fbpx
Wikipedia

Exponential map (Riemannian geometry)

In Riemannian geometry, an exponential map is a map from a subset of a tangent space TpM of a Riemannian manifold (or pseudo-Riemannian manifold) M to M itself. The (pseudo) Riemannian metric determines a canonical affine connection, and the exponential map of the (pseudo) Riemannian manifold is given by the exponential map of this connection.

The exponential map of the Earth as viewed from the north pole is the polar azimuthal equidistant projection in cartography.

Definition

Let M be a differentiable manifold and p a point of M. An affine connection on M allows one to define the notion of a straight line through the point p.[1]

Let v ∈ TpM be a tangent vector to the manifold at p. Then there is a unique geodesic γv satisfying γv(0) = p with initial tangent vector γv(0) = v. The corresponding exponential map is defined by expp(v) = γv(1). In general, the exponential map is only locally defined, that is, it only takes a small neighborhood of the origin at TpM, to a neighborhood of p in the manifold. This is because it relies on the theorem of existence and uniqueness for ordinary differential equations which is local in nature. An affine connection is called complete if the exponential map is well-defined at every point of the tangent bundle.

Properties

Intuitively speaking, the exponential map takes a given tangent vector to the manifold, runs along the geodesic starting at that point and goes in that direction, for a unit time. Since v corresponds to the velocity vector of the geodesic, the actual (Riemannian) distance traveled will be dependent on that. We can also reparametrize geodesics to be unit speed, so equivalently we can define expp(v) = β(|v|) where β is the unit-speed geodesic (geodesic parameterized by arc length) going in the direction of v. As we vary the tangent vector v we will get, when applying expp, different points on M which are within some distance from the base point p—this is perhaps one of the most concrete ways of demonstrating that the tangent space to a manifold is a kind of "linearization" of the manifold.

The Hopf–Rinow theorem asserts that it is possible to define the exponential map on the whole tangent space if and only if the manifold is complete as a metric space (which justifies the usual term geodesically complete for a manifold having an exponential map with this property). In particular, compact manifolds are geodesically complete. However even if expp is defined on the whole tangent space, it will in general not be a global diffeomorphism. However, its differential at the origin of the tangent space is the identity map and so, by the inverse function theorem we can find a neighborhood of the origin of TpM on which the exponential map is an embedding (i.e., the exponential map is a local diffeomorphism). The radius of the largest ball about the origin in TpM that can be mapped diffeomorphically via expp is called the injectivity radius of M at p. The cut locus of the exponential map is, roughly speaking, the set of all points where the exponential map fails to have a unique minimum.

An important property of the exponential map is the following lemma of Gauss (yet another Gauss's lemma): given any tangent vector v in the domain of definition of expp, and another vector w based at the tip of v (hence w is actually in the double-tangent space Tv(TpM)) and orthogonal to v, w remains orthogonal to v when pushed forward via the exponential map. This means, in particular, that the boundary sphere of a small ball about the origin in TpM is orthogonal to the geodesics in M determined by those vectors (i.e., the geodesics are radial). This motivates the definition of geodesic normal coordinates on a Riemannian manifold.

The exponential map is also useful in relating the abstract definition of curvature to the more concrete realization of it originally conceived by Riemann himself—the sectional curvature is intuitively defined as the Gaussian curvature of some surface (i.e., a slicing of the manifold by a 2-dimensional submanifold) through the point p in consideration. Via the exponential map, it now can be precisely defined as the Gaussian curvature of a surface through p determined by the image under expp of a 2-dimensional subspace of TpM.

Relationships to exponential maps in Lie theory

In the case of Lie groups with a bi-invariant metric—a pseudo-Riemannian metric invariant under both left and right translation—the exponential maps of the pseudo-Riemannian structure are the same as the exponential maps of the Lie group. In general, Lie groups do not have a bi-invariant metric, though all connected semi-simple (or reductive) Lie groups do. The existence of a bi-invariant Riemannian metric is stronger than that of a pseudo-Riemannian metric, and implies that the Lie algebra is the Lie algebra of a compact Lie group; conversely, any compact (or abelian) Lie group has such a Riemannian metric.

Take the example that gives the "honest" exponential map. Consider the positive real numbers R+, a Lie group under the usual multiplication. Then each tangent space is just R. On each copy of R at the point y, we introduce the modified inner product

 
multiplying them as usual real numbers but scaling by y2 (this is what makes the metric left-invariant, for left multiplication by a factor will just pull out of the inner product, twice — canceling the square in the denominator).

Consider the point 1 ∈ R+, and xR an element of the tangent space at 1. The usual straight line emanating from 1, namely y(t) = 1 + xt covers the same path as a geodesic, of course, except we have to reparametrize so as to get a curve with constant speed ("constant speed", remember, is not going to be the ordinary constant speed, because we're using this funny metric). To do this we reparametrize by arc length (the integral of the length of the tangent vector in the norm   induced by the modified metric):

 

and after inverting the function to obtain t as a function of s, we substitute and get

 

Now using the unit speed definition, we have

 
giving the expected ex.

The Riemannian distance defined by this is simply

 

See also

Notes

  1. ^ A source for this section is Kobayashi & Nomizu (1975, §III.6), which uses the term "linear connection" where we use "affine connection" instead.

References

  • Cheeger, Jeff; Ebin, David G. (1975), Comparison Theorems in Riemannian Geometry, Elsevier. See Chapter 1, Sections 2 and 3.
  • do Carmo, Manfredo P. (1992), Riemannian Geometry, Birkhäuser, ISBN 0-8176-3490-8. See Chapter 3.
  • "Exponential mapping", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  • Helgason, Sigurdur (2001), Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, vol. 34, Providence, R.I.: American Mathematical Society, ISBN 978-0-8218-2848-9, MR 1834454.
  • Kobayashi, Shoshichi; Nomizu, Katsumi (1996), Foundations of Differential Geometry, vol. 1 (New ed.), Wiley-Interscience, ISBN 0-471-15733-3.

exponential, riemannian, geometry, this, article, about, exponential, differential, geometry, discrete, dynamical, systems, exponential, discrete, dynamical, systems, exponential, from, algebra, group, exponential, theory, riemannian, geometry, exponential, fr. This article is about the exponential map in differential geometry For discrete dynamical systems see Exponential map discrete dynamical systems For the exponential map from a Lie algebra to a Lie group see Exponential map Lie theory In Riemannian geometry an exponential map is a map from a subset of a tangent space TpM of a Riemannian manifold or pseudo Riemannian manifold M to M itself The pseudo Riemannian metric determines a canonical affine connection and the exponential map of the pseudo Riemannian manifold is given by the exponential map of this connection The exponential map of the Earth as viewed from the north pole is the polar azimuthal equidistant projection in cartography Contents 1 Definition 2 Properties 3 Relationships to exponential maps in Lie theory 4 See also 5 Notes 6 ReferencesDefinition EditLet M be a differentiable manifold and p a point of M An affine connection on M allows one to define the notion of a straight line through the point p 1 Let v TpM be a tangent vector to the manifold at p Then there is a unique geodesic gv satisfying gv 0 p with initial tangent vector g v 0 v The corresponding exponential map is defined by expp v gv 1 In general the exponential map is only locally defined that is it only takes a small neighborhood of the origin at TpM to a neighborhood of p in the manifold This is because it relies on the theorem of existence and uniqueness for ordinary differential equations which is local in nature An affine connection is called complete if the exponential map is well defined at every point of the tangent bundle Properties EditIntuitively speaking the exponential map takes a given tangent vector to the manifold runs along the geodesic starting at that point and goes in that direction for a unit time Since v corresponds to the velocity vector of the geodesic the actual Riemannian distance traveled will be dependent on that We can also reparametrize geodesics to be unit speed so equivalently we can define expp v b v where b is the unit speed geodesic geodesic parameterized by arc length going in the direction of v As we vary the tangent vector v we will get when applying expp different points on M which are within some distance from the base point p this is perhaps one of the most concrete ways of demonstrating that the tangent space to a manifold is a kind of linearization of the manifold The Hopf Rinow theorem asserts that it is possible to define the exponential map on the whole tangent space if and only if the manifold is complete as a metric space which justifies the usual term geodesically complete for a manifold having an exponential map with this property In particular compact manifolds are geodesically complete However even if expp is defined on the whole tangent space it will in general not be a global diffeomorphism However its differential at the origin of the tangent space is the identity map and so by the inverse function theorem we can find a neighborhood of the origin of TpM on which the exponential map is an embedding i e the exponential map is a local diffeomorphism The radius of the largest ball about the origin in TpM that can be mapped diffeomorphically via expp is called the injectivity radius of M at p The cut locus of the exponential map is roughly speaking the set of all points where the exponential map fails to have a unique minimum An important property of the exponential map is the following lemma of Gauss yet another Gauss s lemma given any tangent vector v in the domain of definition of expp and another vector w based at the tip of v hence w is actually in the double tangent space Tv TpM and orthogonal to v w remains orthogonal to v when pushed forward via the exponential map This means in particular that the boundary sphere of a small ball about the origin in TpM is orthogonal to the geodesics in M determined by those vectors i e the geodesics are radial This motivates the definition of geodesic normal coordinates on a Riemannian manifold The exponential map is also useful in relating the abstract definition of curvature to the more concrete realization of it originally conceived by Riemann himself the sectional curvature is intuitively defined as the Gaussian curvature of some surface i e a slicing of the manifold by a 2 dimensional submanifold through the point p in consideration Via the exponential map it now can be precisely defined as the Gaussian curvature of a surface through p determined by the image under expp of a 2 dimensional subspace of TpM Relationships to exponential maps in Lie theory EditIn the case of Lie groups with a bi invariant metric a pseudo Riemannian metric invariant under both left and right translation the exponential maps of the pseudo Riemannian structure are the same as the exponential maps of the Lie group In general Lie groups do not have a bi invariant metric though all connected semi simple or reductive Lie groups do The existence of a bi invariant Riemannian metric is stronger than that of a pseudo Riemannian metric and implies that the Lie algebra is the Lie algebra of a compact Lie group conversely any compact or abelian Lie group has such a Riemannian metric Take the example that gives the honest exponential map Consider the positive real numbers R a Lie group under the usual multiplication Then each tangent space is just R On each copy of R at the point y we introduce the modified inner product u v y u v y 2 displaystyle langle u v rangle y frac uv y 2 multiplying them as usual real numbers but scaling by y2 this is what makes the metric left invariant for left multiplication by a factor will just pull out of the inner product twice canceling the square in the denominator Consider the point 1 R and x R an element of the tangent space at 1 The usual straight line emanating from 1 namely y t 1 xt covers the same path as a geodesic of course except we have to reparametrize so as to get a curve with constant speed constant speed remember is not going to be the ordinary constant speed because we re using this funny metric To do this we reparametrize by arc length the integral of the length of the tangent vector in the norm y displaystyle cdot y induced by the modified metric s t 0 t x y t d t 0 t x 1 t x d t x 0 t d t 1 t x x x ln 1 t x displaystyle s t int 0 t x y tau d tau int 0 t frac x 1 tau x d tau x int 0 t frac d tau 1 tau x frac x x ln 1 tx and after inverting the function to obtain t as a function of s we substitute and gety s e s x x displaystyle y s e sx x Now using the unit speed definition we haveexp 1 x y x 1 y x displaystyle exp 1 x y x 1 y x giving the expected ex The Riemannian distance defined by this is simplydist a b ln b a displaystyle operatorname dist a b left ln left frac b a right right See also EditList of exponential topicsNotes Edit A source for this section is Kobayashi amp Nomizu 1975 III 6 harvtxt error no target CITEREFKobayashiNomizu1975 help which uses the term linear connection where we use affine connection instead References EditCheeger Jeff Ebin David G 1975 Comparison Theorems in Riemannian Geometry Elsevier See Chapter 1 Sections 2 and 3 do Carmo Manfredo P 1992 Riemannian Geometry Birkhauser ISBN 0 8176 3490 8 See Chapter 3 Exponential mapping Encyclopedia of Mathematics EMS Press 2001 1994 Helgason Sigurdur 2001 Differential geometry Lie groups and symmetric spaces Graduate Studies in Mathematics vol 34 Providence R I American Mathematical Society ISBN 978 0 8218 2848 9 MR 1834454 Kobayashi Shoshichi Nomizu Katsumi 1996 Foundations of Differential Geometry vol 1 New ed Wiley Interscience ISBN 0 471 15733 3 Retrieved from https en wikipedia org w index php title Exponential map Riemannian geometry amp oldid 1113780149, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.