fbpx
Wikipedia

Pressure vessel

A pressure vessel is a container designed to hold gases or liquids at a pressure substantially different from the ambient pressure.

A welded steel pressure vessel constructed as a horizontal cylinder with domed ends. An access cover can be seen at one end, and a drain valve at the bottom centre.

Construction methods and materials may be chosen to suit the pressure application, and will depend on the size of the vessel, the contents, working pressure, mass constraints, and the number of items required.

Pressure vessels can be dangerous, and fatal accidents have occurred in the history of their development and operation. Consequently, pressure vessel design, manufacture, and operation are regulated by engineering authorities backed by legislation. For these reasons, the definition of a pressure vessel varies from country to country.

Design involves parameters such as maximum safe operating pressure and temperature, safety factor, corrosion allowance and minimum design temperature (for brittle fracture). Construction is tested using nondestructive testing, such as ultrasonic testing, radiography, and pressure tests. Hydrostatic pressure tests usually use water, but pneumatic tests use air or another gas. Hydrostatic testing is preferred, because it is a safer method, as much less energy is released if a fracture occurs during the test (water does not greatly increase its volume when rapid depressurization occurs, unlike gases, which expand explosively). Mass or batch production products will often have a representative sample tested to destruction in controlled conditions for quality assurance. Pressure relief devices may be fitted if the overall safety of the system is sufficiently enhanced.

In most countries, vessels over a certain size and pressure must be built to a formal code. In the United States that code is the ASME Boiler and Pressure Vessel Code (BPVC). In Europe the code is the Pressure Equipment Directive. Information on this page is mostly valid in ASME only.[clarification needed] These vessels also require an authorized inspector to sign off on every new vessel constructed and each vessel has a nameplate with pertinent information about the vessel, such as maximum allowable working pressure, maximum temperature, minimum design metal temperature, what company manufactured it, the date, its registration number (through the National Board), and American Society of Mechanical Engineers's official stamp for pressure vessels (U-stamp). The nameplate makes the vessel traceable and officially an ASME Code vessel.

A special application is pressure vessels for human occupancy, for which more stringent safety rules apply.

History

 
A 10,000 psi (69 MPa) pressure vessel from 1919, wrapped with high tensile steel banding and steel rods to secure the end caps.

The earliest documented design of pressure vessels was described in 1495 in the book by Leonardo da Vinci, the Codex Madrid I, in which containers of pressurized air were theorized to lift heavy weights underwater.[1] However, vessels resembling those used today did not come about until the 1800s, when steam was generated in boilers helping to spur the industrial revolution.[1] However, with poor material quality and manufacturing techniques along with improper knowledge of design, operation and maintenance there was a large number of damaging and often Deathly explosions associated with these boilers and pressure vessels, with a death occurring on a nearly daily basis in the United States.[1] Local provinces and states in the US began enacting rules for constructing these vessels after some particularly devastating vessel failures occurred killing dozens of people at a time, which made it difficult for manufacturers to keep up with the varied rules from one location to another. The first pressure vessel code was developed starting in 1911 and released in 1914, starting the ASME Boiler and Pressure Vessel Code (BPVC).[1] In an early effort to design a tank capable of withstanding pressures up to 10,000 psi (69 MPa), a 6-inch (150 mm) diameter tank was developed in 1919 that was spirally-wound with two layers of high tensile strength steel wire to prevent sidewall rupture, and the end caps longitudinally reinforced with lengthwise high-tensile rods.[2] The need for high pressure and temperature vessels for petroleum refineries and chemical plants gave rise to vessels joined with welding instead of rivets (which were unsuitable for the pressures and temperatures required) and in the 1920s and 1930s the BPVC included welding as an acceptable means of construction; welding is the main means of joining metal vessels today.[1]

There have been many advancements in the field of pressure vessel engineering such as advanced non-destructive examination, phased array ultrasonic testing and radiography, new material grades with increased corrosion resistance and stronger materials, and new ways to join materials such as explosion welding, friction stir welding, advanced theories and means of more accurately assessing the stresses encountered in vessels such as with the use of Finite Element Analysis, allowing the vessels to be built safer and more efficiently. Today, vessels in the USA require BPVC stamping but the BPVC is not just a domestic code, many other countries have adopted the BPVC as their official code. There are, however, other official codes in some countries, such as Japan, Australia, Canada, Britain, and Europe. Regardless of the country, nearly all recognize the inherent potential hazards of pressure vessels and the need for standards and codes regulating their design and construction.

Features

Shape

Pressure vessels can theoretically be almost any shape, but shapes made of sections of spheres, cylinders, and cones are usually employed. A common design is a cylinder with end caps called heads. Head shapes are frequently either hemispherical or dished (torispherical). More complicated shapes have historically been much harder to analyze for safe operation and are usually far more difficult to construct.

Theoretically, a spherical pressure vessel has approximately twice the strength of a cylindrical pressure vessel with the same wall thickness,[3] and is the ideal shape to hold internal pressure.[1] However, a spherical shape is difficult to manufacture, and therefore more expensive, so most pressure vessels are cylindrical with 2:1 semi-elliptical heads or end caps on each end. Smaller pressure vessels are assembled from a pipe and two covers. For cylindrical vessels with a diameter up to 600 mm (NPS of 24 in), it is possible to use seamless pipe for the shell, thus avoiding many inspection and testing issues, mainly the nondestructive examination of radiography for the long seam if required. A disadvantage of these vessels is that greater diameters are more expensive, so that for example the most economic shape of a 1,000 litres (35 cu ft), 250 bars (3,600 psi) pressure vessel might be a diameter of 91.44 centimetres (36 in) and a length of 1.7018 metres (67 in) including the 2:1 semi-elliptical domed end caps.

Construction materials

 
Composite overwrapped pressure vessel with titanium liner.

Many pressure vessels are made of steel. To manufacture a cylindrical or spherical pressure vessel, rolled and possibly forged parts would have to be welded together. Some mechanical properties of steel, achieved by rolling or forging, could be adversely affected by welding, unless special precautions are taken. In addition to adequate mechanical strength, current standards dictate the use of steel with a high impact resistance, especially for vessels used in low temperatures. In applications where carbon steel would suffer corrosion, special corrosion resistant material should also be used.

Some pressure vessels are made of composite materials, such as filament wound composite using carbon fibre held in place with a polymer. Due to the very high tensile strength of carbon fibre these vessels can be very light, but are much more difficult to manufacture. The composite material may be wound around a metal liner, forming a composite overwrapped pressure vessel.

Other very common materials include polymers such as PET in carbonated beverage containers and copper in plumbing.

Pressure vessels may be lined with various metals, ceramics, or polymers to prevent leaking and protect the structure of the vessel from the contained medium. This liner may also carry a significant portion of the pressure load.[4][5]

Pressure Vessels may also be constructed from concrete (PCV) or other materials which are weak in tension. Cabling, wrapped around the vessel or within the wall or the vessel itself, provides the necessary tension to resist the internal pressure. A "leakproof steel thin membrane" lines the internal wall of the vessel. Such vessels can be assembled from modular pieces and so have "no inherent size limitations".[6] There is also a high order of redundancy thanks to the large number of individual cables resisting the internal pressure.

The very small vessels used to make liquid butane fueled cigarette lighters are subjected to about 2 bar pressure, depending on ambient temperature. These vessels are often oval (1 x 2 cm ... 1.3 x 2.5 cm) in cross section but sometimes circular. The oval versions generally include one or two internal tension struts which appear to be baffles but which also provide additional cylinder strength.

Working pressure

The typical circular-cylindrical high pressure gas cylinders for permanent gases (that do not liquify at storing pressure, like air, oxygen, nitrogen, hydrogen, argon, helium) have been manufactured by hot forging by pressing and rolling to get a seamless steel vessel.

Working pressure of cylinders for use in industry, skilled craft, diving and medicine had a standardized working pressure (WP) of only 150 bars (2,200 psi) in Europe until about 1950. From about 1975 until now, the standard pressure is 200 bars (2,900 psi). Firemen need slim, lightweight cylinders to move in confined spaces; since about 1995 cylinders for 300 bars (4,400 psi) WP were used (first in pure steel).[citation needed]

A demand for reduced weight led to different generations of composite (fiber and matrix, over a liner) cylinders that are more easily damageable by a hit from outside. Therefore, composite cylinders are usually built for 300 bars (4,400 psi).

Hydraulic (filled with water) testing pressure is usually 50% higher than the working pressure.

Vessel thread

Until 1990, high pressure cylinders were produced with conical (tapered) threads. Two types of threads have dominated the full metal cylinders in industrial use from 0.2 to 50 litres (0.0071 to 1.7657 cu ft) in volume. Taper thread (17E),[7] with a 12% taper right hand thread, standard Whitworth 55° form with a pitch of 14 threads per inch (5.5 threads per cm) and pitch diameter at the top thread of the cylinder of 18.036 millimetres (0.71 in). These connections are sealed using thread tape and torqued to between 120 and 150 newton-metres (89 and 111 lbf⋅ft) on steel cylinders, and between 75 and 140 N⋅m (55 and 103 lbf⋅ft) on aluminium cylinders.[8] To screw in the valve, a high torque of typically 200 N⋅m (150 lbf⋅ft) is necessary for the larger 25E taper thread,[9] and 100 N⋅m (74 lbf⋅ft) for the smaller 17E thread. Until around 1950, hemp was used as a sealant. Later, a thin sheet of lead pressed to a hat with a hole on top was used. Since 2005, PTFE-tape has been used to avoid using lead.[clarification needed]

A tapered thread provides simple assembly, but requires high torque for connecting and leads to high radial forces in the vessel neck. All cylinders built for 300 bar (4,400 psi) working pressure, all diving cylinders, and all composite cylinders use parallel threads.

Parallel threads are made to several standards:

  • M25x2 ISO parallel thread, which is sealed by an O-ring and torqued to 100 to 130 N⋅m (74 to 96 lbf⋅ft) on steel, and 95 to 130 N⋅m (70 to 96 lbf⋅ft) on aluminium cylinders;[8]
  • M18x1.5 parallel thread, which is sealed by an O-ring, and torqued to 100 to 130 N⋅m (74 to 96 lbf⋅ft) on steel cylinders, and 85 to 100 N⋅m (63 to 74 lbf⋅ft) on aluminium cylinders;[8]
  • 3/4"x14 BSP parallel thread,[10] which has a 55° Whitworth thread form, a pitch diameter of 25.279 millimetres (0.9952 in) and a pitch of 14 threads per inch (1.814 mm);
  • 3/4"x14 NGS[11] (NPSM) parallel thread, sealed by an O-ring, torqued to 40 to 50 N⋅m (30 to 37 lbf⋅ft) on aluminium cylinders,[12] which has a 60° thread form, a pitch diameter of 0.9820 to 0.9873 in (24.94 to 25.08 mm), and a pitch of 14 threads per inch (5.5 threads per cm);
  • 3/4"x16 UNF, sealed by an O-ring, torqued to 40 to 50 N⋅m (30 to 37 lbf⋅ft) on aluminium cylinders.[12]
  • 7/8"x14 UNF, sealed by an O-ring.[13]

The 3/4"NGS and 3/4"BSP are very similar, having the same pitch and a pitch diameter that only differs by about 0.2 mm (0.008 in), but they are not compatible, as the thread forms are different.

All parallel thread valves are sealed using an elastomer O-ring at top of the neck thread which seals in a chamfer or step in the cylinder neck and against the flange of the valve.

Development of composite vessels

To classify the different structural principles cylinders, 4 types are defined.[citation needed]

  • Type 1 – Full metal: Cylinder is made entirely from metal.
  • Type 2 – Hoop wrap: Metal cylinder, reinforced by a belt-like hoop wrap with fibre-reinforced resin.
  • Type 3 – Fully wrapped, over metal liner: Diagonally wrapped fibres form the load bearing shell on the cylindrical section and at the bottom and shoulder around the metal neck. The metal liner is thin and provides the gas tight barrier.
  • Type 4 – Fully wrapped, over non-metal liner: A lightweight thermoplastic liner provides the gas tight barrier, and the mandrel to wrap fibres and resin matrix around. Only the neck which carries the neck thread and its anchor to the liner is made of metal, which may be lightweight aluminium or sturdy stainless steel.

Type 2 and 3 cylinders have been in production since around 1995. Type 4 cylinders are commercially available at least since 2016.[citation needed]

Safety features

Leak before burst

Leak before burst describes a pressure vessel designed such that a crack in the vessel will grow through the wall, allowing the contained fluid to escape and reducing the pressure, prior to growing so large as to cause fracture at the operating pressure.

Many pressure vessel standards, including the ASME Boiler and Pressure Vessel Code[14] and the AIAA metallic pressure vessel standard, either require pressure vessel designs to be leak before burst, or require pressure vessels to meet more stringent requirements for fatigue and fracture if they are not shown to be leak before burst.[15]

Safety valves

 
Example of a valve used for gas cylinders.[clarification needed]

As the pressure vessel is designed to a pressure, there is typically a safety valve or relief valve to ensure that this pressure is not exceeded in operation.

Maintenance features

Pressure vessel closures

Pressure vessel closures are pressure retaining structures designed to provide quick access to pipelines, pressure vessels, pig traps, filters and filtration systems. Typically pressure vessel closures allow access by maintenance personnel. A commonly used access hole shape is elliptical, which allows the closure to be passed through the opening, and rotated into the working position, and is held in place by a bar on the outside, secured by a central bolt. The internal pressure prevents it from being inadvertently opened under load.

Uses

 
Preserved H.K. Porter, Inc. No. 3290 of 1923 powered by compressed air stored in a horizontal riveted pressure vessel

Pressure vessels are used in a variety of applications in both industry and the private sector. They appear in these sectors as industrial compressed air receivers, boilers and domestic hot water storage tanks. Other examples of pressure vessels are diving cylinders, recompression chambers, distillation towers, pressure reactors, autoclaves, and many other vessels in mining operations, oil refineries and petrochemical plants, nuclear reactor vessels, submarine and space ship habitats, atmospheric diving suits, pneumatic reservoirs, hydraulic reservoirs under pressure, rail vehicle airbrake reservoirs, road vehicle airbrake reservoirs, and storage vessels for high pressure permanent gases and liquified gases such as ammonia, chlorine, and LPG (propane, butane).

A unique application of a pressure vessel is the passenger cabin of an airliner: the outer skin carries both the aircraft maneuvering loads and the cabin pressurization loads.[clarification needed]

Alternatives

Depending on the application and local circumstances, alternatives to pressure vessels exist. Examples can be seen in domestic water collection systems, where the following may be used:

  • Gravity-controlled systems[16] which typically consist of an unpressurized water tank at an elevation higher than the point of use. Pressure at the point of use is the result of the hydrostatic pressure caused by the elevation difference. Gravity systems produce 0.43 pounds per square inch (3.0 kPa) per foot of water head (elevation difference). A municipal water supply or pumped water is typically around 90 pounds per square inch (620 kPa).
  • Inline pump controllers or pressure-sensitive pumps.[17]
  • In nuclear reactors, pressure vessels are primarily used to keep the coolant (water) liquid at high temperatures to increase Carnot efficiency. Other coolants can be kept at high temperatures with much less pressure, explaining the interest in molten salt reactors, lead cooled fast reactors and gas cooled reactors. However, the benefits of not needing a pressure vessel or one of less pressure are in part compensated by drawbacks unique to each alternative approach.

Design

Scaling

No matter what shape it takes, the minimum mass of a pressure vessel scales with the pressure and volume it contains and is inversely proportional to the strength to weight ratio of the construction material (minimum mass decreases as strength increases[18]).

Scaling of stress in walls of vessel

Pressure vessels are held together against the gas pressure due to tensile forces within the walls of the container. The normal (tensile) stress in the walls of the container is proportional to the pressure and radius of the vessel and inversely proportional to the thickness of the walls.[19] Therefore, pressure vessels are designed to have a thickness proportional to the radius of tank and the pressure of the tank and inversely proportional to the maximum allowed normal stress of the particular material used in the walls of the container.

Because (for a given pressure) the thickness of the walls scales with the radius of the tank, the mass of a tank (which scales as the length times radius times thickness of the wall for a cylindrical tank) scales with the volume of the gas held (which scales as length times radius squared). The exact formula varies with the tank shape but depends on the density, ρ, and maximum allowable stress σ of the material in addition to the pressure P and volume V of the vessel. (See below for the exact equations for the stress in the walls.)

Spherical vessel

For a sphere, the minimum mass of a pressure vessel is

 ,

where:

  •   is mass, (kg)
  •   is the pressure difference from ambient (the gauge pressure), (Pa)
  •   is volume,
  •   is the density of the pressure vessel material, (kg/m3)
  •   is the maximum working stress that material can tolerate. (Pa)[20]

Other shapes besides a sphere have constants larger than 3/2 (infinite cylinders take 2), although some tanks, such as non-spherical wound composite tanks can approach this.

Cylindrical vessel with hemispherical ends

This is sometimes called a "bullet"[citation needed] for its shape, although in geometric terms it is a capsule.

For a cylinder with hemispherical ends,

 ,

where

  • R is the Radius (m)
  • W is the middle cylinder width only, and the overall width is W + 2R (m)[21]

Cylindrical vessel with semi-elliptical ends

In a vessel with an aspect ratio of middle cylinder width to radius of 2:1,

 .

Gas storage

In looking at the first equation, the factor PV, in SI units, is in units of (pressurization) energy. For a stored gas, PV is proportional to the mass of gas at a given temperature, thus

 . (see gas law)

The other factors are constant for a given vessel shape and material. So we can see that there is no theoretical "efficiency of scale", in terms of the ratio of pressure vessel mass to pressurization energy, or of pressure vessel mass to stored gas mass. For storing gases, "tankage efficiency" is independent of pressure, at least for the same temperature.

So, for example, a typical design for a minimum mass tank to hold helium (as a pressurant gas) on a rocket would use a spherical chamber for a minimum shape constant, carbon fiber for best possible  , and very cold helium for best possible  .

Stress in thin-walled pressure vessels

Stress in a thin-walled pressure vessel in the shape of a sphere is

 ,

where   is hoop stress, or stress in the circumferential direction,   is stress in the longitudinal direction, p is internal gauge pressure, r is the inner radius of the sphere, and t is thickness of the sphere wall. A vessel can be considered "thin-walled" if the diameter is at least 10 times (sometimes cited as 20 times) greater than the wall thickness.[22]

 
Stress in the cylinder body of a pressure vessel.

Stress in a thin-walled pressure vessel in the shape of a cylinder is

 ,
 ,

where:

  •   is hoop stress, or stress in the circumferential direction
  •   is stress in the longitudinal direction
  • p is internal gauge pressure
  • r is the inner radius of the cylinder
  • t is thickness of the cylinder wall.

Almost all pressure vessel design standards contain variations of these two formulas with additional empirical terms to account for variation of stresses across thickness, quality control of welds and in-service corrosion allowances. All formulae mentioned above assume uniform distribution of membrane stresses across thickness of shell but in reality, that is not the case. Deeper analysis is given by Lamé's theorem, which gives the distribution of stress in the walls of a thick-walled cylinder of a homogeneous and isotropic material. The formulae of pressure vessel design standards are extension of Lamé's theorem by putting some limit on ratio of inner radius and thickness.

For example, the ASME Boiler and Pressure Vessel Code (BPVC) (UG-27) formulas are:[23]

Spherical shells: Thickness has to be less than 0.356 times inner radius

 

Cylindrical shells: Thickness has to be less than 0.5 times inner radius

 
 

where E is the joint efficiency, and all others variables as stated above.

The factor of safety is often included in these formulas as well, in the case of the ASME BPVC this term is included in the material stress value when solving for pressure or thickness.

Winding angle of carbon fibre vessels

Wound infinite cylindrical shapes optimally take a winding angle of 54.7 degrees to the cylindrical axis, as this gives the necessary twice the strength in the circumferential direction to the longitudinal.[24]

Construction methods

Riveted

The standard method of construction for boilers, compressed air receivers and other pressure vessels of iron or steel before gas and electrical welding of reliable quality became widespread was riveted sheets which had been rolled and forged into shape, then riveted together, often using butt straps along the joints, and caulked along the riveted seams by deforming the edges of the overlap with a blunt chisel. Hot riveting caused the rivets to contract on cooling, forming a tighter joint.[25]

Seamless

Manufacturing methods for seamless metal pressure vessels are commonly used for relatively small diameter cylinders where large numbers will be produced, as the machinery and tooling require large capital outlay. The methods are well suited to high pressure gas transport and storage applications, and provide consistently high quality products.

Backward extrusion: A process by which the material is forced to flow back along the mandrel between the mandrel and die.

Cold extrusion (aluminium):

Seamless aluminium cylinders may be manufactured by cold backward extrusion of aluminium billets in a process which first presses the walls and base, then trims the top edge of the cylinder walls, followed by press forming the shoulder and neck.[26]

Hot extrusion (steel):

In the hot extrusion process a billet of steel is cut to size, induction heated to the correct temperature for the alloy, descaled and placed in the die. The metal is backward extruded by forcing the mandrel into it, causing it to flow through the annular gap until a deep cup is formed. This cup is further drawn to diameter and wall thickness reduced and the bottom formed. After inspection and trimming of the open end The cylinder is hot spun to close the end and form the neck.[27]

Drawn:

 
Animation showing two stages of deep drawing of a steel plate to a cup, and a similar cup to a diving cylinder blank with domed bottom

Seamless cylinders may also be cold drawn from steel plate discs to a cylindrical cup form, in two or three stages. After forming the base and side walls, the top of the cylinder is trimmed to length, heated and hot spun to form the shoulder and close the neck. This process thickens the material of the shoulder. The cylinder is heat-treated by quenching and tempering to provide the best strength and toughness.[28]

 
Hydrostatic test of structurally complete cylinder

Regardless of the method used to form the cylinder, it will be machined to finish the neck and cut the neck threads, heat treated, cleaned, and surface finished, stamp marked, tested, and inspected for quality assurance.[28][27][26]

Welded

Large and low pressure vessels are commonly manufactured from formed plates welded together. Weld quality is critical to safety in pressure vessels for human occupancy.

Composite

Composite pressure vessels are generally filament wound rovings in a thermosetting polymer matrix. The mandrel may be removable after cure, or may remain a part of the finished product, often providing a more reliable gas or liquid-tight liner, or better chemical resistance to the intended contents than the resin matrix. Metallic inserts may be provided for attaching threaded accessories, such as valves and pipes.

Operation standards

Pressure vessels are designed to operate safely at a specific pressure and temperature, technically referred to as the "Design Pressure" and "Design Temperature". A vessel that is inadequately designed to handle a high pressure constitutes a very significant safety hazard. Because of that, the design and certification of pressure vessels is governed by design codes such as the ASME Boiler and Pressure Vessel Code in North America, the Pressure Equipment Directive of the EU (PED), Japanese Industrial Standard (JIS), CSA B51 in Canada, Australian Standards in Australia and other international standards like Lloyd's, Germanischer Lloyd, Det Norske Veritas, Société Générale de Surveillance (SGS S.A.), Lloyd’s Register Energy Nederland (formerly known as Stoomwezen) etc.

Note that where the pressure-volume product is part of a safety standard, any incompressible liquid in the vessel can be excluded as it does not contribute to the potential energy stored in the vessel, so only the volume of the compressible part such as gas is used.

List of standards

  • EN 13445: The current European Standard, harmonized with the Pressure Equipment Directive (Originally "97/23/EC", since 2014 "2014/68/EU"). Extensively used in Europe.
  • ASME Boiler and Pressure Vessel Code Section VIII: Rules for Construction of Pressure Vessels.
  • BS 5500: Former British Standard, replaced in the UK by BS EN 13445 but retained under the name PD 5500 for the design and construction of export equipment.
  • AD Merkblätter: German standard, harmonized with the Pressure Equipment Directive.
  • EN 286 (Parts 1 to 4): European standard for simple pressure vessels (air tanks), harmonized with Council Directive 87/404/EEC.
  • BS 4994: Specification for design and construction of vessels and tanks in reinforced plastics.
  • ASME PVHO: US standard for Pressure Vessels for Human Occupancy.
  • CODAP: French Code for Construction of Unfired Pressure Vessel.
  • AS/NZS 1200: Australian and New Zealand Standard for the requirements of Pressure equipment including Pressure Vessels, boilers and pressure piping.[29]
  • AS 1210: Australian Standard for the design and construction of Pressure Vessels
  • AS/NZS 3788: Australian and New Zealand Standard for the inspection of pressure vessels [30]
  • API 510.[31]
  • ISO 11439: Compressed natural gas (CNG) cylinders[32]
  • IS 2825–1969 (RE1977)_code_unfired_Pressure_vessels.
  • FRP tanks and vessels.
  • AIAA S-080-1998: AIAA Standard for Space Systems – Metallic Pressure Vessels, Pressurized Structures, and Pressure Components.
  • AIAA S-081A-2006: AIAA Standard for Space Systems – Composite Overwrapped Pressure Vessels (COPVs).
  • ECSS-E-ST-32-02C Rev.1: Space engineering – Structural design and verification of pressurized hardware
  • B51-09 Canadian Boiler, pressure vessel, and pressure piping code.
  • HSE guidelines for pressure systems.
  • Stoomwezen: Former pressure vessels code in the Netherlands, also known as RToD: Regels voor Toestellen onder Druk (Dutch Rules for Pressure Vessels).
  • SANS 10019:2021 South African National Standard: Transportable pressure receptacles for compressed, dissolved and liquefied gases - Basic design, manufacture, use and maintenance.
  • SANS 1825:2010 Edition 3: South African National Standard: Gas cylinder test stations ― General requirements for periodic inspection and testing of transportable refillable gas pressure receptacles. ISBN 978-0-626-23561-1

See also

Notes

  1. ^ a b c d e f Nilsen, Kyle. (2011) "Development of low pressure filter testing vessel and analysis of electrospun nanofiber membranes for water treatment"
  2. ^ Ingenious Coal-Gas Motor Tank, Popular Science monthly, January 1919, page 27, Scanned by Google Books: https://books.google.com/books?id=HykDAAAAMBAJ&pg=PA13
  3. ^ Hearn, E.J. (1997). "Chapter 9". Mechanics of Materials 1. An Introduction to the Mechanics of Elastic and Plastic Deformation of Solids and Structural Materials (Third ed.). Butterworth-Heinemann. pp. 199–203. ISBN 0-7506-3265-8.
  4. ^ NASA Tech Briefs, "Making a Metal-Lined Composite Overwrapped Pressure Vessel", 1 Mar 2005.
  5. ^ Frietas, O., "Maintenance and Repair of Glass-Lined Equipment", Chemical Engineering, 1 Jul 2007.
  6. ^ "High Pressure Vessels",D. Freyer and J. Harvey, 1998
  7. ^ Technical Committee 58 Gas cylinders (25 March 1999). ISO 11116-1: Gas cylinders – 17E taper thread for connection of valves to gas cylinders (First ed.). Geneva, Switzerland: International Standards Organization.
  8. ^ a b c Technical Committee ISO/TC 58, Gas cylinders. (15 October 1997). ISO 13341:1997 Transportable gas cylinders – Fitting of valves to gas cylinders (1st ed.). Geneva, Switzerland: International Standards Organisation.
  9. ^ ISO 11363-1:2010 Gas cylinders — 17E and 25E taper threads for connection of valves to gas cylinders — Part 1: Specifications. Geneva, Switzerland: International Standards Organisation. May 2010.
  10. ^ Committee MCE/18 (1986). Specification for pipe threads for tubes and fittings where pressure-tight joints are not made on the threads (metric dimensions). British Standard 2779. London: British Standards Institution. ISBN 0-580-15212-X.{{cite book}}: CS1 maint: uses authors parameter (link)
  11. ^ Metal Cutting Tool Institute (1989). "Tap and Die section: American Standard Gas Cylinder Valve Threads". Metal Cutting Tool Handbook (illustrated ed.). Industrial Press Inc. p. 447. ISBN 9780831111779. Retrieved 7 December 2016.
  12. ^ a b Staff. "Valving of SCUBA (Air) Cylinders". Support documents. Garden Grove, California: Catalina Cylinders. Retrieved 13 November 2016.
  13. ^ Staff. "Luxfer Limited 106". Catalog. XS Scuba. Retrieved 7 August 2016.
  14. ^ Sashi Kanta Panigrahi, Niranjan Sarangi (2017). Aero Engine Combustor Casing: Experimental Design and Fatigue Studies. CRC Press. pp. 4–45. ISBN 9781351642835.
  15. ^ ANSI/AIAA S-080-1998, Space Systems – Metallic Pressure Vessels, Pressurized Structures, and Pressure Components, §5.1
  16. ^ Pushard, Doug (2005). "Domestic water collection systems also sometimes able to function on gravity". Harvesth2o.com. Retrieved 2009-04-17.[verification needed]
  17. ^ Pushard, Doug. "Alternatives to pressure vessels in domestic water systems". Harvesth2o.com. Retrieved 2009-04-17.
  18. ^ Puskarich, Paul (2009-05-01). (PDF). MIT. Archived from the original (PDF) on 2012-03-15. Retrieved 2009-04-17. {{cite journal}}: Cite journal requires |journal= (help)
  19. ^ Beer, Ferdinand P.; Johnston, E. Russel Jr.; DeWolf, John T. (2002). "7.9". Mechanics of Materials (fourth ed.). McGraw-Hill. p. 463. ISBN 9780073659350.
  20. ^ For a sphere the thickness d = rP/2σ, where r is the radius of the tank. The volume of the spherical surface then is 4πr2d = 4πr3P/2σ. The mass is determined by multiplying by the density of the material that makes up the walls of the spherical vessel. Further the volume of the gas is (4πr3)/3. Combining these equations give the above results. The equations for the other geometries are derived in a similar manner
  21. ^ "Mass of pressure Cylindrical vessel with hemispherical ends( capsule) – calculator – fxSolver". www.fxsolver.com. Retrieved 2017-04-11.
  22. ^ Richard Budynas, J. Nisbett, Shigley's Mechanical Engineering Design, 8th ed., New York:McGraw-Hill, ISBN 978-0-07-312193-2, pg 108
  23. ^ An International Code 2007 ASME Boiler & Pressure Vessel Code. The American Society of Mechanical Engineers. 2007.
  24. ^ MIT pressure vessel lecture
  25. ^ Oberg, Erik; Jones, Franklin D. (1973). Horton, Holbrook L. (ed.). Machinery's Handbook (19th ed.). Brighton, England: Machinery Publishing Co. Inc. pp. 1239–1254.
  26. ^ a b Staff (2015). . Salford, UK: Luxfer Gas Cylinders, Luxfer Holdings PLC. Archived from the original on 25 December 2015. Retrieved 25 December 2015.
  27. ^ a b "Vítkovice Cylinders". www.vitkovice.az. Retrieved 1 April 2021.
  28. ^ a b Worthington steel. "Making a Worthington X-Series Steel Scuba Cylinder". YouTube. Archived from the original on 2021-12-21.
  29. ^ "AS 1200 Pressure Vessels". SAI Global. Archived from the original on 9 July 2012. Retrieved 14 November 2011.
  30. ^ "AS_NZS 3788: 2006 Pressure equipment – In-service inspection". SAI Global. Retrieved September 4, 2015.
  31. ^ "Pressure Vessel Inspection Code: In-Service Inspection, Rating, Repair, and Alteration". API. June 2006.
  32. ^ ."Gas cylinders – High pressure cylinders for the on-board storage of natural gas as a fuel for automotive vehicles". ISO. 2006-07-18. Retrieved 2009-04-17.

References

  • A.C. Ugural, S.K. Fenster, Advanced Strength and Applied Elasticity, 4th ed.
  • E.P. Popov, Engineering Mechanics of Solids, 1st ed.
  • Megyesy, Eugene F. "Pressure Vessel Handbook, 14th Edition." PV Publishing, Inc. Oklahoma City, OK

Further reading

  • Megyesy, Eugene F. (2008, 14th ed.) Pressure Vessel Handbook. PV Publishing, Inc.: Oklahoma City, Oklahoma, USA. www.pressurevesselhandbook.com Design handbook for pressure vessels based on the ASME code.

External links

  • Basic formulas for thin walled pressure vessels, with examples
  • Educational Excel spreadsheets for ASME head, shell and nozzle designs
  • Journal of Pressure Vessel Technology 2012-10-15 at the Wayback Machine
  • Pressure vessel attachments
  • Image of a carbon-fiber composite gas cylinder, showing construction details
  • Image of a carbon-fiber composite oxygen cylinder for an industrial breathing set

pressure, vessel, pressure, chamber, redirects, here, chambers, intended, human, occupancy, hypobaric, chamber, diving, chamber, pressure, vessel, container, designed, hold, gases, liquids, pressure, substantially, different, from, ambient, pressure, welded, s. Pressure chamber redirects here For chambers intended for human occupancy see Hypobaric chamber and Diving chamber A pressure vessel is a container designed to hold gases or liquids at a pressure substantially different from the ambient pressure A welded steel pressure vessel constructed as a horizontal cylinder with domed ends An access cover can be seen at one end and a drain valve at the bottom centre Construction methods and materials may be chosen to suit the pressure application and will depend on the size of the vessel the contents working pressure mass constraints and the number of items required Pressure vessels can be dangerous and fatal accidents have occurred in the history of their development and operation Consequently pressure vessel design manufacture and operation are regulated by engineering authorities backed by legislation For these reasons the definition of a pressure vessel varies from country to country Design involves parameters such as maximum safe operating pressure and temperature safety factor corrosion allowance and minimum design temperature for brittle fracture Construction is tested using nondestructive testing such as ultrasonic testing radiography and pressure tests Hydrostatic pressure tests usually use water but pneumatic tests use air or another gas Hydrostatic testing is preferred because it is a safer method as much less energy is released if a fracture occurs during the test water does not greatly increase its volume when rapid depressurization occurs unlike gases which expand explosively Mass or batch production products will often have a representative sample tested to destruction in controlled conditions for quality assurance Pressure relief devices may be fitted if the overall safety of the system is sufficiently enhanced In most countries vessels over a certain size and pressure must be built to a formal code In the United States that code is the ASME Boiler and Pressure Vessel Code BPVC In Europe the code is the Pressure Equipment Directive Information on this page is mostly valid in ASME only clarification needed These vessels also require an authorized inspector to sign off on every new vessel constructed and each vessel has a nameplate with pertinent information about the vessel such as maximum allowable working pressure maximum temperature minimum design metal temperature what company manufactured it the date its registration number through the National Board and American Society of Mechanical Engineers s official stamp for pressure vessels U stamp The nameplate makes the vessel traceable and officially an ASME Code vessel A special application is pressure vessels for human occupancy for which more stringent safety rules apply Contents 1 History 2 Features 2 1 Shape 2 2 Construction materials 2 2 1 Working pressure 2 2 2 Vessel thread 2 2 3 Development of composite vessels 2 3 Safety features 2 3 1 Leak before burst 2 3 2 Safety valves 2 4 Maintenance features 2 4 1 Pressure vessel closures 3 Uses 4 Alternatives 5 Design 5 1 Scaling 5 1 1 Scaling of stress in walls of vessel 5 1 2 Spherical vessel 5 1 3 Cylindrical vessel with hemispherical ends 5 1 4 Cylindrical vessel with semi elliptical ends 5 1 5 Gas storage 5 2 Stress in thin walled pressure vessels 5 3 Winding angle of carbon fibre vessels 6 Construction methods 6 1 Riveted 6 2 Seamless 6 3 Welded 6 4 Composite 7 Operation standards 7 1 List of standards 8 See also 9 Notes 10 References 11 Further reading 12 External linksHistory Edit A 10 000 psi 69 MPa pressure vessel from 1919 wrapped with high tensile steel banding and steel rods to secure the end caps The earliest documented design of pressure vessels was described in 1495 in the book by Leonardo da Vinci the Codex Madrid I in which containers of pressurized air were theorized to lift heavy weights underwater 1 However vessels resembling those used today did not come about until the 1800s when steam was generated in boilers helping to spur the industrial revolution 1 However with poor material quality and manufacturing techniques along with improper knowledge of design operation and maintenance there was a large number of damaging and often Deathly explosions associated with these boilers and pressure vessels with a death occurring on a nearly daily basis in the United States 1 Local provinces and states in the US began enacting rules for constructing these vessels after some particularly devastating vessel failures occurred killing dozens of people at a time which made it difficult for manufacturers to keep up with the varied rules from one location to another The first pressure vessel code was developed starting in 1911 and released in 1914 starting the ASME Boiler and Pressure Vessel Code BPVC 1 In an early effort to design a tank capable of withstanding pressures up to 10 000 psi 69 MPa a 6 inch 150 mm diameter tank was developed in 1919 that was spirally wound with two layers of high tensile strength steel wire to prevent sidewall rupture and the end caps longitudinally reinforced with lengthwise high tensile rods 2 The need for high pressure and temperature vessels for petroleum refineries and chemical plants gave rise to vessels joined with welding instead of rivets which were unsuitable for the pressures and temperatures required and in the 1920s and 1930s the BPVC included welding as an acceptable means of construction welding is the main means of joining metal vessels today 1 There have been many advancements in the field of pressure vessel engineering such as advanced non destructive examination phased array ultrasonic testing and radiography new material grades with increased corrosion resistance and stronger materials and new ways to join materials such as explosion welding friction stir welding advanced theories and means of more accurately assessing the stresses encountered in vessels such as with the use of Finite Element Analysis allowing the vessels to be built safer and more efficiently Today vessels in the USA require BPVC stamping but the BPVC is not just a domestic code many other countries have adopted the BPVC as their official code There are however other official codes in some countries such as Japan Australia Canada Britain and Europe Regardless of the country nearly all recognize the inherent potential hazards of pressure vessels and the need for standards and codes regulating their design and construction Features EditShape Edit Pressure vessels can theoretically be almost any shape but shapes made of sections of spheres cylinders and cones are usually employed A common design is a cylinder with end caps called heads Head shapes are frequently either hemispherical or dished torispherical More complicated shapes have historically been much harder to analyze for safe operation and are usually far more difficult to construct Spherical gas container Cylindrical pressure vessel Picture of the bottom of an aerosol spray can Fire Extinguisher with rounded rectangle pressure vesselTheoretically a spherical pressure vessel has approximately twice the strength of a cylindrical pressure vessel with the same wall thickness 3 and is the ideal shape to hold internal pressure 1 However a spherical shape is difficult to manufacture and therefore more expensive so most pressure vessels are cylindrical with 2 1 semi elliptical heads or end caps on each end Smaller pressure vessels are assembled from a pipe and two covers For cylindrical vessels with a diameter up to 600 mm NPS of 24 in it is possible to use seamless pipe for the shell thus avoiding many inspection and testing issues mainly the nondestructive examination of radiography for the long seam if required A disadvantage of these vessels is that greater diameters are more expensive so that for example the most economic shape of a 1 000 litres 35 cu ft 250 bars 3 600 psi pressure vessel might be a diameter of 91 44 centimetres 36 in and a length of 1 7018 metres 67 in including the 2 1 semi elliptical domed end caps Construction materials Edit Composite overwrapped pressure vessel with titanium liner Many pressure vessels are made of steel To manufacture a cylindrical or spherical pressure vessel rolled and possibly forged parts would have to be welded together Some mechanical properties of steel achieved by rolling or forging could be adversely affected by welding unless special precautions are taken In addition to adequate mechanical strength current standards dictate the use of steel with a high impact resistance especially for vessels used in low temperatures In applications where carbon steel would suffer corrosion special corrosion resistant material should also be used Some pressure vessels are made of composite materials such as filament wound composite using carbon fibre held in place with a polymer Due to the very high tensile strength of carbon fibre these vessels can be very light but are much more difficult to manufacture The composite material may be wound around a metal liner forming a composite overwrapped pressure vessel Other very common materials include polymers such as PET in carbonated beverage containers and copper in plumbing Pressure vessels may be lined with various metals ceramics or polymers to prevent leaking and protect the structure of the vessel from the contained medium This liner may also carry a significant portion of the pressure load 4 5 Pressure Vessels may also be constructed from concrete PCV or other materials which are weak in tension Cabling wrapped around the vessel or within the wall or the vessel itself provides the necessary tension to resist the internal pressure A leakproof steel thin membrane lines the internal wall of the vessel Such vessels can be assembled from modular pieces and so have no inherent size limitations 6 There is also a high order of redundancy thanks to the large number of individual cables resisting the internal pressure The very small vessels used to make liquid butane fueled cigarette lighters are subjected to about 2 bar pressure depending on ambient temperature These vessels are often oval 1 x 2 cm 1 3 x 2 5 cm in cross section but sometimes circular The oval versions generally include one or two internal tension struts which appear to be baffles but which also provide additional cylinder strength Working pressure Edit The typical circular cylindrical high pressure gas cylinders for permanent gases that do not liquify at storing pressure like air oxygen nitrogen hydrogen argon helium have been manufactured by hot forging by pressing and rolling to get a seamless steel vessel Working pressure of cylinders for use in industry skilled craft diving and medicine had a standardized working pressure WP of only 150 bars 2 200 psi in Europe until about 1950 From about 1975 until now the standard pressure is 200 bars 2 900 psi Firemen need slim lightweight cylinders to move in confined spaces since about 1995 cylinders for 300 bars 4 400 psi WP were used first in pure steel citation needed A demand for reduced weight led to different generations of composite fiber and matrix over a liner cylinders that are more easily damageable by a hit from outside Therefore composite cylinders are usually built for 300 bars 4 400 psi Hydraulic filled with water testing pressure is usually 50 higher than the working pressure Vessel thread Edit Until 1990 high pressure cylinders were produced with conical tapered threads Two types of threads have dominated the full metal cylinders in industrial use from 0 2 to 50 litres 0 0071 to 1 7657 cu ft in volume Taper thread 17E 7 with a 12 taper right hand thread standard Whitworth 55 form with a pitch of 14 threads per inch 5 5 threads per cm and pitch diameter at the top thread of the cylinder of 18 036 millimetres 0 71 in These connections are sealed using thread tape and torqued to between 120 and 150 newton metres 89 and 111 lbf ft on steel cylinders and between 75 and 140 N m 55 and 103 lbf ft on aluminium cylinders 8 To screw in the valve a high torque of typically 200 N m 150 lbf ft is necessary for the larger 25E taper thread 9 and 100 N m 74 lbf ft for the smaller 17E thread Until around 1950 hemp was used as a sealant Later a thin sheet of lead pressed to a hat with a hole on top was used Since 2005 PTFE tape has been used to avoid using lead clarification needed A tapered thread provides simple assembly but requires high torque for connecting and leads to high radial forces in the vessel neck All cylinders built for 300 bar 4 400 psi working pressure all diving cylinders and all composite cylinders use parallel threads Parallel threads are made to several standards M25x2 ISO parallel thread which is sealed by an O ring and torqued to 100 to 130 N m 74 to 96 lbf ft on steel and 95 to 130 N m 70 to 96 lbf ft on aluminium cylinders 8 M18x1 5 parallel thread which is sealed by an O ring and torqued to 100 to 130 N m 74 to 96 lbf ft on steel cylinders and 85 to 100 N m 63 to 74 lbf ft on aluminium cylinders 8 3 4 x14 BSP parallel thread 10 which has a 55 Whitworth thread form a pitch diameter of 25 279 millimetres 0 9952 in and a pitch of 14 threads per inch 1 814 mm 3 4 x14 NGS 11 NPSM parallel thread sealed by an O ring torqued to 40 to 50 N m 30 to 37 lbf ft on aluminium cylinders 12 which has a 60 thread form a pitch diameter of 0 9820 to 0 9873 in 24 94 to 25 08 mm and a pitch of 14 threads per inch 5 5 threads per cm 3 4 x16 UNF sealed by an O ring torqued to 40 to 50 N m 30 to 37 lbf ft on aluminium cylinders 12 7 8 x14 UNF sealed by an O ring 13 The 3 4 NGS and 3 4 BSP are very similar having the same pitch and a pitch diameter that only differs by about 0 2 mm 0 008 in but they are not compatible as the thread forms are different All parallel thread valves are sealed using an elastomer O ring at top of the neck thread which seals in a chamfer or step in the cylinder neck and against the flange of the valve Development of composite vessels Edit To classify the different structural principles cylinders 4 types are defined citation needed Type 1 Full metal Cylinder is made entirely from metal Type 2 Hoop wrap Metal cylinder reinforced by a belt like hoop wrap with fibre reinforced resin Type 3 Fully wrapped over metal liner Diagonally wrapped fibres form the load bearing shell on the cylindrical section and at the bottom and shoulder around the metal neck The metal liner is thin and provides the gas tight barrier Type 4 Fully wrapped over non metal liner A lightweight thermoplastic liner provides the gas tight barrier and the mandrel to wrap fibres and resin matrix around Only the neck which carries the neck thread and its anchor to the liner is made of metal which may be lightweight aluminium or sturdy stainless steel Type 2 and 3 cylinders have been in production since around 1995 Type 4 cylinders are commercially available at least since 2016 citation needed Safety features Edit Leak before burst Edit Leak before burst describes a pressure vessel designed such that a crack in the vessel will grow through the wall allowing the contained fluid to escape and reducing the pressure prior to growing so large as to cause fracture at the operating pressure Many pressure vessel standards including the ASME Boiler and Pressure Vessel Code 14 and the AIAA metallic pressure vessel standard either require pressure vessel designs to be leak before burst or require pressure vessels to meet more stringent requirements for fatigue and fracture if they are not shown to be leak before burst 15 Safety valves Edit Example of a valve used for gas cylinders clarification needed As the pressure vessel is designed to a pressure there is typically a safety valve or relief valve to ensure that this pressure is not exceeded in operation Maintenance features Edit Pressure vessel closures Edit Pressure vessel closures are pressure retaining structures designed to provide quick access to pipelines pressure vessels pig traps filters and filtration systems Typically pressure vessel closures allow access by maintenance personnel A commonly used access hole shape is elliptical which allows the closure to be passed through the opening and rotated into the working position and is held in place by a bar on the outside secured by a central bolt The internal pressure prevents it from being inadvertently opened under load Uses Edit Preserved H K Porter Inc No 3290 of 1923 powered by compressed air stored in a horizontal riveted pressure vessel Pressure vessels are used in a variety of applications in both industry and the private sector They appear in these sectors as industrial compressed air receivers boilers and domestic hot water storage tanks Other examples of pressure vessels are diving cylinders recompression chambers distillation towers pressure reactors autoclaves and many other vessels in mining operations oil refineries and petrochemical plants nuclear reactor vessels submarine and space ship habitats atmospheric diving suits pneumatic reservoirs hydraulic reservoirs under pressure rail vehicle airbrake reservoirs road vehicle airbrake reservoirs and storage vessels for high pressure permanent gases and liquified gases such as ammonia chlorine and LPG propane butane A unique application of a pressure vessel is the passenger cabin of an airliner the outer skin carries both the aircraft maneuvering loads and the cabin pressurization loads clarification needed Cylindrical research autoclave illustration Nasa decompression chamber A pressure tank connected to a water well and domestic hot water system A few pressure tanks here used to hold propane A pressure vessel used as a kier A pressure vessel used for The Boeing Company s CST 100 spacecraft Alternatives EditNatural gas storage Gas holderDepending on the application and local circumstances alternatives to pressure vessels exist Examples can be seen in domestic water collection systems where the following may be used Gravity controlled systems 16 which typically consist of an unpressurized water tank at an elevation higher than the point of use Pressure at the point of use is the result of the hydrostatic pressure caused by the elevation difference Gravity systems produce 0 43 pounds per square inch 3 0 kPa per foot of water head elevation difference A municipal water supply or pumped water is typically around 90 pounds per square inch 620 kPa Inline pump controllers or pressure sensitive pumps 17 In nuclear reactors pressure vessels are primarily used to keep the coolant water liquid at high temperatures to increase Carnot efficiency Other coolants can be kept at high temperatures with much less pressure explaining the interest in molten salt reactors lead cooled fast reactors and gas cooled reactors However the benefits of not needing a pressure vessel or one of less pressure are in part compensated by drawbacks unique to each alternative approach Design EditScaling Edit No matter what shape it takes the minimum mass of a pressure vessel scales with the pressure and volume it contains and is inversely proportional to the strength to weight ratio of the construction material minimum mass decreases as strength increases 18 Scaling of stress in walls of vessel Edit Pressure vessels are held together against the gas pressure due to tensile forces within the walls of the container The normal tensile stress in the walls of the container is proportional to the pressure and radius of the vessel and inversely proportional to the thickness of the walls 19 Therefore pressure vessels are designed to have a thickness proportional to the radius of tank and the pressure of the tank and inversely proportional to the maximum allowed normal stress of the particular material used in the walls of the container Because for a given pressure the thickness of the walls scales with the radius of the tank the mass of a tank which scales as the length times radius times thickness of the wall for a cylindrical tank scales with the volume of the gas held which scales as length times radius squared The exact formula varies with the tank shape but depends on the density r and maximum allowable stress s of the material in addition to the pressure P and volume V of the vessel See below for the exact equations for the stress in the walls Spherical vessel Edit For a sphere the minimum mass of a pressure vessel is M 3 2 P V r s displaystyle M 3 over 2 PV rho over sigma where M displaystyle M is mass kg P displaystyle P is the pressure difference from ambient the gauge pressure Pa V displaystyle V is volume r displaystyle rho is the density of the pressure vessel material kg m3 s displaystyle sigma is the maximum working stress that material can tolerate Pa 20 Other shapes besides a sphere have constants larger than 3 2 infinite cylinders take 2 although some tanks such as non spherical wound composite tanks can approach this Cylindrical vessel with hemispherical ends Edit This is sometimes called a bullet citation needed for its shape although in geometric terms it is a capsule For a cylinder with hemispherical ends M 2 p R 2 R W P r s displaystyle M 2 pi R 2 R W P rho over sigma where R is the Radius m W is the middle cylinder width only and the overall width is W 2R m 21 Cylindrical vessel with semi elliptical ends Edit In a vessel with an aspect ratio of middle cylinder width to radius of 2 1 M 6 p R 3 P r s displaystyle M 6 pi R 3 P rho over sigma Gas storage Edit In looking at the first equation the factor PV in SI units is in units of pressurization energy For a stored gas PV is proportional to the mass of gas at a given temperature thus M 3 2 n R T r s displaystyle M 3 over 2 nRT rho over sigma see gas law The other factors are constant for a given vessel shape and material So we can see that there is no theoretical efficiency of scale in terms of the ratio of pressure vessel mass to pressurization energy or of pressure vessel mass to stored gas mass For storing gases tankage efficiency is independent of pressure at least for the same temperature So for example a typical design for a minimum mass tank to hold helium as a pressurant gas on a rocket would use a spherical chamber for a minimum shape constant carbon fiber for best possible r s displaystyle rho sigma and very cold helium for best possible M p V displaystyle M pV Stress in thin walled pressure vessels Edit Stress in a thin walled pressure vessel in the shape of a sphere is s 8 s l o n g p r 2 t displaystyle sigma theta sigma rm long frac pr 2t where s 8 displaystyle sigma theta is hoop stress or stress in the circumferential direction s l o n g displaystyle sigma long is stress in the longitudinal direction p is internal gauge pressure r is the inner radius of the sphere and t is thickness of the sphere wall A vessel can be considered thin walled if the diameter is at least 10 times sometimes cited as 20 times greater than the wall thickness 22 Stress in the cylinder body of a pressure vessel Stress in a thin walled pressure vessel in the shape of a cylinder is s 8 p r t displaystyle sigma theta frac pr t s l o n g p r 2 t displaystyle sigma rm long frac pr 2t where s 8 displaystyle sigma theta is hoop stress or stress in the circumferential direction s l o n g displaystyle sigma long is stress in the longitudinal direction p is internal gauge pressure r is the inner radius of the cylinder t is thickness of the cylinder wall Almost all pressure vessel design standards contain variations of these two formulas with additional empirical terms to account for variation of stresses across thickness quality control of welds and in service corrosion allowances All formulae mentioned above assume uniform distribution of membrane stresses across thickness of shell but in reality that is not the case Deeper analysis is given by Lame s theorem which gives the distribution of stress in the walls of a thick walled cylinder of a homogeneous and isotropic material The formulae of pressure vessel design standards are extension of Lame s theorem by putting some limit on ratio of inner radius and thickness For example the ASME Boiler and Pressure Vessel Code BPVC UG 27 formulas are 23 Spherical shells Thickness has to be less than 0 356 times inner radius s 8 s l o n g p r 0 2 t 2 t E displaystyle sigma theta sigma rm long frac p r 0 2t 2tE Cylindrical shells Thickness has to be less than 0 5 times inner radius s 8 p r 0 6 t t E displaystyle sigma theta frac p r 0 6t tE s l o n g p r 0 4 t 2 t E displaystyle sigma rm long frac p r 0 4t 2tE where E is the joint efficiency and all others variables as stated above The factor of safety is often included in these formulas as well in the case of the ASME BPVC this term is included in the material stress value when solving for pressure or thickness Winding angle of carbon fibre vessels Edit Wound infinite cylindrical shapes optimally take a winding angle of 54 7 degrees to the cylindrical axis as this gives the necessary twice the strength in the circumferential direction to the longitudinal 24 Construction methods EditRiveted Edit The standard method of construction for boilers compressed air receivers and other pressure vessels of iron or steel before gas and electrical welding of reliable quality became widespread was riveted sheets which had been rolled and forged into shape then riveted together often using butt straps along the joints and caulked along the riveted seams by deforming the edges of the overlap with a blunt chisel Hot riveting caused the rivets to contract on cooling forming a tighter joint 25 This section needs expansion You can help by adding to it April 2021 Seamless Edit See also Gas cylinder and Diving cylinder Manufacturing methods for seamless metal pressure vessels are commonly used for relatively small diameter cylinders where large numbers will be produced as the machinery and tooling require large capital outlay The methods are well suited to high pressure gas transport and storage applications and provide consistently high quality products Backward extrusion A process by which the material is forced to flow back along the mandrel between the mandrel and die Section of die with billet inserted Backward extrusion process showing the material flowing out of the die back along the mandrel Extrusion product before trimming Section after closure of the top end Section showing machined areas of the neck in detailCold extrusion aluminium Seamless aluminium cylinders may be manufactured by cold backward extrusion of aluminium billets in a process which first presses the walls and base then trims the top edge of the cylinder walls followed by press forming the shoulder and neck 26 Hot extrusion steel In the hot extrusion process a billet of steel is cut to size induction heated to the correct temperature for the alloy descaled and placed in the die The metal is backward extruded by forcing the mandrel into it causing it to flow through the annular gap until a deep cup is formed This cup is further drawn to diameter and wall thickness reduced and the bottom formed After inspection and trimming of the open end The cylinder is hot spun to close the end and form the neck 27 Drawn Animation showing two stages of deep drawing of a steel plate to a cup and a similar cup to a diving cylinder blank with domed bottom Seamless cylinders may also be cold drawn from steel plate discs to a cylindrical cup form in two or three stages After forming the base and side walls the top of the cylinder is trimmed to length heated and hot spun to form the shoulder and close the neck This process thickens the material of the shoulder The cylinder is heat treated by quenching and tempering to provide the best strength and toughness 28 Hydrostatic test of structurally complete cylinder Regardless of the method used to form the cylinder it will be machined to finish the neck and cut the neck threads heat treated cleaned and surface finished stamp marked tested and inspected for quality assurance 28 27 26 This section needs expansion You can help by adding to it April 2021 Welded Edit Large and low pressure vessels are commonly manufactured from formed plates welded together Weld quality is critical to safety in pressure vessels for human occupancy This section needs expansion You can help by adding to it April 2021 Composite Edit See also Fibre reinforced plastic and Filament winding Composite pressure vessels are generally filament wound rovings in a thermosetting polymer matrix The mandrel may be removable after cure or may remain a part of the finished product often providing a more reliable gas or liquid tight liner or better chemical resistance to the intended contents than the resin matrix Metallic inserts may be provided for attaching threaded accessories such as valves and pipes This section needs expansion You can help by adding to it April 2021 Operation standards EditPressure vessels are designed to operate safely at a specific pressure and temperature technically referred to as the Design Pressure and Design Temperature A vessel that is inadequately designed to handle a high pressure constitutes a very significant safety hazard Because of that the design and certification of pressure vessels is governed by design codes such as the ASME Boiler and Pressure Vessel Code in North America the Pressure Equipment Directive of the EU PED Japanese Industrial Standard JIS CSA B51 in Canada Australian Standards in Australia and other international standards like Lloyd s Germanischer Lloyd Det Norske Veritas Societe Generale de Surveillance SGS S A Lloyd s Register Energy Nederland formerly known as Stoomwezen etc Note that where the pressure volume product is part of a safety standard any incompressible liquid in the vessel can be excluded as it does not contribute to the potential energy stored in the vessel so only the volume of the compressible part such as gas is used List of standards Edit EN 13445 The current European Standard harmonized with the Pressure Equipment Directive Originally 97 23 EC since 2014 2014 68 EU Extensively used in Europe ASME Boiler and Pressure Vessel Code Section VIII Rules for Construction of Pressure Vessels BS 5500 Former British Standard replaced in the UK by BS EN 13445 but retained under the name PD 5500 for the design and construction of export equipment AD Merkblatter German standard harmonized with the Pressure Equipment Directive EN 286 Parts 1 to 4 European standard for simple pressure vessels air tanks harmonized with Council Directive 87 404 EEC BS 4994 Specification for design and construction of vessels and tanks in reinforced plastics ASME PVHO US standard for Pressure Vessels for Human Occupancy CODAP French Code for Construction of Unfired Pressure Vessel AS NZS 1200 Australian and New Zealand Standard for the requirements of Pressure equipment including Pressure Vessels boilers and pressure piping 29 AS 1210 Australian Standard for the design and construction of Pressure Vessels AS NZS 3788 Australian and New Zealand Standard for the inspection of pressure vessels 30 API 510 31 ISO 11439 Compressed natural gas CNG cylinders 32 IS 2825 1969 RE1977 code unfired Pressure vessels FRP tanks and vessels AIAA S 080 1998 AIAA Standard for Space Systems Metallic Pressure Vessels Pressurized Structures and Pressure Components AIAA S 081A 2006 AIAA Standard for Space Systems Composite Overwrapped Pressure Vessels COPVs ECSS E ST 32 02C Rev 1 Space engineering Structural design and verification of pressurized hardware B51 09 Canadian Boiler pressure vessel and pressure piping code HSE guidelines for pressure systems Stoomwezen Former pressure vessels code in the Netherlands also known as RToD Regels voor Toestellen onder Druk Dutch Rules for Pressure Vessels SANS 10019 2021 South African National Standard Transportable pressure receptacles for compressed dissolved and liquefied gases Basic design manufacture use and maintenance SANS 1825 2010 Edition 3 South African National Standard Gas cylinder test stations General requirements for periodic inspection and testing of transportable refillable gas pressure receptacles ISBN 978 0 626 23561 1See also EditAmerican Society of Mechanical Engineers ASME Mechanical engineering professional societyPages displaying short descriptions of redirect targets ASME Boiler and Pressure Vessel Code Technical standard Bottled gas Gas compressed and stored in cylinders Composite overwrapped pressure vessel Pressure vessel with a non structural liner wrapped with a structural fiber composite Compressed air energy storage Method for matching variable production with demandPages displaying short descriptions of redirect targets Compressed natural gas Fuel gas mainly composed of methane Demister removal of liquid droplets entrained in a vapor streamPages displaying wikidata descriptions as a fallback Fire tube boiler Type of boiler Gas cylinder Cylindrical container for storing pressurised gas Gasket Type of mechanical seal Head vessel End cap on a cylindrically shaped pressure vessel Minimum design metal temperature MDMT Powerlet American designer manufacturer and supplier of shooting sport productsPages displaying wikidata descriptions as a fallback a small inexpensive disposable metal gas cylinder for providing pneumatic power Rainwater harvesting Accumulation of rainwater for reuse Relief valve Safety valve used to control or limit the pressure in a system Safety valve Device for releasing excess pressure in a system Scholander pressure bomb Instrument for measuring water potential of plant tissue a device for measuring leaf water potentials Shell and tube heat exchanger Class of heat exchanger designsPages displaying short descriptions of redirect targets Tube tool Vapor liquid separator Device for separating a liquid vapor mixture into its component phases or Knock out drum Vortex breaker Device to prevent formation of a vortex at an outlet from a container Water tube boiler Type of furnace generating steam Water well Excavation or structure to provide access to groundwaterPages displaying short descriptions of redirect targetsNotes Edit a b c d e f Nilsen Kyle 2011 Development of low pressure filter testing vessel and analysis of electrospun nanofiber membranes for water treatment Ingenious Coal Gas Motor Tank Popular Science monthly January 1919 page 27 Scanned by Google Books https books google com books id HykDAAAAMBAJ amp pg PA13 Hearn E J 1997 Chapter 9 Mechanics of Materials 1 An Introduction to the Mechanics of Elastic and Plastic Deformation of Solids and Structural Materials Third ed Butterworth Heinemann pp 199 203 ISBN 0 7506 3265 8 NASA Tech Briefs Making a Metal Lined Composite Overwrapped Pressure Vessel 1 Mar 2005 Frietas O Maintenance and Repair of Glass Lined Equipment Chemical Engineering 1 Jul 2007 High Pressure Vessels D Freyer and J Harvey 1998 Technical Committee 58 Gas cylinders 25 March 1999 ISO 11116 1 Gas cylinders 17E taper thread for connection of valves to gas cylinders First ed Geneva Switzerland International Standards Organization a b c Technical Committee ISO TC 58 Gas cylinders 15 October 1997 ISO 13341 1997 Transportable gas cylinders Fitting of valves to gas cylinders 1st ed Geneva Switzerland International Standards Organisation ISO 11363 1 2010 Gas cylinders 17E and 25E taper threads for connection of valves to gas cylinders Part 1 Specifications Geneva Switzerland International Standards Organisation May 2010 Committee MCE 18 1986 Specification for pipe threads for tubes and fittings where pressure tight joints are not made on the threads metric dimensions British Standard 2779 London British Standards Institution ISBN 0 580 15212 X a href Template Cite book html title Template Cite book cite book a CS1 maint uses authors parameter link Metal Cutting Tool Institute 1989 Tap and Die section American Standard Gas Cylinder Valve Threads Metal Cutting Tool Handbook illustrated ed Industrial Press Inc p 447 ISBN 9780831111779 Retrieved 7 December 2016 a b Staff Valving of SCUBA Air Cylinders Support documents Garden Grove California Catalina Cylinders Retrieved 13 November 2016 Staff Luxfer Limited 106 Catalog XS Scuba Retrieved 7 August 2016 Sashi Kanta Panigrahi Niranjan Sarangi 2017 Aero Engine Combustor Casing Experimental Design and Fatigue Studies CRC Press pp 4 45 ISBN 9781351642835 ANSI AIAA S 080 1998 Space Systems Metallic Pressure Vessels Pressurized Structures and Pressure Components 5 1 Pushard Doug 2005 Domestic water collection systems also sometimes able to function on gravity Harvesth2o com Retrieved 2009 04 17 verification needed Pushard Doug Alternatives to pressure vessels in domestic water systems Harvesth2o com Retrieved 2009 04 17 Puskarich Paul 2009 05 01 Strengthened Glass for Pipeline Systems PDF MIT Archived from the original PDF on 2012 03 15 Retrieved 2009 04 17 a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help Beer Ferdinand P Johnston E Russel Jr DeWolf John T 2002 7 9 Mechanics of Materials fourth ed McGraw Hill p 463 ISBN 9780073659350 For a sphere the thickness d rP 2s where r is the radius of the tank The volume of the spherical surface then is 4pr2d 4pr3P 2s The mass is determined by multiplying by the density of the material that makes up the walls of the spherical vessel Further the volume of the gas is 4pr3 3 Combining these equations give the above results The equations for the other geometries are derived in a similar manner Mass of pressure Cylindrical vessel with hemispherical ends capsule calculator fxSolver www fxsolver com Retrieved 2017 04 11 Richard Budynas J Nisbett Shigley s Mechanical Engineering Design 8th ed New York McGraw Hill ISBN 978 0 07 312193 2 pg 108 An International Code 2007 ASME Boiler amp Pressure Vessel Code The American Society of Mechanical Engineers 2007 MIT pressure vessel lecture Oberg Erik Jones Franklin D 1973 Horton Holbrook L ed Machinery s Handbook 19th ed Brighton England Machinery Publishing Co Inc pp 1239 1254 a b Staff 2015 Manufacturing processes All aluminum cylinders Salford UK Luxfer Gas Cylinders Luxfer Holdings PLC Archived from the original on 25 December 2015 Retrieved 25 December 2015 a b Vitkovice Cylinders www vitkovice az Retrieved 1 April 2021 a b Worthington steel Making a Worthington X Series Steel Scuba Cylinder YouTube Archived from the original on 2021 12 21 AS 1200 Pressure Vessels SAI Global Archived from the original on 9 July 2012 Retrieved 14 November 2011 AS NZS 3788 2006 Pressure equipment In service inspection SAI Global Retrieved September 4 2015 Pressure Vessel Inspection Code In Service Inspection Rating Repair and Alteration API June 2006 Gas cylinders High pressure cylinders for the on board storage of natural gas as a fuel for automotive vehicles ISO 2006 07 18 Retrieved 2009 04 17 References EditA C Ugural S K Fenster Advanced Strength and Applied Elasticity 4th ed E P Popov Engineering Mechanics of Solids 1st ed Megyesy Eugene F Pressure Vessel Handbook 14th Edition PV Publishing Inc Oklahoma City OKFurther reading EditMegyesy Eugene F 2008 14th ed Pressure Vessel Handbook PV Publishing Inc Oklahoma City Oklahoma USA www pressurevesselhandbook com Design handbook for pressure vessels based on the ASME code External links Edit Look up pressure vessel in Wiktionary the free dictionary Wikimedia Commons has media related to Pressure vessel Use of pressure vessels in oil and gas industry Basic formulas for thin walled pressure vessels with examples Educational Excel spreadsheets for ASME head shell and nozzle designs ASME boiler and pressure vessel website Journal of Pressure Vessel Technology Archived 2012 10 15 at the Wayback Machine EU Pressure Equipment Directive website EU Simple Pressure Vessel Directive EU classification Pressure vessel attachments Image of a carbon fiber composite gas cylinder showing construction details Image of a carbon fiber composite oxygen cylinder for anindustrial breathing set Retrieved from https en wikipedia org w index php title Pressure vessel amp oldid 1143634467, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.