fbpx
Wikipedia

Bethe ansatz

In physics, the Bethe ansatz is an ansatz for finding the exact wavefunctions of certain quantum many-body models, most commonly for one-dimensional lattice models. It was first used by Hans Bethe in 1931 to find the exact eigenvalues and eigenvectors of the one-dimensional antiferromagnetic isotropic (XXX) Heisenberg model.[1]

Since then the method has been extended to other spin chains and statistical lattice models.

"Bethe ansatz problems" were one of the topics featuring in the "To learn" section of Richard Feynman's blackboard at the time of his death.[2]

Discussion edit

In the framework of many-body quantum mechanics, models solvable by the Bethe ansatz can be contrasted with free fermion models. One can say that the dynamics of a free model is one-body reducible: the many-body wave function for fermions (bosons) is the anti-symmetrized (symmetrized) product of one-body wave functions. Models solvable by the Bethe ansatz are not free: the two-body sector has a non-trivial scattering matrix, which in general depends on the momenta.

On the other hand, the dynamics of the models solvable by the Bethe ansatz is two-body reducible: the many-body scattering matrix is a product of two-body scattering matrices. Many-body collisions happen as a sequence of two-body collisions and the many-body wave function can be represented in a form which contains only elements from two-body wave functions. The many-body scattering matrix is equal to the product of pairwise scattering matrices.

The generic form of the (coordinate) Bethe ansatz for a many-body wavefunction is

 

in which   is the number of particles,   their position,   is the set of all permutations of the integers  ,   is the parity of the permutation   taking values either positive or negative one,   is the (quasi-)momentum of the  -th particle,   is the scattering phase shift function and   is the sign function. This form is universal (at least for non-nested systems), with the momentum and scattering functions being model-dependent.

The Yang–Baxter equation guarantees consistency of the construction. The Pauli exclusion principle is valid for models solvable by the Bethe ansatz, even for models of interacting bosons.

The ground state is a Fermi sphere. Periodic boundary conditions lead to the Bethe ansatz equations or simply Bethe equations. In logarithmic form the Bethe ansatz equations can be generated by the Yang action. The square of the norm of Bethe wave function is equal to the determinant of the Hessian of the Yang action.[3]

A substantial generalization is the quantum inverse scattering method, or algebraic Bethe ansatz, which gives an ansatz for the underlying operator algebra that "has allowed a wide class of nonlinear evolution equations to be solved."[4]

The exact solutions of the so-called s-d model (by P.B. Wiegmann[5] in 1980 and independently by N. Andrei,[6] also in 1980) and the Anderson model (by P.B. Wiegmann[7] in 1981, and by N. Kawakami and A. Okiji[8] in 1981) are also both based on the Bethe ansatz. There exist multi-channel generalizations of these two models also amenable to exact solutions (by N. Andrei and C. Destri[9] and by C.J. Bolech and N. Andrei[10]). Recently several models solvable by Bethe ansatz were realized experimentally in solid states and optical lattices. An important role in the theoretical description of these experiments was played by Jean-Sébastien Caux and Alexei Tsvelik.[citation needed]

Terminology edit

There are many similar methods which come under the name of Bethe ansatz

  • Algebraic Bethe ansatz.[11] The quantum inverse scattering method is the method of solution by algebraic Bethe ansatz, and the two are practically synonymous.
  • Analytic Bethe ansatz
  • Coordinate Bethe ansatz (Hans Bethe 1931)
  • Functional Bethe ansatz [12][13]
  • Nested Bethe ansatz
  • Thermodynamic Bethe ansatz (C.N. Yang & C.P. Yang 1969)

Examples edit

Heisenberg antiferromagnetic chain edit

The Heisenberg antiferromagnetic chain is defined by the Hamiltonian (assuming periodic boundary conditions)

 

This model is solvable using the (coordinate) Bethe ansatz. The scattering phase shift function is  , with   in which the momentum has been conveniently reparametrized as   in terms of the rapidity   The (here, periodic) boundary conditions impose the Bethe equations

 

or more conveniently in logarithmic form

 

where the quantum numbers   are distinct half-odd integers for   even, integers for   odd (with   defined mod ).

Applicability edit

The following systems can be solved using the Bethe ansatz

Chronology edit

  • 1928: Werner Heisenberg publishes his model.[14]
  • 1930: Felix Bloch proposes an oversimplified ansatz which miscounts the number of solutions to the Schrödinger equation for the Heisenberg chain.[15]
  • 1931: Hans Bethe proposes the correct ansatz and carefully shows that it yields the correct number of eigenfunctions.[1]
  • 1938: Lamek Hulthén [de] obtains the exact ground-state energy of the Heisenberg model.[16]
  • 1958: Raymond Lee Orbach uses the Bethe ansatz to solve the Heisenberg model with anisotropic interactions.[17]
  • 1962: J. des Cloizeaux and J. J. Pearson obtain the correct spectrum of the Heisenberg antiferromagnet (spinon dispersion relation),[18] showing that it differs from Anderson’s spin-wave theory predictions[19] (the constant prefactor is different).
  • 1963: Elliott H. Lieb and Werner Liniger provide the exact solution of the 1d δ-function interacting Bose gas[20] (now known as the Lieb-Liniger model). Lieb studies the spectrum and defines two basic types of excitations.[21]
  • 1964: Robert B. Griffiths obtains the magnetization curve of the Heisenberg model at zero temperature.[22]
  • 1966: C.N. Yang and C.P. Yang rigorously prove that the ground-state of the Heisenberg chain is given by the Bethe ansatz.[23] They study properties and applications in[24] and.[25]
  • 1967: C.N. Yang generalizes Lieb and Liniger's solution of the δ-function interacting Bose gas to arbitrary permutation symmetry of the wavefunction, giving birth to the nested Bethe ansatz.[26]
  • 1968: Elliott H. Lieb and F. Y. Wu solve the 1d Hubbard model.[27]
  • 1969: C.N. Yang and C.P. Yang obtain the thermodynamics of the Lieb-Liniger model,[28] providing the basis of the thermodynamic Bethe ansatz (TBA).

References edit

  1. ^ a b Bethe, H. (March 1931). "Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette". Zeitschrift für Physik. 71 (3–4): 205–226. doi:10.1007/BF01341708. S2CID 124225487.
  2. ^ "Richard Feynman's blackboard at time of his death | Caltech Archives". digital.archives.caltech.edu. Retrieved 29 July 2023.
  3. ^ Korepin, Vladimir E. (1982). "Calculation of norms of Bethe wave functions". Communications in Mathematical Physics. 86 (3): 391–418. Bibcode:1982CMaPh..86..391K. doi:10.1007/BF01212176. ISSN 0010-3616. S2CID 122250890.
  4. ^ Korepin, V. E.; Bogoliubov, N. M.; Izergin, A. G. (1997-03-06). Quantum Inverse Scattering Method and Correlation Functions. Cambridge University Press. ISBN 9780521586467.
  5. ^ Wiegmann, P.B. (1980). (PDF). JETP Letters. 31 (7): 364. Archived from the original (PDF) on 2019-05-17. Retrieved 2019-05-17.
  6. ^ Andrei, N. (1980). "Diagonalization of the Kondo Hamiltonian". Physical Review Letters. 45 (5): 379–382. Bibcode:1980PhRvL..45..379A. doi:10.1103/PhysRevLett.45.379. ISSN 0031-9007.
  7. ^ Wiegmann, P.B. (1980). "Towards an exact solution of the Anderson model". Physics Letters A. 80 (2–3): 163–167. Bibcode:1980PhLA...80..163W. doi:10.1016/0375-9601(80)90212-1. ISSN 0375-9601.
  8. ^ Kawakami, Norio; Okiji, Ayao (1981). "Exact expression of the ground-state energy for the symmetric anderson model". Physics Letters A. 86 (9): 483–486. Bibcode:1981PhLA...86..483K. doi:10.1016/0375-9601(81)90663-0. ISSN 0375-9601.
  9. ^ Andrei, N.; Destri, C. (1984). "Solution of the Multichannel Kondo Problem". Physical Review Letters. 52 (5): 364–367. Bibcode:1984PhRvL..52..364A. doi:10.1103/PhysRevLett.52.364. ISSN 0031-9007.
  10. ^ Bolech, C. J.; Andrei, N. (2002). "Solution of the Two-Channel Anderson Impurity Model: Implications for the Heavy Fermion UBe13". Physical Review Letters. 88 (23): 237206. arXiv:cond-mat/0204392. Bibcode:2002PhRvL..88w7206B. doi:10.1103/PhysRevLett.88.237206. ISSN 0031-9007. PMID 12059396. S2CID 15180985.
  11. ^ Faddeev, Ludwig (1992). "How Algebraic Bethe Ansatz works for integrable model". arXiv:hep-th/9211111.
  12. ^ Sklyanin, E. K. (1985). "The quantum Toda chain". Non-Linear Equations in Classical and Quantum Field Theory. Lecture Notes in Physics. 226: 196–233. Bibcode:1985LNP...226..196S. doi:10.1007/3-540-15213-X_80. ISBN 978-3-540-15213-2.
  13. ^ Sklyanin, E.K. (October 1990). "Functional Bethe Ansatz". Integrable and Superintegrable Systems: 8–33. doi:10.1142/9789812797179_0002. ISBN 978-981-02-0316-0.
  14. ^ Heisenberg, W. (September 1928). "Zur Theorie des Ferromagnetismus". Zeitschrift für Physik. 49 (9–10): 619–636. Bibcode:1928ZPhy...49..619H. doi:10.1007/BF01328601. S2CID 122524239.
  15. ^ Bloch, F. (March 1930). "Zur Theorie des Ferromagnetismus". Zeitschrift für Physik. 61 (3–4): 206–219. Bibcode:1930ZPhy...61..206B. doi:10.1007/BF01339661. S2CID 120459635.
  16. ^ Hulthén, Lamek (1938). "Über das Austauschproblem eines Kristalles". Arkiv Mat. Astron. Fysik. 26A: 1.
  17. ^ Orbach, R. (15 October 1958). "Linear Antiferromagnetic Chain with Anisotropic Coupling". Physical Review. 112 (2): 309–316. Bibcode:1958PhRv..112..309O. doi:10.1103/PhysRev.112.309.
  18. ^ des Cloizeaux, Jacques; Pearson, J. J. (1 December 1962). "Spin-Wave Spectrum of the Antiferromagnetic Linear Chain". Physical Review. 128 (5): 2131–2135. Bibcode:1962PhRv..128.2131D. doi:10.1103/PhysRev.128.2131.
  19. ^ Anderson, P. W. (1 June 1952). "An Approximate Quantum Theory of the Antiferromagnetic Ground State". Physical Review. 86 (5): 694–701. Bibcode:1952PhRv...86..694A. doi:10.1103/PhysRev.86.694.
  20. ^ Lieb, Elliott H.; Liniger, Werner (15 May 1963). "Exact Analysis of an Interacting Bose Gas. I. The General Solution and the Ground State". Physical Review. 130 (4): 1605–1616. Bibcode:1963PhRv..130.1605L. doi:10.1103/PhysRev.130.1605.
  21. ^ Lieb, Elliott H. (15 May 1963). "Exact Analysis of an Interacting Bose Gas. II. The Excitation Spectrum". Physical Review. 130 (4): 1616–1624. Bibcode:1963PhRv..130.1616L. doi:10.1103/PhysRev.130.1616.
  22. ^ Griffiths, Robert B. (3 February 1964). "Magnetization Curve at Zero Temperature for the Antiferromagnetic Heisenberg Linear Chain". Physical Review. 133 (3A): A768–A775. Bibcode:1964PhRv..133..768G. doi:10.1103/PhysRev.133.A768.
  23. ^ Yang, C. N.; Yang, C. P. (7 October 1966). "One-Dimensional Chain of Anisotropic Spin-Spin Interactions. I. Proof of Bethe's Hypothesis for Ground State in a Finite System". Physical Review. 150 (1): 321–327. Bibcode:1966PhRv..150..321Y. doi:10.1103/PhysRev.150.321.
  24. ^ Yang, C. N.; Yang, C. P. (7 October 1966). "One-Dimensional Chain of Anisotropic Spin-Spin Interactions. II. Properties of the Ground-State Energy Per Lattice Site for an Infinite System". Physical Review. 150 (1): 327–339. Bibcode:1966PhRv..150..327Y. doi:10.1103/PhysRev.150.327.
  25. ^ Yang, C. N.; Yang, C. P. (4 November 1966). "One-Dimensional Chain of Anisotropic Spin-Spin Interactions. III. Applications". Physical Review. 151 (1): 258–264. Bibcode:1966PhRv..151..258Y. doi:10.1103/PhysRev.151.258.
  26. ^ Yang, C. N. (4 December 1967). "Some Exact Results for the Many-Body Problem in one Dimension with Repulsive Delta-Function Interaction". Physical Review Letters. 19 (23): 1312–1315. Bibcode:1967PhRvL..19.1312Y. doi:10.1103/PhysRevLett.19.1312.
  27. ^ Lieb, Elliott H.; Wu, F. Y. (17 June 1968). "Absence of Mott Transition in an Exact Solution of the Short-Range, One-Band Model in One Dimension". Physical Review Letters. 20 (25): 1445–1448. Bibcode:1968PhRvL..20.1445L. doi:10.1103/PhysRevLett.20.1445.
  28. ^ Yang, C. N.; Yang, C. P. (July 1969). "Thermodynamics of a One‐Dimensional System of Bosons with Repulsive Delta‐Function Interaction". Journal of Mathematical Physics. 10 (7): 1115–1122. Bibcode:1969JMP....10.1115Y. doi:10.1063/1.1664947.

External links edit

  • Introduction to the Bethe Ansatz


bethe, ansatz, this, article, technical, most, readers, understand, please, help, improve, make, understandable, experts, without, removing, technical, details, february, 2020, learn, when, remove, this, template, message, physics, ansatz, finding, exact, wave. This article may be too technical for most readers to understand Please help improve it to make it understandable to non experts without removing the technical details February 2020 Learn how and when to remove this template message In physics the Bethe ansatz is an ansatz for finding the exact wavefunctions of certain quantum many body models most commonly for one dimensional lattice models It was first used by Hans Bethe in 1931 to find the exact eigenvalues and eigenvectors of the one dimensional antiferromagnetic isotropic XXX Heisenberg model 1 Since then the method has been extended to other spin chains and statistical lattice models Bethe ansatz problems were one of the topics featuring in the To learn section of Richard Feynman s blackboard at the time of his death 2 Contents 1 Discussion 2 Terminology 3 Examples 3 1 Heisenberg antiferromagnetic chain 4 Applicability 5 Chronology 6 References 7 External linksDiscussion editIn the framework of many body quantum mechanics models solvable by the Bethe ansatz can be contrasted with free fermion models One can say that the dynamics of a free model is one body reducible the many body wave function for fermions bosons is the anti symmetrized symmetrized product of one body wave functions Models solvable by the Bethe ansatz are not free the two body sector has a non trivial scattering matrix which in general depends on the momenta On the other hand the dynamics of the models solvable by the Bethe ansatz is two body reducible the many body scattering matrix is a product of two body scattering matrices Many body collisions happen as a sequence of two body collisions and the many body wave function can be represented in a form which contains only elements from two body wave functions The many body scattering matrix is equal to the product of pairwise scattering matrices The generic form of the coordinate Bethe ansatz for a many body wavefunction is PSM j1 jM M a gt b 1sgn ja jb P SM 1 P exp i a 1MkPaja i2 M a gt b 1sgn ja jb ϕ kPa kPb displaystyle Psi M j 1 cdots j M prod M geq a gt b geq 1 text sgn j a j b sum P in mathfrak S M 1 P exp left i sum a 1 M k P a j a frac i 2 sum M geq a gt b geq 1 mathrm sgn j a j b phi k P a k P b right nbsp in which M displaystyle M nbsp is the number of particles ja a 1 M displaystyle j a a 1 cdots M nbsp their position SM displaystyle mathfrak S M nbsp is the set of all permutations of the integers 1 M displaystyle 1 cdots M nbsp 1 P displaystyle 1 P nbsp is the parity of the permutation P displaystyle P nbsp taking values either positive or negative one ka displaystyle k a nbsp is the quasi momentum of the a displaystyle a nbsp th particle ϕ displaystyle phi nbsp is the scattering phase shift function and sgn displaystyle mathrm sgn nbsp is the sign function This form is universal at least for non nested systems with the momentum and scattering functions being model dependent The Yang Baxter equation guarantees consistency of the construction The Pauli exclusion principle is valid for models solvable by the Bethe ansatz even for models of interacting bosons The ground state is a Fermi sphere Periodic boundary conditions lead to the Bethe ansatz equations or simply Bethe equations In logarithmic form the Bethe ansatz equations can be generated by the Yang action The square of the norm of Bethe wave function is equal to the determinant of the Hessian of the Yang action 3 A substantial generalization is the quantum inverse scattering method or algebraic Bethe ansatz which gives an ansatz for the underlying operator algebra that has allowed a wide class of nonlinear evolution equations to be solved 4 The exact solutions of the so called s d model by P B Wiegmann 5 in 1980 and independently by N Andrei 6 also in 1980 and the Anderson model by P B Wiegmann 7 in 1981 and by N Kawakami and A Okiji 8 in 1981 are also both based on the Bethe ansatz There exist multi channel generalizations of these two models also amenable to exact solutions by N Andrei and C Destri 9 and by C J Bolech and N Andrei 10 Recently several models solvable by Bethe ansatz were realized experimentally in solid states and optical lattices An important role in the theoretical description of these experiments was played by Jean Sebastien Caux and Alexei Tsvelik citation needed Terminology editThere are many similar methods which come under the name of Bethe ansatz Algebraic Bethe ansatz 11 The quantum inverse scattering method is the method of solution by algebraic Bethe ansatz and the two are practically synonymous Analytic Bethe ansatz Coordinate Bethe ansatz Hans Bethe 1931 Functional Bethe ansatz 12 13 Nested Bethe ansatz Thermodynamic Bethe ansatz C N Yang amp C P Yang 1969 Examples editHeisenberg antiferromagnetic chain edit The Heisenberg antiferromagnetic chain is defined by the Hamiltonian assuming periodic boundary conditions H J j 1NSj Sj 1 Sj N Sj displaystyle H J sum j 1 N mathbf S j cdot mathbf S j 1 qquad mathbf S j N equiv mathbf S j nbsp This model is solvable using the coordinate Bethe ansatz The scattering phase shift function is ϕ ka la kb lb 82 la lb displaystyle phi k a lambda a k b lambda b theta 2 lambda a lambda b nbsp with 8n l 2arctan 2ln displaystyle theta n lambda equiv 2 arctan frac 2 lambda n nbsp in which the momentum has been conveniently reparametrized as k l p 2arctan 2l displaystyle k lambda pi 2 arctan 2 lambda nbsp in terms of the rapidity l displaystyle lambda nbsp The here periodic boundary conditions impose the Bethe equations la i 2la i 2 N b aMla lb ila lb i a 1 M displaystyle left frac lambda a i 2 lambda a i 2 right N prod b neq a M frac lambda a lambda b i lambda a lambda b i qquad a 1 M nbsp or more conveniently in logarithmic form 81 la 1N b 1M82 la lb 2pIaN displaystyle theta 1 lambda a frac 1 N sum b 1 M theta 2 lambda a lambda b 2 pi frac I a N nbsp where the quantum numbers Ij displaystyle I j nbsp are distinct half odd integers for N M displaystyle N M nbsp even integers for N M displaystyle N M nbsp odd with Ij displaystyle I j nbsp defined mod N displaystyle N nbsp Applicability editThe following systems can be solved using the Bethe ansatz Anderson impurity model Gaudin model XXX and XXZ Heisenberg spin chain for arbitrary spin s displaystyle s nbsp Hubbard model Kondo model Lieb Liniger model Six vertex model and Eight vertex model through Heisenberg spin chain Chronology editThis section is in list format but may read better as prose You can help by converting this section if appropriate Editing help is available February 2020 1928 Werner Heisenberg publishes his model 14 1930 Felix Bloch proposes an oversimplified ansatz which miscounts the number of solutions to the Schrodinger equation for the Heisenberg chain 15 1931 Hans Bethe proposes the correct ansatz and carefully shows that it yields the correct number of eigenfunctions 1 1938 Lamek Hulthen de obtains the exact ground state energy of the Heisenberg model 16 1958 Raymond Lee Orbach uses the Bethe ansatz to solve the Heisenberg model with anisotropic interactions 17 1962 J des Cloizeaux and J J Pearson obtain the correct spectrum of the Heisenberg antiferromagnet spinon dispersion relation 18 showing that it differs from Anderson s spin wave theory predictions 19 the constant prefactor is different 1963 Elliott H Lieb and Werner Liniger provide the exact solution of the 1d d function interacting Bose gas 20 now known as the Lieb Liniger model Lieb studies the spectrum and defines two basic types of excitations 21 1964 Robert B Griffiths obtains the magnetization curve of the Heisenberg model at zero temperature 22 1966 C N Yang and C P Yang rigorously prove that the ground state of the Heisenberg chain is given by the Bethe ansatz 23 They study properties and applications in 24 and 25 1967 C N Yang generalizes Lieb and Liniger s solution of the d function interacting Bose gas to arbitrary permutation symmetry of the wavefunction giving birth to the nested Bethe ansatz 26 1968 Elliott H Lieb and F Y Wu solve the 1d Hubbard model 27 1969 C N Yang and C P Yang obtain the thermodynamics of the Lieb Liniger model 28 providing the basis of the thermodynamic Bethe ansatz TBA References edit a b Bethe H March 1931 Zur Theorie der Metalle I Eigenwerte und Eigenfunktionen der linearen Atomkette Zeitschrift fur Physik 71 3 4 205 226 doi 10 1007 BF01341708 S2CID 124225487 Richard Feynman s blackboard at time of his death Caltech Archives digital archives caltech edu Retrieved 29 July 2023 Korepin Vladimir E 1982 Calculation of norms of Bethe wave functions Communications in Mathematical Physics 86 3 391 418 Bibcode 1982CMaPh 86 391K doi 10 1007 BF01212176 ISSN 0010 3616 S2CID 122250890 Korepin V E Bogoliubov N M Izergin A G 1997 03 06 Quantum Inverse Scattering Method and Correlation Functions Cambridge University Press ISBN 9780521586467 Wiegmann P B 1980 Exact solution of s d exchange model at T 0 PDF JETP Letters 31 7 364 Archived from the original PDF on 2019 05 17 Retrieved 2019 05 17 Andrei N 1980 Diagonalization of the Kondo Hamiltonian Physical Review Letters 45 5 379 382 Bibcode 1980PhRvL 45 379A doi 10 1103 PhysRevLett 45 379 ISSN 0031 9007 Wiegmann P B 1980 Towards an exact solution of the Anderson model Physics Letters A 80 2 3 163 167 Bibcode 1980PhLA 80 163W doi 10 1016 0375 9601 80 90212 1 ISSN 0375 9601 Kawakami Norio Okiji Ayao 1981 Exact expression of the ground state energy for the symmetric anderson model Physics Letters A 86 9 483 486 Bibcode 1981PhLA 86 483K doi 10 1016 0375 9601 81 90663 0 ISSN 0375 9601 Andrei N Destri C 1984 Solution of the Multichannel Kondo Problem Physical Review Letters 52 5 364 367 Bibcode 1984PhRvL 52 364A doi 10 1103 PhysRevLett 52 364 ISSN 0031 9007 Bolech C J Andrei N 2002 Solution of the Two Channel Anderson Impurity Model Implications for the Heavy Fermion UBe13 Physical Review Letters 88 23 237206 arXiv cond mat 0204392 Bibcode 2002PhRvL 88w7206B doi 10 1103 PhysRevLett 88 237206 ISSN 0031 9007 PMID 12059396 S2CID 15180985 Faddeev Ludwig 1992 How Algebraic Bethe Ansatz works for integrable model arXiv hep th 9211111 Sklyanin E K 1985 The quantum Toda chain Non Linear Equations in Classical and Quantum Field Theory Lecture Notes in Physics 226 196 233 Bibcode 1985LNP 226 196S doi 10 1007 3 540 15213 X 80 ISBN 978 3 540 15213 2 Sklyanin E K October 1990 Functional Bethe Ansatz Integrable and Superintegrable Systems 8 33 doi 10 1142 9789812797179 0002 ISBN 978 981 02 0316 0 Heisenberg W September 1928 Zur Theorie des Ferromagnetismus Zeitschrift fur Physik 49 9 10 619 636 Bibcode 1928ZPhy 49 619H doi 10 1007 BF01328601 S2CID 122524239 Bloch F March 1930 Zur Theorie des Ferromagnetismus Zeitschrift fur Physik 61 3 4 206 219 Bibcode 1930ZPhy 61 206B doi 10 1007 BF01339661 S2CID 120459635 Hulthen Lamek 1938 Uber das Austauschproblem eines Kristalles Arkiv Mat Astron Fysik 26A 1 Orbach R 15 October 1958 Linear Antiferromagnetic Chain with Anisotropic Coupling Physical Review 112 2 309 316 Bibcode 1958PhRv 112 309O doi 10 1103 PhysRev 112 309 des Cloizeaux Jacques Pearson J J 1 December 1962 Spin Wave Spectrum of the Antiferromagnetic Linear Chain Physical Review 128 5 2131 2135 Bibcode 1962PhRv 128 2131D doi 10 1103 PhysRev 128 2131 Anderson P W 1 June 1952 An Approximate Quantum Theory of the Antiferromagnetic Ground State Physical Review 86 5 694 701 Bibcode 1952PhRv 86 694A doi 10 1103 PhysRev 86 694 Lieb Elliott H Liniger Werner 15 May 1963 Exact Analysis of an Interacting Bose Gas I The General Solution and the Ground State Physical Review 130 4 1605 1616 Bibcode 1963PhRv 130 1605L doi 10 1103 PhysRev 130 1605 Lieb Elliott H 15 May 1963 Exact Analysis of an Interacting Bose Gas II The Excitation Spectrum Physical Review 130 4 1616 1624 Bibcode 1963PhRv 130 1616L doi 10 1103 PhysRev 130 1616 Griffiths Robert B 3 February 1964 Magnetization Curve at Zero Temperature for the Antiferromagnetic Heisenberg Linear Chain Physical Review 133 3A A768 A775 Bibcode 1964PhRv 133 768G doi 10 1103 PhysRev 133 A768 Yang C N Yang C P 7 October 1966 One Dimensional Chain of Anisotropic Spin Spin Interactions I Proof of Bethe s Hypothesis for Ground State in a Finite System Physical Review 150 1 321 327 Bibcode 1966PhRv 150 321Y doi 10 1103 PhysRev 150 321 Yang C N Yang C P 7 October 1966 One Dimensional Chain of Anisotropic Spin Spin Interactions II Properties of the Ground State Energy Per Lattice Site for an Infinite System Physical Review 150 1 327 339 Bibcode 1966PhRv 150 327Y doi 10 1103 PhysRev 150 327 Yang C N Yang C P 4 November 1966 One Dimensional Chain of Anisotropic Spin Spin Interactions III Applications Physical Review 151 1 258 264 Bibcode 1966PhRv 151 258Y doi 10 1103 PhysRev 151 258 Yang C N 4 December 1967 Some Exact Results for the Many Body Problem in one Dimension with Repulsive Delta Function Interaction Physical Review Letters 19 23 1312 1315 Bibcode 1967PhRvL 19 1312Y doi 10 1103 PhysRevLett 19 1312 Lieb Elliott H Wu F Y 17 June 1968 Absence of Mott Transition in an Exact Solution of the Short Range One Band Model in One Dimension Physical Review Letters 20 25 1445 1448 Bibcode 1968PhRvL 20 1445L doi 10 1103 PhysRevLett 20 1445 Yang C N Yang C P July 1969 Thermodynamics of a One Dimensional System of Bosons with Repulsive Delta Function Interaction Journal of Mathematical Physics 10 7 1115 1122 Bibcode 1969JMP 10 1115Y doi 10 1063 1 1664947 External links editIntroduction to the Bethe Ansatz Retrieved from https en wikipedia org w index php title Bethe ansatz amp oldid 1215535183, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.