fbpx
Wikipedia

Dipterocarpaceae

Dipterocarpaceae is a family of 16 genera and about 695 known species[2] of mainly tropical lowland rainforest trees. The family name, from the type genus Dipterocarpus, is derived from Greek (di = two, pteron = wing and karpos = fruit) and refers to the two-winged fruit. The largest genera are Shorea (196 species), Hopea (104 species), Dipterocarpus (70 species), and Vatica (65 species).[3] Many are large forest-emergent species, typically reaching heights of 40–70 m, some even over 80 m (in the genera Dryobalanops,[3] Hopea[4] and Shorea),[4] with the tallest known living specimen (Shorea faguetiana) 93.0 m tall.[4] The species of this family are of major importance in the timber trade. Their distribution is pantropical, from northern South America to Africa, the Seychelles, India, Indochina, Indonesia, Malaysia and Philippines.[5][6] The greatest diversity of Dipterocarpaceae occurs in Borneo.[7] Some species are now endangered as a result of overcutting, extensive illegal logging, and habitat conversion. They provide valuable woods, aromatic essential oils, balsam, and resins, and are a source for plywood.

Dipterocarpaceae
Temporal range: Maastrichtian–Recent
Dipterocarpus retusus
Scientific classification
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Eudicots
Clade: Rosids
Order: Malvales
Family: Dipterocarpaceae
Blume (1825)[1]
Genera

Classification

The dipterocarp family is generally divided into two subfamilies:

Phylogeny of the Dipterocarpaceae[7]

A recent genetic study found that the Asian dipterocarps share a common ancestor with the Sarcolaenaceae, a tree family endemic to Madagascar.[11] This suggests that ancestor of the dipterocarps originated in the southern supercontinent of Gondwana, and that the common ancestor of the Asian dipterocarps and the Sarcolaenaceae was found in the India-Madagascar-Seychelles land mass millions of years ago, and were carried northward by India, which later collided with Asia and allowed the dipterocarps to spread across Southeast Asia and Malaysia. The first dipterocarp pollen has been found in Myanmar (which at that time was part of the Indian plate) and it dates from the upper Oligocene.[12] The sample appears to slowly increase in terms of diversity and abundance across the region into the mid-Miocene.[12] Chemical traces of dipterocarp resins have been found dating back to the Eocene of India. The oldest fossil of the family are from the latest Cretaceous (Maastrichtian) aged Intertrappean Beds of India, assignable to the extant genus Dipterocarpus.[13]

Subfamily Pakaraimoideae formerly placed here and native to the Guaianan highlands of South America, is now found to be more closely related the Cistaceae and is placed there in the APG IV (2016).[14]

Fossilized arthropods

Some 52-million-year-old amber found in the Gujarat province, India, containing a large amount of fossilized arthropods, was identified as sap from the family Dipterocarpaceae.[15]

 
Dipterocarpaceae fossil displayed at Philippine National Museum

Ecology

Dipterocarpaceae species can be either evergreen or deciduous.[16] Species occurring in Thailand grow from sea level to about 1300 m elevation. Environments in which the species of the family occur in Thailand include lowland dipterocarp forest 0–350 m, riparian fringe, limestone hills, and coastal hills.

Conservation and climate change

As the dominant tree in Southeast Asia, the Dipterocarp family has seen extensive study relating to its conservation status. They are a keystone species of the native forests of this region, and are essential to their function and structure.

One study by Pang et al. examined the impacts of climate change and land cover on the distribution of this important tree family in the Philippines. They used species distribution models (SDMs) for 19 species that were projected onto both current and future climate scenarios, with current land cover incorporated as well. They found that the current land cover alone reduced the species distributions by 67%, and 37% in protected areas. On the other hand, climate change reduced species distributions by 16-27% in both protected and unprotected areas. There was also an upward shift in elevation of species distribution as a result of climate change, as habitats changed. They concluded that there was a need to improve protected area planning as refuges for critical species, with SDMs proving to be a useful tool for providing projections that can then be incorporated into this planning process.[17]

Another paper by Shishir et al. also investigated the potential effects of climate change on a threatened Dipterocarp tree in Purbachal, Bangladesh. Using a model that incorporated nine different environmental variables such as climate, geography, and soil conditions, they looked at two climate scenarios. They found that precipitation and soil nitrogen were the largest determinants of distribution, and that suitable habitat for this species will decline by 21-28% relative to the present land area as a result of climate change.[18]

See also

References

  1. ^ Angiosperm Phylogeny Group (2009). "An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III". Botanical Journal of the Linnean Society. 161 (2): 105–121. doi:10.1111/j.1095-8339.2009.00996.x.
  2. ^ Christenhusz, M. J. M. & Byng, J. W. (2016). "The number of known plants species in the world and its annual increase". Phytotaxa. 261 (3): 201–217. doi:10.11646/phytotaxa.261.3.1.
  3. ^ a b c Ashton, P.S. Dipterocarpaceae. In Tree Flora of Sabah and Sarawak, Volume 5, 2004. Soepadmo, E., Saw, L. G. and Chung, R. C. K. eds. Government of Malaysia, Kuala Lumpur, Malaysia. ISBN 983-2181-59-3
  4. ^ a b c "Borneo". Eastern Native Tree Society. Retrieved 2009-04-17.
  5. ^ Simon Gardner, Pindar Sidisunthorn and Lai Ee May, 2011. Heritage Trees of Penang. Penang: Areca Books. ISBN 978-967-57190-6-6
  6. ^ Pang Sean E H, De Alban Jose Don T, & Webb Edward L. (2021). Effects of climate change and land cover on the distributions of a critical botanical family in the Philippines. Scientific Reports, 11(1), 276–276. [./Https://doi.org/10.1038/s41598-020-79491-9
  7. ^ a b c Ashton, P.S. Dipterocarpaceae. Flora Malesiana, 1982 Series I, 92: 237-552
  8. ^ Maury-Lechon, G. and Curtet, L. Biogeography and Evolutionary Systematics of Dipterocarpaceae. In A Review of Dipterocarps: Taxonomy, ecology and silviculture, 1998. Appanah, S. and Turnbull, J. M. eds. Center for International Forestry Research, Bogor, Indonesia. ISBN 979-8764-20-X
  9. ^ a b S Dayanandan; P S Ashton; S M Williams; R B Primack (1999). "Phylogeny of the tropical tree family Dipterocarpaceae based on nucleotide sequences of the chloroplast RBCL gene". American Journal of Botany. 86 (8): 1182–90. doi:10.2307/2656982. JSTOR 2656982. PMID 10449398.
  10. ^ S. Indrioko; O. Gailing; R. Finkeldey (2006). "Molecular phylogeny of Dipterocarpaceae in Indonesia based on chloroplast DNA". Plant Systematics and Evolution. 261 (1–4): 99–115. doi:10.1007/s00606-006-0435-8. S2CID 26395665.
  11. ^ M. Ducousso, G. Béna, C. Bourgeois, B. Buyck, G. Eyssartier, M. Vincelette, R. Rabevohitra, L. Randrihasipara, B. Dreyfus, Y. Prin. The last common ancestor of Sarcolaenaceae and Asian dipterocarp trees was ectomycorrhizal before the India-Madagascar separation, about 88 million years ago. Molecular Ecology 13: 231 January 2004.
  12. ^ a b Morley, R.J. 2000. Origin and Evolution of Tropical Rain Forests. Wiley-Blackwell, NY.
  13. ^ Khan, Mahasin Ali; Spicer, Robert A.; Spicer, Teresa E. V.; Roy, Kaustav; Hazra, Manoshi; Hazra, Taposhi; Mahato, Sumana; Kumar, Sanchita; Bera, Subir (2020-11-03). "Dipterocarpus (Dipterocarpaceae) leaves from the K-Pg of India: a Cretaceous Gondwana presence of the Dipterocarpaceae". Plant Systematics and Evolution. 306 (6): 90. doi:10.1007/s00606-020-01718-z. ISSN 1615-6110.
  14. ^ Angiosperm Phylogeny Group (2016), "An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV", Botanical Journal of the Linnean Society, 161 (2): 105–20, doi:10.1111/boj.12385
  15. ^ Sample, Ian. "Prehistoric creatures discovered in huge Indian amber haul" The Guardian, 25 October 2010. Retrieved: 26 October 2010.
  16. ^ Smitinand, Tem; Santisuk, Thatwatchai (1981). "Dipterocarpaceae of Thailand with Special Reference to Silvicultural Ecology". Malaysian Forester. 44: 377–85.
  17. ^ Pang, Sean E. H.; De Alban, Jose Don T.; Webb, Edward L. (2021-01-11). "Effects of climate change and land cover on the distributions of a critical tree family in the Philippines". Scientific Reports. 11 (1): 276. doi:10.1038/s41598-020-79491-9. ISSN 2045-2322. PMC 7801684. PMID 33432023.
  18. ^ Shishir, Sharmin; Mollah, Tanjinul Hoque; Tsuyuzaki, Shiro; Wada, Naoya (2020-12-01). "Predicting the probable impact of climate change on the distribution of threatened Shorea robusta forest in Purbachal, Bangladesh". Global Ecology and Conservation. 24: e01250. doi:10.1016/j.gecco.2020.e01250. ISSN 2351-9894.

External links

  • Center for International Forestry Research (1998). (PDF). ISBN 978-979-8764-20-2. Archived from the original (PDF) on 2011-07-25. Retrieved 2004-10-03.
  • Dipterocarpaceae Data Base [sic]

dipterocarpaceae, family, genera, about, known, species, mainly, tropical, lowland, rainforest, trees, family, name, from, type, genus, dipterocarpus, derived, from, greek, pteron, wing, karpos, fruit, refers, winged, fruit, largest, genera, shorea, species, h. Dipterocarpaceae is a family of 16 genera and about 695 known species 2 of mainly tropical lowland rainforest trees The family name from the type genus Dipterocarpus is derived from Greek di two pteron wing and karpos fruit and refers to the two winged fruit The largest genera are Shorea 196 species Hopea 104 species Dipterocarpus 70 species and Vatica 65 species 3 Many are large forest emergent species typically reaching heights of 40 70 m some even over 80 m in the genera Dryobalanops 3 Hopea 4 and Shorea 4 with the tallest known living specimen Shorea faguetiana 93 0 m tall 4 The species of this family are of major importance in the timber trade Their distribution is pantropical from northern South America to Africa the Seychelles India Indochina Indonesia Malaysia and Philippines 5 6 The greatest diversity of Dipterocarpaceae occurs in Borneo 7 Some species are now endangered as a result of overcutting extensive illegal logging and habitat conversion They provide valuable woods aromatic essential oils balsam and resins and are a source for plywood DipterocarpaceaeTemporal range Maastrichtian Recent PreꞒ Ꞓ O S D C P T J K Pg NDipterocarpus retususScientific classificationKingdom PlantaeClade TracheophytesClade AngiospermsClade EudicotsClade RosidsOrder MalvalesFamily DipterocarpaceaeBlume 1825 1 GeneraAnisopteraCotylelobiumDipterocarpusDryobalanopsHopeaMarquesiaMonotesNeobalanocarpusParashoreaPseudomonotesShoreaStemonoporusUpunaVateriaVateriopsisVatica Contents 1 Classification 2 Fossilized arthropods 3 Ecology 4 Conservation and climate change 5 See also 6 References 7 External linksClassification EditThe dipterocarp family is generally divided into two subfamilies Phylogeny of the Dipterocarpaceae 7 Dipterocarpaceae Dipterocarpoideae Dipterocarpeae AnisopteraCotylelobiumDipterocarpusStemonoporusUpunaVateriaVateriopsisVaticaShoreae DryobalanopsHopeaNeobalanocarpusParashoreaShoreaMonotoideae MarquesiaMonotesPseudomonotesDipterocarpoideae the largest of the subfamilies it contains 13 genera and about 475 species Distribution includes the Seychelles Sri Lanka India Southeast Asia to New Guinea and a large distribution in Borneo where they form the dominant species in the lowland forests North Borneo Brunei Sabah and Sarawak is the richest area in the world for dipterocarp species 3 The Dipterocarpoideae can be divided morphologically into two groups 7 8 and the tribe names Shoreae and Dipterocarpeae are sometimes used but genetic evidence so far does not support this division 9 10 Valvate Dipterocarpeae group Anisoptera Cotylelobium Dipterocarpus Stemonoporus Upuna Vateria Vateriopsis Vatica The genera of this group have valvate sepals in fruit solitary vessels scattered resin canals and basic chromosome number x 11 Imbricate Shoreae group Balanocarpus Hopea Parashorea Shorea The genera of this group have imbricate sepals in fruit grouped vessels resin canals in tangential bands and basic chromosome number x 7 A recent molecular study suggests that the genus Hopea forms a clade with Shorea sections Anthoshorea and Doona and should be merged into Shorea 9 Monotoideae three genera 30 species Marquesia is native to Africa Monotes has 26 species distributed across Africa and Madagascar Pseudomonotes is native to the Colombian Amazon A recent genetic study found that the Asian dipterocarps share a common ancestor with the Sarcolaenaceae a tree family endemic to Madagascar 11 This suggests that ancestor of the dipterocarps originated in the southern supercontinent of Gondwana and that the common ancestor of the Asian dipterocarps and the Sarcolaenaceae was found in the India Madagascar Seychelles land mass millions of years ago and were carried northward by India which later collided with Asia and allowed the dipterocarps to spread across Southeast Asia and Malaysia The first dipterocarp pollen has been found in Myanmar which at that time was part of the Indian plate and it dates from the upper Oligocene 12 The sample appears to slowly increase in terms of diversity and abundance across the region into the mid Miocene 12 Chemical traces of dipterocarp resins have been found dating back to the Eocene of India The oldest fossil of the family are from the latest Cretaceous Maastrichtian aged Intertrappean Beds of India assignable to the extant genus Dipterocarpus 13 Subfamily Pakaraimoideae formerly placed here and native to the Guaianan highlands of South America is now found to be more closely related the Cistaceae and is placed there in the APG IV 2016 14 Fossilized arthropods EditSome 52 million year old amber found in the Gujarat province India containing a large amount of fossilized arthropods was identified as sap from the family Dipterocarpaceae 15 Dipterocarpaceae fossil displayed at Philippine National MuseumEcology EditDipterocarpaceae species can be either evergreen or deciduous 16 Species occurring in Thailand grow from sea level to about 1300 m elevation Environments in which the species of the family occur in Thailand include lowland dipterocarp forest 0 350 m riparian fringe limestone hills and coastal hills Conservation and climate change EditAs the dominant tree in Southeast Asia the Dipterocarp family has seen extensive study relating to its conservation status They are a keystone species of the native forests of this region and are essential to their function and structure One study by Pang et al examined the impacts of climate change and land cover on the distribution of this important tree family in the Philippines They used species distribution models SDMs for 19 species that were projected onto both current and future climate scenarios with current land cover incorporated as well They found that the current land cover alone reduced the species distributions by 67 and 37 in protected areas On the other hand climate change reduced species distributions by 16 27 in both protected and unprotected areas There was also an upward shift in elevation of species distribution as a result of climate change as habitats changed They concluded that there was a need to improve protected area planning as refuges for critical species with SDMs proving to be a useful tool for providing projections that can then be incorporated into this planning process 17 Another paper by Shishir et al also investigated the potential effects of climate change on a threatened Dipterocarp tree in Purbachal Bangladesh Using a model that incorporated nine different environmental variables such as climate geography and soil conditions they looked at two climate scenarios They found that precipitation and soil nitrogen were the largest determinants of distribution and that suitable habitat for this species will decline by 21 28 relative to the present land area as a result of climate change 18 See also EditDipterocarp timber classificationReferences Edit Angiosperm Phylogeny Group 2009 An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants APG III Botanical Journal of the Linnean Society 161 2 105 121 doi 10 1111 j 1095 8339 2009 00996 x Christenhusz M J M amp Byng J W 2016 The number of known plants species in the world and its annual increase Phytotaxa 261 3 201 217 doi 10 11646 phytotaxa 261 3 1 a b c Ashton P S Dipterocarpaceae In Tree Flora of Sabah and Sarawak Volume 5 2004 Soepadmo E Saw L G and Chung R C K eds Government of Malaysia Kuala Lumpur Malaysia ISBN 983 2181 59 3 a b c Borneo Eastern Native Tree Society Retrieved 2009 04 17 Simon Gardner Pindar Sidisunthorn and Lai Ee May 2011 Heritage Trees of Penang Penang Areca Books ISBN 978 967 57190 6 6 Pang Sean E H De Alban Jose Don T amp Webb Edward L 2021 Effects of climate change and land cover on the distributions of a critical botanical family in the Philippines Scientific Reports 11 1 276 276 Https doi org 10 1038 s41598 020 79491 9 a b c Ashton P S Dipterocarpaceae Flora Malesiana 1982 Series I 92 237 552 Maury Lechon G and Curtet L Biogeography and Evolutionary Systematics of Dipterocarpaceae In A Review of Dipterocarps Taxonomy ecology and silviculture 1998 Appanah S and Turnbull J M eds Center for International Forestry Research Bogor Indonesia ISBN 979 8764 20 X a b S Dayanandan P S Ashton S M Williams R B Primack 1999 Phylogeny of the tropical tree family Dipterocarpaceae based on nucleotide sequences of the chloroplast RBCL gene American Journal of Botany 86 8 1182 90 doi 10 2307 2656982 JSTOR 2656982 PMID 10449398 S Indrioko O Gailing R Finkeldey 2006 Molecular phylogeny of Dipterocarpaceae in Indonesia based on chloroplast DNA Plant Systematics and Evolution 261 1 4 99 115 doi 10 1007 s00606 006 0435 8 S2CID 26395665 M Ducousso G Bena C Bourgeois B Buyck G Eyssartier M Vincelette R Rabevohitra L Randrihasipara B Dreyfus Y Prin The last common ancestor of Sarcolaenaceae and Asian dipterocarp trees was ectomycorrhizal before the India Madagascar separation about 88 million years ago Molecular Ecology 13 231 January 2004 a b Morley R J 2000 Origin and Evolution of Tropical Rain Forests Wiley Blackwell NY Khan Mahasin Ali Spicer Robert A Spicer Teresa E V Roy Kaustav Hazra Manoshi Hazra Taposhi Mahato Sumana Kumar Sanchita Bera Subir 2020 11 03 Dipterocarpus Dipterocarpaceae leaves from the K Pg of India a Cretaceous Gondwana presence of the Dipterocarpaceae Plant Systematics and Evolution 306 6 90 doi 10 1007 s00606 020 01718 z ISSN 1615 6110 Angiosperm Phylogeny Group 2016 An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants APG IV Botanical Journal of the Linnean Society 161 2 105 20 doi 10 1111 boj 12385 Sample Ian Prehistoric creatures discovered in huge Indian amber haul The Guardian 25 October 2010 Retrieved 26 October 2010 Smitinand Tem Santisuk Thatwatchai 1981 Dipterocarpaceae of Thailand with Special Reference to Silvicultural Ecology Malaysian Forester 44 377 85 Pang Sean E H De Alban Jose Don T Webb Edward L 2021 01 11 Effects of climate change and land cover on the distributions of a critical tree family in the Philippines Scientific Reports 11 1 276 doi 10 1038 s41598 020 79491 9 ISSN 2045 2322 PMC 7801684 PMID 33432023 Shishir Sharmin Mollah Tanjinul Hoque Tsuyuzaki Shiro Wada Naoya 2020 12 01 Predicting the probable impact of climate change on the distribution of threatened Shorea robusta forest in Purbachal Bangladesh Global Ecology and Conservation 24 e01250 doi 10 1016 j gecco 2020 e01250 ISSN 2351 9894 External links Edit Wikimedia Commons has media related to Dipterocarpaceae Wikispecies has information related to Dipterocarpaceae Center for International Forestry Research 1998 A Review of Dipterocarps Taxonomy ecology and silviculture PDF version PDF ISBN 978 979 8764 20 2 Archived from the original PDF on 2011 07 25 Retrieved 2004 10 03 Dipterocarpaceae Data Base sic Retrieved from https en wikipedia org w index php title Dipterocarpaceae amp oldid 1138634696, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.