fbpx
Wikipedia

Dichapetalum cymosum

Dichapetalum cymosum, commonly known as gifblaar from Afrikaans, or occasionally by its English translation, poison leaf, is a small prostrate shrub occurring in northern parts of Southern Africa in the family Dichapetalaceae. It is notable as a common cause of lethal cattle poisoning in this region and is considered one of the 'big 6' toxic plants of cattle in South Africa. A 1996 estimate of plant poisonings in South Africa[1] attributes 8% of cattle mortality caused by poisonous plants to it. The majority (70%) of fatal cases are in Limpopo province, with 10% each in North West, Mpumalanga, and Gauteng. Fluoroacetate, the poison used to synthetically produce Compound 1080 used extensively in New Zealand, occurs in all parts of the plant and is responsible for the toxic effects shown.[2]

Gifblaar
Scientific classification
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Eudicots
Clade: Rosids
Order: Malpighiales
Family: Dichapetalaceae
Genus: Dichapetalum
Species:
D. cymosum
Binomial name
Dichapetalum cymosum

Toxic effects include vomiting, seizures, and an irregular heartbeat, and death can occur in as little as a few hours. This poison is known as “the poison that keeps on killing” because the toxin stays in the body after the animal dies, so if a predator eats the animal, the predator gets poisoned, and so on up the food chain. It can easily kill small mammals such as rats, earning it the name "ratbane"; it was banned for commercial use in the United States in 1972 by the Environmental Protection Agency[3]

Dichapetalum cymosum was first recognised as toxic by the early Voortrekkers entering the Transvaal, who were probably alerted to its lethality by natives living in the region.[4]

Description Edit

Above ground, the plant is seen as a clump of small, woody shrubs about 15 cm (6 in) high. Such a clump is typically a single plant, as gifblaar has a huge underground root system - likened to an underground tree - and sends numerous shoots above ground in favourable conditions. The most obvious above ground parts are the leaves - simple, alternate with initially fine hairs later becoming glabrous. The leaves are bright green in colour on both sides. The secondary veins form loops and do not reach the margin. The flowers are small and white, and occur as dense clumps in the early spring. Fruit formation is rare; the fruits are orange and leathery, are not poisonous and known to be consumed by the San people.

Identification of gifblaar in the field is important in prevention of toxicity and also in assigning gifblaar as the cause of toxicity in an outbreak. It is a small, low-growing, nondescript shrub and thus easily confused with other species. There are four principal "confusers" in its habitat. These are Ochna pulchra (lekkerbreek) saplings, Parinari capensis (grysappel), Pygmaeothamnus spp. (goorappels) and the various gousiektebossies (various genera and species of the family Rubiaceae, such as Vangueria). The first three of these are non-toxic, but gousiektebossies are also toxic and another of the 'big 6' cattle poisons.

Of the similar species, gousiektebossies and goorappel have opposite, not alternate, leaves. Goorappel leaves also have a characteristic bulge terminally, though only when mature. Grysappel and Ochna pulchra have alternate leaves, but grysappel has pale grey undersides to its leaves (its name means grey apple). O. pulchra leaves have secondary veins that are not looped and reach the margin, and the margin itself is dentate not smooth.

Distribution and habitat Edit

Gifblaar occurs in dry, sandy areas in acidic soils, as well as the northern slopes of rocky hills in the southern parts of the African savannah biome. In South Africa, the distribution is within the so-called 'gifblaar triangle', the points of which are Mmabatho; Middelburg, Mpumalanga; and Musina. The traditional southern border of distribution is the Magaliesberg mountains. It also occurs in an isolated region in the far north of KwaZulu-Natal. Gifblaar is also found in Namibia, Zimbabwe, Botswana as well as southern Angola. Within its habitat certain indicator species are used to identify veld which potentially harbours gifblaar - this veld is called 'gifveld' by farmers of the region. These are the trees Burkea africana, Terminalia sericea, and Ochna pulchra, and also the shrub Parinari capensis. The latter two species can easily be mistaken for gifblaar.

Toxicity and biochemistry Edit

 
Sodium fluoroacetate is one of the few naturally occurring fluorine compounds and is present in D. cymosum.

The toxic compound isolated as the cause of gifblaar poisoning is fluoroacetate, which was first isolated by Marais in 1944.[5][6] The LD50 of this compound is 0.5 mg/kg which translates to about 200 g of dry plant material to kill a 500 kg cow. The compound itself is not toxic but undergoes lethal synthesis in the body while reacting with coenzyme A, yielding fluoroacetyl-Coenzyme A. This compound reacts with oxaloacetate to form fluorocitrate, which is toxic, being an alternate substrate for aconitase (normal substrate citrate). It binds to the aconitase but cannot be released, irreversibly binding the aconitase causing disruption to the Krebs cycle, leading to a severe inhibition of cellular respiration. Furthermore, fluorocitrate stops citrate from crossing from the cytoplasm into the mitochondrion, where it is needed. In the cytoplasm it becomes degraded.

Pathology Edit

In cattle, death by acute cardiac arrest is seen following drinking or some kind of exertion. Affected animals will show dyspnoea and arrhythmias before this. There may occasionally be neurological signs such as trembling, twitching and convulsions. Death occurs 4 to 24 hours after ingestion. In rare cases, an animal will survive the initial period only to drop dead months later of heart failure - so-called chronic gifblaar poisoning. On post-mortem, leaves may be found in the rumen, cyanosis may be seen, as well as signs of heart failure - congestion, haemorrhage, and myocardial necrosis (on histopathology). Diagnosis is based on these as well as the presence of gifblaar in the camp, particularly if signs of consumption are seen. Tests can be done for monofluoroacetate in rumen fluid, kidneys and liver.

Treatment Edit

Treatment often consists of helping animals to remain calm and rested. Animals are usually removed from the infected camp, but without exciting them. It is thought[by whom?] that withholding water for 48 hours can improve prognosis. There are no confirmed therapeutic measures that have been developed for the prevention or treatment of gifblaar poisoning.[7] Removing all known plants from pastures may reduce risk of exposure.

Pattern of toxicity Edit

Cattle are mostly affected, with sheep, goats and game rarely being poisoned. The compound is equally poisonous to these species; an explanation is that the bulk grazing style of cattle, which is by nature less selective, lends itself to the ingestion of the plant. Young sprouts have more monofluoroacetate, but all parts are lethal. The plant sprouts in late winter, before the spring rains, the cue for most plants - including grasses - to shoot. This makes it the predominant greenery during that period. Cases of poisoning are most frequent at this time. Later in the season, gifblaar poisoning is far less common; presumably enough other grazing occurs that gifblaar is not eaten. Autumn (late season) poisonings also occur. This is associated with heavy grazing, leading to denudation of preferred species, and gifblaar is again the predominant herbage within the camp. Poisoning of carnivores, including dogs, has been reported after consumption of ruminal contents of poisoned animals.

Management Edit

Mechanical methods of removal have proven to be ineffective because of the plant's extensive root system.[citation needed] From the above it is clear that gifblaar-infested camps are not ungrazeable per se. Nevertheless, caution should be taken and animals should only be grazed later in the season, and the camps should not be overutilised.

Medical use Edit

The fluoroacetate found in the plant may be used as a precursor to other organofluorides. There is preliminary evidence for some of these compounds in HIV anti-infective therapy.[8]

References Edit

  1. ^ Kellerman TS; TW Naude; N Fourie (1996). "The distribution, diagnoses and estimated economic impact of plant poisonings and mycotoxicosis in South Africa". Onderstepoort Journal of Veterinary Research. 63 (2): 65–90. PMID 8856758.
  2. ^ "Dichapetalum cymosum". The hidden Gifts of Nature. Retrieved 5 May 2008.
  3. ^ Stewart, Amy (2009). Wicked plants: the weed that killed Lincoln's mother & other botanical atrocities (1st ed.). Chapel Hill, N.C.: Algonquin Books. p. 235. ISBN 978-1-56512-683-1.
  4. ^ D.G. Steyn; Med Vet. "Gifblaar poisoning. A summary of our present knowledge in respect of poisoning by Dichapetalum cymosum" (PDF): 186–194. Retrieved 21 June 2011. {{cite journal}}: Cite journal requires |journal= (help)
  5. ^ Marais JCS (1943). "The isolation of the toxic principle "K cymonate" from "Gifblaar", Dichapetalum cymosum". Onderstepoort Jour. Vet. Sci. Animal Ind. 18: 203.
  6. ^ Marais JCS (1944). "Monofluoroacetic acid, the toxic principle of "gifblaar" Dichapetalum cymosum". Onderstepoort Jour. Vet. Sci. Animal Ind. 20: 67.
  7. ^ Egyed MN; Schultz RA (December 1986). "The efficacy of acetamide for the treatment of experimental Dichapetalum cymosum (gifblaar) poisoning in sheep". Onderstepoort J Vet Res. 53 (4): 231–4. PMID 3796950.
  8. ^ Andrew G. Myers; Joseph K. Barbay; Boyu Zhon (21 March 2001). (PDF). Journal of the American Chemical Society. 123 (30): 7207–7219. doi:10.1021/ja010113y. PMID 11472148. Archived from the original (PDF) on 15 August 2011.

Further reading Edit

  • Vahrmeijer, J. (1981) Gifplante van Suider-Afrika wat veeverliese veroorsaak. Kaapstad: Tafelberg. ISBN 978-0-624-01460-7
  • Kellerman, Coetzer, Naudé, and Botha (2005) Plant poisonings and mycotoxicoses of Livestock in South Africa. Cape Town: Oxford University Press. ISBN 978-0-19-576134-4
  • van Wyk, van Heerden, and van Oudtshoorn (2002) Poisonous Plants of South Africa. Pretoria: Briza Publications. ISBN 978-1-875093-30-4
  • Fiona Upora Ndjupaa feed

dichapetalum, cymosum, this, article, includes, list, general, references, lacks, sufficient, corresponding, inline, citations, please, help, improve, this, article, introducing, more, precise, citations, january, 2011, learn, when, remove, this, template, mes. This article includes a list of general references but it lacks sufficient corresponding inline citations Please help to improve this article by introducing more precise citations January 2011 Learn how and when to remove this template message Dichapetalum cymosum commonly known as gifblaar from Afrikaans or occasionally by its English translation poison leaf is a small prostrate shrub occurring in northern parts of Southern Africa in the family Dichapetalaceae It is notable as a common cause of lethal cattle poisoning in this region and is considered one of the big 6 toxic plants of cattle in South Africa A 1996 estimate of plant poisonings in South Africa 1 attributes 8 of cattle mortality caused by poisonous plants to it The majority 70 of fatal cases are in Limpopo province with 10 each in North West Mpumalanga and Gauteng Fluoroacetate the poison used to synthetically produce Compound 1080 used extensively in New Zealand occurs in all parts of the plant and is responsible for the toxic effects shown 2 GifblaarConservation statusLeast Concern IUCN 2 3 Scientific classificationKingdom PlantaeClade TracheophytesClade AngiospermsClade EudicotsClade RosidsOrder MalpighialesFamily DichapetalaceaeGenus DichapetalumSpecies D cymosumBinomial nameDichapetalum cymosum Hook Engl Toxic effects include vomiting seizures and an irregular heartbeat and death can occur in as little as a few hours This poison is known as the poison that keeps on killing because the toxin stays in the body after the animal dies so if a predator eats the animal the predator gets poisoned and so on up the food chain It can easily kill small mammals such as rats earning it the name ratbane it was banned for commercial use in the United States in 1972 by the Environmental Protection Agency 3 Dichapetalum cymosum was first recognised as toxic by the early Voortrekkers entering the Transvaal who were probably alerted to its lethality by natives living in the region 4 Contents 1 Description 2 Distribution and habitat 3 Toxicity and biochemistry 4 Pathology 5 Treatment 6 Pattern of toxicity 7 Management 8 Medical use 9 References 10 Further readingDescription EditAbove ground the plant is seen as a clump of small woody shrubs about 15 cm 6 in high Such a clump is typically a single plant as gifblaar has a huge underground root system likened to an underground tree and sends numerous shoots above ground in favourable conditions The most obvious above ground parts are the leaves simple alternate with initially fine hairs later becoming glabrous The leaves are bright green in colour on both sides The secondary veins form loops and do not reach the margin The flowers are small and white and occur as dense clumps in the early spring Fruit formation is rare the fruits are orange and leathery are not poisonous and known to be consumed by the San people Identification of gifblaar in the field is important in prevention of toxicity and also in assigning gifblaar as the cause of toxicity in an outbreak It is a small low growing nondescript shrub and thus easily confused with other species There are four principal confusers in its habitat These are Ochna pulchra lekkerbreek saplings Parinari capensis grysappel Pygmaeothamnus spp goorappels and the various gousiektebossies various genera and species of the family Rubiaceae such as Vangueria The first three of these are non toxic but gousiektebossies are also toxic and another of the big 6 cattle poisons Of the similar species gousiektebossies and goorappel have opposite not alternate leaves Goorappel leaves also have a characteristic bulge terminally though only when mature Grysappel and Ochna pulchra have alternate leaves but grysappel has pale grey undersides to its leaves its name means grey apple O pulchra leaves have secondary veins that are not looped and reach the margin and the margin itself is dentate not smooth Leaves In flowerDistribution and habitat EditGifblaar occurs in dry sandy areas in acidic soils as well as the northern slopes of rocky hills in the southern parts of the African savannah biome In South Africa the distribution is within the so called gifblaar triangle the points of which are Mmabatho Middelburg Mpumalanga and Musina The traditional southern border of distribution is the Magaliesberg mountains It also occurs in an isolated region in the far north of KwaZulu Natal Gifblaar is also found in Namibia Zimbabwe Botswana as well as southern Angola Within its habitat certain indicator species are used to identify veld which potentially harbours gifblaar this veld is called gifveld by farmers of the region These are the trees Burkea africana Terminalia sericea and Ochna pulchra and also the shrub Parinari capensis The latter two species can easily be mistaken for gifblaar Toxicity and biochemistry EditMain article Sodium fluoroacetate Sodium fluoroacetate is one of the few naturally occurring fluorine compounds and is present in D cymosum The toxic compound isolated as the cause of gifblaar poisoning is fluoroacetate which was first isolated by Marais in 1944 5 6 The LD50 of this compound is 0 5 mg kg which translates to about 200 g of dry plant material to kill a 500 kg cow The compound itself is not toxic but undergoes lethal synthesis in the body while reacting with coenzyme A yielding fluoroacetyl Coenzyme A This compound reacts with oxaloacetate to form fluorocitrate which is toxic being an alternate substrate for aconitase normal substrate citrate It binds to the aconitase but cannot be released irreversibly binding the aconitase causing disruption to the Krebs cycle leading to a severe inhibition of cellular respiration Furthermore fluorocitrate stops citrate from crossing from the cytoplasm into the mitochondrion where it is needed In the cytoplasm it becomes degraded Pathology EditIn cattle death by acute cardiac arrest is seen following drinking or some kind of exertion Affected animals will show dyspnoea and arrhythmias before this There may occasionally be neurological signs such as trembling twitching and convulsions Death occurs 4 to 24 hours after ingestion In rare cases an animal will survive the initial period only to drop dead months later of heart failure so called chronic gifblaar poisoning On post mortem leaves may be found in the rumen cyanosis may be seen as well as signs of heart failure congestion haemorrhage and myocardial necrosis on histopathology Diagnosis is based on these as well as the presence of gifblaar in the camp particularly if signs of consumption are seen Tests can be done for monofluoroacetate in rumen fluid kidneys and liver Treatment EditThis section contains instructions advice or how to content The purpose of Wikipedia is to present facts not to train Please help improve this article either by rewriting the how to content or by moving it to Wikiversity Wikibooks or Wikivoyage June 2011 Treatment often consists of helping animals to remain calm and rested Animals are usually removed from the infected camp but without exciting them It is thought by whom that withholding water for 48 hours can improve prognosis There are no confirmed therapeutic measures that have been developed for the prevention or treatment of gifblaar poisoning 7 Removing all known plants from pastures may reduce risk of exposure Pattern of toxicity EditCattle are mostly affected with sheep goats and game rarely being poisoned The compound is equally poisonous to these species an explanation is that the bulk grazing style of cattle which is by nature less selective lends itself to the ingestion of the plant Young sprouts have more monofluoroacetate but all parts are lethal The plant sprouts in late winter before the spring rains the cue for most plants including grasses to shoot This makes it the predominant greenery during that period Cases of poisoning are most frequent at this time Later in the season gifblaar poisoning is far less common presumably enough other grazing occurs that gifblaar is not eaten Autumn late season poisonings also occur This is associated with heavy grazing leading to denudation of preferred species and gifblaar is again the predominant herbage within the camp Poisoning of carnivores including dogs has been reported after consumption of ruminal contents of poisoned animals Management EditMechanical methods of removal have proven to be ineffective because of the plant s extensive root system citation needed From the above it is clear that gifblaar infested camps are not ungrazeable per se Nevertheless caution should be taken and animals should only be grazed later in the season and the camps should not be overutilised Medical use EditThe fluoroacetate found in the plant may be used as a precursor to other organofluorides There is preliminary evidence for some of these compounds in HIV anti infective therapy 8 References Edit Kellerman TS TW Naude N Fourie 1996 The distribution diagnoses and estimated economic impact of plant poisonings and mycotoxicosis in South Africa Onderstepoort Journal of Veterinary Research 63 2 65 90 PMID 8856758 Dichapetalum cymosum The hidden Gifts of Nature Retrieved 5 May 2008 Stewart Amy 2009 Wicked plants the weed that killed Lincoln s mother amp other botanical atrocities 1st ed Chapel Hill N C Algonquin Books p 235 ISBN 978 1 56512 683 1 D G Steyn Med Vet Gifblaar poisoning A summary of our present knowledge in respect of poisoning by Dichapetalum cymosum PDF 186 194 Retrieved 21 June 2011 a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help Marais JCS 1943 The isolation of the toxic principle K cymonate from Gifblaar Dichapetalum cymosum Onderstepoort Jour Vet Sci Animal Ind 18 203 Marais JCS 1944 Monofluoroacetic acid the toxic principle of gifblaar Dichapetalum cymosum Onderstepoort Jour Vet Sci Animal Ind 20 67 Egyed MN Schultz RA December 1986 The efficacy of acetamide for the treatment of experimental Dichapetalum cymosum gifblaar poisoning in sheep Onderstepoort J Vet Res 53 4 231 4 PMID 3796950 Andrew G Myers Joseph K Barbay Boyu Zhon 21 March 2001 Asymmetric Synthesis of Chiral Organofluorine Compounds Use of Nonracemic Fluoroiodoacetic Acid as a Practical Electrophile and Its Application to the Synthesis of Monofluoro Hydroxyethylene Dipeptide Isosteres within a Novel Series of HIV Protease Inhibitors PDF Journal of the American Chemical Society 123 30 7207 7219 doi 10 1021 ja010113y PMID 11472148 Archived from the original PDF on 15 August 2011 Further reading EditVahrmeijer J 1981 Gifplante van Suider Afrika wat veeverliese veroorsaak Kaapstad Tafelberg ISBN 978 0 624 01460 7 Kellerman Coetzer Naude and Botha 2005 Plant poisonings and mycotoxicoses of Livestock in South Africa Cape Town Oxford University Press ISBN 978 0 19 576134 4 van Wyk van Heerden and van Oudtshoorn 2002 Poisonous Plants of South Africa Pretoria Briza Publications ISBN 978 1 875093 30 4 Fiona Upora Ndjupaa feed Retrieved from https en wikipedia org w index php title Dichapetalum cymosum amp oldid 1156279054, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.