421 Bibcode 2018RSPTA 37670237G doi 10 1098 rsta 2017 0237 PMC 5869543 PMID 29555807 Baxter Rodney J 1982 Exactly solved models in statistical mechanics Academic Press Inc ISBN 978 0 12 083180 7 page needed Jia Xun Ziegenhein Peter Jiang Steve B 2014 GPU based high performance computing for radiation therapy Physics in Medicine and Biology 59 4 R151 R182 Bibcode 2014PMB 59R 151J doi 10 1088 0031 9155 59 4 R151 PMC 4003902 PMID 24486639 Hill R Healy B Holloway L Kuncic Z Thwaites D Baldock C March 2014 Advances in kilovoltage x ray beam dosimetry Physics in Medicine and Biology 59 6 R183 R231 Bibcode 2014PMB 59R 183H doi 10 1088 0031 9155 59 6 R183 PMID 24584183 S2CID 18082594 Rogers D W O 2006 Fifty years of Monte Carlo simulations for medical physics Physics in Medicine and Biology 51 13 R287 R301 Bibcode 2006PMB 51R 287R doi 10 1088 0031 9155 51 13 R17 PMID 16790908 S2CID 12066026 a b c Balescu Radu 1975 Equilibrium and Non Equilibrium Statistical Mechanics Wiley ISBN 978 0 471 04600 4 page needed Altshuler B L Aronov A G Khmelnitsky D E December 30 1982 Effects of electron electron collisions with small energy transfers on quantum localisation Journal of Physics C Solid State Physics 15 36 7367 7386 Bibcode 1982JPhC 15 7367A doi 10 1088 0022 3719 15 36 018 Aleiner I L Blanter Ya M February 28 2002 Inelastic scattering time for conductance fluctuations Physical Review B 65 11 115317 arXiv cond mat 0105436 Bibcode 2002PhRvB 65k5317A doi 10 1103 PhysRevB 65 115317 Ramezanpour Abolfazl Beam Andrew L Chen Jonathan H Mashaghi Alireza November 19 2020 Statistical Physics for Medical Diagnostics Learning Inference and Optimization Algorithms Diagnostics 10 11 972 doi 10 3390 diagnostics10110972 PMC 7699346 PMID 33228143 Mashaghi Alireza Ramezanpour Abolfazl March 16 2018 Statistical physics of medical diagnostics Study of a probabilistic model Physical Review E 97 3 032118 arXiv 1803 10019 Bibcode 2018PhRvE 97c2118M doi 10 1103 PhysRevE 97 032118 PMID 29776109 Further reading editReif F 2009 Fundamentals of Statistical and Thermal Physics Waveland Press ISBN 978 1 4786 1005 2 Muller Kirsten Harald J W 2013 Basics of Statistical Physics PDF doi 10 1142 8709 ISBN 978 981 4449 53 3 Kadanoff Leo P Statistical Physics and other resources Archived from the original on August 12 2021 Retrieved June 18 2023 Kadanoff Leo P 2000 Statistical Physics Statics Dynamics and Renormalization World Scientific ISBN 978 981 02 3764 6 Flamm Dieter 1998 History and outlook of statistical physics arXiv physics 9803005 External links edit nbsp Wikimedia Commons has media related to Statistical mechanics Philosophy of Statistical Mechanics article by Lawrence Sklar for the Stanford Encyclopedia of Philosophy Sklogwiki Thermodynamics statistical mechanics and the computer simulation of materials SklogWiki is particularly orientated towards liquids and soft condensed matter Thermodynamics and Statistical Mechanics by Richard Fitzpatrick Cohen Doron 2011 Lecture Notes in Statistical Mechanics and Mesoscopics arXiv 1107 0568 Videos of lecture series in statistical mechanics on YouTube taught by Leonard Susskind Vu Quoc L Configuration integral statistical mechanics 2008 this wiki site is down see this article in the web archive on 2012 April 28 Retrieved from https en wikipedia org w index php title Statistical mechanics amp oldid 1223802968 History, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.