fbpx
Wikipedia

Piping

Within industry, piping is a system of pipes used to convey fluids (liquids and gases) from one location to another. The engineering discipline of piping design studies the efficient transport of fluid.[1][2]

Large-scale piping system in an HVAC mechanical room

Industrial process piping (and accompanying in-line components) can be manufactured from wood, fiberglass, glass, steel, aluminum, plastic, copper, and concrete. The in-line components, known as fittings,[3] valves, and other devices, typically sense and control the pressure, flow rate and temperature of the transmitted fluid, and usually are included in the field of piping design (or piping engineering), though the sensors and automatic controlling devices may alternatively be treated as part of instrumentation and control design. Piping systems are documented in piping and instrumentation diagrams (P&IDs). If necessary, pipes can be cleaned by the tube cleaning process.

Piping sometimes refers to piping design, the detailed specification of the physical piping layout within a process plant or commercial building. In earlier days, this was sometimes called drafting, technical drawing, engineering drawing, and design, but is today commonly performed by designers that have learned to use automated computer-aided drawing or computer-aided design (CAD) software.

Plumbing is a piping system with which most people are familiar, as it constitutes the form of fluid transportation that is used to provide potable water and fuels to their homes and businesses. Plumbing pipes also remove waste in the form of sewage, and allow venting of sewage gases to the outdoors. Fire sprinkler systems also use piping, and may transport nonpotable or potable water, or other fire-suppression fluids.

Piping also has many other industrial applications, which are crucial for moving raw and semi-processed fluids for refining into more useful products. Some of the more exotic materials used in pipe construction are Inconel, titanium, chrome-moly and various other steel alloys.

Engineering sub-fields edit

Generally, industrial piping engineering has three major sub-fields:

  • Piping material
  • Piping design
  • Stress analysis

Stress analysis edit

Process piping and power piping are typically checked by pipe stress engineers to verify that the routing, nozzle loads, hangers, and supports are properly placed and selected such that allowable pipe stress is not exceeded under different loads such as sustained loads, operating loads, pressure testing loads, etc., as stipulated by the ASME B31, EN 13480, GOST 32388, RD 10-249 or any other applicable codes and standards. It is necessary to evaluate the mechanical behavior of the piping under regular loads (internal pressure and thermal stresses) as well under occasional and intermittent loading cases such as earthquake, high wind or special vibration, and water hammer.[4][5] This evaluation is usually performed with the assistance of a specialized (finite element) pipe stress analysis computer programs such as AutoPIPE,[6] CAEPIPE,[7] CAESAR,[8] PASS/START-PROF,[9] or ROHR2.[10]

In cryogenic pipe supports, most steel become more brittle as the temperature decreases from normal operating conditions, so it is necessary to know the temperature distribution for cryogenic conditions. Steel structures will have areas of high stress that may be caused by sharp corners in the design, or inclusions in the material.[11]

Materials edit

The material with which a pipe is manufactured often forms as the basis for choosing any pipe. Materials that are used for manufacturing pipes include:

History edit

 
Ukraine, Olbia, elements of water pipes, the beginning of our era. Mykolayiv Regional Museum of Local History

Early wooden pipes were constructed out of logs that had a large hole bored lengthwise through the center.[13] Later wooden pipes were constructed with staves and hoops similar to wooden barrel construction. Stave pipes have the advantage that they are easily transported as a compact pile of parts on a wagon and then assembled as a hollow structure at the job site. Wooden pipes were especially popular in mountain regions where transport of heavy iron or concrete pipes would have been difficult.

Wooden pipes were easier to maintain than metal, because the wood did not expand or contract with temperature changes as much as metal and so consequently expansion joints and bends were not required. The thickness of wood afforded some insulating properties to the pipes which helped prevent freezing as compared to metal pipes. Wood used for water pipes also does not rot very easily. Electrolysis does not affect wood pipes at all, since wood is a much better electrical insulator.

In the Western United States where redwood was used for pipe construction, it was found that redwood had "peculiar properties" that protected it from weathering, acids, insects, and fungus growths. Redwood pipes stayed smooth and clean indefinitely while iron pipe by comparison would rapidly begin to scale and corrode and could eventually plug itself up with the corrosion.[14]

Standards edit

 
Stacking of a connected pipeline for transportation of oil products

There are certain standard codes that need to be followed while designing or manufacturing any piping system. Organizations that promulgate piping standards include:

  • ASME – The American Society of Mechanical Engineers – B31 series
    • ASME B31.1 Power piping (steam piping etc.)
    • ASME B31.3 Process piping
    • ASME B31.4 Pipeline Transportation Systems for Liquid Hydrocarbons and Other Liquids and oil and gas
    • ASME B31.5 Refrigeration piping and heat transfer components
    • ASME B31.8 Gas transmission and distribution piping systems
    • ASME B31.9 Building services piping
    • ASME B31.11 Slurry Transportation Piping Systems (Withdrawn, Superseded by B31.4)
    • ASME B31.12 Hydrogen Piping and Pipelines
  • ASTM – American Society for Testing and Materials
    • ASTM A252 Standard Specification for Welded and Seamless Steel Pipe Piles[15]
  • API – American Petroleum Institute
    • API 5L Petroleum and natural gas industries—Steel pipe for pipeline transportation systems[16]
  • CWB – Canadian Welding Bureau
  • EN 13480 – European metallic industrial piping code
    • EN 13480-1 Metallic industrial piping – Part 1: General
    • EN 13480-2 Metallic industrial piping – Part 2: Materials
    • EN 13480-3 Metallic industrial piping – Part 3: Design and calculation
    • EN 13480-4 Metallic industrial piping – Part 4: Fabrication and installation
    • EN 13480-5 Metallic industrial piping – Part 5: Inspection and testing
    • EN 13480-6 Metallic industrial piping – Part 6: Additional requirements for buried piping
    • PD TR 13480-7 Metallic industrial piping – Part 7: Guidance on the use of conformity assessment procedures
    • EN 13480-8 Metallic industrial piping – Part 8: Additional requirements for aluminium and aluminium alloy piping
    • EN 13941 District heating pipes
  • GOST, RD, SNiP, SP – Russian piping codes
    • RD 10-249 Power Piping
    • GOST 32388 Process Piping, HDPE Piping
    • SNiP 2.05.06-85 & SP 36.13330.2012 Gas and Oil transmission piping systems
    • GOST R 55990-2014 & SP 284.1325800.2016 Field pipelines
    • SP 33.13330.2012 Steel Pipelines
    • GOST R 55596-2013 District heating networks
  • EN 1993-4-3 Eurocode 3 – Design of steel structures – Part 4-3: Pipelines
  • AWS – American Welding Society
  • AWWA – American Water Works Association
  • MSS – Manufacturers' Standardization Society
  • ANSI – American National Standards Institute
  • NFPA – National Fire Protection Association
  • EJMA – Expansion Joint Manufacturers Association
  • Intro to pipe stress – (one minute)

See also edit

References edit

  1. ^ Editors: Perry, R.H. and Green, D.W. (1984). Perry's Chemical Engineers' Handbook (6th ed.). McGraw-Hill Book Company. ISBN 0-07-049479-7. {{cite book}}: |author= has generic name (help)CS1 maint: multiple names: authors list (link)
  2. ^ Editor: McKetta, John J. (1992). Piping Design Handbook. Marcel Dekker, Inc. ISBN 0-8247-8570-3. {{cite book}}: |author= has generic name (help)
  3. ^ "Pipe fitting manufacturer". Yaang. from the original on 27 February 2016. Retrieved 6 March 2016.
  4. ^ [1] 29 May 2006 at the Wayback Machine
  5. ^
  6. ^ "Piping Design And Pipe Stress Analysis Software – AutoPIPE". bentley.com. from the original on 9 November 2016. Retrieved 22 December 2017.
  7. ^ "SST Systems, Inc. | CAEPIPE: Fast – Efficient Pipe Stress Analysis". from the original on 29 January 2010. Retrieved 27 September 2010.
  8. ^ . coade.com. Archived from the original on 2 May 2015. Retrieved 4 June 2015.
  9. ^ "PASS/START-PROF – Pipe Stress Analysis". passuite.com. from the original on 8 January 2019. Retrieved 1 March 2019.
  10. ^ "SIGMA/ROHR2 – Pipe Stress Analysis Software". rohr2.com. from the original on 12 April 2021. Retrieved 16 February 2022.
  11. ^ Temperature & Stress Analysis 22 February 2014 at the Wayback Machine Piping Technology and Products, (retrieved February 2012)
  12. ^ "What is HDPE Pipe?". Acu-Tech Piping Systems. Retrieved 20 March 2019.
  13. ^ "BBC – A History of the World – Object : wooden water pipe". BBC. from the original on 7 May 2016. Retrieved 10 March 2016.
  14. ^ "Piping water through miles of Redwood". Popular Science: 74. December 1918. from the original on 28 December 2017.
  15. ^ H. "ASTM A252 Pipe Pile". China Huayang Steel Pipe. from the original on 16 October 2014.
  16. ^ "API 5L Specification Line Pipe (1) – API Terms and Definitions". China Huayang Steel Pipe. from the original on 16 October 2014.

Further reading edit

  • ASME B31.3 Process Piping Guide, Revision 2 from Los Alamos National Laboratory Engineering Standards Manual OST220-03-01-ESM
  • from American Lifelines Alliance website
  • • • U.S. Army Corps of Engineers, EM 1110-l-4008, May 1999
  • Integral Principals of The Structural Dynamics of Flow By L G Claret

External links edit

  • Building services piping links at Curlie
  • oil and gas training courses online


piping, other, uses, pipe, pipe, disambiguation, textile, ornament, sewing, within, industry, piping, system, pipes, used, convey, fluids, liquids, gases, from, location, another, engineering, discipline, piping, design, studies, efficient, transport, fluid, l. For other uses of Pipe see Pipe disambiguation For the textile ornament see Piping sewing Within industry piping is a system of pipes used to convey fluids liquids and gases from one location to another The engineering discipline of piping design studies the efficient transport of fluid 1 2 Large scale piping system in an HVAC mechanical roomIndustrial process piping and accompanying in line components can be manufactured from wood fiberglass glass steel aluminum plastic copper and concrete The in line components known as fittings 3 valves and other devices typically sense and control the pressure flow rate and temperature of the transmitted fluid and usually are included in the field of piping design or piping engineering though the sensors and automatic controlling devices may alternatively be treated as part of instrumentation and control design Piping systems are documented in piping and instrumentation diagrams P amp IDs If necessary pipes can be cleaned by the tube cleaning process Piping sometimes refers to piping design the detailed specification of the physical piping layout within a process plant or commercial building In earlier days this was sometimes called drafting technical drawing engineering drawing and design but is today commonly performed by designers that have learned to use automated computer aided drawing or computer aided design CAD software Plumbing is a piping system with which most people are familiar as it constitutes the form of fluid transportation that is used to provide potable water and fuels to their homes and businesses Plumbing pipes also remove waste in the form of sewage and allow venting of sewage gases to the outdoors Fire sprinkler systems also use piping and may transport nonpotable or potable water or other fire suppression fluids Piping also has many other industrial applications which are crucial for moving raw and semi processed fluids for refining into more useful products Some of the more exotic materials used in pipe construction are Inconel titanium chrome moly and various other steel alloys Contents 1 Engineering sub fields 2 Stress analysis 3 Materials 4 History 5 Standards 6 See also 7 References 8 Further reading 9 External linksEngineering sub fields editGenerally industrial piping engineering has three major sub fields Piping material Piping design Stress analysisStress analysis editProcess piping and power piping are typically checked by pipe stress engineers to verify that the routing nozzle loads hangers and supports are properly placed and selected such that allowable pipe stress is not exceeded under different loads such as sustained loads operating loads pressure testing loads etc as stipulated by the ASME B31 EN 13480 GOST 32388 RD 10 249 or any other applicable codes and standards It is necessary to evaluate the mechanical behavior of the piping under regular loads internal pressure and thermal stresses as well under occasional and intermittent loading cases such as earthquake high wind or special vibration and water hammer 4 5 This evaluation is usually performed with the assistance of a specialized finite element pipe stress analysis computer programs such as AutoPIPE 6 CAEPIPE 7 CAESAR 8 PASS START PROF 9 or ROHR2 10 In cryogenic pipe supports most steel become more brittle as the temperature decreases from normal operating conditions so it is necessary to know the temperature distribution for cryogenic conditions Steel structures will have areas of high stress that may be caused by sharp corners in the design or inclusions in the material 11 Materials editThe material with which a pipe is manufactured often forms as the basis for choosing any pipe Materials that are used for manufacturing pipes include Carbon steel ASTM A252 Spec Grade 1 Grade 2 Grade 3 Steel Pile Pipe Plastic piping e g HDPE pipe PE X pipe PP R pipe or LDPE pipe 12 Low temperature service carbon steel Stainless steel Nonferrous metals e g cupro nickel tantalum lined etc Nonmetallic e g tempered glass Teflon lined PVC etc History edit nbsp Ukraine Olbia elements of water pipes the beginning of our era Mykolayiv Regional Museum of Local HistoryEarly wooden pipes were constructed out of logs that had a large hole bored lengthwise through the center 13 Later wooden pipes were constructed with staves and hoops similar to wooden barrel construction Stave pipes have the advantage that they are easily transported as a compact pile of parts on a wagon and then assembled as a hollow structure at the job site Wooden pipes were especially popular in mountain regions where transport of heavy iron or concrete pipes would have been difficult Wooden pipes were easier to maintain than metal because the wood did not expand or contract with temperature changes as much as metal and so consequently expansion joints and bends were not required The thickness of wood afforded some insulating properties to the pipes which helped prevent freezing as compared to metal pipes Wood used for water pipes also does not rot very easily Electrolysis does not affect wood pipes at all since wood is a much better electrical insulator In the Western United States where redwood was used for pipe construction it was found that redwood had peculiar properties that protected it from weathering acids insects and fungus growths Redwood pipes stayed smooth and clean indefinitely while iron pipe by comparison would rapidly begin to scale and corrode and could eventually plug itself up with the corrosion 14 Standards edit nbsp Stacking of a connected pipeline for transportation of oil productsThis section needs additional citations for verification Please help improve this article by adding citations to reliable sources in this section Unsourced material may be challenged and removed November 2023 Learn how and when to remove this template message There are certain standard codes that need to be followed while designing or manufacturing any piping system Organizations that promulgate piping standards include ASME The American Society of Mechanical Engineers B31 series ASME B31 1 Power piping steam piping etc ASME B31 3 Process piping ASME B31 4 Pipeline Transportation Systems for Liquid Hydrocarbons and Other Liquids and oil and gas ASME B31 5 Refrigeration piping and heat transfer components ASME B31 8 Gas transmission and distribution piping systems ASME B31 9 Building services piping ASME B31 11 Slurry Transportation Piping Systems Withdrawn Superseded by B31 4 ASME B31 12 Hydrogen Piping and Pipelines ASTM American Society for Testing and Materials ASTM A252 Standard Specification for Welded and Seamless Steel Pipe Piles 15 API American Petroleum Institute API 5L Petroleum and natural gas industries Steel pipe for pipeline transportation systems 16 CWB Canadian Welding Bureau EN 13480 European metallic industrial piping code EN 13480 1 Metallic industrial piping Part 1 General EN 13480 2 Metallic industrial piping Part 2 Materials EN 13480 3 Metallic industrial piping Part 3 Design and calculation EN 13480 4 Metallic industrial piping Part 4 Fabrication and installation EN 13480 5 Metallic industrial piping Part 5 Inspection and testing EN 13480 6 Metallic industrial piping Part 6 Additional requirements for buried piping PD TR 13480 7 Metallic industrial piping Part 7 Guidance on the use of conformity assessment procedures EN 13480 8 Metallic industrial piping Part 8 Additional requirements for aluminium and aluminium alloy piping EN 13941 District heating pipes GOST RD SNiP SP Russian piping codes RD 10 249 Power Piping GOST 32388 Process Piping HDPE Piping SNiP 2 05 06 85 amp SP 36 13330 2012 Gas and Oil transmission piping systems GOST R 55990 2014 amp SP 284 1325800 2016 Field pipelines SP 33 13330 2012 Steel Pipelines GOST R 55596 2013 District heating networks EN 1993 4 3 Eurocode 3 Design of steel structures Part 4 3 Pipelines AWS American Welding Society AWWA American Water Works Association MSS Manufacturers Standardization Society ANSI American National Standards Institute NFPA National Fire Protection Association EJMA Expansion Joint Manufacturers Association Intro to pipe stress https web archive org web 20161008161619 http oakridgebellows com metal expansion joints metal expansion joints in one minute part 1 thermal growth 26 x20 one minute See also editDrainage Firestop Gasket HDPE pipe Hydraulic machinery Hydrogen piping Hydrostatic test MS Pipe MS Tube Pipe Cutting Pipefitter Pipe network analysis Pipe marking Pipe support Piping and plumbing fitting Coupling piping Double walled pipe Elbow piping Nipple plumbing Pipe cap Street elbow Union plumbing Valve Victaulic Pipeline pre commissioning Plastic pipework Plastic Pressure Pipe Systems Plumbing Riser clamp Thermal insulationReferences edit Editors Perry R H and Green D W 1984 Perry s Chemical Engineers Handbook 6th ed McGraw Hill Book Company ISBN 0 07 049479 7 a href Template Cite book html title Template Cite book cite book a author has generic name help CS1 maint multiple names authors list link Editor McKetta John J 1992 Piping Design Handbook Marcel Dekker Inc ISBN 0 8247 8570 3 a href Template Cite book html title Template Cite book cite book a author has generic name help Pipe fitting manufacturer Yaang Archived from the original on 27 February 2016 Retrieved 6 March 2016 1 Archived 29 May 2006 at the Wayback Machine Power Piping ASME B31 1 Piping Design And Pipe Stress Analysis Software AutoPIPE bentley com Archived from the original on 9 November 2016 Retrieved 22 December 2017 SST Systems Inc CAEPIPE Fast Efficient Pipe Stress Analysis Archived from the original on 29 January 2010 Retrieved 27 September 2010 Intergraph CAESAR II Pipe Stress Analysis coade com Archived from the original on 2 May 2015 Retrieved 4 June 2015 PASS START PROF Pipe Stress Analysis passuite com Archived from the original on 8 January 2019 Retrieved 1 March 2019 SIGMA ROHR2 Pipe Stress Analysis Software rohr2 com Archived from the original on 12 April 2021 Retrieved 16 February 2022 Temperature amp Stress Analysis Archived 22 February 2014 at the Wayback Machine Piping Technology and Products retrieved February 2012 What is HDPE Pipe Acu Tech Piping Systems Retrieved 20 March 2019 BBC A History of the World Object wooden water pipe BBC Archived from the original on 7 May 2016 Retrieved 10 March 2016 Piping water through miles of Redwood Popular Science 74 December 1918 Archived from the original on 28 December 2017 H ASTM A252 Pipe Pile China Huayang Steel Pipe Archived from the original on 16 October 2014 API 5L Specification Line Pipe 1 API Terms and Definitions China Huayang Steel Pipe Archived from the original on 16 October 2014 Further reading editASME B31 3 Process Piping Guide Revision 2 from Los Alamos National Laboratory Engineering Standards Manual OST220 03 01 ESM Seismic Design and Retrofit of Piping Systems July 2002 from American Lifelines Alliance website Engineering and Design Liquid Process Piping Engineer manual entire document index page U S Army Corps of Engineers EM 1110 l 4008 May 1999 Integral Principals of The Structural Dynamics of Flow By L G ClaretExternal links edit nbsp Wikimedia Commons has media related to Pipes Building services piping links at Curlie oil and gas training courses online Retrieved from https en wikipedia org w index php title Piping amp oldid 1207428509, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.