fbpx
Wikipedia

Hindu calendar

The Hindu calendar, Panchanga (Sanskrit: पञ्चाङ्ग) or Panjika is one of various lunisolar calendars that are traditionally used in the Indian subcontinent and Southeast Asia, with further regional variations for social and Hindu religious purposes. They adopt a similar underlying concept for timekeeping based on sidereal year for solar cycle and adjustment of lunar cycles in every three years, but differ in their relative emphasis to moon cycle or the sun cycle and the names of months and when they consider the New Year to start.[1] Of the various regional calendars, the most studied and known Hindu calendars are the Shalivahana Shaka (Based on the King Shalivahana, also the Indian national calendar) found in the Deccan region of Southern India and the Vikram Samvat (Bikrami) found in Nepal and the North and Central regions of India – both of which emphasize the lunar cycle. Their new year starts in spring. In regions such as Tamil Nadu and Kerala, the solar cycle is emphasized and this is called the Tamil calendar (though Tamil Calendar uses month names like in Hindu Calendar) and Malayalam calendar and these have origins in the second half of the 1st millennium CE.[1][2] A Hindu calendar is sometimes referred to as Panchangam (पञ्चाङ्गम्), which is also known as Panjika in Eastern India.[3]

A page from the Hindu calendar 1871-72

The ancient Hindu calendar conceptual design is also found in the Hebrew calendar, the Chinese calendar, and the Babylonian calendar, but different from the Gregorian calendar.[4] Unlike the Gregorian calendar which adds additional days to the month to adjust for the mismatch between twelve lunar cycles (354 lunar days)[5] and nearly 365 solar days, the Hindu calendar maintains the integrity of the lunar month, but inserts an extra full month, once every 32–33 months, to ensure that the festivals and crop-related rituals fall in the appropriate season.[4][2]

The Hindu calendars have been in use in the Indian subcontinent since Vedic times, and remain in use by the Hindus all over the world, particularly to set Hindu festival dates. Early Buddhist communities of India adopted the ancient Vedic calendar, later Vikrami calendar and then local Buddhist calendars. Buddhist festivals continue to be scheduled according to a lunar system.[6] The Buddhist calendar and the traditional lunisolar calendars of Cambodia, Laos, Myanmar, Sri Lanka and Thailand are also based on an older version of the Hindu calendar. Similarly, the ancient Jain traditions have followed the same lunisolar system as the Hindu calendar for festivals, texts and inscriptions. However, the Buddhist and Jain timekeeping systems have attempted to use the Buddha and the Mahavira's lifetimes as their reference points.[7][8][9]

The Hindu calendar is also important to the practice of Hindu astrology and zodiac system as well as observing special appearance days of the Lord and fasting days such as Ekadashi.

Origins

Time keeping

[The current year] minus one,
multiplied by twelve,
multiplied by two,
added to the elapsed [half months of current year],
increased by two for every sixty [in the sun],
is the quantity of half-months (syzygies).

— Rigveda Jyotisha-vedanga 4
Translator: Kim Plofker[10]

The Vedic culture developed a sophisticated time keeping methodology and calendars for Vedic rituals,[11] and timekeeping as well as the nature of solar and moon movements are mentioned in Vedic texts.[12] For example, Kaushitaki Brahmana chapter 19.3 mentions the shift in the relative location of the sun towards north for 6 months, and south for 6 months.[13][14]

Time keeping was important to Vedic rituals, and Jyotisha was the Vedic era field of tracking and predicting the movements of astronomical bodies in order to keep time, in order to fix the day and time of these rituals.[15][16][17] This study is one of the six ancient Vedangas, or ancillary science connected with the Vedas – the scriptures of Vedic Sanatan Sanskriti.[15][16]

[18]Yukio Ohashi states that this Vedanga field developed from actual astronomical studies in ancient Vedic Period.[19] The texts of Vedic Jyotisha sciences were translated into the Chinese language in the 2nd and 3rd centuries CE, and the Rigvedic passages on astronomy are found in the works of Zhu Jiangyan and Zhi Qian.[20] According to Subhash Kak, the beginning of the Hindu calendar was much earlier. He cites Greek historians describing Maurya kings referring to a calendar which originated in 6676 BCE known as Saptarsi calendar.[21]

The Vikrami calendar is named after king Vikramaditya and starts in 57 BCE.[22]

Texts

Hindu scholars kept precise time by observing and calculating the cycles of Surya (the sun), moon and the planets. These calculations about the sun appear in various astronomical texts in Sanskrit, such as the 5th-century Aryabhatiya by Aryabhata, the 6th-century Romaka by Latadeva and Panca Siddhantika by Varahamihira, the 7th-century Khandakhadyaka by Brahmagupta and the 8th-century Sisyadhivrddida by Lalla.[23] These texts present Surya and various planets and estimate the characteristics of the respective planetary motion.[23] Other texts such as Surya Siddhanta dated to have been completed sometime between the 5th century and 10th century present their chapters on various deified planets with stories behind them.[23]

The manuscripts of these texts exist in slightly different versions. They present Surya, planet-based calculations and Surya's relative motion to earth. These vary in their data, suggesting that the text were open and revised over their lives.[24][25][26] For example, the 1st millennium CE Hindu scholars calculated the sidereal length of a year as follows, from their astronomical studies, with slightly different results:[27]

Length of year in various Sanskrit texts
Hindu text Estimated length of the sidereal year[27]
Surya Siddhanta 365 days, 6 hours, 12 minutes, 36.56 seconds
Paulica Siddhanta 365 days, 6 hours, 12 minutes, 36 seconds
Paracara Siddhanta 365 days, 6 hours, 12 minutes, 31.50 seconds
Arya Siddhanta 365 days, 6 hours, 12 minutes, 30.84 seconds
Laghu Arya Siddhanta 365 days, 6 hours, 12 minutes, 30 seconds
Siddhanta Shiromani 365 days, 6 hours, 12 minutes, 9 seconds

The Hindu texts used the lunar cycle for setting months and days, but the solar cycle to set the complete year. This system is similar to the Jewish and Babylonian ancient calendars, creating the same challenge of accounting for the mismatch between the nearly 354 lunar days in twelve months, versus over 365 solar days in a year.[4][28] They tracked the solar year by observing the entrance and departure of Surya (sun, at sunrise and sunset) in the constellation formed by stars in the sky, which they divided into 12 intervals of 30 degrees each.[29] Like other ancient human cultures, Hindus innovated a number of systems of which intercalary months became most used, that is adding another month every 32.5 months on average.[28] As their calendar keeping and astronomical observations became more sophisticated, the Hindu calendar became more sophisticated with complex rules and greater accuracy.[28][30][29]

According to Scott Montgomery, the Siddhanta tradition at the foundation of Hindu calendars predate the Christian era, once had 18 texts of which only 5 have survived into the modern era.[28] These texts provide specific information and formulae on motions of sun, moon and planets, to predict their future relative positions, equinoxes, rise and set, with corrections for prograde, retrograde motions, as well as parallax. These ancient scholars attempted to calculate their time to the accuracy of a truti (29.63 microseconds). In their pursuit of accurate tracking of relative movements of celestial bodies for their calendar, they had computed the mean diameter of the earth, which was very close to the actual 12,742 km (7,918 mi).[28][29]

Hindu calendars were refined during the Gupta era astronomy by Āryabhaṭa and Varāhamihira in the 5th to 6th century. These, in turn, were based in the astronomical tradition of Vedāṅga Jyotiṣa, which in the preceding centuries had been standardised in a number of (non-extant) works known as Sūrya Siddhānta. Regional diversification took place in the medieval period. The astronomical foundations were further developed in the medieval period, notably by Bhāskara II (12th century).[citation needed]

Astrology

Later, the term Jyotisha evolved to include Hindu astrology. The astrological application of the Hindu calendar was a field that likely developed in the centuries after the arrival of Greek astrology with Alexander the Great,[19][31][32] because their zodiac signs are nearly identical.[16][33]

The ancient Hindu texts on Jyotisha only discuss timekeeping, and never mention astrology or prophecy.[34] These ancient texts predominantly cover astronomy, but at a rudimentary level.[17] Later medieval era texts such as the Yavana-jataka and the Siddhanta texts are more astrology-related.[35]

Balinese Hindu calendar

Hinduism and Buddhism were the prominent religions of southeast Asia in the 1st millennium CE, prior to the Islamic conquest that started in the 14th century. The Hindus prevailed in Bali, Indonesia, and they have two types of Hindu calendar. One is a 210-day based Pawukon calendar which likely is a pre-Hindu system, and another is similar to lunisolar calendar system found in South India and it is called the Balinese saka calendar which uses Hindu methodology.[36] The names of month and festivals of Balinese Hindus, for the most part, are different, though the significance and legends have some overlap.[36]

Astronomical basis

The Hindu calendar is based on a geocentric model of the solar system. A large part of this calendar is defined based on the movement of the sun and the moon around the earth (saura māna and cāndra māna respectively). Furthermore, it includes synodic, sidereal, and tropical elements. Many variants of the Hindu calendar have been created by including and excluding these elements (solar, lunar, lunisolar etc.) and are in use in different parts of India.

Elements of the Hindu calendar
synodic elements sidereal elements tropical elements
saura māna rāśi, sauramāsa, varṣa uttarāyaṇa, dakṣiṇāyana, devayāna, pitṛyāṇa, ṛtu
cāndra māna tithi, pakṣa, candramāsa, varṣa
nākṣatra māna dina, ghaṭikā (aka nāḍī), vighaṭikā (aka vināḍī), prāṇa (aka asu)
sāvana māna dina

Year: Samvat

Samvat refers to era of the several Hindu calendar systems in Nepal and India, in a similar manner to the Christian era. There are several samvat found in historic Buddhist, Hindu and Jaina texts and epigraphy, of which three are most significant: Vikrama era, Old Shaka era and Shaka era of 78 AD.[37]

 
The Hindu calendar saka samvat system is found in Indonesian inscriptions, such as the Kedukan Bukit inscription (pictured above) dated to 604 Śaka, which is equivalent to 682 CE.[38][39]
  • Vikram Samvat (Bikram Sambat): A northern Indian almanac which started in 57 BCE, and is also called the Vikrama Era. It is related to the Bikrami calendar, and is apocryphally linked to Vikramaditya. The year starts from the month of Baishakh / Vaishakha. This system is common in epigraphic evidence from northern, western, central and eastern Indian subcontinent, particularly after the early centuries of the 1st millennium CE.[37]
  • Shaka Samvat: There are two Shaka era systems in scholarly use, one is called Old Shaka Era, whose epoch is uncertain, probably sometime in the 1st millennium BCE because ancient Buddhist, Jaina and Hindu inscriptions and texts use it. However, the starting point of Old Shaka Era is a subject of dispute among scholars. The second system is called Saka Era of 78 AD, or simply Saka Era, a system that is common in epigraphic evidence from southern India.[37]
  • Saka era of Southeast Asia: The Hindu calendar system in Indonesia is attributed to the legend of Hindus arriving with a sage Aji Saka in 1st-century Java, in March 78 CE.[40][41] Numerous ancient and medieval era texts and inscriptions found in Indonesian islands use this reference year.[42][43] In mainland southeast Asia, the earliest verifiable use of Hindu Saka methodology in inscriptions is marked Saka 533 in Ankor Borei, which corresponds to 611 CE, while the Kedukan Bukit inscription in Sumatra, containing three dates in Saka 604 (682 CE), is the earliest known use of the Shaka era in the Indonesian islands.[43] However, these inscriptions only set the floruit for the use of the Shaka era in these places, and the Hindu calendar likely existed in southeast Asia before these dates to be used in important monuments. Further, the Hindu calendar system remained popular among the Hindus through to the 15th century, and thereafter in Bali.[43]
  • Indian national calendar (modern): combines many Hindu calendars into one official standardized one, but old ones remain in use.[44]

Months

Solar month and seasons

The Hindu calendar divides the zodiac into twelve division called rāśi. The time taken by the Sun to transit through a rāśi is a solar month whose name is identical to the name of the rāśi. In practice, solar months are mostly referred as rāśi (not months).

The solar months are named differently in different regional calendars. While the Malayalam calendar broadly retains the phonetic Sanskrit names, the Bengali and Tamil calendars repurpose the Sanskrit lunar month names (Chaitra, Vaishaka etc.) as follows:

  • The Tamil calendar replaces Mesha, Vrisha etc. with Chithirai, Vaigasi etc.
  • The Bengali calendar is similar to the Tamil calendar except in that it starts the year with Boiśākh (instead of Choitrô), followed by Jyoisthô etc. The Assamese and Odia calendars too are structured the same way.

The solar months (rāśi) along with their equivalent names in the Bangali, Malayalam and Tamil calendar are given below:

Solar month names in different Hindu calendars
# Vikrami
(solar)
Assamese Bengali Malayalam Odia Tamil Tulu Gregorian
1 Mina চ’ত (Söt) চৈত্র (Choitrô) മീനം (Mīnaṃ) ଚୈତ୍ର (Caitra) பங்குனி (Paṅguṉi) Suggi March–April
2 Mēsha ব’হাগ (Böhag) বৈশাখ (Boiśākh) മേടം (Mēḍaṃ) ବୈଶାଖ (Baiśākha) சித்திரை (Śittirai) Paggu April–May
3 Vrisha জেঠ (Zeth) জ্যৈষ্ঠ (Jyoisthô) ഇടവം (Iḍavaṃ) ଜ୍ୟେଷ୍ଠ (Jyēṣṭha) வைகாசி (Vaigāsi) Beshya May–June
4 Mithuna আহাৰ (Ahar) আষাঢ় (Āsādh) മിഥുനം (Mithunaṃ) ଆଷାଢ଼ (Āṣāḍha) ஆனி (Āṉi) Kaarthel June–July
5 Karka শাওণ (Xaün) শ্রাবণ (Śrābôṇ) കർക്കടകം (Karkkaṭakam) ଶ୍ରାବଣ (Śrābaṇa) ஆடி (Āḍi) Aati July–August
6 Singa ভাদ (Bhado) ভাদ্র (Bhādrô) ചിങ്ങം (Ciṅṅaṃ) ଭାଦ୍ରବ (Bhādraba)

or

ଭାଦ୍ର (Bhādra)

ஆவணி (Āvaṇi) Sōna August–September
7 Kanya আহিন (Ahin) আশ্বিন (Āśhshin) കന്നി (Kanni) ଆଶ୍ୱିନ (Āśvina) புரட்டாசி (Puraṭṭāsi) Nirnaal September–October
8 Tula কাতি (Kati) কার্তিক (Kārtik) തുലാം (Tulāṃ) କାର୍ତ୍ତିକ (Kārttika) ஐப்பசி (Aippasi) Bonthel October–November
9 Vrischika আঘোণ (Aghün) অগ্রহায়ণ (Ôgrôhāyôn) വൃശ്ചികം (Vr̥ścikaṃ) ମାର୍ଗଶିର (Mārgaśira) கார்த்திகை (Kārttigai) Jaarde November–December
10 Dhanus পোহ (Puh) পৌষ (Poush) ധനു (Dhanu) ପୌଷ (Pauṣa) மார்கழி (Mārgaḻi) Perarde December–January
11 Makara মাঘ (Magh) মাঘ (Māgh) മകരം (Makaram) ମାଘ (Māgha) தை

(Tai)

Puyinthel January–February
12 Kumbha ফাগুন (Phagun) ফাল্গুন (Phālgun) കുംഭം (Kumbham) ଫାଲ୍‌ଗୁନ (Phālguna)

or

ଫଗୁଣ (Phaguṇa)

மாசி

(Māsi)

Maayi February–March

The solar months (rāśi) along with the approximate correspondence to Hindu seasons and Gregorian months are:[29]

Rāśi Sidereal signs Gregorian
months[30]
Ṛtu
(season)
Ṛtu in Devanagari script Bengali name for Ṛtu Gujarati name for Ṛtu Kannada name for Ṛtu Kashmiri name for Ṛtu Malayalam name for Ṛtu Odia name for Ṛtu Tamil name for Ṛtu Telugu name for Ṛtu Tibetan name for Ṛtu Kalachakra tantra Tibetan-name for Ṛtu
Mīna

Mesh

Mid March–

Mid May

Vasanta

(Spring)

वसन्त বসন্ত (Bôsôntô) વસંત ઋતુ (Vasaṃta r̥tu) ವಸಂತ ಋತು (Vasaṃta Ṛtu) سونٛتھ

[sõ:tʰ]

വസന്തം‌ (Vasaṃtam) ବସନ୍ତ (Basanta) இளவேனில் (ilavenil) వసంత ఋతువు (Vasaṃta Ṛtuvu) དཔྱིད་ར་བ་དང་དཔྱིད་བར་མ (shid rawa, thang, shid warma) དཔྱིད་ཀ (shid ka)
Vṛṣabha

Mithuna

Mid May–

Mid July

Grīṣma

(Summer)

ग्रीष्म গ্রীষ্ম (Grishsho) ગ્રીષ્મ ઋતુ (Grīṣma r̥tu) ಗ್ರೀಷ್ಮ ಋತು (Grīṣma Ṛtu) گرٛێشِم

[greʃim]

ഗ്രീഷ്മം (Grīṣmam) ଗ୍ରୀଷ୍ମ (Grīṣma) முதுவேனில் (mudhuvenil) గ్రీష్మ ఋతువు (Grīṣma Ṛtuvu) དཔྱིད་ཐ་མ་དང་དབྱར་ར་བ། (shid dama, thang, yar rawa) སོ་ག(soga)
Karkaṭa

Siṃha

Mid July–

Mid Sep

Varṣā

(Monsoon)

वर्षा বর্ষা (Bôrsha) વર્ષા ઋતુ (Varṣa r̥tu) ವರ್ಷ ಋತು (Varṣa Ṛtu) ؤہراتھ

[wəhraːtʰ]

വര്‍ഷം‌ (Varṣām) ବର୍ଷା (Barṣā) கார் (kaar) వర్ష ఋతువు (Varṣa Ṛtuvu) དབྱར་བར་མ་དང་དབྱར་ཐ་མ (yarwarma, thang, yardama) དབྱར་ག (yarka)
Kanyā

Tulā

Mid Sep–

Mid Nov

Śarad

(Autumn)

शरद् শরৎ(Shôrôt) શરદ ઋતુ (Śarad r̥tu) ಶರದೃತು (Śaradṛtu) ہَرُد

[harud]

ശരത്‌ (Śarat) ଶରତ (Śarata) குளிர் (kulir) శరదృతువు (Śaradṛtuvu) སྟོན་ར་བ་དང་སྟོན་བར་མ (ston rawa, thang, ston warma) སྟོན་ཁ (stonka)
Vṛścika

Dhanu

Mid Nov–

Mid Jan

Hemanta

(Pre-Winter)

हेमन्त হেমন্ত (Hemôntô) હેમંત ઋતુ (Hēmaṃta r̥tu) ಹೇಮಂತ ಋತು (Hēmaṃta Ṛtu) وَنٛدٕ

[wandɨ]

ഹേമന്തം‌ (Hemantam) ହେମନ୍ତ (Hemanta) முன்பனி (munpani) హేమంత ఋతువు (Hēmaṃta Ṛtuvu) སྟོན་ཐ་མ་དང་དགུན་ར་བ (ston da ma, thang, dgun rawa) དགུན་སྟོད (dgun stod)
Makara

Kumbha

Mid Jan–

Mid March

Śiśira

(Winter)

शिशिर শীত (Śeet) શિશિર ઋતુ (Śiśira r̥tu) ಶಿಶಿರ ಋತು (Śiśira Ṛtu) شِشُر

[ʃiʃur]

ശിശിരം‌ (Śiśiram) ଶୀତ/ଶିଶିର (Śīta/Śiśira) பின்பனி (pinpani) శిశిర ఋతువు (Śiśira Ṛtuvu) དགུན་བར་མ་དང་དགུན་ཐ་མ (dgun warma, thang, dgun dama) དགུན་སྨད (dgun smad)

The names of the solar months are also used in the Darian calendar for the planet Mars.

Lunar months

Lunar months are defined based on lunar cycles, i.e. the regular occurrence of new moon and full moon and the intervening waxing and waning phases of the moon.

Paksha

A lunar month contains two fortnights called pakṣa (पक्ष, literally "side").[2] One fortnight is the bright, waxing half where the moon size grows and it ends in the full moon. This is called "Gaura Paksha" or Shukla Paksha.[45] The other half is the darkening, waning fortnight which ends in the new moon. This is called "Vadhya Paksha" or Krishna Paksha.[2] The Hindu festivals typically are either on or the day after the full moon night or the darkest night (amavasya, अमावास्या), except for some associated with Krishna, Durga or Rama. The lunar months of the hot summer and the busy major cropping-related part of the monsoon season typically do not schedule major festivals.[46]

Amanta and Purnimanta systems

 
Map of regions in India using Hindu solar (orange),Lunar Amanta (blue), and Lunar Purnimanta(red) Calendars

Two traditions have been followed in the Indian subcontinent with respect to lunar months: the amanta tradition, which ends the lunar month on new moon day (similar to the Islamic calendar) and the purnimanta tradition, which ends it on full moon day.[47] As a consequence, in the amanta tradition, Shukla paksha precedes Krishna paksha in every lunar month, whereas in the purnimanta tradition, Krishna paksha precedes Shukla paksha in every lunar month. As a result, a Shukla paksha will always belong to the same month in both traditions, whereas a Krishna paksha will always be associated with different (but succeeding) months in each tradition.

Variations in the naming of lunar months
Krishna Paksha Shukla Paksha Krishna Paksha
Amanta Phalguna Chaitra
Purnimanta Chaitra Vaishaka

The amanta (also known as Amavasyanta or Mukhyamana) tradition is followed by most Indian states that have a peninsular coastline (except Assam, West Bengal, Odisha, Tamil Nadu and Kerala, which use their own solar calendars). These states are Gujarat, Maharashtra, Goa, Karnataka, Andhra Pradesh and Telangana. Nepal and most Indian states north of the Vindhya mountains follow the purnimanta (or Gaunamana) tradition.

The purnimanta tradition was being followed in the Vedic era. It was replaced with the amanta tradition as the Hindu calendar system prior to the 1st century BCE, but the Purnimanta tradition was restored in 57 BCE by Vikramaditya, who wanted to return to the Vedic roots.[47] The presence of this system is one of the factors considered in dating ancient Indian manuscripts and epigraphical evidence that have survived into the modern era.[47][48]

The two traditions of Amanta and Purnimanta systems have led to alternate ways of dating any festival or event that occurs in a Krishna paksha in the historic Hindu, Buddhist or Jain literature, and contemporary regional literature or festival calendars. For example, the Hindu festival of Maha Shivaratri falls on the fourteenth lunar day of Magha's Krishna paksha in the Amanta system, while the same exact day is expressed as the fourteenth lunar day of Phalguna's Krishna paksha in the Purnimanta system.[49] Both lunisolar calendar systems are equivalent ways of referring to the same date, and they continue to be in use in different regions, though the Purnimanta system is now typically assumed as implied in modern Indology literature if not otherwise specified.[30][29]

List of Lunar Months

The names of the Hindu months vary by region. Those Hindu calendars which are based on lunar cycle are generally phonetic variants of each other, while the solar cycle are generally variants of each other too, suggesting that the timekeeping knowledge travelled widely across the Indian subcontinent in ancient times.[1][29]

During each lunar month, the Sun transits into a sign of the zodicac (sankranti). The lunar month in which the Sun transits into Mesha is named Chaitra and designated as the first month of the lunar year.

A few major calendars are summarized below:

Lunar calendar month names in different Hindu calendars[1]
# Vikrami
(lunar)[30]
Sankranti Hindi/
Marathi
Kannada Kashmiri Maithili Meitei (Manipuri) Nepali Punjabi Sindhi Telugu Tulu Tibetan Gregorian
1 Chaitra Mēsha चैत्र ಚೈತ್ರ (Chaitra) ژِتھٕر [t͡sitʰɨr]

or

ژٕتھٕر [t͡sɨtʰɨr]

𑒔𑒻𑒞𑒱 (Chait) ꯂꯝꯇꯥ (Lamta) चैत

(Chait)

ਚੇਤ

(Chēt)

چيٽُ‎ (Chēṭu) చైత్రము

(Chaitramu)

Suggi ནག་པ་ཟླ་བ March–April
2 Vaisākha Vrisha वैशाख ವೈಶಾಖ (Vaisākha) وَہؠکھ [wahʲakʰ]

or

بیساکھ [beːsaːkʰ]

𑒥𑒻𑒮𑒰𑒐 (Baishakh) ꯁꯖꯤꯕꯨ (Sajibu) वैशाख

(Baishākh)

ਵਸਾਖ

(Vasākh)

ويساکُ‎ (Vēsāku)

or

وِهاءُ‎ (Vihāu)

వైశాఖము

(Vaiśākhamu)

Paggu ས་ག་ཟླ་བ April–May
3 Jyeshta Mithuna ज्येष्ठ ಜ್ಯೇಷ್ಠ (Jyeshta) زیٹھ

[zeːʈʰ]

𑒖𑒹𑒚 (Jeth) ꯀꯥꯂꯦꯟ (Kalen) जेठ

(Jēṭh)

ਜੇਠ

(Jēṭh)

ڄيٺُ (Jēṭhu) జ్యేష్ఠము

(Jyēsṭhamu)

Bēsha སྣྲོན་ཟླ་བ May–June
4 Āshāda Karka आषाढ़ / आषाढ ಆಷಾಢ (Āshāda) ہار

[haːr]

𑒁𑒮𑒰𑒜𑓃 (Asadh) ꯏꯉꯥ (Eenga) असार

(Asār)

ਹਾੜ੍ਹ

(Hāṛh)

آکاڙُ‎ (Ākhāṛu)

or

آهاڙُ‎ (Āhāṛu)

ఆషాఢము

(Āṣāḍhamu)

Kārtel ཆུ་སྟོད་ཟླ་བ June–July
5 Shraavana Singa श्रावण ಶ್ರಾವಣ (Shrāvana) شرٛاوُن

[ʃraːwun]

𑒮𑒰𑒍𑒢 (Saon) ꯏꯉꯦꯟ (Eengen) साउन

(Sāun)

ਸਾਓਣ

(Sāoṇ)

سانوَڻُ (Sānvaṇu) శ్రావణము

(Śrāvaṇamu)

Aaṭi གྲོ་བཞིན་ཟླ་བ July–August
6 Bhādra Kanya भाद्र / भाद्रपद ಭಾದ್ರಪದ (Bhādrapada) بٲدٕرپؠتھ [bəːdɨrpʲatʰ]

or

بٲدرؠتھ [bəːdrʲatʰ]

or

بٲدٕر [bəːdɨr]

𑒦𑒰𑒠𑒼 (Bhado) ꯊꯧꯋꯥꯟ (Thouwan) भदौ

(Bhadau)

ਭਾਦੋਂ (Bhādōn)

or

ਭਾਦਰੋਂ (Bhādrōn)

بَڊو‎ (Baḍo)

or

بَڊرو (Baḍro)

భద్రపదము (Bhadrapadamu) Sona ཁྲིམས་སྟོད་ཟླ་བ August–September
7 Ashwina Tula आश्विन ಆಶ್ವಯುಜ (Āswayuja) ٲشِد

[əːʃid]

𑒂𑒮𑒱𑒢 (Aasin) ꯂꯥꯡꯕꯟ (Langban) असोज

(Asoj)

ਅੱਸੂ

(Assū)

اَسُو (Asū) ఆశ్వయుజము (Āśvayujamu) Kanya/Nirnāl ཐ་སྐར་ཟླ་བ September–October
8 Kartika Vrischika कार्तिक ಕಾರ್ತೀಕ (Kārtika) کارتِکھ

[kaːrtikʰ]

𑒏𑒰𑒞𑒱𑒏 (Katik) ꯃꯦꯔꯥ (Mera) कात्तिक

(Kāttik)

ਕੱਤਕ

(Kattak)

ڪَتِي (Katī) కార్తికము (Kārtikamu) Bontel སྨིན་དྲུག་ཟླ་བ October–November
9 Mārgasirsa
(Agrahayana)
Dhanus मार्गशीर्ष ಮಾರ್ಗಶಿರ (Mārgasira) مَنٛجہۆر [mand͡ʒhor]

or

مۄنٛجہِ ہور [mɔnd͡ʒihoːr]

or

مَگَر [magar]

𑒁𑒑𑒯𑒢 (Agahan) ꯍꯤꯌꯥꯡꯀꯩ (Heeyangkei) मंसिर

(Mangsir)

ਮੱਘਰ (Magghar) ناهرِي (Nāhrī)

or

مَنگهِرُ‎ (Manghiru)

మార్గశిరము(Mārgaśiramu) Jārde མགོ་ཟླ་བ November–December
10 Pausha Makara पौष ಪುಷ್ಯ (Pushya) پوہ [poːh]

or

پۄہ [pɔh]

𑒣𑒴𑒮 (Poos) ꯄꯣꯢꯅꯨ (Poinu) पुष

(Puṣ)

ਪੋਹ

(Poh)

پوهُه (Pohu) పుష్యము(Puṣyamu) Perarde རྒྱལ་ཟླ་བ December–January
11 Māgha Kumbha माघ ಮಾಘ (Magha) ماگ

[maːg]

𑒧𑒰𑒒 (Magh) ꯋꯥꯛꯆꯤꯡ (Wakching) माघ

(Magh)

ਮਾਘ

(Māgh)

مانگھُه (Mānghu) మాఘము(Māghamu) Puyintel མཆུ་ཟླ་བ January–February
12 Phālguna Mina फाल्गुण / फाल्गुन ಫಾಲ್ಗುಣ (Phalguna) پھاگُن

[pʰaːgun]

𑒤𑒰𑒑𑒳𑒢 (Fagun) ꯐꯥꯢꯔꯦꯜ (Fairel) फागुन

(Phagun)

ਫੱਗਣ

(Phaggaṇ)

ڦَڳُڻُ (Phaguṇu) ఫాల్గుణము (Phālguṇamu) Māyi དབོ་ཟླ་བ February–March

Corrections between lunar and solar months

The astronomical basis of the Hindu lunar months. Also illustrates Adhika Masa (Year 2-Bhadrapada) repeats; the first time the Sun moves entirely within Simha Rashi thus rendering it an Adhika Masa

Twelve Hindu mas (māsa, lunar month) are equal to approximately 354 days, while the length of a sidereal (solar) year is about 365 days. This creates a difference of about eleven days, which is offset every (29.53/10.63) = 2.71 years, or approximately every 32.5 months.[28] Purushottam Maas or Adhik Maas is an extra month that is inserted to keep the lunar and solar calendars aligned. The twelve months are subdivided into six lunar seasons timed with the agriculture cycles, blooming of natural flowers, fall of leaves, and weather. To account for the mismatch between lunar and solar calendar, the Hindu scholars adopted intercalary months, where a particular month just repeated. The choice of this month was not random, but timed to sync back the two calendars to the cycle of agriculture and nature.[28][29]

The repetition of a month created the problem of scheduling festivals, weddings and other social events without repetition and confusion. This was resolved by declaring one month as Shudha (pure, clean, regular, proper, also called Deva month) and the other Mala or Adhika (extra, unclean and inauspicious, also called Asura masa).[50]

The Hindu mathematicians who calculated the best way to adjust the two years, over long periods of a yuga (era, tables calculating 1000 of years), they determined that the best means to intercalate the months is to time the intercalary months on a 19-year cycle. This intercalation is generally adopted in the 3rd, 5th, 8th, 11th, 14th, 16th and 19th year of this cycle. Further, the complex rules rule out the repetition of Mārgasirsa (also called Agrahayana), Pausha and Maagha lunar months. The historic Hindu texts are not consistent on these rules, with competing ideas flourishing in the Hindu culture.[51]

Rare corrections

The Hindu calendar makes further rare adjustments, over a cycle of centuries, where a certain month is considered kshaya month (dropped). This occurs because of the complexity of the relative lunar, solar and earth movements. Underhill (1991) describes this part of Hindu calendar theory: "when the sun is in perigee, and a lunar month being at its longest, if the new moon immediately precedes a samkranti, then the first of the two lunar months is deleted (called nija or kshaya)." This, for example, happened in the year 1 BCE, when there was no new moon between Makara samkranti and Kumbha samkranti, and the month of Pausha was dropped.[52]

Day

Just like months, the Hindu calendar has two measures of a day, one based on the lunar movement and the other on solar. The solar (saura) day or civil day, called divasa (दिवस), has been what most Hindus traditionally use, is easy and empirical to observe, with or without a clock, and it is defined as the period from one sunrise to another. The lunar day is called tithi (तिथि), and this is based on complicated measures of lunar movement. A lunar day or tithi may, for example, begin in the middle of an afternoon and end next afternoon.[53] Both these days do not directly correspond to a mathematical measure for a day such as equal 24 hours of a solar year, a fact that the Hindu calendar scholars knew, but the system of divasa was convenient for the general population. The tithi have been the basis for timing rituals and festivals, while divasa for everyday use. The Hindu calendars adjust the mismatch in divasa and tithi, using a methodology similar to the solar and lunar months.[54]

A tithi is technically defined in Vedic texts, states John E. Cort, as "the time required by the combined motions of the sun and moon to increase (in a bright fortnight) or decrease (in a dark fortnight) their relative distance by twelve degrees of the zodiac.[55] These motions are measured using a fixed map of celestial zodiac as reference, and given the elliptical orbits, a duration of a tithi varies between 21.5 and 26 hours, states Cort.[55] However, in the Indian tradition, the general population's practice has been to treat a tithi as a solar day between one sunrise to next.[55]

A lunar month has 30 tithi. The technical standard makes each tithi contain different number of hours, but helps the overall integrity of the calendar. Given the variation in the length of a solar day with seasons, and moon's relative movements, the start and end time for tithi varies over the seasons and over the years, and the tithi adjusted to sync with divasa periodically with intercalation.[56]

Weekday/Vāsara

Vāsara refers to the weekdays in Sanskrit.[57] Also referred to as Vara and used as a suffix.[44] The correspondence between the names of the week in Hindu and other Indo-European calendars are exact. This alignment of names probably took place sometime during the 3rd century CE.[58][59] The weekday of a Hindu calendar has been symmetrically divided into 60 ghatika, each ghatika (24 minutes) is divided into 60 pala, each pala (24 seconds) is subdivided into 60 vipala, and so on.[58]

Names of the weekdays in different languages
No. Sanskrit[58][59] Latin weekday Celestial object Assamese Bengali Bhojpuri Gujarati Hindi Kannada Kashmiri Konkani Malayalam Maithili Marathi Meitei
(Manipuri)
Nepali Odia Punjabi
(Hindus and Sikhs)[note 1]
Sindhi Sylheti Tamil Telugu Urdu Balinese Cham
1 Ravivāsara
रविवासर or
Aditya vāsara
आदित्य वासर
Sunday/dies Solis Ravi, Aditya = Sun Dêûbār/Rôbibār
দেওবাৰ/ৰবিবাৰ
Rôbibār
রবিবার
Aitwār
अतवार
Ravivār
રવિવાર
Ravivār
रविवार
Bhānuvāra
ಭಾನುವಾರ
[aːtʰwaːr] آتھوار Āytār
आयतार
Njaayar
ഞായർ
Ravidin
𑒩𑒫𑒱𑒠𑒱𑒢
Ravivāra
रविवार
Nongmaijing
ꯅꯣꯡꯃꯥꯏꯖꯤꯡ
Aaitabar
आइतवार
Rabibāra
ରବିବାର
Aitvār
ਐਤਵਾਰ
Ācharu

آچَرُ

or

Ārtvāru

آرتوارُ‎

Rôibbār

ꠞꠂꠛ꠆ꠛꠣꠞ

Nyayiru
ஞாயிறு
Ādivāraṁ
ఆదివారం
Itvār
اتوار
Redite
ᬋᬤᬶᬢᭂ
Adit
2 Somavāsara
सोमवासर or
Indu vāsara
इन्दु वासर
Monday/dies Lunae Soma (deity), Chandra = Moon Xûmbār
সোমবাৰ
Śombār
সোমবার
Somār
सोमार
Sōmavār
સોમવાર
Somavār
सोमवार
Sōmavāra
ಸೋಮವಾರ
[t͡səndrɨwaːr]
ژٔنٛدرٕوار
Somaar
सोमार
Thinkal
തിങ്കൾ
Somdin
𑒮𑒼𑒧𑒠𑒱𑒢
Somavāra
सोमवार
Ningthoukaba
ꯅꯤꯡꯊꯧꯀꯥꯕ
Sombar
सोमवार
Somabāra
ସୋମବାର
Somavār
ਸੋਮਵਾਰ
Sūmaru

سُومَرُ

Śombār
ꠡꠝ꠆ꠛꠣꠞ
Thingal
திங்கள்
Sōmavāraṁ
సోమవారం
Somvār
سوموار

or

Pīr
پیر

Soma
ᬲᭀᬫ
Thom
3 Maṅgalavāsara
मङ्गलवासर or
Bhaumavāsara
भौम वासर
Tuesday/dies Martis Maṅgala = Mars Môṅôlbār/Môṅgôlbār
মঙলবাৰ/মঙ্গলবাৰ
Môṅgôlbār
মঙ্গলবার
Mangar
मंगर
Maṅgaḷavār
મંગળવાર
Maṅgalavār
मंगलवार
Maṁgaḷavāra
ಮಂಗಳವಾರ
[boːmwaːr]

بوموار

or

[bɔ̃waːr]

بۄنٛوار

Mangaḷār
मंगळार
Chovva
ചൊവ്വ
Maṅgaldin
𑒧𑓀𑒑𑒪𑒠𑒱𑒢
Maṅgaḷavāra
मंगळवार
Leipakpokpa
ꯂꯩꯄꯥꯛꯄꯣꯛꯄ
Mangalbar
मङ्गलवार
Maṅgaḷabāra
ମଙ୍ଗଳବାର
Maṅgalavār
ਮੰਗਲਵਾਰ
Mangalu

مَنگلُ

or

Angāro

اَنڱارو

Môṅgôlbār
ꠝꠋꠉꠟ꠆ꠛꠣꠞ
Chevvai
செவ்வாய்
Maṁgaḷavāraṁ
మంగళవారం
Mangal
منگل
Anggara
ᬳᬂᬕᬭ
Angar
4 Budhavāsara
बुधवासर or
Saumya vāsara
सौम्य वासर
Wednesday/dies Mercurii Budha = Mercury Budhbār
বুধবাৰ
Budhbār
বুধবার
Buddh
बुध
Budhavār
બુધવાર
Budhavāra
बुधवार
Budhavāra
ಬುಧವಾರ
[bɔdwaːr]

بۄدوار

Budhavār
बुधवार
Budhan
ബുധൻ
Budhdin
𑒥𑒳𑒡𑒠𑒱𑒢
Budhavāra
बुधवार
Yumsakeisa
ꯌꯨꯝꯁꯀꯩꯁ
Budhabar
बुधवार
Budhabāra
ବୁଧବାର
Buddhavār
ਬੁੱਧਵਾਰ
Budharu

ٻُڌَرُ

or

Arbā

اَربع

Budbār
ꠛꠥꠗ꠆ꠛꠣꠞ
Budhan
புதன்
Budhavāraṁ
బుధవారం
Budh
بدھ
Buda
ᬩᬸᬤ
But
5 Guruvāsara
गुरुवासर
or
Brhaspati vāsara
बृहस्पतिवासर
Thursday/dies Iovis/Jupiter Deva-Guru Bṛhaspati = Jupiter Brihôspôtibār
বৃহস্পতিবাৰ
Brihôśpôtibār
বৃহস্পতিবার
Bi'phey
बियफे
Guruvār
ગુરુવાર
Guruvār
गुरुवार

or
Brihaspativāra
बृहस्पतिवार

Guruvāra
ಗುರುವಾರ
[braswaːr]

برَٛسوار

or

[brʲaswaːr] برٛؠسوار

Birestār
बिरेस्तार
Vyaazham
വ്യാഴം
Brihaspatidin
𑒥𑒵𑒯𑒮𑓂𑒣𑒞𑒲𑒠𑒱𑒢
Guruvāra
गुरुवार
Sagolsen
ꯁꯒꯣꯜꯁꯦꯟ
Bihibar
बिहीवार
Gurubāra
ଗୁରୁବାର
Vīravār
ਵੀਰਵਾਰ
Vispati

وِسپَتِ‎

or

Khamīsa

خَميِسَ‎

Birôiśôtbār
ꠛꠤꠡꠥꠗꠛꠣꠞ
Vyazhan
வியாழன்
Guruvāraṁ, Br̥haspativāraṁ
గురువారం, బృహస్పతివారం, లక్ష్మీవారం
Gurūvār
گرووار

or

Jume'rāt
جمعرات

Wrespati
ᬯ᭄ᬭᭂᬲ᭄ᬧᬢᬶ
Jip
6 Śukravāsara
शुक्रवासर
Friday/dies Veneris Śukra = Venus Xukurbār/Xukrôbār
শুকুৰবাৰ/শুক্রবাৰ
Śukrôbār
শুক্রবার
Sukkar
सुक्कर
Śukravār
શુક્રવાર
Śukravār
शुक्रवार
Śukravāra
ಶುಕ್ರವಾರ
[ʃokurwaːr]

شۆکُروار

or

[jumaːh]

جُمعہ

Shukrār
शुक्रार
Velli
വെള്ളി
Śukradin
𑒬𑒳𑒏𑓂𑒩𑒠𑒱𑒢
Śukravāra
शुक्रवार
Eerai
ꯏꯔꯥꯢ
Sukrabar
शुक्रवार
Sukrabāra
ଶୁକ୍ରବାର
Śukkaravār
ਸ਼ੁੱਕਰਵਾਰ
Śukru

شُڪرُ

or

Jum'o

جُمعو

Śukkurbār
ꠡꠥꠇ꠆ꠇꠥꠞ꠆ꠛꠣꠞ/ꠎꠥꠝ꠆ꠝꠣꠛꠣꠞ
Velli
வெள்ளி
Śukravāraṁ
శుక్రవారం
Śukarvār
شکروار

or Juma'a
جمع

Sukra
ᬲᬸᬓ᭄ᬭ
Suk
7 Śanivāsara
शनिवासर

Or Śaniścaravāsara शनिश्चरवासर

Saturday/dies Saturnis Śani = Saturn Xônibār
শনিবাৰ
Śônibār
শনিবার
Sanichchar
सनिच्चर
Śanivār
શનિવાર
Śanivār
शनिवार
Śanivāra
ಶನಿವಾರ
[baʈɨwaːr]

بَٹہٕ وار

Shenvār
शेनवार
Shani
ശനി
Śanidin
𑒬𑒢𑒲𑒠𑒱𑒢
Śanivāra
शनिवार
Thangja
ꯊꯥꯡꯖ
Sanibar
शनिवार
Sanibāra
ଶନିବାର
Śanīvār
ਸ਼ਨੀਵਾਰ

or
Śaniccharvār
ਸ਼ਨਿੱਚਰਵਾਰ

or
Saniccharvār
ਸਨਿੱਚਰਵਾਰ

or
Sanīvār
ਸਨੀਵਾਰ

Chancharu

ڇَنڇَرُ‎

or

Śanscharu

شَنسچَرُ

Śônibār
ꠡꠘꠤꠛꠣꠞ
Shani
சனி
Śanivāraṁ
శనివారం
Sanīchar
سنیچر

or Haftah
ہفتہ

Saniscara
ᬲᬦᬶᬲ᭄ᬘᬭ
Thanchar
  1. ^ Punjabi Muslims use Urdu/Arabic words for Friday / Saturday etc.[60]

The term -vāsara is often realised as vāra or vaar in Sanskrit-derived and influenced languages. There are many variations of the names in the regional languages, mostly using alternate names of the celestial bodies involved.

Five limbs of time

The complete Vedic calendars contain five angas or parts of information: lunar day (tithi), solar day (diwas), asterism (naksatra), planetary joining (yoga) and astronomical period (karanam). This structure gives the calendar the name Panchangam.[44] The first two are discussed above.

Yoga

The Sanskrit word Yoga means "union, joining, attachment", but in astronomical context, this word means latitudinal and longitudinal information. The longitude of the sun and the longitude of the moon are added, and normalised to a value ranging between 0° to 360° (if greater than 360, one subtracts 360). This sum is divided into 27 parts. Each part will now equal 800' (where ' is the symbol of the arcminute which means 1/60 of a degree). These parts are called the yogas. They are labelled:

  1. Viṣkambha
  2. Prīti
  3. Āyuśmān
  4. Saubhāgya
  5. Śobhana
  6. Atigaṇḍa
  7. Sukarma
  8. Dhrti
  9. Śūla
  10. Gaṇḍa
  11. Vṛddhi
  12. Dhruva
  13. Vyāghatā
  14. Harṣaṇa
  15. Vajra
  16. Siddhi
  17. Vyatipāta
  18. Variyas
  19. Parigha
  20. Śiva
  21. Siddha
  22. Sādhya
  23. Śubha
  24. Śukla
  25. Brahma
  26. Māhendra
  27. Vaidhṛti

Again, minor variations may exist. The yoga that is active during sunrise of a day is the prevailing yoga for the day.

Karaṇa

A karaṇa is half of a tithi. To be precise, a karaṇa is the time required for the angular distance between the sun and the moon to increase in steps of 6° starting from 0°. (Compare with the definition of a tithi.)

Since the tithis are 30 in number, and since 1 tithi = 2 karaṇas, therefore one would logically expect there to be 60 karaṇas. But there are only 11 such karaṇas which fill up those slots to accommodate for those 30 tithis. There are actually 4 "fixed" (sthira) karaṇas and 7 "repeating" (cara) karaṇas.

The 4 "fixed" karaṇas are:

  1. Śakuni (शकुनि)
  2. Catuṣpāda (चतुष्पाद)
  3. Nāga (नाग)
  4. Kiṃstughna (किंस्तुघ्न)

The 7 "repeating" karaṇas are:[61]

  1. Vava or Bava (बव)
  2. Valava or Bālava (बालव)
  3. Kaulava (कौलव)
  4. Taitila or Taitula (तैतिल)
  5. Gara or Garaja (गरज)
  6. Vaṇija (वणिज)
  7. Viṣṭi (Bhadra) (भद्रा)
  • Now the first half of the 1st tithi (of Śukla Pakṣa) is always Kiṃtughna karaṇa. Hence this karaṇa is "fixed".
  • Next, the 7-repeating karaṇas repeat eight times to cover the next 56 half-tithis. Thus these are the "repeating" (cara) karaṇas.
  • The 3 remaining half-tithis take the remaining "fixed" karaṇas in order. Thus these are also "fixed" (sthira).
  • Thus one gets 60 karaṇas from those 11 preset karaṇas.

The Vedic day begins at sunrise. The karaṇa at sunrise of a particular day shall be the prevailing karaṇa for the whole day. (citation needed )

Nakshatra

Nakshatras are divisions of ecliptic, each 13° 20', starting from 0° Aries.

Festival calendar: Solar and Lunar dates

Many holidays in the Hindu, Buddhist and Jaina traditions are based on the lunar cycles in the lunisolar timekeeping with foundations in the Hindu calendar system. A few holidays, however, are based on the solar cycle, such as the Vaisakhi, Pongal and those associated with Sankranti.[62] The dates of the lunar cycle based festivals vary significantly on the Gregorian calendar and at times by several weeks.The solar cycle based ancient Hindu festivals almost always fall on the same Gregorian date every year and if they vary in an exceptional year, it is by one day.[63]

Regional variants

The Hindu Calendar Reform Committee, appointed in 1952, identified more than thirty well-developed calendars, in use across different parts of India.

Variants include the lunar emphasizing Vikrama, the Shalivahana calendars, as well as the solar emphasizing Tamil calendar and Malayalam calendar. The two calendars most widely used today are the Vikrama calendar, which is in followed in western and northern India and Nepal, the Shalivahana Shaka calendar which is followed in the Deccan region of India (Comprising present day Indian states of Telangana, Andhra Pradesh, Karnataka, Maharashtra, and Goa).[64]

Lunar

Calendars based on lunar cycle (lunar months in solar year, lunar phase for religious dates and new year):

Solar

Calendars based on solar cycle (solar months in solar year, lunar phase for religious dates but new year which falls on solar date – South and Southeast Asian solar New Year):

Other related calendars across India and Asia

See also

References

  1. ^ a b c d B. Richmond (1956). Time Measurement and Calendar Construction. Brill Archive. pp. 80–82. Retrieved 18 September 2011.
  2. ^ a b c d Christopher John Fuller (2004). The Camphor Flame: Popular Hinduism and Society in India. Princeton University Press. pp. 109–110. ISBN 978-0-69112-04-85.
  3. ^ Klaus K. Klostermaier (2007). A Survey of Hinduism: Third Edition. State University of New York Press. p. 490. ISBN 978-0-7914-7082-4.
  4. ^ a b c Eleanor Nesbitt (2016). Sikhism: a Very Short Introduction. Oxford University Press. pp. 122–123. ISBN 978-0-19-874557-0.
  5. ^ Orazio Marucchi (2011). Christian Epigraphy: An Elementary Treatise with a Collection of Ancient Christian Inscriptions Mainly of Roman Origin. Cambridge University Press. p. 289. ISBN 978-0-521-23594-5., Quote: "the lunar year consists of 354 days".
  6. ^ Anita Ganeri (2003). Buddhist Festivals Through the Year. BRB. pp. 11–12. ISBN 978-1-58340-375-4.
  7. ^ Jeffery D Long (2013). Jainism: An Introduction. I.B.Tauris. pp. 6–7. ISBN 978-0-85771-392-6.
  8. ^ John E. Cort (2001). Jains in the World: Religious Values and Ideology in India. Oxford University Press. pp. 142–146. ISBN 978-0-19-513234-2.
  9. ^ Robert E. Buswell Jr.; Donald S. Lopez Jr. (2013). The Princeton Dictionary of Buddhism. Princeton University Press. p. 156. ISBN 978-1-4008-4805-8.
  10. ^ Kim Plofker 2009, p. 36.
  11. ^ Kim Plofker 2009, pp. 10, 35–36, 67.
  12. ^ Yukio Ohashi 1993, pp. 185–251.
  13. ^ Yukio Ohashi 1999, p. 720.
  14. ^ Kim Plofker 2009, pp. 35–42.
  15. ^ a b Monier Monier-Williams (1923). A Sanskrit–English Dictionary. Oxford University Press. p. 353.
  16. ^ a b c James Lochtefeld (2002), "Jyotisha" in The Illustrated Encyclopedia of Hinduism, Vol. 1: A–M, Rosen Publishing, ISBN 0-8239-2287-1, pp. 326–327
  17. ^ a b Friedrich Max Müller (1860). A History of Ancient Sanskrit Literature. Williams and Norgate. pp. 210–215.
  18. ^ Yukio Ohashi 1999, p. 719.
  19. ^ a b Yukio Ohashi 1999, pp. 719–721.
  20. ^ Pingree 1973, p. 2.
  21. ^ Kak, Subhash (2015). "The Mahabharata and the Sindhu-Sarasvati Tradition" (PDF). Sanskrit Magazine. p. 2. Retrieved 22 January 2015.
  22. ^ Eleanor Nesbitt (2016). Sikhism: a Very Short Introduction. Oxford University Press. pp. 122, 142. ISBN 978-0-19-874557-0.
  23. ^ a b c Ebenezer Burgess (1989). P Ganguly, P Sengupta (ed.). Sûrya-Siddhânta: A Text-book of Hindu Astronomy. Motilal Banarsidass (Reprint), Original: Yale University Press, American Oriental Society. pp. vii–xi. ISBN 978-81-208-0612-2.
  24. ^ Lionel D. Barnett (1994). Antiquities of India: An Account of the History and Culture of Ancient Hindustan. Asian Educational Services. pp. 190–192. ISBN 978-81-206-0530-5.
  25. ^ Ebenezer Burgess (1989). P Ganguly, P Sengupta (ed.). Sûrya-Siddhânta: A Text-book of Hindu Astronomy. Motilal Banarsidass (Reprint), Original: Yale University Press, American Oriental Society. pp. ix–xi, xxix. ISBN 978-81-208-0612-2.
  26. ^ J Fleet (1911). "Arbhatiya". Journal of the Royal Asiatic Society of Great Britain and Ireland. Cambridge University Press for the Royal Asiatic Society: 794–799.
  27. ^ a b Ebenezer Burgess (1989). P Ganguly, P Sengupta (ed.). Sûrya-Siddhânta: A Text-book of Hindu Astronomy. Motilal Banarsidass (Reprint), Original: Yale University Press, American Oriental Society. pp. 26–27. ISBN 978-81-208-0612-2.
  28. ^ a b c d e f g Scott L. Montgomery; Alok Kumar (2015). A History of Science in World Cultures: Voices of Knowledge. Routledge. pp. 103–106. ISBN 978-1-317-43906-6.
  29. ^ a b c d e f g Nachum Dershowitz; Edward M. Reingold (2008). Calendrical Calculations. Cambridge University Press. pp. 123–133, 275–311. ISBN 978-0-521-88540-9.
  30. ^ a b c d Christopher John Fuller (2004). The Camphor Flame: Popular Hinduism and Society in India. Princeton University Press. pp. 291–293. ISBN 978-0-69112-04-85.
  31. ^ Pingree 1973, pp. 2–3.
  32. ^ Erik Gregersen (2011). The Britannica Guide to the History of Mathematics. The Rosen Publishing Group. p. 187. ISBN 978-1-61530-127-0.
  33. ^ Nicholas Campion (2012). Astrology and Cosmology in the World's Religions. New York University Press. pp. 110–111. ISBN 978-0-8147-0842-2.
  34. ^ C. K. Raju (2007). Cultural Foundations of Mathematics. Pearson. p. 205. ISBN 978-81-317-0871-2.
  35. ^ Kim Plofker 2009, pp. 116–120, 259–261.
  36. ^ a b Nachum Dershowitz; Edward M. Reingold (2008). Calendrical Calculations. Cambridge University Press. pp. 123–133, 153–161, 275–311. ISBN 978-0-521-88540-9.
  37. ^ a b c Richard Salomon (1998). Indian Epigraphy: A Guide to the Study of Inscriptions in Sanskrit, Prakrit, and the other Indo-Aryan Languages. Oxford University Press. pp. 181–183. ISBN 978-0-19-535666-3.
  38. ^ Colette Caillat; J. G. de Casparis (1991). Middle Indo-Aryan and Jaina Studies. BRILL. p. 36. ISBN 90-04-09426-1.
  39. ^ Andrea Acri (2016). Esoteric Buddhism in Mediaeval Maritime Asia: Networks of Masters, Texts, Icons. ISEAS-Yusof Ishak Institute. pp. 256–258. ISBN 978-981-4695-08-4.
  40. ^ Duncan Graham (2004). The People Next Door: Understanding Indonesia. University of Western Australia Press. pp. 16–17. ISBN 978-1-920694-09-8.
  41. ^ J. Gordon Melton (2011). Religious Celebrations: An Encyclopedia of Holidays, Festivals, Solemn Observances, and Spiritual Commemorations. ABC-CLIO. pp. 652–653. ISBN 978-1-59884-205-0.
  42. ^ M. C. Ricklefs; P. Voorhoeve; Annabel Teh Gallop (2014). Indonesian Manuscripts in Great Britain: A Catalogue of Manuscripts in Indonesian Languages in British Public Collections. Yayasan Pustaka Obor Indonesia. pp. 49, 69–73, 81. ISBN 978-979-461-883-7.
  43. ^ a b c J. G. De Casparis (1978). Indonesian Chronology. BRILL Academic. pp. 15–24. ISBN 90-04-05752-8.
  44. ^ a b c Klaus K. Klostermaier (2007). A Survey of Hinduism: Third Edition. State University of New York Press. pp. 490–492. ISBN 978-0-7914-7082-4.
  45. ^ "What is Shukla Paksha and Krishna Paksha | Phases of Moon". 22 July 2015.
  46. ^ Christopher John Fuller (2004). The Camphor Flame: Popular Hinduism and Society in India. Princeton University Press. pp. 109–110, 291–293. ISBN 978-0-69112-04-85.
  47. ^ a b c V. R. Ramachandra Dikshitar (1993). The Gupta Polity. Motilal Banarsidass. pp. 24–35. ISBN 978-81-208-1024-2.
  48. ^ D. C. Sircar (1965). Indian Epigraphy. Motilal Banarsidass. pp. 304–305 with footnotes. ISBN 978-81-208-1166-9.
  49. ^ "Maha Shivaratri date". drikpanchang.com.{{cite web}}: CS1 maint: url-status (link)
  50. ^ Muriel Marion Underhill (1991). The Hindu Religious Year. Asian Educational Services. pp. 20, 32 note 5. ISBN 978-81-206-0523-7.
  51. ^ Robert Sewell; Śaṅkara Bālakr̥shṇa Dīkshita (1896). The Indian Calendar. S. Sonnenschein. pp. 29–34, 48–56.
  52. ^ Underhill, Muriel Marion (1991). The Hindu Religious Year. Asian Educational Services. pp. 20–21. ISBN 978-81-206-0523-7.
  53. ^ Muriel Marion Underhill (1991). The Hindu Religious Year. Asian Educational Services. pp. 23, 26–27. ISBN 978-81-206-0523-7.
  54. ^ Muriel Marion Underhill (1991). The Hindu Religious Year. Asian Educational Services. pp. 27–28. ISBN 978-81-206-0523-7.
  55. ^ a b c John E. Cort (2001). Jains in the World: Religious Values and Ideology in India. Oxford University Press. p. 228 note 2. ISBN 978-0-19-513234-2.
  56. ^ Muriel Marion Underhill (1991). The Hindu Religious Year. Asian Educational Services. pp. 23–28. ISBN 978-81-206-0523-7.
  57. ^ Monier Monier-Williams, वासर, Sanskrit-English Dictionary, Oxford University Press, page 948
  58. ^ a b c Muriel Marion Underhill (1991). The Hindu Religious Year. Asian Educational Services. pp. 24–25. ISBN 978-81-206-0523-7.
  59. ^ a b Roshen Dalal (2010). Hinduism: An Alphabetical Guide. Penguin Books. p. 89. ISBN 978-0-14-341421-6.
  60. ^ Tej Bhatia (2013). Punjabi. Routledge. pp. 208–209. ISBN 978-1-136-89460-2.
  61. ^ Ebenezer Burgess (1989). Sûrya-Siddhânta: A Text-book of Hindu Astronomy. Motilal Banarsidass. pp. 107–. ISBN 978-81-208-0612-2.
  62. ^ Peter J. Claus; Sarah Diamond; Margaret Ann Mills (2003). South Asian Folklore: An Encyclopedia : Afghanistan, Bangladesh, India, Nepal, Pakistan, Sri Lanka. Taylor & Francis. pp. 91–93. ISBN 978-0-415-93919-5.
  63. ^ Robert Sewell; Śaṅkara Bālakr̥shṇa Dīkshita (1896). The Indian Calendar: With Tables for the Conversion of Hindu and Muhammadan Into A.D. Dates, and Vice Versa. S. Sonnenschein. pp. 9–12.
  64. ^ The Shalivahan Shaka calendar follows the Amant system. The year begins on the first day of the bright fortnight of the month of Chaitra.Muriel Marion Underhill (1921). The Hindu Religious Year. Association Press. p. 15.

Bibliography

  • Kim Plofker (2009). Mathematics in India. Princeton University Press. ISBN 978-0-691-12067-6.
  • Pingree, David (1973). "The Mesopotamian Origin of Early Indian Mathematical Astronomy". Journal for the History of Astronomy. SAGE. 4 (1): 1–12. Bibcode:1973JHA.....4....1P. doi:10.1177/002182867300400102. S2CID 125228353.
  • Pingree, David (1981). Jyotihśāstra : Astral and Mathematical Literature. Otto Harrassowitz. ISBN 978-3447021654.
  • Yukio Ohashi (1999). Johannes Andersen (ed.). Highlights of Astronomy, Volume 11B. Springer Science. ISBN 978-0-7923-5556-4.
  • Yukio Ohashi (1993). "Development of Astronomical Observations in Vedic and post-Vedic India". Indian Journal of History of Science. 28 (3).
  • Maurice Winternitz (1963). History of Indian Literature, Volume 1. Motilal Banarsidass. ISBN 978-81-208-0056-4.

Further reading

External links

  • , Shalivahana Hindu calendar, United Kingdom
  • Hindu Calendar - thedivineindia.com
  • Hindu Calendars Monthly - monthlycalendars.in
  • Hindu Calendar of Nepal The Official Hindu Calendar of Nepal
  • Kyoto University Gregorian – Saka – Vikrami Calendar Converter Tool, M. YANO and M. FUSHIMI

hindu, calendar, panchanga, sanskrit, पञ, panjika, various, lunisolar, calendars, that, traditionally, used, indian, subcontinent, southeast, asia, with, further, regional, variations, social, hindu, religious, purposes, they, adopt, similar, underlying, conce. The Hindu calendar Panchanga Sanskrit पञ च ङ ग or Panjika is one of various lunisolar calendars that are traditionally used in the Indian subcontinent and Southeast Asia with further regional variations for social and Hindu religious purposes They adopt a similar underlying concept for timekeeping based on sidereal year for solar cycle and adjustment of lunar cycles in every three years but differ in their relative emphasis to moon cycle or the sun cycle and the names of months and when they consider the New Year to start 1 Of the various regional calendars the most studied and known Hindu calendars are the Shalivahana Shaka Based on the King Shalivahana also the Indian national calendar found in the Deccan region of Southern India and the Vikram Samvat Bikrami found in Nepal and the North and Central regions of India both of which emphasize the lunar cycle Their new year starts in spring In regions such as Tamil Nadu and Kerala the solar cycle is emphasized and this is called the Tamil calendar though Tamil Calendar uses month names like in Hindu Calendar and Malayalam calendar and these have origins in the second half of the 1st millennium CE 1 2 A Hindu calendar is sometimes referred to as Panchangam पञ च ङ गम which is also known as Panjika in Eastern India 3 A page from the Hindu calendar 1871 72 The ancient Hindu calendar conceptual design is also found in the Hebrew calendar the Chinese calendar and the Babylonian calendar but different from the Gregorian calendar 4 Unlike the Gregorian calendar which adds additional days to the month to adjust for the mismatch between twelve lunar cycles 354 lunar days 5 and nearly 365 solar days the Hindu calendar maintains the integrity of the lunar month but inserts an extra full month once every 32 33 months to ensure that the festivals and crop related rituals fall in the appropriate season 4 2 The Hindu calendars have been in use in the Indian subcontinent since Vedic times and remain in use by the Hindus all over the world particularly to set Hindu festival dates Early Buddhist communities of India adopted the ancient Vedic calendar later Vikrami calendar and then local Buddhist calendars Buddhist festivals continue to be scheduled according to a lunar system 6 The Buddhist calendar and the traditional lunisolar calendars of Cambodia Laos Myanmar Sri Lanka and Thailand are also based on an older version of the Hindu calendar Similarly the ancient Jain traditions have followed the same lunisolar system as the Hindu calendar for festivals texts and inscriptions However the Buddhist and Jain timekeeping systems have attempted to use the Buddha and the Mahavira s lifetimes as their reference points 7 8 9 The Hindu calendar is also important to the practice of Hindu astrology and zodiac system as well as observing special appearance days of the Lord and fasting days such as Ekadashi Contents 1 Origins 2 Texts 2 1 Astrology 2 2 Balinese Hindu calendar 3 Astronomical basis 4 Year Samvat 5 Months 5 1 Solar month and seasons 5 2 Lunar months 5 2 1 Paksha 5 2 2 Amanta and Purnimanta systems 5 2 3 List of Lunar Months 5 3 Corrections between lunar and solar months 5 3 1 Rare corrections 6 Day 6 1 Weekday Vasara 6 2 Five limbs of time 6 2 1 Yoga 6 2 2 Karaṇa 6 2 3 Nakshatra 7 Festival calendar Solar and Lunar dates 8 Regional variants 8 1 Lunar 8 2 Solar 8 3 Other related calendars across India and Asia 9 See also 10 References 10 1 Bibliography 11 Further reading 12 External linksOrigins EditTime keeping The current year minus one multiplied by twelve multiplied by two added to the elapsed half months of current year increased by two for every sixty in the sun is the quantity of half months syzygies Rigveda Jyotisha vedanga 4Translator Kim Plofker 10 The Vedic culture developed a sophisticated time keeping methodology and calendars for Vedic rituals 11 and timekeeping as well as the nature of solar and moon movements are mentioned in Vedic texts 12 For example Kaushitaki Brahmana chapter 19 3 mentions the shift in the relative location of the sun towards north for 6 months and south for 6 months 13 14 Time keeping was important to Vedic rituals and Jyotisha was the Vedic era field of tracking and predicting the movements of astronomical bodies in order to keep time in order to fix the day and time of these rituals 15 16 17 This study is one of the six ancient Vedangas or ancillary science connected with the Vedas the scriptures of Vedic Sanatan Sanskriti 15 16 18 Yukio Ohashi states that this Vedanga field developed from actual astronomical studies in ancient Vedic Period 19 The texts of Vedic Jyotisha sciences were translated into the Chinese language in the 2nd and 3rd centuries CE and the Rigvedic passages on astronomy are found in the works of Zhu Jiangyan and Zhi Qian 20 According to Subhash Kak the beginning of the Hindu calendar was much earlier He cites Greek historians describing Maurya kings referring to a calendar which originated in 6676 BCE known as Saptarsi calendar 21 The Vikrami calendar is named after king Vikramaditya and starts in 57 BCE 22 Texts EditHindu scholars kept precise time by observing and calculating the cycles of Surya the sun moon and the planets These calculations about the sun appear in various astronomical texts in Sanskrit such as the 5th century Aryabhatiya by Aryabhata the 6th century Romaka by Latadeva and Panca Siddhantika by Varahamihira the 7th century Khandakhadyaka by Brahmagupta and the 8th century Sisyadhivrddida by Lalla 23 These texts present Surya and various planets and estimate the characteristics of the respective planetary motion 23 Other texts such as Surya Siddhanta dated to have been completed sometime between the 5th century and 10th century present their chapters on various deified planets with stories behind them 23 The manuscripts of these texts exist in slightly different versions They present Surya planet based calculations and Surya s relative motion to earth These vary in their data suggesting that the text were open and revised over their lives 24 25 26 For example the 1st millennium CE Hindu scholars calculated the sidereal length of a year as follows from their astronomical studies with slightly different results 27 Length of year in various Sanskrit texts Hindu text Estimated length of the sidereal year 27 Surya Siddhanta 365 days 6 hours 12 minutes 36 56 secondsPaulica Siddhanta 365 days 6 hours 12 minutes 36 secondsParacara Siddhanta 365 days 6 hours 12 minutes 31 50 secondsArya Siddhanta 365 days 6 hours 12 minutes 30 84 secondsLaghu Arya Siddhanta 365 days 6 hours 12 minutes 30 secondsSiddhanta Shiromani 365 days 6 hours 12 minutes 9 secondsThe Hindu texts used the lunar cycle for setting months and days but the solar cycle to set the complete year This system is similar to the Jewish and Babylonian ancient calendars creating the same challenge of accounting for the mismatch between the nearly 354 lunar days in twelve months versus over 365 solar days in a year 4 28 They tracked the solar year by observing the entrance and departure of Surya sun at sunrise and sunset in the constellation formed by stars in the sky which they divided into 12 intervals of 30 degrees each 29 Like other ancient human cultures Hindus innovated a number of systems of which intercalary months became most used that is adding another month every 32 5 months on average 28 As their calendar keeping and astronomical observations became more sophisticated the Hindu calendar became more sophisticated with complex rules and greater accuracy 28 30 29 According to Scott Montgomery the Siddhanta tradition at the foundation of Hindu calendars predate the Christian era once had 18 texts of which only 5 have survived into the modern era 28 These texts provide specific information and formulae on motions of sun moon and planets to predict their future relative positions equinoxes rise and set with corrections for prograde retrograde motions as well as parallax These ancient scholars attempted to calculate their time to the accuracy of a truti 29 63 microseconds In their pursuit of accurate tracking of relative movements of celestial bodies for their calendar they had computed the mean diameter of the earth which was very close to the actual 12 742 km 7 918 mi 28 29 Hindu calendars were refined during the Gupta era astronomy by Aryabhaṭa and Varahamihira in the 5th to 6th century These in turn were based in the astronomical tradition of Vedaṅga Jyotiṣa which in the preceding centuries had been standardised in a number of non extant works known as Surya Siddhanta Regional diversification took place in the medieval period The astronomical foundations were further developed in the medieval period notably by Bhaskara II 12th century citation needed Astrology Edit Later the term Jyotisha evolved to include Hindu astrology The astrological application of the Hindu calendar was a field that likely developed in the centuries after the arrival of Greek astrology with Alexander the Great 19 31 32 because their zodiac signs are nearly identical 16 33 The ancient Hindu texts on Jyotisha only discuss timekeeping and never mention astrology or prophecy 34 These ancient texts predominantly cover astronomy but at a rudimentary level 17 Later medieval era texts such as the Yavana jataka and the Siddhanta texts are more astrology related 35 Balinese Hindu calendar Edit Hinduism and Buddhism were the prominent religions of southeast Asia in the 1st millennium CE prior to the Islamic conquest that started in the 14th century The Hindus prevailed in Bali Indonesia and they have two types of Hindu calendar One is a 210 day based Pawukon calendar which likely is a pre Hindu system and another is similar to lunisolar calendar system found in South India and it is called the Balinese saka calendar which uses Hindu methodology 36 The names of month and festivals of Balinese Hindus for the most part are different though the significance and legends have some overlap 36 Astronomical basis EditMain article Astronomical basis of the Hindu calendar The Hindu calendar is based on a geocentric model of the solar system A large part of this calendar is defined based on the movement of the sun and the moon around the earth saura mana and candra mana respectively Furthermore it includes synodic sidereal and tropical elements Many variants of the Hindu calendar have been created by including and excluding these elements solar lunar lunisolar etc and are in use in different parts of India Elements of the Hindu calendar synodic elements sidereal elements tropical elementssaura mana rasi sauramasa varṣa uttarayaṇa dakṣiṇayana devayana pitṛyaṇa ṛtucandra mana tithi pakṣa candramasa varṣanakṣatra mana dina ghaṭika aka naḍi vighaṭika aka vinaḍi praṇa aka asu savana mana dinaYear Samvat EditSamvat refers to era of the several Hindu calendar systems in Nepal and India in a similar manner to the Christian era There are several samvat found in historic Buddhist Hindu and Jaina texts and epigraphy of which three are most significant Vikrama era Old Shaka era and Shaka era of 78 AD 37 The Hindu calendar saka samvat system is found in Indonesian inscriptions such as the Kedukan Bukit inscription pictured above dated to 604 Saka which is equivalent to 682 CE 38 39 Vikram Samvat Bikram Sambat A northern Indian almanac which started in 57 BCE and is also called the Vikrama Era It is related to the Bikrami calendar and is apocryphally linked to Vikramaditya The year starts from the month of Baishakh Vaishakha This system is common in epigraphic evidence from northern western central and eastern Indian subcontinent particularly after the early centuries of the 1st millennium CE 37 Shaka Samvat There are two Shaka era systems in scholarly use one is called Old Shaka Era whose epoch is uncertain probably sometime in the 1st millennium BCE because ancient Buddhist Jaina and Hindu inscriptions and texts use it However the starting point of Old Shaka Era is a subject of dispute among scholars The second system is called Saka Era of 78 AD or simply Saka Era a system that is common in epigraphic evidence from southern India 37 Saka era of Southeast Asia The Hindu calendar system in Indonesia is attributed to the legend of Hindus arriving with a sage Aji Saka in 1st century Java in March 78 CE 40 41 Numerous ancient and medieval era texts and inscriptions found in Indonesian islands use this reference year 42 43 In mainland southeast Asia the earliest verifiable use of Hindu Saka methodology in inscriptions is marked Saka 533 in Ankor Borei which corresponds to 611 CE while the Kedukan Bukit inscription in Sumatra containing three dates in Saka 604 682 CE is the earliest known use of the Shaka era in the Indonesian islands 43 However these inscriptions only set the floruit for the use of the Shaka era in these places and the Hindu calendar likely existed in southeast Asia before these dates to be used in important monuments Further the Hindu calendar system remained popular among the Hindus through to the 15th century and thereafter in Bali 43 Indian national calendar modern combines many Hindu calendars into one official standardized one but old ones remain in use 44 Months EditSolar month and seasons Edit See also Astronomical basis of the Hindu calendar sauramana The Hindu calendar divides the zodiac into twelve division called rasi The time taken by the Sun to transit through a rasi is a solar month whose name is identical to the name of the rasi In practice solar months are mostly referred as rasi not months The solar months are named differently in different regional calendars While the Malayalam calendar broadly retains the phonetic Sanskrit names the Bengali and Tamil calendars repurpose the Sanskrit lunar month names Chaitra Vaishaka etc as follows The Tamil calendar replaces Mesha Vrisha etc with Chithirai Vaigasi etc The Bengali calendar is similar to the Tamil calendar except in that it starts the year with Boisakh instead of Choitro followed by Jyoistho etc The Assamese and Odia calendars too are structured the same way The solar months rasi along with their equivalent names in the Bangali Malayalam and Tamil calendar are given below Solar month names in different Hindu calendars Vikrami solar Assamese Bengali Malayalam Odia Tamil Tulu Gregorian1 Mina চ ত Sot চ ত র Choitro മ ന Minaṃ ଚ ତ ର Caitra பங க ன Paṅguṉi Suggi March April2 Mesha ব হ গ Bohag ব শ খ Boisakh മ ട Meḍaṃ ବ ଶ ଖ Baisakha ச த த ர Sittirai Paggu April May3 Vrisha জ ঠ Zeth জ য ষ ঠ Jyoistho ഇടവ Iḍavaṃ ଜ ୟ ଷ ଠ Jyeṣṭha வ க ச Vaigasi Beshya May June4 Mithuna আহ ৰ Ahar আষ ঢ Asadh മ ഥ ന Mithunaṃ ଆଷ ଢ Aṣaḍha ஆன Aṉi Kaarthel June July5 Karka শ ওণ Xaun শ র বণ Sraboṇ കർക കടക Karkkaṭakam ଶ ର ବଣ Srabaṇa ஆட Aḍi Aati July August6 Singa ভ দ Bhado ভ দ র Bhadro ച ങ ങ Ciṅṅaṃ ଭ ଦ ରବ Bhadraba orଭ ଦ ର Bhadra ஆவண Avaṇi Sōna August September7 Kanya আহ ন Ahin আশ ব ন Ashshin കന ന Kanni ଆଶ ୱ ନ Asvina ப ரட ட ச Puraṭṭasi Nirnaal September October8 Tula ক ত Kati ক র ত ক Kartik ത ല Tulaṃ କ ର ତ ତ କ Karttika ஐப பச Aippasi Bonthel October November9 Vrischika আঘ ণ Aghun অগ রহ য ণ Ogrohayon വ ശ ച ക Vr scikaṃ ମ ର ଗଶ ର Margasira க ர த த க Karttigai Jaarde November December10 Dhanus প হ Puh প ষ Poush ധന Dhanu ପ ଷ Pauṣa ம ர கழ Margaḻi Perarde December January11 Makara ম ঘ Magh ম ঘ Magh മകര Makaram ମ ଘ Magha த Tai Puyinthel January February12 Kumbha ফ গ ন Phagun ফ ল গ ন Phalgun ക ഭ Kumbham ଫ ଲ ଗ ନ Phalguna orଫଗ ଣ Phaguṇa ம ச Masi Maayi February March The solar months rasi along with the approximate correspondence to Hindu seasons and Gregorian months are 29 Rasi Sidereal signs Gregorianmonths 30 Ṛtu season Ṛtu in Devanagari script Bengali name for Ṛtu Gujarati name for Ṛtu Kannada name for Ṛtu Kashmiri name for Ṛtu Malayalam name for Ṛtu Odia name for Ṛtu Tamil name for Ṛtu Telugu name for Ṛtu Tibetan name for Ṛtu Kalachakra tantra Tibetan name for ṚtuMina Mesh Mid March Mid May Vasanta Spring वसन त বসন ত Bosonto વસ ત ઋત Vasaṃta r tu ವಸ ತ ಋತ Vasaṃta Ṛtu سون تھ so tʰ വസന ത Vasaṃtam ବସନ ତ Basanta இளவ ன ல ilavenil వస త ఋత వ Vasaṃta Ṛtuvu དཔ ད ར བ དང དཔ ད བར མ shid rawa thang shid warma དཔ ད ཀ shid ka Vṛṣabha Mithuna Mid May Mid July Griṣma Summer ग र ष म গ র ষ ম Grishsho ગ ર ષ મ ઋત Griṣma r tu ಗ ರ ಷ ಮ ಋತ Griṣma Ṛtu گر ێش م greʃim ഗ ര ഷ മ Griṣmam ଗ ର ଷ ମ Griṣma ம த வ ன ல mudhuvenil గ ర ష మ ఋత వ Griṣma Ṛtuvu དཔ ད ཐ མ དང དབ ར ར བ shid dama thang yar rawa ས ག soga Karkaṭa Siṃha Mid July Mid Sep Varṣa Monsoon वर ष বর ষ Borsha વર ષ ઋત Varṣa r tu ವರ ಷ ಋತ Varṣa Ṛtu ؤہراتھ wehraːtʰ വര ഷ Varṣam ବର ଷ Barṣa க ர kaar వర ష ఋత వ Varṣa Ṛtuvu དབ ར བར མ དང དབ ར ཐ མ yarwarma thang yardama དབ ར ག yarka Kanya Tula Mid Sep Mid Nov Sarad Autumn शरद শরৎ Shorot શરદ ઋત Sarad r tu ಶರದ ತ Saradṛtu ہ ر د harud ശരത Sarat ଶରତ Sarata க ள ர kulir శరద త వ Saradṛtuvu ས ན ར བ དང ས ན བར མ ston rawa thang ston warma ས ན ཁ stonka Vṛscika Dhanu Mid Nov Mid Jan Hemanta Pre Winter ह मन त হ মন ত Hemonto હ મ ત ઋત Hemaṃta r tu ಹ ಮ ತ ಋತ Hemaṃta Ṛtu و ن د wandɨ ഹ മന ത Hemantam ହ ମନ ତ Hemanta ம ன பன munpani హ మ త ఋత వ Hemaṃta Ṛtuvu ས ན ཐ མ དང དག ན ར བ ston da ma thang dgun rawa དག ན ས ད dgun stod Makara Kumbha Mid Jan Mid March Sisira Winter श श र শ ত Seet શ શ ર ઋત Sisira r tu ಶ ಶ ರ ಋತ Sisira Ṛtu ش ش ر ʃiʃur ശ ശ ര Sisiram ଶ ତ ଶ ଶ ର Sita Sisira ப ன பன pinpani శ శ ర ఋత వ Sisira Ṛtuvu དག ན བར མ དང དག ན ཐ མ dgun warma thang dgun dama དག ན ས ད dgun smad The names of the solar months are also used in the Darian calendar for the planet Mars Lunar months Edit See also Astronomical basis of the Hindu calendar chandramana Lunar months are defined based on lunar cycles i e the regular occurrence of new moon and full moon and the intervening waxing and waning phases of the moon Paksha Edit See also Astronomical basis of the Hindu calendar paksha A lunar month contains two fortnights called pakṣa पक ष literally side 2 One fortnight is the bright waxing half where the moon size grows and it ends in the full moon This is called Gaura Paksha or Shukla Paksha 45 The other half is the darkening waning fortnight which ends in the new moon This is called Vadhya Paksha or Krishna Paksha 2 The Hindu festivals typically are either on or the day after the full moon night or the darkest night amavasya अम व स य except for some associated with Krishna Durga or Rama The lunar months of the hot summer and the busy major cropping related part of the monsoon season typically do not schedule major festivals 46 Amanta and Purnimanta systems Edit Map of regions in India using Hindu solar orange Lunar Amanta blue and Lunar Purnimanta red Calendars See also Astronomical basis of the Hindu calendar chandramana Two traditions have been followed in the Indian subcontinent with respect to lunar months the amanta tradition which ends the lunar month on new moon day similar to the Islamic calendar and the purnimanta tradition which ends it on full moon day 47 As a consequence in the amanta tradition Shukla paksha precedes Krishna paksha in every lunar month whereas in the purnimanta tradition Krishna paksha precedes Shukla paksha in every lunar month As a result a Shukla paksha will always belong to the same month in both traditions whereas a Krishna paksha will always be associated with different but succeeding months in each tradition Variations in the naming of lunar months Krishna Paksha Shukla Paksha Krishna PakshaAmanta Phalguna ChaitraPurnimanta Chaitra VaishakaThe amanta also known as Amavasyanta or Mukhyamana tradition is followed by most Indian states that have a peninsular coastline except Assam West Bengal Odisha Tamil Nadu and Kerala which use their own solar calendars These states are Gujarat Maharashtra Goa Karnataka Andhra Pradesh and Telangana Nepal and most Indian states north of the Vindhya mountains follow the purnimanta or Gaunamana tradition The purnimanta tradition was being followed in the Vedic era It was replaced with the amanta tradition as the Hindu calendar system prior to the 1st century BCE but the Purnimanta tradition was restored in 57 BCE by Vikramaditya who wanted to return to the Vedic roots 47 The presence of this system is one of the factors considered in dating ancient Indian manuscripts and epigraphical evidence that have survived into the modern era 47 48 The two traditions of Amanta and Purnimanta systems have led to alternate ways of dating any festival or event that occurs in a Krishna paksha in the historic Hindu Buddhist or Jain literature and contemporary regional literature or festival calendars For example the Hindu festival of Maha Shivaratri falls on the fourteenth lunar day of Magha s Krishna paksha in the Amanta system while the same exact day is expressed as the fourteenth lunar day of Phalguna s Krishna paksha in the Purnimanta system 49 Both lunisolar calendar systems are equivalent ways of referring to the same date and they continue to be in use in different regions though the Purnimanta system is now typically assumed as implied in modern Indology literature if not otherwise specified 30 29 List of Lunar Months Edit The names of the Hindu months vary by region Those Hindu calendars which are based on lunar cycle are generally phonetic variants of each other while the solar cycle are generally variants of each other too suggesting that the timekeeping knowledge travelled widely across the Indian subcontinent in ancient times 1 29 During each lunar month the Sun transits into a sign of the zodicac sankranti The lunar month in which the Sun transits into Mesha is named Chaitra and designated as the first month of the lunar year A few major calendars are summarized below Lunar calendar month names in different Hindu calendars 1 Vikrami lunar 30 Sankranti Hindi Marathi Kannada Kashmiri Maithili Meitei Manipuri Nepali Punjabi Sindhi Telugu Tulu Tibetan Gregorian1 Chaitra Mesha च त र ಚ ತ ರ Chaitra ژ تھ ر t sitʰɨr orژ تھ ر t sɨtʰɨr 𑒔 𑒞 Chait ꯂꯝꯇ Lamta च त Chait ਚ ਤ Chet چيٽ Cheṭu చ త రమ Chaitramu Suggi ནག པ ཟ བ March April2 Vaisakha Vrisha व श ख ವ ಶ ಖ Vaisakha و ہؠکھ wahʲakʰ orبیساکھ beːsaːkʰ 𑒥 𑒮 𑒐 Baishakh ꯁꯖ ꯕ Sajibu व श ख Baishakh ਵਸ ਖ Vasakh ويساک Vesaku orو هاء Vihau వ శ ఖమ Vaisakhamu Paggu ས ག ཟ བ April May3 Jyeshta Mithuna ज य ष ठ ಜ ಯ ಷ ಠ Jyeshta زیٹھ zeːʈʰ 𑒖 𑒚 Jeth ꯀ ꯂ ꯟ Kalen ज ठ Jeṭh ਜ ਠ Jeṭh ڄيٺ Jeṭhu జ య ష ఠమ Jyesṭhamu Besha ས ན ཟ བ May June4 Ashada Karka आष ढ आष ढ ಆಷ ಢ Ashada ہار haːr 𑒁𑒮 𑒜 Asadh ꯏꯉ Eenga अस र Asar ਹ ੜ ਹ Haṛh آکاڙ Akhaṛu orآهاڙ Ahaṛu ఆష ఢమ Aṣaḍhamu Kartel ཆ ས ད ཟ བ June July5 Shraavana Singa श र वण ಶ ರ ವಣ Shravana شر او ن ʃraːwun 𑒮 𑒍𑒢 Saon ꯏꯉ ꯟ Eengen स उन Saun ਸ ਓਣ Saoṇ سانو ڻ Sanvaṇu శ ర వణమ Sravaṇamu Aaṭi ག བཞ ན ཟ བ July August6 Bhadra Kanya भ द र भ द रपद ಭ ದ ರಪದ Bhadrapada بٲد رپؠتھ beːdɨrpʲatʰ orبٲدرؠتھ beːdrʲatʰ orبٲد ر beːdɨr 𑒦 𑒠 Bhado ꯊ ꯋ ꯟ Thouwan भद Bhadau ਭ ਦ Bhadōn orਭ ਦਰ Bhadrōn ب ڊو Baḍo orب ڊرو Baḍro భద రపదమ Bhadrapadamu Sona ཁ མས ས ད ཟ བ August September7 Ashwina Tula आश व न ಆಶ ವಯ ಜ Aswayuja ٲش د eːʃid 𑒂𑒮 𑒢 Aasin ꯂ ꯡꯕꯟ Langban अस ज Asoj ਅ ਸ Assu ا س و Asu ఆశ వయ జమ Asvayujamu Kanya Nirnal ཐ ས ར ཟ བ September October8 Kartika Vrischika क र त क ಕ ರ ತ ಕ Kartika کارت کھ kaːrtikʰ 𑒏 𑒞 𑒏 Katik ꯃ ꯔ Mera क त त क Kattik ਕ ਤਕ Kattak ڪ ت ي Kati క ర త కమ Kartikamu Bontel ས ན ད ག ཟ བ October November9 Margasirsa Agrahayana Dhanus म र गश र ष ಮ ರ ಗಶ ರ Margasira م ن جہۆر mand ʒhor orمۄن جہ ہور mɔnd ʒihoːr orم گ ر magar 𑒁𑒑𑒯𑒢 Agahan ꯍ ꯌ ꯡꯀ Heeyangkei म स र Mangsir ਮ ਘਰ Magghar ناهر ي Nahri orم نگه ر Manghiru మ ర గశ రమ Margasiramu Jarde མག ཟ བ November December10 Pausha Makara प ष ಪ ಷ ಯ Pushya پوہ poːh orپۄہ pɔh 𑒣 𑒮 Poos ꯄ ꯢꯅ Poinu प ष Puṣ ਪ ਹ Poh پوه ه Pohu ప ష యమ Puṣyamu Perarde ར ལ ཟ བ December January11 Magha Kumbha म घ ಮ ಘ Magha ماگ maːg 𑒧 𑒒 Magh ꯋ ꯛꯆ ꯡ Wakching म घ Magh ਮ ਘ Magh مانگھ ه Manghu మ ఘమ Maghamu Puyintel མཆ ཟ བ January February12 Phalguna Mina फ ल ग ण फ ल ग न ಫ ಲ ಗ ಣ Phalguna پھاگ ن pʰaːgun 𑒤 𑒑 𑒢 Fagun ꯐ ꯢꯔ ꯜ Fairel फ ग न Phagun ਫ ਗਣ Phaggaṇ ڦ ڳ ڻ Phaguṇu ఫ ల గ ణమ Phalguṇamu Mayi དབ ཟ བ February March Corrections between lunar and solar months Edit See also Astronomical basis of the Hindu calendar adhikamasa source source source source source source source source source source The astronomical basis of the Hindu lunar months Also illustrates Adhika Masa Year 2 Bhadrapada repeats the first time the Sun moves entirely within Simha Rashi thus rendering it an Adhika Masa Twelve Hindu mas masa lunar month are equal to approximately 354 days while the length of a sidereal solar year is about 365 days This creates a difference of about eleven days which is offset every 29 53 10 63 2 71 years or approximately every 32 5 months 28 Purushottam Maas or Adhik Maas is an extra month that is inserted to keep the lunar and solar calendars aligned The twelve months are subdivided into six lunar seasons timed with the agriculture cycles blooming of natural flowers fall of leaves and weather To account for the mismatch between lunar and solar calendar the Hindu scholars adopted intercalary months where a particular month just repeated The choice of this month was not random but timed to sync back the two calendars to the cycle of agriculture and nature 28 29 The repetition of a month created the problem of scheduling festivals weddings and other social events without repetition and confusion This was resolved by declaring one month as Shudha pure clean regular proper also called Deva month and the other Mala or Adhika extra unclean and inauspicious also called Asura masa 50 The Hindu mathematicians who calculated the best way to adjust the two years over long periods of a yuga era tables calculating 1000 of years they determined that the best means to intercalate the months is to time the intercalary months on a 19 year cycle This intercalation is generally adopted in the 3rd 5th 8th 11th 14th 16th and 19th year of this cycle Further the complex rules rule out the repetition of Margasirsa also called Agrahayana Pausha and Maagha lunar months The historic Hindu texts are not consistent on these rules with competing ideas flourishing in the Hindu culture 51 Rare corrections Edit The Hindu calendar makes further rare adjustments over a cycle of centuries where a certain month is considered kshaya month dropped This occurs because of the complexity of the relative lunar solar and earth movements Underhill 1991 describes this part of Hindu calendar theory when the sun is in perigee and a lunar month being at its longest if the new moon immediately precedes a samkranti then the first of the two lunar months is deleted called nija or kshaya This for example happened in the year 1 BCE when there was no new moon between Makara samkranti and Kumbha samkranti and the month of Pausha was dropped 52 Day EditJust like months the Hindu calendar has two measures of a day one based on the lunar movement and the other on solar The solar saura day or civil day called divasa द वस has been what most Hindus traditionally use is easy and empirical to observe with or without a clock and it is defined as the period from one sunrise to another The lunar day is called tithi त थ and this is based on complicated measures of lunar movement A lunar day or tithi may for example begin in the middle of an afternoon and end next afternoon 53 Both these days do not directly correspond to a mathematical measure for a day such as equal 24 hours of a solar year a fact that the Hindu calendar scholars knew but the system of divasa was convenient for the general population The tithi have been the basis for timing rituals and festivals while divasa for everyday use The Hindu calendars adjust the mismatch in divasa and tithi using a methodology similar to the solar and lunar months 54 A tithi is technically defined in Vedic texts states John E Cort as the time required by the combined motions of the sun and moon to increase in a bright fortnight or decrease in a dark fortnight their relative distance by twelve degrees of the zodiac 55 These motions are measured using a fixed map of celestial zodiac as reference and given the elliptical orbits a duration of a tithi varies between 21 5 and 26 hours states Cort 55 However in the Indian tradition the general population s practice has been to treat a tithi as a solar day between one sunrise to next 55 A lunar month has 30 tithi The technical standard makes each tithi contain different number of hours but helps the overall integrity of the calendar Given the variation in the length of a solar day with seasons and moon s relative movements the start and end time for tithi varies over the seasons and over the years and the tithi adjusted to sync with divasa periodically with intercalation 56 Weekday Vasara Edit Vasara refers to the weekdays in Sanskrit 57 Also referred to as Vara and used as a suffix 44 The correspondence between the names of the week in Hindu and other Indo European calendars are exact This alignment of names probably took place sometime during the 3rd century CE 58 59 The weekday of a Hindu calendar has been symmetrically divided into 60 ghatika each ghatika 24 minutes is divided into 60 pala each pala 24 seconds is subdivided into 60 vipala and so on 58 Names of the weekdays in different languages No Sanskrit 58 59 Latin weekday Celestial object Assamese Bengali Bhojpuri Gujarati Hindi Kannada Kashmiri Konkani Malayalam Maithili Marathi Meitei Manipuri Nepali Odia Punjabi Hindus and Sikhs note 1 Sindhi Sylheti Tamil Telugu Urdu Balinese Cham1 Ravivasara रव व सर or Aditya vasara आद त य व सर Sunday dies Solis Ravi Aditya Sun Deubar Robibar দ ওব ৰ ৰব ব ৰ Robibar রব ব র Aitwar अतव र Ravivar રવ વ ર Ravivar रव व र Bhanuvara ಭ ನ ವ ರ aːtʰwaːr آتھوار Aytar आयत र Njaayar ഞ യർ Ravidin 𑒩𑒫 𑒠 𑒢 Ravivara रव व र Nongmaijingꯅ ꯡꯃ ꯏꯖ ꯡ Aaitabar आइतव र Rabibara ରବ ବ ର Aitvar ਐਤਵ ਰ Acharu آچ ر orArtvaruآرتوار Roibbar ꠞ ꠛ ꠛ ꠞ Nyayiru ஞ ய ற Adivaraṁ ఆద వ ర Itvar اتوار Redite ᬋᬤ ᬢ Adit2 Somavasara स मव सर or Indu vasara इन द व सर Monday dies Lunae Soma deity Chandra Moon Xumbar স মব ৰ Sombar স মব র Somar स म र Sōmavar સ મવ ર Somavar स मव र Sōmavara ಸ ಮವ ರ t sendrɨwaːr ژ ن در وار Somaar स म र Thinkal ത ങ കൾ Somdin 𑒮 𑒧𑒠 𑒢 Somavara स मव र Ningthoukabaꯅ ꯡꯊ ꯀ ꯕ Sombar स मव र Somabara ସ ମବ ର Somavar ਸ ਮਵ ਰ Sumaru س وم ر Sombar ꠡꠝ ꠛ ꠞ Thingal த ங கள Sōmavaraṁ స మవ ర Somvar سوموار orPirپیر Soma ᬲ ᬫ Thom3 Maṅgalavasara मङ गलव सर or Bhaumavasara भ म व सर Tuesday dies Martis Maṅgala Mars Moṅolbar Moṅgolbar মঙলব ৰ মঙ গলব ৰ Moṅgolbar মঙ গলব র Mangar म गर Maṅgaḷavar મ ગળવ ર Maṅgalavar म गलव र Maṁgaḷavara ಮ ಗಳವ ರ boːmwaːr بوموارor bɔ waːr بۄن وار Mangaḷar म गळ र Chovva ച വ വ Maṅgaldin 𑒧 𑒑𑒪𑒠 𑒢 Maṅgaḷavara म गळव र Leipakpokpaꯂ ꯄ ꯛꯄ ꯛꯄ Mangalbar मङ गलव र Maṅgaḷabara ମଙ ଗଳବ ର Maṅgalavar ਮ ਗਲਵ ਰ Mangalu م نگل orAngaroا نڱارو Moṅgolbar ꠝ ꠉꠟ ꠛ ꠞ Chevvai ச வ வ ய Maṁgaḷavaraṁ మ గళవ ర Mangal منگل Anggara ᬳ ᬕᬭ Angar4 Budhavasara ब धव सर or Saumya vasara स म य व सर Wednesday dies Mercurii Budha Mercury Budhbar ব ধব ৰ Budhbar ব ধব র Buddh ब ध Budhavar બ ધવ ર Budhavara ब धव र Budhavara ಬ ಧವ ರ bɔdwaːr بۄدوار Budhavar ब धव र Budhan ബ ധൻ Budhdin 𑒥 𑒡𑒠 𑒢 Budhavara ब धव र Yumsakeisaꯌ ꯝꯁꯀ ꯁ Budhabar ब धव र Budhabara ବ ଧବ ର Buddhavar ਬ ਧਵ ਰ Budharu ٻ ڌ ر orArbaا ربع Budbar ꠛ ꠗ ꠛ ꠞ Budhan ப தன Budhavaraṁ బ ధవ ర Budh بدھ Buda ᬩ ᬤ But5 Guruvasara ग र व सर or Brhaspati vasara ब हस पत व सर Thursday dies Iovis Jupiter Deva Guru Bṛhaspati Jupiter Brihospotibar ব হস পত ব ৰ Brihospotibar ব হস পত ব র Bi phey ब यफ Guruvar ગ ર વ ર Guruvar ग र व र or Brihaspativara ब हस पत व र Guruvara ಗ ರ ವ ರ braswaːr بر سوارor brʲaswaːr بر ؠسوار Birestar ब र स त र Vyaazham വ യ ഴ Brihaspatidin 𑒥 𑒯𑒮 𑒣𑒞 𑒠 𑒢 Guruvara ग र व र Sagolsenꯁꯒ ꯜꯁ ꯟ Bihibar ब ह व र Gurubara ଗ ର ବ ର Viravar ਵ ਰਵ ਰ Vispati و سپ ت orKhamisaخ مي س Biroisotbar ꠛ ꠡ ꠗꠛ ꠞ Vyazhan வ ய ழன Guruvaraṁ Br haspativaraṁ గ ర వ ర బ హస పత వ ర లక ష మ వ ర Guruvar گرووار orJume rat جمعرات Wrespati ᬯ ᬭ ᬲ ᬧᬢ Jip6 Sukravasara श क रव सर Friday dies Veneris Sukra Venus Xukurbar Xukrobar শ ক ৰব ৰ শ ক রব ৰ Sukrobar শ ক রব র Sukkar स क कर Sukravar શ ક રવ ર Sukravar श क रव र Sukravara ಶ ಕ ರವ ರ ʃokurwaːr شۆک روارor jumaːh ج معہ Shukrar श क र र Velli വ ള ള Sukradin 𑒬 𑒏 𑒩𑒠 𑒢 Sukravara श क रव र Eeraiꯏꯔ ꯢ Sukrabar श क रव र Sukrabara ଶ କ ରବ ର Sukkaravar ਸ ਕਰਵ ਰ Sukru ش ڪر orJum oج معو Sukkurbar ꠡ ꠇ ꠇ ꠞ ꠛ ꠞ ꠎ ꠝ ꠝ ꠛ ꠞ Velli வ ள ள Sukravaraṁ శ క రవ ర Sukarvar شکروار or Juma aجمع Sukra ᬲ ᬓ ᬭ Suk7 Sanivasara शन व सर Or Saniscaravasara शन श चरव सर Saturday dies Saturnis Sani Saturn Xonibar শন ব ৰ Sonibar শন ব র Sanichchar सन च चर Sanivar શન વ ર Sanivar शन व र Sanivara ಶನ ವ ರ baʈɨwaːr ب ٹہ وار Shenvar श नव र Shani ശന Sanidin 𑒬𑒢 𑒠 𑒢 Sanivara शन व र Thangjaꯊ ꯡꯖ Sanibar शन व र Sanibara ଶନ ବ ର Sanivar ਸ ਨ ਵ ਰ orSaniccharvar ਸ ਨ ਚਰਵ ਰorSaniccharvar ਸਨ ਚਰਵ ਰorSanivar ਸਨ ਵ ਰ Chancharu ڇ نڇ ر orSanscharuش نسچ ر Sonibar ꠡꠘ ꠛ ꠞ Shani சன Sanivaraṁ శన వ ర Sanichar سنیچر or Haftahہفتہ Saniscara ᬲᬦ ᬲ ᬘᬭ Thanchar Punjabi Muslims use Urdu Arabic words for Friday Saturday etc 60 The term vasara is often realised as vara or vaar in Sanskrit derived and influenced languages There are many variations of the names in the regional languages mostly using alternate names of the celestial bodies involved Five limbs of time Edit The complete Vedic calendars contain five angas or parts of information lunar day tithi solar day diwas asterism naksatra planetary joining yoga and astronomical period karanam This structure gives the calendar the name Panchangam 44 The first two are discussed above Yoga Edit This section needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed March 2010 Learn how and when to remove this template message The Sanskrit word Yoga means union joining attachment but in astronomical context this word means latitudinal and longitudinal information The longitude of the sun and the longitude of the moon are added and normalised to a value ranging between 0 to 360 if greater than 360 one subtracts 360 This sum is divided into 27 parts Each part will now equal 800 where is the symbol of the arcminute which means 1 60 of a degree These parts are called the yogas They are labelled Viṣkambha Priti Ayusman Saubhagya Sobhana Atigaṇḍa Sukarma Dhrti Sula Gaṇḍa Vṛddhi Dhruva Vyaghata Harṣaṇa Vajra Siddhi Vyatipata Variyas Parigha Siva Siddha Sadhya Subha Sukla Brahma Mahendra Vaidhṛti Again minor variations may exist The yoga that is active during sunrise of a day is the prevailing yoga for the day Karaṇa Edit A karaṇa is half of a tithi To be precise a karaṇa is the time required for the angular distance between the sun and the moon to increase in steps of 6 starting from 0 Compare with the definition of a tithi Since the tithis are 30 in number and since 1 tithi 2 karaṇas therefore one would logically expect there to be 60 karaṇas But there are only 11 such karaṇas which fill up those slots to accommodate for those 30 tithis There are actually 4 fixed sthira karaṇas and 7 repeating cara karaṇas The 4 fixed karaṇas are Sakuni शक न Catuṣpada चत ष प द Naga न ग Kiṃstughna क स त घ न The 7 repeating karaṇas are 61 Vava or Bava बव Valava or Balava ब लव Kaulava क लव Taitila or Taitula त त ल Gara or Garaja गरज Vaṇija वण ज Viṣṭi Bhadra भद र Now the first half of the 1st tithi of Sukla Pakṣa is always Kiṃtughna karaṇa Hence this karaṇa is fixed Next the 7 repeating karaṇas repeat eight times to cover the next 56 half tithis Thus these are the repeating cara karaṇas The 3 remaining half tithis take the remaining fixed karaṇas in order Thus these are also fixed sthira Thus one gets 60 karaṇas from those 11 preset karaṇas The Vedic day begins at sunrise The karaṇa at sunrise of a particular day shall be the prevailing karaṇa for the whole day citation needed Nakshatra Edit See also Astronomical basis of the Hindu calendar nakshatra Nakshatras are divisions of ecliptic each 13 20 starting from 0 Aries Festival calendar Solar and Lunar dates EditMain article List of Hindu festivals Many holidays in the Hindu Buddhist and Jaina traditions are based on the lunar cycles in the lunisolar timekeeping with foundations in the Hindu calendar system A few holidays however are based on the solar cycle such as the Vaisakhi Pongal and those associated with Sankranti 62 The dates of the lunar cycle based festivals vary significantly on the Gregorian calendar and at times by several weeks The solar cycle based ancient Hindu festivals almost always fall on the same Gregorian date every year and if they vary in an exceptional year it is by one day 63 Regional variants EditThe Hindu Calendar Reform Committee appointed in 1952 identified more than thirty well developed calendars in use across different parts of India Variants include the lunar emphasizing Vikrama the Shalivahana calendars as well as the solar emphasizing Tamil calendar and Malayalam calendar The two calendars most widely used today are the Vikrama calendar which is in followed in western and northern India and Nepal the Shalivahana Shaka calendar which is followed in the Deccan region of India Comprising present day Indian states of Telangana Andhra Pradesh Karnataka Maharashtra and Goa 64 Lunar Edit Calendars based on lunar cycle lunar months in solar year lunar phase for religious dates and new year Vikram Samvat Vikrami era North and Central India Lunar Gujarati samvat Gujarat Rajasthan Sindhi samvat Sindhis Shalivahana calendar Shaka era Used in Deccan region states of Maharashtra Goa Karnataka Andhra Pradesh Telangana Saptarishi era calendar Kashmiri Pandits Nepal Sambat Nepal Sikkim Meitei calendar ManipurSolar Edit Calendars based on solar cycle solar months in solar year lunar phase for religious dates but new year which falls on solar date South and Southeast Asian solar New Year Assamese calendar Assam Bengali calendar West Bengal Odia calendar Odisha Tirhuta Panchang Maithilis Tripuri calendar Tripura Malayalam calendar Kerala Tamil calendar Tamil Nadu Tulu calendar Tulus Vikram Samvat Punjabi calendar Punjab Haryana Vikrami era North and Central India Solar Bikram Sambat Nepal SikkimOther related calendars across India and Asia Edit Indian national calendar used by Indian Government civil calendar based on solar months Vira Nirvana Samvat Lunar Jain Nanakshahi calendar Solar Sikh Buddhist calendar Lunar Buddhist Tibetan calendar Lunar Tibet Ladakh Sikkim Arunachal Pradesh Pawukon calendar Bali Balinese saka calendar Lunar Bali Cham calendar Lunar Chams Chula Sakarat Solar Myanmar Thai solar calendar Thailand Thai lunar calendar Thailand Khmer calendar Solar CambodiaSee also EditHinduism Panjika Sankranti Ekadashi Panchangam Kollam era Hindu astrology Hindu units of time Malayalam calendar List of Hindu festivals Hindu units of measurement List of Hindu Empires and Dynasties Astronomical basis of the Hindu calendarReferences Edit a b c d B Richmond 1956 Time Measurement and Calendar Construction Brill Archive pp 80 82 Retrieved 18 September 2011 a b c d Christopher John Fuller 2004 The Camphor Flame Popular Hinduism and Society in India Princeton University Press pp 109 110 ISBN 978 0 69112 04 85 Klaus K Klostermaier 2007 A Survey of Hinduism Third Edition State University of New York Press p 490 ISBN 978 0 7914 7082 4 a b c Eleanor Nesbitt 2016 Sikhism a Very Short Introduction Oxford University Press pp 122 123 ISBN 978 0 19 874557 0 Orazio Marucchi 2011 Christian Epigraphy An Elementary Treatise with a Collection of Ancient Christian Inscriptions Mainly of Roman Origin Cambridge University Press p 289 ISBN 978 0 521 23594 5 Quote the lunar year consists of 354 days Anita Ganeri 2003 Buddhist Festivals Through the Year BRB pp 11 12 ISBN 978 1 58340 375 4 Jeffery D Long 2013 Jainism An Introduction I B Tauris pp 6 7 ISBN 978 0 85771 392 6 John E Cort 2001 Jains in the World Religious Values and Ideology in India Oxford University Press pp 142 146 ISBN 978 0 19 513234 2 Robert E Buswell Jr Donald S Lopez Jr 2013 The Princeton Dictionary of Buddhism Princeton University Press p 156 ISBN 978 1 4008 4805 8 Kim Plofker 2009 p 36 Kim Plofker 2009 pp 10 35 36 67 Yukio Ohashi 1993 pp 185 251 Yukio Ohashi 1999 p 720 Kim Plofker 2009 pp 35 42 a b Monier Monier Williams 1923 A Sanskrit English Dictionary Oxford University Press p 353 a b c James Lochtefeld 2002 Jyotisha in The Illustrated Encyclopedia of Hinduism Vol 1 A M Rosen Publishing ISBN 0 8239 2287 1 pp 326 327 a b Friedrich Max Muller 1860 A History of Ancient Sanskrit Literature Williams and Norgate pp 210 215 Yukio Ohashi 1999 p 719 a b Yukio Ohashi 1999 pp 719 721 Pingree 1973 p 2 Kak Subhash 2015 The Mahabharata and the Sindhu Sarasvati Tradition PDF Sanskrit Magazine p 2 Retrieved 22 January 2015 Eleanor Nesbitt 2016 Sikhism a Very Short Introduction Oxford University Press pp 122 142 ISBN 978 0 19 874557 0 a b c Ebenezer Burgess 1989 P Ganguly P Sengupta ed Surya Siddhanta A Text book of Hindu Astronomy Motilal Banarsidass Reprint Original Yale University Press American Oriental Society pp vii xi ISBN 978 81 208 0612 2 Lionel D Barnett 1994 Antiquities of India An Account of the History and Culture of Ancient Hindustan Asian Educational Services pp 190 192 ISBN 978 81 206 0530 5 Ebenezer Burgess 1989 P Ganguly P Sengupta ed Surya Siddhanta A Text book of Hindu Astronomy Motilal Banarsidass Reprint Original Yale University Press American Oriental Society pp ix xi xxix ISBN 978 81 208 0612 2 J Fleet 1911 Arbhatiya Journal of the Royal Asiatic Society of Great Britain and Ireland Cambridge University Press for the Royal Asiatic Society 794 799 a b Ebenezer Burgess 1989 P Ganguly P Sengupta ed Surya Siddhanta A Text book of Hindu Astronomy Motilal Banarsidass Reprint Original Yale University Press American Oriental Society pp 26 27 ISBN 978 81 208 0612 2 a b c d e f g Scott L Montgomery Alok Kumar 2015 A History of Science in World Cultures Voices of Knowledge Routledge pp 103 106 ISBN 978 1 317 43906 6 a b c d e f g Nachum Dershowitz Edward M Reingold 2008 Calendrical Calculations Cambridge University Press pp 123 133 275 311 ISBN 978 0 521 88540 9 a b c d Christopher John Fuller 2004 The Camphor Flame Popular Hinduism and Society in India Princeton University Press pp 291 293 ISBN 978 0 69112 04 85 Pingree 1973 pp 2 3 Erik Gregersen 2011 The Britannica Guide to the History of Mathematics The Rosen Publishing Group p 187 ISBN 978 1 61530 127 0 Nicholas Campion 2012 Astrology and Cosmology in the World s Religions New York University Press pp 110 111 ISBN 978 0 8147 0842 2 C K Raju 2007 Cultural Foundations of Mathematics Pearson p 205 ISBN 978 81 317 0871 2 Kim Plofker 2009 pp 116 120 259 261 a b Nachum Dershowitz Edward M Reingold 2008 Calendrical Calculations Cambridge University Press pp 123 133 153 161 275 311 ISBN 978 0 521 88540 9 a b c Richard Salomon 1998 Indian Epigraphy A Guide to the Study of Inscriptions in Sanskrit Prakrit and the other Indo Aryan Languages Oxford University Press pp 181 183 ISBN 978 0 19 535666 3 Colette Caillat J G de Casparis 1991 Middle Indo Aryan and Jaina Studies BRILL p 36 ISBN 90 04 09426 1 Andrea Acri 2016 Esoteric Buddhism in Mediaeval Maritime Asia Networks of Masters Texts Icons ISEAS Yusof Ishak Institute pp 256 258 ISBN 978 981 4695 08 4 Duncan Graham 2004 The People Next Door Understanding Indonesia University of Western Australia Press pp 16 17 ISBN 978 1 920694 09 8 J Gordon Melton 2011 Religious Celebrations An Encyclopedia of Holidays Festivals Solemn Observances and Spiritual Commemorations ABC CLIO pp 652 653 ISBN 978 1 59884 205 0 M C Ricklefs P Voorhoeve Annabel Teh Gallop 2014 Indonesian Manuscripts in Great Britain A Catalogue of Manuscripts in Indonesian Languages in British Public Collections Yayasan Pustaka Obor Indonesia pp 49 69 73 81 ISBN 978 979 461 883 7 a b c J G De Casparis 1978 Indonesian Chronology BRILL Academic pp 15 24 ISBN 90 04 05752 8 a b c Klaus K Klostermaier 2007 A Survey of Hinduism Third Edition State University of New York Press pp 490 492 ISBN 978 0 7914 7082 4 What is Shukla Paksha and Krishna Paksha Phases of Moon 22 July 2015 Christopher John Fuller 2004 The Camphor Flame Popular Hinduism and Society in India Princeton University Press pp 109 110 291 293 ISBN 978 0 69112 04 85 a b c V R Ramachandra Dikshitar 1993 The Gupta Polity Motilal Banarsidass pp 24 35 ISBN 978 81 208 1024 2 D C Sircar 1965 Indian Epigraphy Motilal Banarsidass pp 304 305 with footnotes ISBN 978 81 208 1166 9 Maha Shivaratri date drikpanchang com a href Template Cite web html title Template Cite web cite web a CS1 maint url status link Muriel Marion Underhill 1991 The Hindu Religious Year Asian Educational Services pp 20 32 note 5 ISBN 978 81 206 0523 7 Robert Sewell Saṅkara Balakr shṇa Dikshita 1896 The Indian Calendar S Sonnenschein pp 29 34 48 56 Underhill Muriel Marion 1991 The Hindu Religious Year Asian Educational Services pp 20 21 ISBN 978 81 206 0523 7 Muriel Marion Underhill 1991 The Hindu Religious Year Asian Educational Services pp 23 26 27 ISBN 978 81 206 0523 7 Muriel Marion Underhill 1991 The Hindu Religious Year Asian Educational Services pp 27 28 ISBN 978 81 206 0523 7 a b c John E Cort 2001 Jains in the World Religious Values and Ideology in India Oxford University Press p 228 note 2 ISBN 978 0 19 513234 2 Muriel Marion Underhill 1991 The Hindu Religious Year Asian Educational Services pp 23 28 ISBN 978 81 206 0523 7 Monier Monier Williams व सर Sanskrit English Dictionary Oxford University Press page 948 a b c Muriel Marion Underhill 1991 The Hindu Religious Year Asian Educational Services pp 24 25 ISBN 978 81 206 0523 7 a b Roshen Dalal 2010 Hinduism An Alphabetical Guide Penguin Books p 89 ISBN 978 0 14 341421 6 Tej Bhatia 2013 Punjabi Routledge pp 208 209 ISBN 978 1 136 89460 2 Ebenezer Burgess 1989 Surya Siddhanta A Text book of Hindu Astronomy Motilal Banarsidass pp 107 ISBN 978 81 208 0612 2 Peter J Claus Sarah Diamond Margaret Ann Mills 2003 South Asian Folklore An Encyclopedia Afghanistan Bangladesh India Nepal Pakistan Sri Lanka Taylor amp Francis pp 91 93 ISBN 978 0 415 93919 5 Robert Sewell Saṅkara Balakr shṇa Dikshita 1896 The Indian Calendar With Tables for the Conversion of Hindu and Muhammadan Into A D Dates and Vice Versa S Sonnenschein pp 9 12 The Shalivahan Shaka calendar follows the Amant system The year begins on the first day of the bright fortnight of the month of Chaitra Muriel Marion Underhill 1921 The Hindu Religious Year Association Press p 15 Bibliography Edit Kim Plofker 2009 Mathematics in India Princeton University Press ISBN 978 0 691 12067 6 Pingree David 1973 The Mesopotamian Origin of Early Indian Mathematical Astronomy Journal for the History of Astronomy SAGE 4 1 1 12 Bibcode 1973JHA 4 1P doi 10 1177 002182867300400102 S2CID 125228353 Pingree David 1981 Jyotihsastra Astral and Mathematical Literature Otto Harrassowitz ISBN 978 3447021654 Yukio Ohashi 1999 Johannes Andersen ed Highlights of Astronomy Volume 11B Springer Science ISBN 978 0 7923 5556 4 Yukio Ohashi 1993 Development of Astronomical Observations in Vedic and post Vedic India Indian Journal of History of Science 28 3 Maurice Winternitz 1963 History of Indian Literature Volume 1 Motilal Banarsidass ISBN 978 81 208 0056 4 Further reading EditReingold and Dershowitz Calendrical Calculations Millennium Edition Cambridge University Press latest 2nd edition 3rd printing released November 2004 ISBN 0 521 77752 6 S Balachandra Rao Indian Astronomy An Introduction Universities Press Hyderabad 2000 Rai Bahadur Pandit Gaurishankar Hirachand Ojha The Paleography of India 2 ed Ajmer 1918 reprinted Manshuram Manoharlal publishers 1993 External links EditConverter Gregorian and 1957 Normalized Indian Calendar Shalivahana Hindu calendar United Kingdom Hindu Calendar thedivineindia com Hindu Calendars Monthly monthlycalendars in Hindu Calendar of Nepal The Official Hindu Calendar of Nepal Kyoto University Gregorian Saka Vikrami Calendar Converter Tool M YANO and M FUSHIMI Retrieved from https en wikipedia org w index php title Hindu calendar amp oldid 1134003224, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.