fbpx
Wikipedia

Factory

A factory, manufacturing plant or a production plant is an industrial facility, often a complex consisting of several buildings filled with machinery, where workers manufacture items or operate machines which process each item into another. They are a critical part of modern economic production, with the majority of the world's goods being created or processed within factories.

Volkswagen factory in Wolfsburg, Germany

Factories arose with the introduction of machinery during the Industrial Revolution, when the capital and space requirements became too great for cottage industry or workshops. Early factories that contained small amounts of machinery, such as one or two spinning mules, and fewer than a dozen workers have been called "glorified workshops".[1]

Most modern factories have large warehouses or warehouse-like facilities that contain heavy equipment used for assembly line production. Large factories tend to be located with access to multiple modes of transportation, some having rail, highway and water loading and unloading facilities.[2] In some countries like Australia, it is common to call a factory building a "Shed[3]".

Factories may either make discrete products or some type of continuously produced material, such as chemicals, pulp and paper, or refined oil products. Factories manufacturing chemicals are often called plants and may have most of their equipment – tanks, pressure vessels, chemical reactors, pumps and piping – outdoors and operated from control rooms. Oil refineries have most of their equipment outdoors.

Discrete products may be final goods, or parts and sub-assemblies which are made into final products elsewhere. Factories may be supplied parts from elsewhere or make them from raw materials. Continuous production industries typically use heat or electricity to transform streams of raw materials into finished products.

The term mill originally referred to the milling of grain, which usually used natural resources such as water or wind power until those were displaced by steam power in the 19th century. Because many processes like spinning and weaving, iron rolling, and paper manufacturing were originally powered by water, the term survives as in steel mill, paper mill, etc.

Reconstructed historical factory in Žilina (Slovakia) for production of safety matches. Originally built in 1915 for the business firm Wittenberg and son.

History edit

 
Entrance to the Venetian Arsenal by Canaletto, 1732.
 
Interior of the Lyme Regis watermill, UK (14th century).

Max Weber considered production during ancient and medieval times as never warranting classification as factories, with methods of production and the contemporary economic situation incomparable to modern or even pre-modern developments of industry. In ancient times, the earliest production limited to the household, developed into a separate endeavor independent to the place of inhabitation with production at that time only beginning to be characteristic of industry, termed as "unfree shop industry", a situation caused especially under the reign of the Egyptian pharaoh, with slave employment and no differentiation of skills within the slave group comparable to modern definitions as division of labour.[4][5][6]

According to translations of Demosthenes and Herodotus, Naucratis was a, or the only, factory in the entirety of ancient Egypt.[7][8][9] A source of 1983 (Hopkins), states the largest factory production in ancient times was of 120 slaves within fourth century BC Athens.[10] An article within the New York Times article dated 13 October 2011 states:

"In African Cave, Signs of an Ancient Paint Factory" – (John Noble Wilford)

... discovered at Blombos Cave, a cave on the south coast of South Africa where 100,000-year-old tools and ingredients were found with which early modern humans mixed an ochre-based paint.[11]

Although The Cambridge Online Dictionary definition of factory states:

a building or set of buildings where large amounts of goods are made using machines[12]

elsewhere:

... the utilization of machines presupposes social cooperation and the division of labour

— von Mises[13]

The first machine is stated by one source to have been traps used to assist with the capturing of animals, corresponding to the machine as a mechanism operating independently or with very little force by interaction from a human, with a capacity for use repeatedly with operation exactly the same on every occasion of functioning.[14] The wheel was invented c. 3000 BC, the spoked wheel c. 2000 BC. The Iron Age began approximately 1200–1000 BC.[15][16] However, other sources define machinery as a means of production.[17]

Archaeology provides a date for the earliest city as 5000 BC as Tell Brak (Ur et al. 2006), therefore a date for cooperation and factors of demand, by an increased community size and population to make something like factory level production a conceivable necessity.[18][19][20]

Archaeologist Bonnet, unearthed the foundations of numerous workshops in the city of Kerma proving that as early as 2000 BC Kerma was a large urban capital.[21]

The watermill was first made in the Persian Empire some time before 350 BC.[verification needed][22] In the third century BC, Philo of Byzantium describes a water-driven wheel in his technical treatises. Factories producing garum were common in the Roman Empire.[23] The Barbegal aqueduct and mills are an industrial complex from the second century AD found in southern France. By the time of the fourth century AD, there was a water-milling installation with a capacity to grind 28 tons of grain per day,[24] a rate sufficient to meet the needs of 80,000 persons, in the Roman Empire.[25][26][27]

The large population increase in medieval Islamic cities, such as Baghdad's 1.5 million population, led to the development of large-scale factory milling installations with higher productivity to feed and support the large growing population. A tenth-century grain-processing factory in the Egyptian town of Bilbays, for example, produced an estimated 300 tons of grain and flour per day.[24] Both watermills and windmills were widely used in the Islamic world at the time.[28]

The Venice Arsenal also provides one of the first examples of a factory in the modern sense of the word. Founded in 1104 in Venice, Republic of Venice, several hundred years before the Industrial Revolution, it mass-produced ships on assembly lines using manufactured parts. The Venice Arsenal apparently produced nearly one ship every day and, at its height, employed 16,000 people.[verification needed][29]

Industrial Revolution edit

 
Cromford mill as it is today.
 
Working day ends at Tampella factory in Tampere, Finland in 1909

One of the earliest factories was John Lombe's water-powered silk mill at Derby, operational by 1721. By 1746, an integrated brass mill was working at Warmley near Bristol. Raw material went in at one end, was smelted into brass and was turned into pans, pins, wire, and other goods. Housing was provided for workers on site. Josiah Wedgwood in Staffordshire and Matthew Boulton at his Soho Manufactory were other prominent early industrialists, who employed the factory system.

The factory system began widespread use somewhat later when cotton spinning was mechanized.

Richard Arkwright is the person credited with inventing the prototype of the modern factory. After he patented his water frame in 1769, he established Cromford Mill, in Derbyshire, England, significantly expanding the village of Cromford to accommodate the migrant workers new to the area. The factory system was a new way of organizing workforce made necessary by the development of machines which were too large to house in a worker's cottage. Working hours were as long as they had been for the farmer, that is, from dawn to dusk, six days per week. Overall, this practice essentially reduced skilled and unskilled workers to replaceable commodities. Arkwright's factory was the first successful cotton spinning factory in the world; it showed unequivocally the way ahead for industry and was widely copied.

Between 1770 and 1850 mechanized factories supplanted traditional artisan shops as the predominant form of manufacturing institution, because the larger-scale factories enjoyed a significant technological and supervision advantage over the small artisan shops.[30] The earliest factories (using the factory system) developed in the cotton and wool textiles industry. Later generations of factories included mechanized shoe production and manufacturing of machinery, including machine tools. After this came factories that supplied the railroad industry included rolling mills, foundries and locomotive works, along with agricultural-equipment factories that produced cast-steel plows and reapers. Bicycles were mass-produced beginning in the 1880s.

The Nasmyth, Gaskell and Company's Bridgewater Foundry, which began operation in 1836, was one of the earliest factories to use modern materials handling such as cranes and rail tracks through the buildings for handling heavy items.[31]

Large scale electrification of factories began around 1900 after the development of the AC motor which was able to run at constant speed depending on the number of poles and the current electrical frequency.[32] At first larger motors were added to line shafts, but as soon as small horsepower motors became widely available, factories switched to unit drive. Eliminating line shafts freed factories of layout constraints and allowed factory layout to be more efficient. Electrification enabled sequential automation using relay logic.

Assembly line edit

 
Factory Automation with industrial robots for palletizing food products like bread and toast at a bakery in Germany.

Henry Ford further revolutionized the factory concept in the early 20th century, with the innovation of the mass production. Highly specialized laborers situated alongside a series of rolling ramps would build up a product such as (in Ford's case) an automobile. This concept dramatically decreased production costs for virtually all manufactured goods and brought about the age of consumerism.[33]

In the mid - to late 20th century, industrialized countries introduced next-generation factories with two improvements:

  1. Advanced statistical methods of quality control, pioneered by the American mathematician William Edwards Deming, whom his home country initially ignored. Quality control turned Japanese factories into world leaders in cost-effectiveness and production quality.
  2. Industrial robots on the factory floor, introduced in the late 1970s. These computer-controlled welding arms and grippers could perform simple tasks such as attaching a car door quickly and flawlessly 24 hours a day. This too cut costs and improved speed.

Some speculation[34] as to the future of the factory includes scenarios with rapid prototyping, nanotechnology, and orbital zero-gravity facilities.[35] There is some scepticism about the development of the factories of the future if the robotic industry is not matched by a higher technological level of the people who operate it. According to some authors, the four basic pillars of the factories of the future are strategy, technology, people and habitability, which would take the form of a kind of "laboratory factories", with management models that allow "producing with quality while experimenting to do it better tomorrow".[36][37]

Historically significant factories edit

 
Highland Park Ford plant, c. 1922

Siting the factory edit

 
A factory worker in 1942 Fort Worth, Texas, United States.

Before the advent of mass transportation, factories' needs for ever-greater concentrations of labourers meant that they typically grew up in an urban setting or fostered their own urbanization. Industrial slums developed, and reinforced their own development through the interactions between factories, as when one factory's output or waste-product became the raw materials of another factory (preferably nearby). Canals and railways grew as factories spread, each clustering around sources of cheap energy, available materials and/or mass markets. The exception proved the rule: even greenfield factory sites such as Bournville, founded in a rural setting, developed their own housing and profited from convenient communications systems.[38]

Regulation curbed some of the worst excesses of industrialization's factory-based society, labourers of Factory Acts leading the way in Britain. Trams, automobiles and town planning encouraged the separate development of industrial suburbs and residential suburbs, with labourers commuting between them.

Though factories dominated the Industrial Era, the growth in the service sector eventually began to dethrone them:[verification needed] the focus of labour, in general, shifted to central-city office towers or to semi-rural campus-style establishments, and many factories stood deserted in local rust belts.

The next blow to the traditional factories came from globalization. Manufacturing processes (or their logical successors, assembly plants) in the late 20th century re-focussed in many instances on Special Economic Zones in developing countries or on maquiladoras just across the national boundaries of industrialized states. Further re-location to the least industrialized nations appears possible as the benefits of out-sourcing and the lessons of flexible location apply in the future.[verification needed]

Governing the factory edit

Much of management theory developed in response to the need to control factory processes.[verification needed] Assumptions on the hierarchies of unskilled, semi-skilled and skilled laborers and their supervisors and managers still linger on; however an example of a more contemporary approach to handle design applicable to manufacturing facilities can be found in Socio-Technical Systems (STS).

Shadow factories edit

A shadow factory is one of a number of manufacturing sites built in dispersed locations in times of war to reduce the risk of disruption due to enemy air-raids and often with the dual purpose of increasing manufacturing capacity. Before World War II Britain had built many shadow factories.

British shadow factories edit

Production of the Supermarine Spitfire at its parent company's base at Woolston, Southampton was vulnerable to enemy attack as a high-profile target and was well within range of Luftwaffe bombers. Indeed, on 26 September 1940 this facility was completely destroyed by an enemy bombing raid. Supermarine had already established a plant at Castle Bromwich; this action prompted them to further disperse Spitfire production around the country with many premises being requisitioned by the British Government.[39]

Connected to the Spitfire was production of its equally important Rolls-Royce Merlin engine, Rolls-Royce's main aero engine facility was located at Derby, the need for increased output was met by building new factories in Crewe and Glasgow and using a purpose-built factory of Ford of Britain in Trafford Park Manchester.[40]

Gallery edit

See also edit

Notes edit

  1. ^ Landes, David. S. (1969). The Unbound Prometheus: Technological Change and Industrial Development in Western Europe from 1750 to the Present. Cambridge, New York: Press Syndicate of the University of Cambridge. ISBN 0-521-09418-6.
  2. ^ Hozdić, Elvis (2015). "Smart Factory for Industry 4.0: A review". International Journal of Modern Manufacturing Technologies. 7 (1): 28–35.
  3. ^ . Asset Building. Archived from the original on 10 March 2020.
  4. ^ John R. Love – Antiquity and Capitalism: Max Weber and the Sociological Foundations of Roman Civilization Routledge, 25 April 1991 Retrieved 12 July 2012 ISBN 0415047501
  5. ^ (secondary) JG Douglas, N Douglas – Ancient Households of the Americas: Conceptualizing What Households Do O'Reilly Media, Inc., 15 April 2012 Retrieved 12 July 2012 ISBN 1457117444
  6. ^ M Weber – General Economic History Transaction Publishers, 1981 Retrieved 12 July 2012 ISBN 0878556907
  7. ^ Demosthenes, Robert Whiston – Demosthenes, Volume 2 Whittaker and Company, 1868 Retrieved 12 July 2012
  8. ^ Herodotus, George RawlinsonHistory of Herodotus John Murray 1862 Retrieved 12 July 2012
  9. ^ (secondary) (E.Hughes ed) Oxford Companion to Philosophy – techne
  10. ^ (P Garnsey, K Hopkins, C. R. Whittaker) – Trade in the Ancient Economy University of California Press, 1983 Retrieved 12 July 2012 ISBN 0520048032
  11. ^ John Noble Wilford (13 October 2011). "In African Cave, Signs of an Ancient Paint Factory". The New York Times. Retrieved 14 October 2011.
  12. ^ "factory definition, meaning - what is factory in the British English Dictionary & Thesaurus – Cambridge Dictionaries Online". cambridge.org.
  13. ^ L von Mises - Theory and History Ludwig von Mises Institute, 2007 Retrieved 2012-07-12 ISBN 1933550198
  14. ^ E Bautista Paz, M Ceccarelli, J Echávarri Otero, JL Muñoz Sanz – A Brief Illustrated History of Machines and Mechanisms Springer, 12 May 2010 Retrieved 12 July 2012 ISBN 9048125111
  15. ^ JW Humphrey – Ancient Technology Greenwood Publishing Group, 30 September 2006 Retrieved 12 July 2012 ISBN 0313327637
  16. ^ WJ Hamblin – Warfare in the Ancient Near East to 1600 BC: Holy Warriors at the Dawn of History Taylor & Francis, 12 April 2006 Retrieved 12 July 2012 ISBN 0415255880
  17. ^ Mantoux, Paul (2000). The Industrial Revolution in Eighteenth Century: An Outline of the Beginnings of the Modern Factory System in England. Harper & Row. ISBN 978-0061310799.
  18. ^ Oates, Joan; McMahon, Augusta; Karsgaard, Philip; Quntar, Salam Al; Ur, Jason (September 2007). "Early Mesopotamian urbanism: a new view from the north". Antiquity. 81 (313): 585–600. doi:10.1017/S0003598X00095600. ISSN 0003-598X.
  19. ^ Knabb, Kyle Andrew (2008). Understanding the role of production and craft specialization in ancient socio-economic systems: toward the integration of spatial analysis, 3D modeling and virtual reality in archaeology (MA). University of California San Diego.
  20. ^ Gates, Charles (2003). Ancient Cities: The Archaeology of Urban Life in the Ancient Near East and Egypt, Greece and Rome. Psychology Press. p. 318. ISBN 9780415121828.
  21. ^ Grzymski, K. (2008). Book review: The Nubian pharaohs: Black kings on the Nile. American Journal of Archaeology, Online Publications: Book Review. Retrieved from (PDF). Archived from the original (PDF) on 5 November 2014. Retrieved 17 December 2014.{{cite web}}: CS1 maint: archived copy as title (link)
  22. ^ Selin, Helaine (2013). Encyclopaedia of the History of Science, Technology, and Medicine in Non-Westen Cultures. Springer Science & Business Media. p. 282. ISBN 9789401714167.
  23. ^ Borschel-Dan, Amanda (16 December 2019). "Factory for Romans' favorite funky fish sauce discovered near Ashkelon". www.timesofisrael.com. Retrieved 18 December 2019.
  24. ^ a b Hill, Donald (2013). A History of Engineering in Classical and Medieval Times. Routledge. pp. 163–166. ISBN 9781317761570.
  25. ^ TK Derry, (TI Williams ed) – A Short History of Technology: From the Earliest Times to A.D. 1900 Courier Dover Publications, 24 March 1993 Retrieved 12 July 2012 ISBN 0486274721
  26. ^ A Pacey – Technology in World Civilization: A Thousand-Year History MIT Press, 1 July 1991 Retrieved 12 July 2012 ISBN 0262660725
  27. ^ WM Sumner – Cultural development in the Kur River Basin, Iran: an archaeological analysis of settlement patterns University of Pennsylvania., 1972 [1] Retrieved 12 July 2012
  28. ^ Adam Lucas (2006), Wind, Water, Work: Ancient and Medieval Milling Technology, p. 65, Brill Publishers, ISBN 90-04-14649-0
  29. ^ ALTEKAR, RAHUL V. (1 January 2005). SUPPLY CHAIN MANAGEMENT: CONCEPTS AND CASES. PHI Learning Pvt. Ltd. ISBN 9788120328594.
  30. ^ Marglin, Stephen A. (1 July 1974). "What Do Bosses Do?: The Origins and Functions of Hierarchy in Capitalist Production" (PDF). Review of Radical Political Economics. 6 (60): 60–112. doi:10.1177/048661347400600206. S2CID 153641564. Retrieved 2 February 2019.
  31. ^ Musson; Robinson (1969). Science and Technology in the Industrial Revolution. University of Toronto Press. pp. 491–95. ISBN 9780802016379.
  32. ^ Hunter, Louis C.; Bryant, Lynwood; Bryant, Lynwood (1991). A History of Industrial Power in the United States, 1730–1930, Vol. 3: The Transmission of Power. Cambridge, Massachusetts, London: MIT Press. ISBN 0-262-08198-9.
  33. ^ Bob Casey, John & Horace Dodge (2010). "Henry Ford and Innovation" (PDF). The Henry Ford.
  34. ^ Dickens, Phill; Kelly, Michael; Williams, John R. (October 2013). "What are the significant trends shaping technology relevant to manufacturing?" (PDF). Government Office for Science UK.
  35. ^ Fishman, Charles (June 2017). "The Future of Zero-Gravity Living Is Here". Smithsonian Magazine.
  36. ^ Javier Borda, Hombre y Tecnología: 4.0 y más (Man and Technology: 4.0 and beyond). Sisteplant Publishers, 2018. ISBN 978-84-09-02350-9 (in Spanish)
  37. ^ "El escéptico de la Industria 4.0: 'Personas frente a robots'". ELMUNDO (in Spanish). 13 October 2014. Retrieved 13 September 2023.
  38. ^ "The Bournville Story" (PDF). Bournville Village Trust. 2010.
  39. ^ Price 1986, p. 115.
  40. ^ Pugh 2000, pp. 192-198.

References edit

  • Needham, Joseph (1986). Science and Civilization in China: Volume 5, Part 1. Taipei: Caves Books, Ltd.
  • Thomas, Dublin(1995). "Transforming Women's Work page: New England Lives in the Industrial Revolution 77, 118" Cornell University Press.
  • Price, Alfred. The Spitfire Story: Second edition. London: Arms and Armour Press Ltd., 1986. ISBN 0-85368-861-3.
  • Pugh, Peter. The Magic of a Name – The Rolls-Royce Story – The First 40 Years. Cambridge, England. Icon Books Ltd, 2000. ISBN 1-84046-151-9
  • Thomas, Dublin(1981). "Women at Work: The Transformation of Work and Community in Lowell, Massachusetts, 1826–1860: pp. 86–107" New York: Columbia University Press.
  • Biggs, Lindy (1996). The rational factory: architecture, technology, and work in America's age of mass production. Johns Hopkins University Press. ISBN 978-0-8018-5261-9.

Further reading edit

  • Christian, Gallope, D (1987) "Are the classical management functions useful in describing managerial processes?" Academy of Management Review. v 12 n 1, pp. 38–51
  • Peterson, T (2004) "Ongoing legacy of R.L. Katz: an updated typology of management skills", Management Decision. v 42 n10, pp. 1297–1308
  • Mintzberg, H (1975) "The manager's job: Folklore and fact", Harvard Business Review, v 53 n 4, July – August, pp. 49–61
  • Hales, C (1999) "Why do managers do what they do? Reconciling evidence and theory in accounts of managerial processes", British Journal of Management, v 10 n4, pp. 335–50
  • Mintzberg, H (1994) "Rounding out the Managers job", Sloan Management Review, v 36 n 1 pp. 11–26.
  • Rodrigues, C (2001) "Fayol's 14 principles then and now: A plan for managing today's organizations effectively", Management Decision, v 39 n10, pp. 880–89
  • Twomey, D. F. (2006) "Designed emergence as a path to enterprise", Emergence, Complexity & Organization, Vol. 8 Issue 3, pp. 12–23
  • McDonald, G (2000) Business ethics: practical proposals for organisations Journal of Business Ethics. v 25(2) pp. 169–85

External links edit

  • "Mill" . Encyclopædia Britannica. Vol. 18 (11th ed.). 1911.
  • Uhl, Karsten (2 May 2016). "Work Spaces: From the Early–Modern Workshop to the Modern Factory". European History Online. Mainz: Leibniz Institute of European History (IEG).

factory, this, article, about, places, manufacture, other, uses, disambiguation, factory, manufacturing, plant, production, plant, industrial, facility, often, complex, consisting, several, buildings, filled, with, machinery, where, workers, manufacture, items. This article is about places of manufacture For other uses see Factory disambiguation A factory manufacturing plant or a production plant is an industrial facility often a complex consisting of several buildings filled with machinery where workers manufacture items or operate machines which process each item into another They are a critical part of modern economic production with the majority of the world s goods being created or processed within factories Volkswagen factory in Wolfsburg GermanyFactories arose with the introduction of machinery during the Industrial Revolution when the capital and space requirements became too great for cottage industry or workshops Early factories that contained small amounts of machinery such as one or two spinning mules and fewer than a dozen workers have been called glorified workshops 1 Most modern factories have large warehouses or warehouse like facilities that contain heavy equipment used for assembly line production Large factories tend to be located with access to multiple modes of transportation some having rail highway and water loading and unloading facilities 2 In some countries like Australia it is common to call a factory building a Shed 3 Factories may either make discrete products or some type of continuously produced material such as chemicals pulp and paper or refined oil products Factories manufacturing chemicals are often called plants and may have most of their equipment tanks pressure vessels chemical reactors pumps and piping outdoors and operated from control rooms Oil refineries have most of their equipment outdoors Discrete products may be final goods or parts and sub assemblies which are made into final products elsewhere Factories may be supplied parts from elsewhere or make them from raw materials Continuous production industries typically use heat or electricity to transform streams of raw materials into finished products The term mill originally referred to the milling of grain which usually used natural resources such as water or wind power until those were displaced by steam power in the 19th century Because many processes like spinning and weaving iron rolling and paper manufacturing were originally powered by water the term survives as in steel mill paper mill etc Reconstructed historical factory in Zilina Slovakia for production of safety matches Originally built in 1915 for the business firm Wittenberg and son Contents 1 History 1 1 Industrial Revolution 1 2 Assembly line 2 Historically significant factories 3 Siting the factory 4 Governing the factory 5 Shadow factories 5 1 British shadow factories 6 Gallery 7 See also 8 Notes 9 References 10 Further reading 11 External linksHistory edit nbsp Entrance to the Venetian Arsenal by Canaletto 1732 nbsp Interior of the Lyme Regis watermill UK 14th century Max Weber considered production during ancient and medieval times as never warranting classification as factories with methods of production and the contemporary economic situation incomparable to modern or even pre modern developments of industry In ancient times the earliest production limited to the household developed into a separate endeavor independent to the place of inhabitation with production at that time only beginning to be characteristic of industry termed as unfree shop industry a situation caused especially under the reign of the Egyptian pharaoh with slave employment and no differentiation of skills within the slave group comparable to modern definitions as division of labour 4 5 6 According to translations of Demosthenes and Herodotus Naucratis was a or the only factory in the entirety of ancient Egypt 7 8 9 A source of 1983 Hopkins states the largest factory production in ancient times was of 120 slaves within fourth century BC Athens 10 An article within the New York Times article dated 13 October 2011 states In African Cave Signs of an Ancient Paint Factory John Noble Wilford discovered at Blombos Cave a cave on the south coast of South Africa where 100 000 year old tools and ingredients were found with which early modern humans mixed an ochre based paint 11 Although The Cambridge Online Dictionary definition of factory states a building or set of buildings where large amounts of goods are made using machines 12 elsewhere the utilization of machines presupposes social cooperation and the division of labour von Mises 13 The first machine is stated by one source to have been traps used to assist with the capturing of animals corresponding to the machine as a mechanism operating independently or with very little force by interaction from a human with a capacity for use repeatedly with operation exactly the same on every occasion of functioning 14 The wheel was invented c 3000 BC the spoked wheel c 2000 BC The Iron Age began approximately 1200 1000 BC 15 16 However other sources define machinery as a means of production 17 Archaeology provides a date for the earliest city as 5000 BC as Tell Brak Ur et al 2006 therefore a date for cooperation and factors of demand by an increased community size and population to make something like factory level production a conceivable necessity 18 19 20 Archaeologist Bonnet unearthed the foundations of numerous workshops in the city of Kerma proving that as early as 2000 BC Kerma was a large urban capital 21 The watermill was first made in the Persian Empire some time before 350 BC verification needed 22 In the third century BC Philo of Byzantium describes a water driven wheel in his technical treatises Factories producing garum were common in the Roman Empire 23 The Barbegal aqueduct and mills are an industrial complex from the second century AD found in southern France By the time of the fourth century AD there was a water milling installation with a capacity to grind 28 tons of grain per day 24 a rate sufficient to meet the needs of 80 000 persons in the Roman Empire 25 26 27 The large population increase in medieval Islamic cities such as Baghdad s 1 5 million population led to the development of large scale factory milling installations with higher productivity to feed and support the large growing population A tenth century grain processing factory in the Egyptian town of Bilbays for example produced an estimated 300 tons of grain and flour per day 24 Both watermills and windmills were widely used in the Islamic world at the time 28 The Venice Arsenal also provides one of the first examples of a factory in the modern sense of the word Founded in 1104 in Venice Republic of Venice several hundred years before the Industrial Revolution it mass produced ships on assembly lines using manufactured parts The Venice Arsenal apparently produced nearly one ship every day and at its height employed 16 000 people verification needed 29 Industrial Revolution edit Main article Factory system See also Industrial Revolution nbsp Cromford mill as it is today nbsp Working day ends at Tampella factory in Tampere Finland in 1909One of the earliest factories was John Lombe s water powered silk mill at Derby operational by 1721 By 1746 an integrated brass mill was working at Warmley near Bristol Raw material went in at one end was smelted into brass and was turned into pans pins wire and other goods Housing was provided for workers on site Josiah Wedgwood in Staffordshire and Matthew Boulton at his Soho Manufactory were other prominent early industrialists who employed the factory system The factory system began widespread use somewhat later when cotton spinning was mechanized Richard Arkwright is the person credited with inventing the prototype of the modern factory After he patented his water frame in 1769 he established Cromford Mill in Derbyshire England significantly expanding the village of Cromford to accommodate the migrant workers new to the area The factory system was a new way of organizing workforce made necessary by the development of machines which were too large to house in a worker s cottage Working hours were as long as they had been for the farmer that is from dawn to dusk six days per week Overall this practice essentially reduced skilled and unskilled workers to replaceable commodities Arkwright s factory was the first successful cotton spinning factory in the world it showed unequivocally the way ahead for industry and was widely copied Between 1770 and 1850 mechanized factories supplanted traditional artisan shops as the predominant form of manufacturing institution because the larger scale factories enjoyed a significant technological and supervision advantage over the small artisan shops 30 The earliest factories using the factory system developed in the cotton and wool textiles industry Later generations of factories included mechanized shoe production and manufacturing of machinery including machine tools After this came factories that supplied the railroad industry included rolling mills foundries and locomotive works along with agricultural equipment factories that produced cast steel plows and reapers Bicycles were mass produced beginning in the 1880s The Nasmyth Gaskell and Company s Bridgewater Foundry which began operation in 1836 was one of the earliest factories to use modern materials handling such as cranes and rail tracks through the buildings for handling heavy items 31 Large scale electrification of factories began around 1900 after the development of the AC motor which was able to run at constant speed depending on the number of poles and the current electrical frequency 32 At first larger motors were added to line shafts but as soon as small horsepower motors became widely available factories switched to unit drive Eliminating line shafts freed factories of layout constraints and allowed factory layout to be more efficient Electrification enabled sequential automation using relay logic Assembly line edit Main article Assembly line nbsp Factory Automation with industrial robots for palletizing food products like bread and toast at a bakery in Germany Henry Ford further revolutionized the factory concept in the early 20th century with the innovation of the mass production Highly specialized laborers situated alongside a series of rolling ramps would build up a product such as in Ford s case an automobile This concept dramatically decreased production costs for virtually all manufactured goods and brought about the age of consumerism 33 In the mid to late 20th century industrialized countries introduced next generation factories with two improvements Advanced statistical methods of quality control pioneered by the American mathematician William Edwards Deming whom his home country initially ignored Quality control turned Japanese factories into world leaders in cost effectiveness and production quality Industrial robots on the factory floor introduced in the late 1970s These computer controlled welding arms and grippers could perform simple tasks such as attaching a car door quickly and flawlessly 24 hours a day This too cut costs and improved speed Some speculation 34 as to the future of the factory includes scenarios with rapid prototyping nanotechnology and orbital zero gravity facilities 35 There is some scepticism about the development of the factories of the future if the robotic industry is not matched by a higher technological level of the people who operate it According to some authors the four basic pillars of the factories of the future are strategy technology people and habitability which would take the form of a kind of laboratory factories with management models that allow producing with quality while experimenting to do it better tomorrow 36 37 Historically significant factories edit nbsp Highland Park Ford plant c 1922Venetian Arsenal Cromford Mill Lombe s Mill Soho Manufactory Portsmouth Block Mills Slater Mill Historic Site Lowell Mills Springfield Armory Harpers Ferry Armory Nasmyth Gaskell and Company also called the Bridgewater Foundry Baldwin Locomotive Works Highland Park Ford Plant Ford River Rouge Complex Hawthorne Works Stalingrad Tractor PlantSiting the factory edit nbsp A factory worker in 1942 Fort Worth Texas United States Before the advent of mass transportation factories needs for ever greater concentrations of labourers meant that they typically grew up in an urban setting or fostered their own urbanization Industrial slums developed and reinforced their own development through the interactions between factories as when one factory s output or waste product became the raw materials of another factory preferably nearby Canals and railways grew as factories spread each clustering around sources of cheap energy available materials and or mass markets The exception proved the rule even greenfield factory sites such as Bournville founded in a rural setting developed their own housing and profited from convenient communications systems 38 Regulation curbed some of the worst excesses of industrialization s factory based society labourers of Factory Acts leading the way in Britain Trams automobiles and town planning encouraged the separate development of industrial suburbs and residential suburbs with labourers commuting between them Though factories dominated the Industrial Era the growth in the service sector eventually began to dethrone them verification needed the focus of labour in general shifted to central city office towers or to semi rural campus style establishments and many factories stood deserted in local rust belts The next blow to the traditional factories came from globalization Manufacturing processes or their logical successors assembly plants in the late 20th century re focussed in many instances on Special Economic Zones in developing countries or on maquiladoras just across the national boundaries of industrialized states Further re location to the least industrialized nations appears possible as the benefits of out sourcing and the lessons of flexible location apply in the future verification needed Governing the factory editMuch of management theory developed in response to the need to control factory processes verification needed Assumptions on the hierarchies of unskilled semi skilled and skilled laborers and their supervisors and managers still linger on however an example of a more contemporary approach to handle design applicable to manufacturing facilities can be found in Socio Technical Systems STS Shadow factories editA shadow factory is one of a number of manufacturing sites built in dispersed locations in times of war to reduce the risk of disruption due to enemy air raids and often with the dual purpose of increasing manufacturing capacity Before World War II Britain had built many shadow factories British shadow factories edit Main article British shadow factories Production of the Supermarine Spitfire at its parent company s base at Woolston Southampton was vulnerable to enemy attack as a high profile target and was well within range of Luftwaffe bombers Indeed on 26 September 1940 this facility was completely destroyed by an enemy bombing raid Supermarine had already established a plant at Castle Bromwich this action prompted them to further disperse Spitfire production around the country with many premises being requisitioned by the British Government 39 Connected to the Spitfire was production of its equally important Rolls Royce Merlin engine Rolls Royce s main aero engine facility was located at Derby the need for increased output was met by building new factories in Crewe and Glasgow and using a purpose built factory of Ford of Britain in Trafford Park Manchester 40 Gallery edit nbsp Zeche Ewald in Herten exterior 2011 nbsp Zeche Ewald in Herten interior 2011 nbsp Coldharbour Mill textile factory built in 1799 nbsp Adolph von Menzel Moderne Cyklopen nbsp New Lanark mill nbsp Workers in the fuse factory Woolwich Arsenal late 1800s nbsp The assembly plant of the Bell Aircraft Corporation at Wheatfield New York United States 1944 nbsp Interior of the Rouge Tool amp Die works 1944 nbsp Hyundai s Assembly line about 2005 nbsp Danisco Sweeteners factory in Kotka Finland 2015 nbsp First stages of Saturn V rockets being manufactured at the NASA Michoud rocket factory in the 1960s nbsp Space station modules being manufactured in the Space Station Processing Facility nbsp A ladle pouring molten steel into a Basic Oxygen Furnace for secondary steelmaking inside a steel mill factory in Germany nbsp Airplanes being manufactured at the Boeing Everett Factory assembly lineSee also edit nbsp Business and economics portalBritish shadow factoriescommunity shadow Company town Factory farm Factory system Factory trading post Industrial robot Industrial railway Industrial Revolution List of production topics Lockout Manufacturing Plant layout study Software factory Powerhouse instrumental Notes edit Landes David S 1969 The Unbound Prometheus Technological Change and Industrial Development in Western Europe from 1750 to the Present Cambridge New York Press Syndicate of the University of Cambridge ISBN 0 521 09418 6 Hozdic Elvis 2015 Smart Factory for Industry 4 0 A review International Journal of Modern Manufacturing Technologies 7 1 28 35 What Are Industrial Sheds Asset Building Archived from the original on 10 March 2020 John R Love Antiquity and Capitalism Max Weber and the Sociological Foundations of Roman Civilization Routledge 25 April 1991 Retrieved 12 July 2012 ISBN 0415047501 secondary JG Douglas N Douglas Ancient Households of the Americas Conceptualizing What Households Do O Reilly Media Inc 15 April 2012 Retrieved 12 July 2012 ISBN 1457117444 M Weber General Economic History Transaction Publishers 1981 Retrieved 12 July 2012 ISBN 0878556907 Demosthenes Robert Whiston Demosthenes Volume 2 Whittaker and Company 1868 Retrieved 12 July 2012 Herodotus George Rawlinson History of Herodotus John Murray 1862 Retrieved 12 July 2012 secondary E Hughes ed Oxford Companion to Philosophy techne P Garnsey K Hopkins C R Whittaker Trade in the Ancient Economy University of California Press 1983 Retrieved 12 July 2012 ISBN 0520048032 John Noble Wilford 13 October 2011 In African Cave Signs of an Ancient Paint Factory The New York Times Retrieved 14 October 2011 factory definition meaning what is factory in the British English Dictionary amp Thesaurus Cambridge Dictionaries Online cambridge org L von Mises Theory and History Ludwig von Mises Institute 2007 Retrieved 2012 07 12 ISBN 1933550198 E Bautista Paz M Ceccarelli J Echavarri Otero JL Munoz Sanz A Brief Illustrated History of Machines and Mechanisms Springer 12 May 2010 Retrieved 12 July 2012 ISBN 9048125111 JW Humphrey Ancient Technology Greenwood Publishing Group 30 September 2006 Retrieved 12 July 2012 ISBN 0313327637 WJ Hamblin Warfare in the Ancient Near East to 1600 BC Holy Warriors at the Dawn of History Taylor amp Francis 12 April 2006 Retrieved 12 July 2012 ISBN 0415255880 Mantoux Paul 2000 The Industrial Revolution in Eighteenth Century An Outline of the Beginnings of the Modern Factory System in England Harper amp Row ISBN 978 0061310799 Oates Joan McMahon Augusta Karsgaard Philip Quntar Salam Al Ur Jason September 2007 Early Mesopotamian urbanism a new view from the north Antiquity 81 313 585 600 doi 10 1017 S0003598X00095600 ISSN 0003 598X Knabb Kyle Andrew 2008 Understanding the role of production and craft specialization in ancient socio economic systems toward the integration of spatial analysis 3D modeling and virtual reality in archaeology MA University of California San Diego Gates Charles 2003 Ancient Cities The Archaeology of Urban Life in the Ancient Near East and Egypt Greece and Rome Psychology Press p 318 ISBN 9780415121828 Grzymski K 2008 Book review The Nubian pharaohs Black kings on the Nile American Journal of Archaeology Online Publications Book Review Retrieved from Archived copy PDF Archived from the original PDF on 5 November 2014 Retrieved 17 December 2014 a href Template Cite web html title Template Cite web cite web a CS1 maint archived copy as title link Selin Helaine 2013 Encyclopaedia of the History of Science Technology and Medicine in Non Westen Cultures Springer Science amp Business Media p 282 ISBN 9789401714167 Borschel Dan Amanda 16 December 2019 Factory for Romans favorite funky fish sauce discovered near Ashkelon www timesofisrael com Retrieved 18 December 2019 a b Hill Donald 2013 A History of Engineering in Classical and Medieval Times Routledge pp 163 166 ISBN 9781317761570 TK Derry TI Williams ed A Short History of Technology From the Earliest Times to A D 1900 Courier Dover Publications 24 March 1993 Retrieved 12 July 2012 ISBN 0486274721 A Pacey Technology in World Civilization A Thousand Year History MIT Press 1 July 1991 Retrieved 12 July 2012 ISBN 0262660725 WM Sumner Cultural development in the Kur River Basin Iran an archaeological analysis of settlement patterns University of Pennsylvania 1972 1 Retrieved 12 July 2012 Adam Lucas 2006 Wind Water Work Ancient and Medieval Milling Technology p 65 Brill Publishers ISBN 90 04 14649 0 ALTEKAR RAHUL V 1 January 2005 SUPPLY CHAIN MANAGEMENT CONCEPTS AND CASES PHI Learning Pvt Ltd ISBN 9788120328594 Marglin Stephen A 1 July 1974 What Do Bosses Do The Origins and Functions of Hierarchy in Capitalist Production PDF Review of Radical Political Economics 6 60 60 112 doi 10 1177 048661347400600206 S2CID 153641564 Retrieved 2 February 2019 Musson Robinson 1969 Science and Technology in the Industrial Revolution University of Toronto Press pp 491 95 ISBN 9780802016379 Hunter Louis C Bryant Lynwood Bryant Lynwood 1991 A History of Industrial Power in the United States 1730 1930 Vol 3 The Transmission of Power Cambridge Massachusetts London MIT Press ISBN 0 262 08198 9 Bob Casey John amp Horace Dodge 2010 Henry Ford and Innovation PDF The Henry Ford Dickens Phill Kelly Michael Williams John R October 2013 What are the significant trends shaping technology relevant to manufacturing PDF Government Office for Science UK Fishman Charles June 2017 The Future of Zero Gravity Living Is Here Smithsonian Magazine Javier Borda Hombre y Tecnologia 4 0 y mas Man and Technology 4 0 and beyond Sisteplant Publishers 2018 ISBN 978 84 09 02350 9 in Spanish El esceptico de la Industria 4 0 Personas frente a robots ELMUNDO in Spanish 13 October 2014 Retrieved 13 September 2023 The Bournville Story PDF Bournville Village Trust 2010 Price 1986 p 115 Pugh 2000 pp 192 198 References editNeedham Joseph 1986 Science and Civilization in China Volume 5 Part 1 Taipei Caves Books Ltd Thomas Dublin 1995 Transforming Women s Work page New England Lives in the Industrial Revolution 77 118 Cornell University Press Price Alfred The Spitfire Story Second edition London Arms and Armour Press Ltd 1986 ISBN 0 85368 861 3 Pugh Peter The Magic of a Name The Rolls Royce Story The First 40 Years Cambridge England Icon Books Ltd 2000 ISBN 1 84046 151 9 Thomas Dublin 1981 Women at Work The Transformation of Work and Community in Lowell Massachusetts 1826 1860 pp 86 107 New York Columbia University Press Biggs Lindy 1996 The rational factory architecture technology and work in America s age of mass production Johns Hopkins University Press ISBN 978 0 8018 5261 9 Further reading editChristian Gallope D 1987 Are the classical management functions useful in describing managerial processes Academy of Management Review v 12 n 1 pp 38 51 Peterson T 2004 Ongoing legacy of R L Katz an updated typology of management skills Management Decision v 42 n10 pp 1297 1308 Mintzberg H 1975 The manager s job Folklore and fact Harvard Business Review v 53 n 4 July August pp 49 61 Hales C 1999 Why do managers do what they do Reconciling evidence and theory in accounts of managerial processes British Journal of Management v 10 n4 pp 335 50 Mintzberg H 1994 Rounding out the Managers job Sloan Management Review v 36 n 1 pp 11 26 Rodrigues C 2001 Fayol s 14 principles then and now A plan for managing today s organizations effectively Management Decision v 39 n10 pp 880 89 Twomey D F 2006 Designed emergence as a path to enterprise Emergence Complexity amp Organization Vol 8 Issue 3 pp 12 23 McDonald G 2000 Business ethics practical proposals for organisations Journal of Business Ethics v 25 2 pp 169 85External links edit nbsp Look up factory in Wiktionary the free dictionary nbsp Wikimedia Commons has media related to Factories Mill Encyclopaedia Britannica Vol 18 11th ed 1911 Uhl Karsten 2 May 2016 Work Spaces From the Early Modern Workshop to the Modern Factory European History Online Mainz Leibniz Institute of European History IEG Retrieved from https en wikipedia org w index php title Factory amp oldid 1188344558, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.