fbpx
Wikipedia

Archaeplastida

The Archaeplastida (or kingdom Plantae sensu lato "in a broad sense"; pronounced /ɑːrkɪ'plastɪdə/) are a major group of eukaryotes, comprising the photoautotrophic red algae (Rhodophyta), green algae, land plants, and the minor group glaucophytes.[6] It also includes the non-photosynthetic lineage Rhodelphidia, a predatorial (eukaryotrophic) flagellate that is sister to the Rhodophyta, and probably the microscopic picozoans.[7] The Archaeplastida have chloroplasts that are surrounded by two membranes, suggesting that they were acquired directly through a single endosymbiosis event by feeding on a cyanobacterium.[8] All other groups which have chloroplasts, besides the amoeboid genus Paulinella, have chloroplasts surrounded by three or four membranes, suggesting they were acquired secondarily from red or green algae.[note 1] Unlike red and green algae, glaucophytes have never been involved in secondary endosymbiosis events.[10]

Archaeplastida
Temporal range: Calymmian - Present, [citation needed]
Trees, grasses and algae in and around Sprague River, Oregon
Scientific classification
Domain: Eukaryota
(unranked): Diaphoretickes
(unranked): Archaeplastida
Adl et al., 2005[1]
Subgroups
Synonyms
  • Plantae Cavalier-Smith, 1981[4]
  • Primoplastobiota Reviers, 2002[citation needed]
  • Primoplantae Palmer et al. 2004[5]

The cells of the Archaeplastida typically lack centrioles and have mitochondria with flat cristae. They usually have a cell wall that contains cellulose, and food is stored in the form of starch. However, these characteristics are also shared with other eukaryotes. The main evidence that the Archaeplastida form a monophyletic group comes from genetic studies, which indicate their plastids probably had a single origin. This evidence is disputed.[11][12] Based on the evidence to date, it is not possible to confirm or refute alternative evolutionary scenarios to a single primary endosymbiosis.[13] Photosynthetic organisms with plastids of different origin (such as brown algae) do not belong to the Archaeplastida.

The archaeplastidans fall into two main evolutionary lines. The red algae are pigmented with chlorophyll a and phycobiliproteins, like most cyanobacteria, and accumulate starch outside the chloroplasts. The green algae and land plants – together known as Viridiplantae (Latin for "green plants") or Chloroplastida – are pigmented with chlorophylls a and b, but lack phycobiliproteins, and starch is accumulated inside the chloroplasts.[14] The glaucophytes have typical cyanobacterial pigments, and are unusual in retaining a cell wall within their plastids (called cyanelles).[1]

Archaeplastida should not be confused with the older and obsolete name Archiplastideae, which refers to cyanobacteria and other groups of bacteria.[15][16]

Taxonomy

The consensus in 2005, when the group consisting of the glaucophytes and red and green algae and land plants was named 'Archaeplastida',[1] was that it was a clade, i.e. was monophyletic. Many studies published since then have provided evidence in agreement.[17][18][19][20] Other studies, though, have suggested that the group is paraphyletic.[21][22][23][12][24] To date, the situation appears unresolved, but a strong signal for Plantae (Archaeplastida) monophyly has been demonstrated in a recent study (with an enrichment of red algal genes).[25] The assumption made here is that Archaeplastida is a valid clade.

Various names have been given to the group. Some authors have simply referred to the group as plants or Plantae.[26][27] However, the name Plantae is ambiguous, since it has also been applied to less inclusive clades, such as Viridiplantae and embryophytes. To distinguish, the larger group is sometimes known as Plantae sensu lato ("plants in the broad sense").

To avoid ambiguity, other names have been proposed. Primoplantae, which appeared in 2004, seems to be the first new name suggested for this group.[5] Another name applied to this node is Plastida, defined as the clade sharing "plastids of primary (direct prokaryote) origin [as] in Magnolia virginiana Linnaeus 1753".[28]

Although many studies have suggested the Archaeplastida form a monophyletic group,[29] a 2009 paper argues that they are in fact paraphyletic.[23] The enrichment of novel red algal genes in a recent study demonstrates a strong signal for Plantae (Archaeplastida) monophyly and an equally strong signal of gene sharing history between the red/green algae and other lineages.[25] This study provides insight on how rich mesophilic red algal gene data are crucial for testing controversial issues in eukaryote evolution and for understanding the complex patterns of gene inheritance in protists.

The name Archaeplastida was proposed in 2005 by a large international group of authors (Adl et al.), who aimed to produce a classification for the eukaryotes which took into account morphology, biochemistry, and phylogenetics, and which had "some stability in the near term." They rejected the use of formal taxonomic ranks in favour of a hierarchical arrangement where the clade names do not signify rank. Thus, the phylum name 'Glaucophyta' and the class name 'Rhodophyceae' appear at the same level in their classification. The divisions proposed for the Archaeplastida are shown below in both tabular and diagrammatic form.[1]

Archaeplastida:

  • Glaucophyta Skuja, 1954 (Glaucocystophyta Kies & Kremer, 1986) – glaucophytes
  • Glaucophytes are a small group of freshwater single-celled algae. Their chloroplasts, called cyanelles, have a peptidoglycan layer, making them more similar to cyanobacteria than those of the remaining Archaeplastida.
  • Rhodophyceae Thuret, 1855, emend. Rabenhorst, 1863, emend. Adl et al., 2005 (Rhodophyta Wettstein 1901) – red algae
Red algae form one of the largest groups of algae. Most are seaweeds, being multicellular and marine. Their red colour comes from phycobiliproteins, used as accessory pigments in light capture for photosynthesis.
  • Chloroplastida Adl et al., 2005 (Viridiplantae Cavalier-Smith 1981; Chlorobionta Jeffrey 1982, emend. Bremer 1985, emend. Lewis and McCourt 2004; Chlorobiota Kendrick and Crane 1997)
Chloroplastida is the term chosen by Adl et al. for the group made up of the green algae and land plants (embryophytes). Except where lost secondarily, all have chloroplasts without a peptidoglycan layer and lack phycobiliproteins.
  • Chlorophyta Pascher, 1914, emend. Lewis & McCourt, 2004 – green algae (part)
  • Adl et al. employ a narrow definition of the Chlorophyta; other sources include the Chlorodendrales and Prasinophytae, which may themselves be combined.
  • Ulvophyceae Mattox & Stewart, 1984
  • Trebouxiophyceae Friedl, 1995 (Pleurastrophyceae Mattox et al. 1984; Microthamniales Melkonian 1990)
  • Chlorophyceae Christensen, 1994
  • Chlorodendrales Fritsch, 1917 – green algae (part)
  • Prasinophytae Cavalier-Smith, 1998, emend. Lewis & McCourt, 2004 – green algae (part)
  • Mesostigma Lauterborn, 1894, emend. McCourt in Adl et al., 2005 (Mesostigmata Turmel, Otis, and Lemieux 2002)
  • Charophyta Karol et al., 2001, emend. Lewis & McCourt, 2004 (Charophyceae Smith 1938, emend. Mattox and Stewart 1984) – green algae (part) and land plants
Charophyta sensu lato, as used by Adl et al., is a monophyletic group which is made up of some green algae, including the stoneworts (Charophyta sensu stricto), as well as the land plants (embryophytes).
  • Sub-divisions other than Streptophytina (below) were not given by Adl et al.
Other sources would include the green algal groups Chlorokybales, Klebsormidiales, Zygnematales and Coleochaetales.[30]
  • Charales Lindley 1836 (Charophytae Engler, 1887) – stoneworts
  • Plantae Haeckel 1866 (Cormophyta Endlicher, 1836; Embryophyta Endlicher, 1836, emend. Lewis & McCourt, 2004) – land plants (embryophytes)

Cladogram

Below is a consensus reconstruction of green algal relationships, mainly based on molecular data.[31][32][33][34][35][36][37][38][39][40] While the Glaucophyta are typically figured as deepest rooting Archeaplastida,[41][42][43][44] some genomic research points to Rhodophyta as basal, possibly with Cryptista and picozoa emerging in Archaeplastida.[45][46][47][48][49][50][51][52][3] At least for Cryptista, this analysis (by Burki et al 2016) has gained credibility.[53][54][55][56][57][58]

However, there is a lot of contention near the Archaeplastida root, e.g. whether Glaucophyta or Rhodophyta are basal, or whether e.g. Cryptista emerged within the Archaeplastida. In 2014 a thorough review was published on these inconsistencies.[60] The position of Telonemia and Picozoa are not clear. Also Hacrobia (Haptista + Cryptista) may be completely associated with the SAR clade. The SAR are often seen as eukaryote-eukaryote hybrids, contributing to the confusion in the genetic analyses. A sister of Gloeomargarita lithophora has been engulfed by an ancestor of the Archaeplastida, leading to the plastids which are living in permanent endosymbiosis in most of the descendent lineages. Because both Gloeomargarita and related cyanobacteria, in addition to the most primitive archaeplastids, all live in freshwater, it seems the Archaeplastida originated in freshwater, and only colonized the oceans in the late Proterozoic.[61][62]

Morphology

All archaeplastidans have plastids (chloroplasts) that carry out photosynthesis and are believed to be derived from endosymbiotic cyanobacteria. In glaucophytes, perhaps the most primitive members of the group, the chloroplast is called a cyanelle and shares several features with cyanobacteria, including a peptidoglycan cell wall, that are not retained in other members of the group. The resemblance of cyanelles to cyanobacteria supports the endosymbiotic theory.

The cells of most archaeplastidans have walls, commonly but not always made of cellulose.

The Archaeplastida vary widely in the degree of their cell organization, from isolated cells to filaments to colonies to multi-celled organisms. The earliest were unicellular, and many groups remain so today. Multicellularity evolved separately in several groups, including red algae, ulvophyte green algae, and in the green algae that gave rise to stoneworts and land plants.

Endosymbiosis

Because the ancestral archaeplastidan is hypothesized to have acquired its chloroplasts directly by engulfing cyanobacteria, the event is known as a primary endosymbiosis (as reflected in the name chosen for the group 'Archaeplastida' i.e. 'ancient plastid'). One species of green algae, Cymbomonas tetramitiformis in the order Pyramimonadales, is a mixotroph and able to support itself through both phagotrophy and phototrophy. It is not yet known if this is a primitive trait and therefore defines the last common ancestor of Archaeplastida, which could explain how it obtained its chloroplasts, or if it is a trait regained by horizontal gene transfer.[63]

Evidence for primary endosymbiosis includes the presence of a double membrane around the chloroplasts; one membrane belonged to the bacterium, and the other to the eukaryote that captured it. Over time, many genes from the chloroplast have been transferred to the nucleus of the host cell. The presence of such genes in the nuclei of eukaryotes without chloroplasts suggests this transfer happened early in the evolution of the group.[64]

Other eukaryotes with chloroplasts appear to have gained them by engulfing a single-celled archaeplastidan with its own bacterially-derived chloroplasts. Because these events involve endosymbiosis of cells that have their own endosymbionts, the process is called secondary endosymbiosis. The chloroplasts of such eukaryotes are typically surrounded by more than two membranes, reflecting a history of multiple engulfment. The chloroplasts of euglenids, chlorarachniophytes and a small group of dinoflagellates appear to be captured green algae,[65] whereas those of the remaining photosynthetic eukaryotes, such as heterokont algae, cryptophytes, haptophytes, and dinoflagellates, appear to be captured red algae.

Fossil record

Perhaps the most ancient remains of Archaeplastida are putative red algae (Rafatazmia) within stromatolites in 1600 Ma (million years ago) rocks in India.[66] Somewhat more recent are microfossils from the Roper group in northern Australia. The structure of these single-celled fossils resembles that of modern green algae. They date to the Mesoproterozoic Era, about 1500 to 1300 Ma.[67] These fossils are consistent with a molecular clock study that calculated that this clade diverged about 1500 Ma.[68] The oldest fossil that can be assigned to a specific modern group is the red alga Bangiomorpha, from 1200 Ma.[69]

In the late Neoproterozoic Era, algal fossils became more numerous and diverse. Eventually, in the Paleozoic Era, plants emerged onto land, and have continued to flourish up to the present.

Notes

  1. ^ The exceptional two plastid membranes of the stramenopile alga Chrysoparadoxa are probably the result of secondary reduction.[9]

References

  1. ^ a b c d Adl, S.M.; et al. (2005). "The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists". Journal of Eukaryotic Microbiology. 52 (5): 399–451. doi:10.1111/j.1550-7408.2005.00053.x. PMID 16248873. S2CID 8060916.
  2. ^ a b Yazaki, Euki; Yabuki, Akinori; Imaizumi, Ayaka; Kume, Keitaro; Hashimoto, Tetsuo; Inagaki, Yuji (31 August 2021). "Phylogenomics invokes the clade housing Cryptista, Archaeplastida, and Microheliella maris". doi:10.1101/2021.08.29.458128. S2CID 237393558. Retrieved 25 November 2021. {{cite journal}}: Cite journal requires |journal= (help)
  3. ^ a b Schön, M.E.; Zlatogursky, V.V.; Singh, R.P.; et al. (17 November 2021). "Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae". Nature Communications. 12: 6651 (1): 6651. Bibcode:2021NatCo..12.6651S. doi:10.1038/s41467-021-26918-0. ISSN 2041-1723. PMC 8599508. PMID 34789758.
  4. ^ Cavalier-Smith, T. (1981). "Eukaryote Kingdoms: Seven or Nine?"". BioSystems. 14 (3–4): 461–481. doi:10.1016/0303-2647(81)90050-2. PMID 7337818.
  5. ^ a b Palmer, Jeffrey D.; Soltis, Douglas E.; Chase, Mark W. (2004). "The plant tree of life: an overview and some points of view". American Journal of Botany. 91 (10): 1437–1445. doi:10.3732/ajb.91.10.1437. PMID 21652302.
  6. ^ Ball, S.; Colleoni, C. (January 2011). Cenci, U.; Raj, J.N.; Tirtiaux, C. "The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis". Journal of Experimental Botany. 62 (6): 1775–1801. doi:10.1093/jxb/erq411. PMID 21220783.
  7. ^ Picozoans Are Algae After All: Study | The Scientist Magazine®
  8. ^ Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences; Tikhonenkov, Denis V. (2020). "Predatory flagellates – the new recently discovered deep branches of the eukaryotic tree and their evolutionary and ecological significance" (PDF). Protistology. 14 (1). doi:10.21685/1680-0826-2020-14-1-2.
  9. ^ Wetherbee, Richard; Jackson, Christopher J.; Repetti, Sonja I.; Clementson, Lesley A.; Costa, Joana F.; van de Meene, Allison; Crawford, Simon; Verbruggen, Heroen (9 December 2018). "The golden paradox – a new heterokont lineage with chloroplasts surrounded by two membranes". Journal of Phycology. 22 (2): 257–278. doi:10.1111/jpy.12822. hdl:11343/233613. PMID 30536815. S2CID 54477112.
  10. ^ Handbook of Marine Microalgae: Biotechnology Advances
  11. ^ Parfrey. L. W.; Barbero, E.; Lasser, E; et al. (December 2006). "Evaluating support for the current classification of eukaryotic diversity". PLOS Genetics. 2 (12): e220. doi:10.1371/journal.pgen.0020220. PMC 1713255. PMID 17194223.
  12. ^ a b Kim, E; Graham, L. E. (July 2008). Redfield, Rosemary Jeanne (ed.). "EEF2 analysis challenges the monophyly of Archaeplastida and Chromalveolata". PLOS ONE. 3 (7): e2621. Bibcode:2008PLoSO...3.2621K. doi:10.1371/journal.pone.0002621. PMC 2440802. PMID 18612431.
  13. ^ Mackiewicz, P.; Gagat, P. (2014). "Monophyly of Archaeplastida supergroup and relationships among its lineages in the light of phylogenetic and phylogenomic studies. Are we close to a consensus?". Acta Societatis Botanicorum Poloniae. 83 (4): 263–280. doi:10.5586/asbp.2014.044.
  14. ^ Viola, R.; Nyvall, P.; Pedersén, M. (2001). "The unique features of starch metabolism in red algae". Proceedings of the Royal Society B: Biological Sciences. 268 (1474): 1417–1422. doi:10.1098/rspb.2001.1644. PMC 1088757. PMID 11429143.
  15. ^ Copeland, H. F. (1956). The Classification of Lower Organisms. Palo Alto: Pacific Books, p. 29, [1].
  16. ^ Bessey, C. E. (1907). "A Synopsis of Plant Phyla". Univ. Nebraska Studies. 7: 275–358.
  17. ^ Burki, Fabien; Kamran Shalchian-Tabrizi; Marianne Minge; Åsmund Skjæveland; Sergey I. Nikolaev; Kjetill S. Jakobsen; Jan Pawlowski (2007). Butler, Geraldine (ed.). "Phylogenomics Reshuffles the Eukaryotic Supergroups". PLOS ONE. 2 (8): e790. Bibcode:2007PLoSO...2..790B. doi:10.1371/journal.pone.0000790. PMC 1949142. PMID 17726520.
  18. ^ Burki, F.; Inagaki, Y.; Brate, J.; Archibald, J. M.; Keeling, P. J.; Cavalier-Smith, T.; et al. (2009). "Large-Scale Phylogenomic Analyses Reveal That Two Enigmatic Protist Lineages, Telonemia and Centroheliozoa, Are Related to Photosynthetic Chromalveolates". Genome Biology and Evolution. 1: 231–238. doi:10.1093/gbe/evp022. PMC 2817417. PMID 20333193.
  19. ^ Cavalier-Smith, Thomas (2009). "Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree". Biology Letters. 6 (3): 342–345. doi:10.1098/rsbl.2009.0948. PMC 2880060. PMID 20031978.
  20. ^ Rogozin, I. B.; Basu, M. K.; Csürös, M. & Koonin, E. V. (2009). "Analysis of Rare Genomic Changes Does Not Support the Unikont–Bikont Phylogeny and Suggests Cyanobacterial Symbiosis as the Point of Primary Radiation of Eukaryotes". Genome Biology and Evolution. 1: 99–113. doi:10.1093/gbe/evp011. PMC 2817406. PMID 20333181.
  21. ^ Baldauf, S.L., Roger, A.J., Wenk-Siefert, I., Doolittle, W.F. 2000. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290: 972-977 (researchgate.net)
  22. ^ Lipscomb, Diana. 1991. Broad classification: the kingdoms and the protozoa. In: Parasitic Protozoa, Vol. 1, 2nd ed., J.P. Kreier, J.R. Baker (eds.), pp. 81-136. Academic Press, San Diego.
  23. ^ a b Nozaki, H.; Maruyama, S.; Matsuzaki, M.; Nakada, T.; Kato, S.; Misawa, K. (December 2009). "Phylogenetic positions of Glaucophyta, green plants (Archaeplastida) and Haptophyta (Chromalveolata) as deduced from slowly evolving nuclear genes". Molecular Phylogenetics and Evolution. 53 (3): 872–80. doi:10.1016/j.ympev.2009.08.015. PMID 19698794.
  24. ^ Palmgren M, Sørensen DM, Hallström BM, Säll T, Broberg K (August 2019). "Evolution of P2A and P5A ATPases: ancient gene duplications and the red algal connection to green plants revisited". Physiol Plant. 168 (3): 630–647. doi:10.1111/ppl.13008. PMID 31268560.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  25. ^ a b Chan, C. X.; Yang, E. C.; Banerjee, T.; Yoon, H. S.; Martone, P. T.; Estevez, J. M.; Bhattacharya, D. (2011). "Red and green algal monophyly and extensive gene sharing found in a rich repertoire of red algal genes". Current Biology. 21 (4): 328–333. doi:10.1016/j.cub.2011.01.037. PMID 21315598. S2CID 7162977.
  26. ^ T. Cavalier-Smith (1981). "Eukaryote Kingdoms: Seven or Nine?". BioSystems. 14 (3–4): 461–481. doi:10.1016/0303-2647(81)90050-2. PMID 7337818.
  27. ^ Bhattacharya, Debashish; Yoon, Hwan Su; Hackett, Jeremiah (2003). "Photosynthetic eukaryotes unite: endosymbiosis connects the dots". BioEssays. 26 (1): 50–60. doi:10.1002/bies.10376. PMID 14696040.
  28. ^ Simpson, A. G. B. (2004). "Highest-level taxa within Eukaryotes". First International Phylogenetic Nomenclature Meeting. Paris, July 6–9.
  29. ^ Vinogradov S. N.; Fernández, I.; Hoogewijs, D.; Arredondo-Peter, R. (October 2010). "Phylogenetic Relationships of 3/3 and 2/2 Hemoglobins in Archaeplastida Genomes to Bacterial and Other Eukaryote Hemoglobins". Molecular Plant. 4 (1): 42–58. doi:10.1093/mp/ssq040. PMID 20952597.
  30. ^ Turmel, M.; Otis, C.; Lemieux, C. (2005). "The complete chloroplast DNA sequences of the charophycean green algae Staurastrum and Zygnema reveal that the chloroplast genome underwent extensive changes during the evolution of the Zygnematales". BMC Biology. 3: 22. doi:10.1186/1741-7007-3-22. PMC 1277820. PMID 16236178.
  31. ^ Leliaert, Frederik; Smith, David R.; Moreau, Hervé; Herron, Matthew D.; Verbruggen, Heroen; Delwiche, Charles F.; De Clerck, Olivier (2012). "Phylogeny and Molecular Evolution of the Green Algae" (PDF). Critical Reviews in Plant Sciences. 31: 1–46. doi:10.1080/07352689.2011.615705. S2CID 17603352.
  32. ^ Marin, Birger (2012). "Nested in the Chlorellales or Independent Class? Phylogeny and Classification of the Pedinophyceae (Viridiplantae) Revealed by Molecular Phylogenetic Analyses of Complete Nuclear and Plastid-encoded rRNA Operons". Protist. 163 (5): 778–805. doi:10.1016/j.protis.2011.11.004. PMID 22192529.
  33. ^ Laurin-Lemay, Simon; Brinkmann, Henner; Philippe, Hervé (2012). "Origin of land plants revisited in the light of sequence contamination and missing data". Current Biology. 22 (15): R593–R594. doi:10.1016/j.cub.2012.06.013. PMID 22877776.
  34. ^ Leliaert, Frederik; Tronholm, Ana; Lemieux, Claude; Turmel, Monique; DePriest, Michael S.; Bhattacharya, Debashish; Karol, Kenneth G.; Fredericq, Suzanne; Zechman, Frederick W. (2016-05-09). "Chloroplast phylogenomic analyses reveal the deepest-branching lineage of the Chlorophyta, Palmophyllophyceae class. nov". Scientific Reports. 6: 25367. Bibcode:2016NatSR...625367L. doi:10.1038/srep25367. ISSN 2045-2322. PMC 4860620. PMID 27157793.
  35. ^ Cook, Martha E.; Graham, Linda E. (2017). Archibald, John M.; Simpson, Alastair G. B.; Slamovits, Claudio H. (eds.). Handbook of the Protists. Springer International Publishing. pp. 185–204. doi:10.1007/978-3-319-28149-0_36. ISBN 9783319281476.
  36. ^ Lewis, Louise A.; Richard M. McCourt (2004). . American Journal of Botany. 91 (10): 1535–1556. doi:10.3732/ajb.91.10.1535. PMID 21652308. Archived from the original (abstract) on 2011-02-21. Retrieved 2017-10-15.
  37. ^ Ruhfel, Brad R.; Gitzendanner, Matthew A.; Soltis, Pamela S.; Soltis, Douglas E.; Burleigh, J. Gordon (2014-02-17). "From algae to angiosperms–inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes". BMC Evolutionary Biology. 14: 23. doi:10.1186/1471-2148-14-23. ISSN 1471-2148. PMC 3933183. PMID 24533922.
  38. ^ Adl, Sina M.; Simpson, Alastair G. B.; Lane, Christopher E.; Lukeš, Julius; Bass, David; Bowser, Samuel S.; Brown, Matthew W.; Burki, Fabien; Dunthorn, Micah (2012-09-01). "The Revised Classification of Eukaryotes". Journal of Eukaryotic Microbiology. 59 (5): 429–514. doi:10.1111/j.1550-7408.2012.00644.x. ISSN 1550-7408. PMC 3483872. PMID 23020233.
  39. ^ Lemieux, Claude; Otis, Christian; Turmel, Monique (2007-01-12). "A clade uniting the green algae Mesostigma viride and Chlorokybus atmophyticus represents the deepest branch of the Streptophyta in chloroplast genome-based phylogenies". BMC Biology. 5: 2. doi:10.1186/1741-7007-5-2. ISSN 1741-7007. PMC 1781420. PMID 17222354.
  40. ^ Umen, James G. (2014-11-01). "Green Algae and the Origins of Multicellularity in the Plant Kingdom". Cold Spring Harbor Perspectives in Biology. 6 (11): a016170. doi:10.1101/cshperspect.a016170. ISSN 1943-0264. PMC 4413236. PMID 25324214.
  41. ^ Vries, Jan de; Gould, Sven B. (2017-01-01). "The monoplastidic bottleneck in algae and plant evolution". J Cell Sci. 131 (2): jcs.203414. doi:10.1242/jcs.203414. ISSN 0021-9533. PMID 28893840.
  42. ^ Ponce-Toledo, Rafael I.; Deschamps, Philippe; López-García, Purificación; Zivanovic, Yvan; Benzerara, Karim; Moreira, David (2017). "An Early-Branching Freshwater Cyanobacterium at the Origin of Plastids". Current Biology. 27 (3): 386–391. doi:10.1016/j.cub.2016.11.056. PMC 5650054. PMID 28132810.
  43. ^ Dittami, Simon M.; Heesch, Svenja; Olsen, Jeanine L.; Collén, Jonas (2017-08-01). "Transitions between marine and freshwater environments provide new clues about the origins of multicellular plants and algae" (PDF). Journal of Phycology. 53 (4): 731–745. doi:10.1111/jpy.12547. ISSN 1529-8817. PMID 28509401. S2CID 43325392.
  44. ^ Smith, David R. (2018). "Lost in the Light: Plastid Genome Evolution in Nonphotosynthetic Algae". Plastid Genome Evolution. Advances in Botanical Research. Vol. 85. pp. 29–53. doi:10.1016/bs.abr.2017.10.001. ISBN 9780128134573.
  45. ^ Burki, Fabien; Kaplan, Maia; Tikhonenkov, Denis V.; Zlatogursky, Vasily; Minh, Bui Quang; Radaykina, Liudmila V.; Smirnov, Alexey; Mylnikov, Alexander P.; Keeling, Patrick J. (2016-01-27). "Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista". Proc. R. Soc. B. 283 (1823): 20152802. doi:10.1098/rspb.2015.2802. ISSN 0962-8452. PMC 4795036. PMID 26817772.
  46. ^ Brown, Matthew W.; Heiss, Aaron; Kamikawa, Ryoma; Inagaki, Yuji; Yabuki, Akinori; Tice, Alexander K.; Shiratori, Takashi; Ishida, Ken; Hashimoto, Tetsuo (2017-12-03). "Phylogenomics places orphan protistan lineages in a novel eukaryotic super-group". Genome Biol Evol. 10 (2): 427–433. doi:10.1093/gbe/evy014. PMC 5793813. PMID 29360967.
  47. ^ Lee, JunMo; Cho, Chung Hyun; Park, Seung In; Choi, Ji Won; Song, Hyun Suk; West, John A.; Bhattacharya, Debashish; Yoon, Hwan Su (2016-09-02). "Parallel evolution of highly conserved plastid genome architecture in red seaweeds and seed plants". BMC Biology. 14: 75. doi:10.1186/s12915-016-0299-5. ISSN 1741-7007. PMC 5010701. PMID 27589960.
  48. ^ Bodył, Andrzej (2018). "Did some red alga-derived plastids evolve via kleptoplastidy? A hypothesis". Biological Reviews. 93 (1): 201–222. doi:10.1111/brv.12340. ISSN 1464-7931. PMID 28544184. S2CID 24613863.
  49. ^ Gitzendanner, Matthew A.; Soltis, Pamela S.; Wong, Gane K.-S.; Ruhfel, Brad R.; Soltis, Douglas E. (2018). "Plastid phylogenomic analysis of green plants: A billion years of evolutionary history". American Journal of Botany. 105 (3): 291–301. doi:10.1002/ajb2.1048. ISSN 0002-9122. PMID 29603143.
  50. ^ Strassert, Jürgen F H; Jamy, Mahwash; Mylnikov, Alexander P; Tikhonenkov, Denis V; Burki, Fabien (2019-01-22). Shapiro, Beth (ed.). "New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life". Molecular Biology and Evolution. Oxford University Press (OUP). 36 (4): 757–765. bioRxiv 10.1101/403329. doi:10.1093/molbev/msz012. ISSN 0737-4038. PMC 6844682. PMID 30668767.
  51. ^ Gawryluk, Ryan M. R.; Tikhonenkov, Denis V.; Hehenberger, Elisabeth; Husnik, Filip; Mylnikov, Alexander P.; Keeling, Patrick J. (2019-09-08). "Non-photosynthetic predators are sister to red algae". Nature. 572 (7768): 240–243. doi:10.1038/s41586-019-1398-6. ISSN 0028-0836. PMID 31316212. S2CID 197542583.
  52. ^ Irisarri, Iker; Strassert, Jürgen F H; Burki, Fabien (2021-12-16). Folk, Ryan (ed.). "Phylogenomic Insights into the Origin of Primary Plastids". Systematic Biology. 71 (1): 105–120. doi:10.1093/sysbio/syab036. ISSN 1063-5157. PMID 33988690.
  53. ^ Blaby-Haas, Crysten E.; Merchant, Sabeeha S. (2019-04-29). "Comparative and Functional Algal Genomics". Annual Review of Plant Biology. Annual Reviews. 70 (1): 605–638. doi:10.1146/annurev-arplant-050718-095841. ISSN 1543-5008. OSTI 1502797. PMID 30822111. S2CID 73512522.
  54. ^ Nowack, Eva C.M.; Weber, Andreas P.M. (2018-04-29). "Genomics-Informed Insights into Endosymbiotic Organelle Evolution in Photosynthetic Eukaryotes". Annual Review of Plant Biology. Annual Reviews. 69 (1): 51–84. doi:10.1146/annurev-arplant-042817-040209. ISSN 1543-5008. PMID 29489396.
  55. ^ Strassert, Jürgen F. H.; Irisarri, Iker; Williams, Tom A.; Burki, Fabien (2021-03-25). "A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids". Nature Communications. 12 (1): 1879. Bibcode:2021NatCo..12.1879S. doi:10.1038/s41467-021-22044-z. ISSN 2041-1723. PMC 7994803. PMID 33767194.
  56. ^ Padilla-Mejia, Norma E.; Makarov, Alexandr A.; Barlow, Lael D.; Butterfield, Erin R.; Field, Mark C. (2021-01-01). "Evolution and diversification of the nuclear envelope". Nucleus. 12 (1): 21–41. doi:10.1080/19491034.2021.1874135. ISSN 1949-1034. PMC 7889174. PMID 33435791.
  57. ^ Burki, Fabien; Roger, Andrew J.; Brown, Matthew W.; Simpson, Alastair G. B. (2020-01-01). "The New Tree of Eukaryotes". Trends in Ecology & Evolution. 35 (1): 43–55. doi:10.1016/j.tree.2019.08.008. ISSN 0169-5347. PMID 31606140. S2CID 204545629.
  58. ^ Yazaki, Euki; Yabuki, Akinori; Imaizumi, Ayaka; Kume, Keitaro; Hashimoto, Tetsuo; Inagaki, Yuji (2022). "The closest lineage of Archaeplastida is revealed by phylogenomics analyses that include Microheliella maris". Open Biology. 12 (4): 210376. doi:10.1098/rsob.210376. PMC 9006020. PMID 35414259.
  59. ^ Linzhou Li; Sibo Wang; Hongli Wang; Sunil Kumar Sahu; Birger Marin; Haoyuan Li; Yan Xu; Hongping Liang; Zhen Li; Shifeng Chen; Tanja Reder; Zehra Çebi; Sebastian Wittek; Morten Petersen; Barbara Melkonian; Hongli Du; Huanming Yang; Jian Wang; Gane Ka-Shu Wong; Xun Xu; Xin Liu; Yves Van de Peer; Michael Melkonian; Huan Liu (22 June 2020). "The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants". Nature Ecology & Evolution. 4 (9): 1220–1231. doi:10.1038/s41559-020-1221-7. PMC 7455551. PMID 32572216.
  60. ^ Mackiewicz, Paweł; Gagat, Przemysław (2014-12-31). "Monophyly of Archaeplastida supergroup and relationships among its lineages in the light of phylogenetic and phylogenomic studies. Are we close to a consensus?". Acta Societatis Botanicorum Poloniae. 83 (4): 263–280. doi:10.5586/asbp.2014.044. ISSN 2083-9480.
  61. ^ de Vries, Jan; Archibald, John M. (2017). "Endosymbiosis: Did Plastids Evolve from a Freshwater Cyanobacterium?". Current Biology. 27 (3): R103–R105. doi:10.1016/j.cub.2016.12.006. PMID 28171752.
  62. ^ Lewis, L. A. (2017). "Hold the salt: Freshwater origin of primary plastids". Proceedings of the National Academy of Sciences of the United States of America. 114 (37): 9759–9760. doi:10.1073/pnas.1712956114. PMC 5604047. PMID 28860199.
  63. ^ Raven, John A. (2013). "Cells inside Cells: Symbiosis and Continuing Phagotrophy". Current Biology. 23 (12): R530–R531. doi:10.1016/j.cub.2013.05.006. PMID 23787050.
  64. ^ Andersson, Jan O.; Roger, Andrew J. (2002). "A cyanobacterial gene in non-photosynthetic protists – an early chloroplast acquisition in eukaryotes?". Current Biology. 12 (2): 115–119. doi:10.1016/S0960-9822(01)00649-2. PMID 11818061. S2CID 18809784.
  65. ^ Keeling, Patrick J. (2010). "The endosymbiotic origin, diversification and fate of plastids". Philosophical Transactions of the Royal Society B: Biological Sciences. 365 (1541): 729–748. doi:10.1098/rstb.2009.0103. PMC 2817223. PMID 20124341.
  66. ^ Bengtson, Stefan; Sallstedt, Therese; Belivanova, Veneta; Whitehouse, Martin (2017). "Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae". PLOS Biology. 15 (3): e2000735. doi:10.1371/journal.pbio.2000735. PMC 5349422. PMID 28291791.
  67. ^ Javaux, Emmanuelle J.; Knoll, Andrew H.; Walter, Malcolm R. (2004). "TEM evidence for eukaryotic diversity in mid-Proterozoic oceans". Geobiology. 2 (3): 121–132. doi:10.1111/j.1472-4677.2004.00027.x. S2CID 53600639.
  68. ^ Yoon, Hwan Su; Hackett, Jeremiah D.; Ciniglia, Claudia; Pinto, Gabriele; Bhattacharya, Debashish (2004). "A molecular timeline for the origin of photosynthetic eukaryotes". Molecular Biology and Evolution. 21 (5): 809–818. doi:10.1093/molbev/msh075. PMID 14963099.
  69. ^ Butterfield, Nicholas J. (2000). "Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes". Paleobiology. 26 (3): 386–404. doi:10.1666/0094-8373(2000)026<0386:BPNGNS>2.0.CO;2. S2CID 36648568.

External links

  • Tree of Life Eukaryotes

archaeplastida, parts, this, article, those, related, introduction, need, updated, relevant, discussion, found, talk, page, please, help, update, this, article, reflect, recent, events, newly, available, information, last, update, 2014, january, 2020, kingdom,. Parts of this article those related to the introduction need to be updated Relevant discussion may be found on the talk page Please help update this article to reflect recent events or newly available information Last update 2014 January 2020 The Archaeplastida or kingdom Plantae sensu lato in a broad sense pronounced ɑːrkɪ plastɪde are a major group of eukaryotes comprising the photoautotrophic red algae Rhodophyta green algae land plants and the minor group glaucophytes 6 It also includes the non photosynthetic lineage Rhodelphidia a predatorial eukaryotrophic flagellate that is sister to the Rhodophyta and probably the microscopic picozoans 7 The Archaeplastida have chloroplasts that are surrounded by two membranes suggesting that they were acquired directly through a single endosymbiosis event by feeding on a cyanobacterium 8 All other groups which have chloroplasts besides the amoeboid genus Paulinella have chloroplasts surrounded by three or four membranes suggesting they were acquired secondarily from red or green algae note 1 Unlike red and green algae glaucophytes have never been involved in secondary endosymbiosis events 10 ArchaeplastidaTemporal range Calymmian Present 1600 0 Ma Pha Proterozoic Archean Had n citation needed Trees grasses and algae in and around Sprague River OregonScientific classificationDomain Eukaryota unranked Diaphoretickes unranked ArchaeplastidaAdl et al 2005 1 SubgroupsRhodophyta Rhodelphidia Glaucophyta Viridiplantae green algae incl land plants Picozoa 2 3 Cryptista SynonymsPlantae Cavalier Smith 1981 4 Primoplastobiota Reviers 2002 citation needed Primoplantae Palmer et al 2004 5 The cells of the Archaeplastida typically lack centrioles and have mitochondria with flat cristae They usually have a cell wall that contains cellulose and food is stored in the form of starch However these characteristics are also shared with other eukaryotes The main evidence that the Archaeplastida form a monophyletic group comes from genetic studies which indicate their plastids probably had a single origin This evidence is disputed 11 12 Based on the evidence to date it is not possible to confirm or refute alternative evolutionary scenarios to a single primary endosymbiosis 13 Photosynthetic organisms with plastids of different origin such as brown algae do not belong to the Archaeplastida The archaeplastidans fall into two main evolutionary lines The red algae are pigmented with chlorophyll a and phycobiliproteins like most cyanobacteria and accumulate starch outside the chloroplasts The green algae and land plants together known as Viridiplantae Latin for green plants or Chloroplastida are pigmented with chlorophylls a and b but lack phycobiliproteins and starch is accumulated inside the chloroplasts 14 The glaucophytes have typical cyanobacterial pigments and are unusual in retaining a cell wall within their plastids called cyanelles 1 Archaeplastida should not be confused with the older and obsolete name Archiplastideae which refers to cyanobacteria and other groups of bacteria 15 16 Contents 1 Taxonomy 1 1 Cladogram 2 Morphology 3 Endosymbiosis 4 Fossil record 5 Notes 6 References 7 External linksTaxonomy EditSee also Eukaryote Phylogeny The consensus in 2005 when the group consisting of the glaucophytes and red and green algae and land plants was named Archaeplastida 1 was that it was a clade i e was monophyletic Many studies published since then have provided evidence in agreement 17 18 19 20 Other studies though have suggested that the group is paraphyletic 21 22 23 12 24 To date the situation appears unresolved but a strong signal for Plantae Archaeplastida monophyly has been demonstrated in a recent study with an enrichment of red algal genes 25 The assumption made here is that Archaeplastida is a valid clade Various names have been given to the group Some authors have simply referred to the group as plants or Plantae 26 27 However the name Plantae is ambiguous since it has also been applied to less inclusive clades such as Viridiplantae and embryophytes To distinguish the larger group is sometimes known as Plantae sensu lato plants in the broad sense To avoid ambiguity other names have been proposed Primoplantae which appeared in 2004 seems to be the first new name suggested for this group 5 Another name applied to this node is Plastida defined as the clade sharing plastids of primary direct prokaryote origin as in Magnolia virginiana Linnaeus 1753 28 Although many studies have suggested the Archaeplastida form a monophyletic group 29 a 2009 paper argues that they are in fact paraphyletic 23 The enrichment of novel red algal genes in a recent study demonstrates a strong signal for Plantae Archaeplastida monophyly and an equally strong signal of gene sharing history between the red green algae and other lineages 25 This study provides insight on how rich mesophilic red algal gene data are crucial for testing controversial issues in eukaryote evolution and for understanding the complex patterns of gene inheritance in protists The name Archaeplastida was proposed in 2005 by a large international group of authors Adl et al who aimed to produce a classification for the eukaryotes which took into account morphology biochemistry and phylogenetics and which had some stability in the near term They rejected the use of formal taxonomic ranks in favour of a hierarchical arrangement where the clade names do not signify rank Thus the phylum name Glaucophyta and the class name Rhodophyceae appear at the same level in their classification The divisions proposed for the Archaeplastida are shown below in both tabular and diagrammatic form 1 Archaeplastida The glaucophyte Glaucocystis Glaucophyta Skuja 1954 Glaucocystophyta Kies amp Kremer 1986 glaucophytesGlaucophytes are a small group of freshwater single celled algae Their chloroplasts called cyanelles have a peptidoglycan layer making them more similar to cyanobacteria than those of the remaining Archaeplastida The rhodophyte Laurencia Rhodophyceae Thuret 1855 emend Rabenhorst 1863 emend Adl et al 2005 Rhodophyta Wettstein 1901 red algaeRed algae form one of the largest groups of algae Most are seaweeds being multicellular and marine Their red colour comes from phycobiliproteins used as accessory pigments in light capture for photosynthesis dd Chloroplastida Adl et al 2005 Viridiplantae Cavalier Smith 1981 Chlorobionta Jeffrey 1982 emend Bremer 1985 emend Lewis and McCourt 2004 Chlorobiota Kendrick and Crane 1997 Chloroplastida is the term chosen by Adl et al for the group made up of the green algae and land plants embryophytes Except where lost secondarily all have chloroplasts without a peptidoglycan layer and lack phycobiliproteins dd The chlorophyte Stigeoclonium Chlorophyta Pascher 1914 emend Lewis amp McCourt 2004 green algae part Adl et al employ a narrow definition of the Chlorophyta other sources include the Chlorodendrales and Prasinophytae which may themselves be combined Ulvophyceae Mattox amp Stewart 1984 Trebouxiophyceae Friedl 1995 Pleurastrophyceae Mattox et al 1984 Microthamniales Melkonian 1990 Chlorophyceae Christensen 1994Chlorodendrales Fritsch 1917 green algae part Prasinophytae Cavalier Smith 1998 emend Lewis amp McCourt 2004 green algae part Mesostigma Lauterborn 1894 emend McCourt in Adl et al 2005 Mesostigmata Turmel Otis and Lemieux 2002 Charophyta Karol et al 2001 emend Lewis amp McCourt 2004 Charophyceae Smith 1938 emend Mattox and Stewart 1984 green algae part and land plantsCharophyta sensu lato as used by Adl et al is a monophyletic group which is made up of some green algae including the stoneworts Charophyta sensu stricto as well as the land plants embryophytes Sub divisions other than Streptophytina below were not given by Adl et al Other sources would include the green algal groups Chlorokybales Klebsormidiales Zygnematales and Coleochaetales 30 dd Streptophytina Lewis amp McCourt 2004 stoneworts and land plantsCharales Lindley 1836 Charophytae Engler 1887 stoneworts Plantae Haeckel 1866 Cormophyta Endlicher 1836 Embryophyta Endlicher 1836 emend Lewis amp McCourt 2004 land plants embryophytes dd dd Cladogram Edit Below is a consensus reconstruction of green algal relationships mainly based on molecular data 31 32 33 34 35 36 37 38 39 40 While the Glaucophyta are typically figured as deepest rooting Archeaplastida 41 42 43 44 some genomic research points to Rhodophyta as basal possibly with Cryptista and picozoa emerging in Archaeplastida 45 46 47 48 49 50 51 52 3 At least for Cryptista this analysis by Burki et al 2016 has gained credibility 53 54 55 56 57 58 Diaphoretickes HaptistaTSAR TelonemiaSAR RhizariaHalvaria StramenopilesAlveolataCAM Pancryptista CryptistaMicroheliella maris 2 Archaeplastida PicozoaRhodophyta red algae Rhodelphidia predatorial Glaucophyta blue green colored algae Viridiplantae Prasinodermophyta 59 ChlorophytaStreptophyta Mesostigmatophyceae Mesostigma virideSpirotaeniaChlorokybophyceaestreptofilumKlebsormidiophytina KlebsormidiophyceaePhragmoplastophyta Charophyceae Stoneworts ColeochaetophyceaeZygnematophyceaeEmbryophyta land plants Gloeomargarita lithophora green algaeHowever there is a lot of contention near the Archaeplastida root e g whether Glaucophyta or Rhodophyta are basal or whether e g Cryptista emerged within the Archaeplastida In 2014 a thorough review was published on these inconsistencies 60 The position of Telonemia and Picozoa are not clear Also Hacrobia Haptista Cryptista may be completely associated with the SAR clade The SAR are often seen as eukaryote eukaryote hybrids contributing to the confusion in the genetic analyses A sister of Gloeomargarita lithophora has been engulfed by an ancestor of the Archaeplastida leading to the plastids which are living in permanent endosymbiosis in most of the descendent lineages Because both Gloeomargarita and related cyanobacteria in addition to the most primitive archaeplastids all live in freshwater it seems the Archaeplastida originated in freshwater and only colonized the oceans in the late Proterozoic 61 62 Morphology EditAll archaeplastidans have plastids chloroplasts that carry out photosynthesis and are believed to be derived from endosymbiotic cyanobacteria In glaucophytes perhaps the most primitive members of the group the chloroplast is called a cyanelle and shares several features with cyanobacteria including a peptidoglycan cell wall that are not retained in other members of the group The resemblance of cyanelles to cyanobacteria supports the endosymbiotic theory The cells of most archaeplastidans have walls commonly but not always made of cellulose The Archaeplastida vary widely in the degree of their cell organization from isolated cells to filaments to colonies to multi celled organisms The earliest were unicellular and many groups remain so today Multicellularity evolved separately in several groups including red algae ulvophyte green algae and in the green algae that gave rise to stoneworts and land plants Endosymbiosis EditMain article Endosymbiotic theory Because the ancestral archaeplastidan is hypothesized to have acquired its chloroplasts directly by engulfing cyanobacteria the event is known as a primary endosymbiosis as reflected in the name chosen for the group Archaeplastida i e ancient plastid One species of green algae Cymbomonas tetramitiformis in the order Pyramimonadales is a mixotroph and able to support itself through both phagotrophy and phototrophy It is not yet known if this is a primitive trait and therefore defines the last common ancestor of Archaeplastida which could explain how it obtained its chloroplasts or if it is a trait regained by horizontal gene transfer 63 Evidence for primary endosymbiosis includes the presence of a double membrane around the chloroplasts one membrane belonged to the bacterium and the other to the eukaryote that captured it Over time many genes from the chloroplast have been transferred to the nucleus of the host cell The presence of such genes in the nuclei of eukaryotes without chloroplasts suggests this transfer happened early in the evolution of the group 64 Other eukaryotes with chloroplasts appear to have gained them by engulfing a single celled archaeplastidan with its own bacterially derived chloroplasts Because these events involve endosymbiosis of cells that have their own endosymbionts the process is called secondary endosymbiosis The chloroplasts of such eukaryotes are typically surrounded by more than two membranes reflecting a history of multiple engulfment The chloroplasts of euglenids chlorarachniophytes and a small group of dinoflagellates appear to be captured green algae 65 whereas those of the remaining photosynthetic eukaryotes such as heterokont algae cryptophytes haptophytes and dinoflagellates appear to be captured red algae Fossil record EditPerhaps the most ancient remains of Archaeplastida are putative red algae Rafatazmia within stromatolites in 1600 Ma million years ago rocks in India 66 Somewhat more recent are microfossils from the Roper group in northern Australia The structure of these single celled fossils resembles that of modern green algae They date to the Mesoproterozoic Era about 1500 to 1300 Ma 67 These fossils are consistent with a molecular clock study that calculated that this clade diverged about 1500 Ma 68 The oldest fossil that can be assigned to a specific modern group is the red alga Bangiomorpha from 1200 Ma 69 In the late Neoproterozoic Era algal fossils became more numerous and diverse Eventually in the Paleozoic Era plants emerged onto land and have continued to flourish up to the present Notes Edit The exceptional two plastid membranes of the stramenopile alga Chrysoparadoxa are probably the result of secondary reduction 9 References Edit a b c d Adl S M et al 2005 The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists Journal of Eukaryotic Microbiology 52 5 399 451 doi 10 1111 j 1550 7408 2005 00053 x PMID 16248873 S2CID 8060916 a b Yazaki Euki Yabuki Akinori Imaizumi Ayaka Kume Keitaro Hashimoto Tetsuo Inagaki Yuji 31 August 2021 Phylogenomics invokes the clade housing Cryptista Archaeplastida and Microheliella maris doi 10 1101 2021 08 29 458128 S2CID 237393558 Retrieved 25 November 2021 a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help a b Schon M E Zlatogursky V V Singh R P et al 17 November 2021 Single cell genomics reveals plastid lacking Picozoa are close relatives of red algae Nature Communications 12 6651 1 6651 Bibcode 2021NatCo 12 6651S doi 10 1038 s41467 021 26918 0 ISSN 2041 1723 PMC 8599508 PMID 34789758 Cavalier Smith T 1981 Eukaryote Kingdoms Seven or Nine BioSystems 14 3 4 461 481 doi 10 1016 0303 2647 81 90050 2 PMID 7337818 a b Palmer Jeffrey D Soltis Douglas E Chase Mark W 2004 The plant tree of life an overview and some points of view American Journal of Botany 91 10 1437 1445 doi 10 3732 ajb 91 10 1437 PMID 21652302 Ball S Colleoni C January 2011 Cenci U Raj J N Tirtiaux C The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis Journal of Experimental Botany 62 6 1775 1801 doi 10 1093 jxb erq411 PMID 21220783 Picozoans Are Algae After All Study The Scientist Magazine Papanin Institute for Biology of Inland Waters Russian Academy of Sciences Tikhonenkov Denis V 2020 Predatory flagellates the new recently discovered deep branches of the eukaryotic tree and their evolutionary and ecological significance PDF Protistology 14 1 doi 10 21685 1680 0826 2020 14 1 2 Wetherbee Richard Jackson Christopher J Repetti Sonja I Clementson Lesley A Costa Joana F van de Meene Allison Crawford Simon Verbruggen Heroen 9 December 2018 The golden paradox a new heterokont lineage with chloroplasts surrounded by two membranes Journal of Phycology 22 2 257 278 doi 10 1111 jpy 12822 hdl 11343 233613 PMID 30536815 S2CID 54477112 Handbook of Marine Microalgae Biotechnology Advances Parfrey L W Barbero E Lasser E et al December 2006 Evaluating support for the current classification of eukaryotic diversity PLOS Genetics 2 12 e220 doi 10 1371 journal pgen 0020220 PMC 1713255 PMID 17194223 a b Kim E Graham L E July 2008 Redfield Rosemary Jeanne ed EEF2 analysis challenges the monophyly of Archaeplastida and Chromalveolata PLOS ONE 3 7 e2621 Bibcode 2008PLoSO 3 2621K doi 10 1371 journal pone 0002621 PMC 2440802 PMID 18612431 Mackiewicz P Gagat P 2014 Monophyly of Archaeplastida supergroup and relationships among its lineages in the light of phylogenetic and phylogenomic studies Are we close to a consensus Acta Societatis Botanicorum Poloniae 83 4 263 280 doi 10 5586 asbp 2014 044 Viola R Nyvall P Pedersen M 2001 The unique features of starch metabolism in red algae Proceedings of the Royal Society B Biological Sciences 268 1474 1417 1422 doi 10 1098 rspb 2001 1644 PMC 1088757 PMID 11429143 Copeland H F 1956 The Classification of Lower Organisms Palo Alto Pacific Books p 29 1 Bessey C E 1907 A Synopsis of Plant Phyla Univ Nebraska Studies 7 275 358 Burki Fabien Kamran Shalchian Tabrizi Marianne Minge Asmund Skjaeveland Sergey I Nikolaev Kjetill S Jakobsen Jan Pawlowski 2007 Butler Geraldine ed Phylogenomics Reshuffles the Eukaryotic Supergroups PLOS ONE 2 8 e790 Bibcode 2007PLoSO 2 790B doi 10 1371 journal pone 0000790 PMC 1949142 PMID 17726520 Burki F Inagaki Y Brate J Archibald J M Keeling P J Cavalier Smith T et al 2009 Large Scale Phylogenomic Analyses Reveal That Two Enigmatic Protist Lineages Telonemia and Centroheliozoa Are Related to Photosynthetic Chromalveolates Genome Biology and Evolution 1 231 238 doi 10 1093 gbe evp022 PMC 2817417 PMID 20333193 Cavalier Smith Thomas 2009 Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree Biology Letters 6 3 342 345 doi 10 1098 rsbl 2009 0948 PMC 2880060 PMID 20031978 Rogozin I B Basu M K Csuros M amp Koonin E V 2009 Analysis of Rare Genomic Changes Does Not Support the Unikont Bikont Phylogeny and Suggests Cyanobacterial Symbiosis as the Point of Primary Radiation of Eukaryotes Genome Biology and Evolution 1 99 113 doi 10 1093 gbe evp011 PMC 2817406 PMID 20333181 Baldauf S L Roger A J Wenk Siefert I Doolittle W F 2000 A kingdom level phylogeny of eukaryotes based on combined protein data Science 290 972 977 researchgate net Lipscomb Diana 1991 Broad classification the kingdoms and the protozoa In Parasitic Protozoa Vol 1 2nd ed J P Kreier J R Baker eds pp 81 136 Academic Press San Diego a b Nozaki H Maruyama S Matsuzaki M Nakada T Kato S Misawa K December 2009 Phylogenetic positions of Glaucophyta green plants Archaeplastida and Haptophyta Chromalveolata as deduced from slowly evolving nuclear genes Molecular Phylogenetics and Evolution 53 3 872 80 doi 10 1016 j ympev 2009 08 015 PMID 19698794 Palmgren M Sorensen DM Hallstrom BM Sall T Broberg K August 2019 Evolution of P2A and P5A ATPases ancient gene duplications and the red algal connection to green plants revisited Physiol Plant 168 3 630 647 doi 10 1111 ppl 13008 PMID 31268560 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link a b Chan C X Yang E C Banerjee T Yoon H S Martone P T Estevez J M Bhattacharya D 2011 Red and green algal monophyly and extensive gene sharing found in a rich repertoire of red algal genes Current Biology 21 4 328 333 doi 10 1016 j cub 2011 01 037 PMID 21315598 S2CID 7162977 T Cavalier Smith 1981 Eukaryote Kingdoms Seven or Nine BioSystems 14 3 4 461 481 doi 10 1016 0303 2647 81 90050 2 PMID 7337818 Bhattacharya Debashish Yoon Hwan Su Hackett Jeremiah 2003 Photosynthetic eukaryotes unite endosymbiosis connects the dots BioEssays 26 1 50 60 doi 10 1002 bies 10376 PMID 14696040 Simpson A G B 2004 Highest level taxa within Eukaryotes First International Phylogenetic Nomenclature Meeting Paris July 6 9 Vinogradov S N Fernandez I Hoogewijs D Arredondo Peter R October 2010 Phylogenetic Relationships of 3 3 and 2 2 Hemoglobins in Archaeplastida Genomes to Bacterial and Other Eukaryote Hemoglobins Molecular Plant 4 1 42 58 doi 10 1093 mp ssq040 PMID 20952597 Turmel M Otis C Lemieux C 2005 The complete chloroplast DNA sequences of the charophycean green algae Staurastrum and Zygnema reveal that the chloroplast genome underwent extensive changes during the evolution of the Zygnematales BMC Biology 3 22 doi 10 1186 1741 7007 3 22 PMC 1277820 PMID 16236178 Leliaert Frederik Smith David R Moreau Herve Herron Matthew D Verbruggen Heroen Delwiche Charles F De Clerck Olivier 2012 Phylogeny and Molecular Evolution of the Green Algae PDF Critical Reviews in Plant Sciences 31 1 46 doi 10 1080 07352689 2011 615705 S2CID 17603352 Marin Birger 2012 Nested in the Chlorellales or Independent Class Phylogeny and Classification of the Pedinophyceae Viridiplantae Revealed by Molecular Phylogenetic Analyses of Complete Nuclear and Plastid encoded rRNA Operons Protist 163 5 778 805 doi 10 1016 j protis 2011 11 004 PMID 22192529 Laurin Lemay Simon Brinkmann Henner Philippe Herve 2012 Origin of land plants revisited in the light of sequence contamination and missing data Current Biology 22 15 R593 R594 doi 10 1016 j cub 2012 06 013 PMID 22877776 Leliaert Frederik Tronholm Ana Lemieux Claude Turmel Monique DePriest Michael S Bhattacharya Debashish Karol Kenneth G Fredericq Suzanne Zechman Frederick W 2016 05 09 Chloroplast phylogenomic analyses reveal the deepest branching lineage of the Chlorophyta Palmophyllophyceae class nov Scientific Reports 6 25367 Bibcode 2016NatSR 625367L doi 10 1038 srep25367 ISSN 2045 2322 PMC 4860620 PMID 27157793 Cook Martha E Graham Linda E 2017 Archibald John M Simpson Alastair G B Slamovits Claudio H eds Handbook of the Protists Springer International Publishing pp 185 204 doi 10 1007 978 3 319 28149 0 36 ISBN 9783319281476 Lewis Louise A Richard M McCourt 2004 Green algae and the origin of land plants American Journal of Botany 91 10 1535 1556 doi 10 3732 ajb 91 10 1535 PMID 21652308 Archived from the original abstract on 2011 02 21 Retrieved 2017 10 15 Ruhfel Brad R Gitzendanner Matthew A Soltis Pamela S Soltis Douglas E Burleigh J Gordon 2014 02 17 From algae to angiosperms inferring the phylogeny of green plants Viridiplantae from 360 plastid genomes BMC Evolutionary Biology 14 23 doi 10 1186 1471 2148 14 23 ISSN 1471 2148 PMC 3933183 PMID 24533922 Adl Sina M Simpson Alastair G B Lane Christopher E Lukes Julius Bass David Bowser Samuel S Brown Matthew W Burki Fabien Dunthorn Micah 2012 09 01 The Revised Classification of Eukaryotes Journal of Eukaryotic Microbiology 59 5 429 514 doi 10 1111 j 1550 7408 2012 00644 x ISSN 1550 7408 PMC 3483872 PMID 23020233 Lemieux Claude Otis Christian Turmel Monique 2007 01 12 A clade uniting the green algae Mesostigma viride and Chlorokybus atmophyticus represents the deepest branch of the Streptophyta in chloroplast genome based phylogenies BMC Biology 5 2 doi 10 1186 1741 7007 5 2 ISSN 1741 7007 PMC 1781420 PMID 17222354 Umen James G 2014 11 01 Green Algae and the Origins of Multicellularity in the Plant Kingdom Cold Spring Harbor Perspectives in Biology 6 11 a016170 doi 10 1101 cshperspect a016170 ISSN 1943 0264 PMC 4413236 PMID 25324214 Vries Jan de Gould Sven B 2017 01 01 The monoplastidic bottleneck in algae and plant evolution J Cell Sci 131 2 jcs 203414 doi 10 1242 jcs 203414 ISSN 0021 9533 PMID 28893840 Ponce Toledo Rafael I Deschamps Philippe Lopez Garcia Purificacion Zivanovic Yvan Benzerara Karim Moreira David 2017 An Early Branching Freshwater Cyanobacterium at the Origin of Plastids Current Biology 27 3 386 391 doi 10 1016 j cub 2016 11 056 PMC 5650054 PMID 28132810 Dittami Simon M Heesch Svenja Olsen Jeanine L Collen Jonas 2017 08 01 Transitions between marine and freshwater environments provide new clues about the origins of multicellular plants and algae PDF Journal of Phycology 53 4 731 745 doi 10 1111 jpy 12547 ISSN 1529 8817 PMID 28509401 S2CID 43325392 Smith David R 2018 Lost in the Light Plastid Genome Evolution in Nonphotosynthetic Algae Plastid Genome Evolution Advances in Botanical Research Vol 85 pp 29 53 doi 10 1016 bs abr 2017 10 001 ISBN 9780128134573 Burki Fabien Kaplan Maia Tikhonenkov Denis V Zlatogursky Vasily Minh Bui Quang Radaykina Liudmila V Smirnov Alexey Mylnikov Alexander P Keeling Patrick J 2016 01 27 Untangling the early diversification of eukaryotes a phylogenomic study of the evolutionary origins of Centrohelida Haptophyta and Cryptista Proc R Soc B 283 1823 20152802 doi 10 1098 rspb 2015 2802 ISSN 0962 8452 PMC 4795036 PMID 26817772 Brown Matthew W Heiss Aaron Kamikawa Ryoma Inagaki Yuji Yabuki Akinori Tice Alexander K Shiratori Takashi Ishida Ken Hashimoto Tetsuo 2017 12 03 Phylogenomics places orphan protistan lineages in a novel eukaryotic super group Genome Biol Evol 10 2 427 433 doi 10 1093 gbe evy014 PMC 5793813 PMID 29360967 Lee JunMo Cho Chung Hyun Park Seung In Choi Ji Won Song Hyun Suk West John A Bhattacharya Debashish Yoon Hwan Su 2016 09 02 Parallel evolution of highly conserved plastid genome architecture in red seaweeds and seed plants BMC Biology 14 75 doi 10 1186 s12915 016 0299 5 ISSN 1741 7007 PMC 5010701 PMID 27589960 Bodyl Andrzej 2018 Did some red alga derived plastids evolve via kleptoplastidy A hypothesis Biological Reviews 93 1 201 222 doi 10 1111 brv 12340 ISSN 1464 7931 PMID 28544184 S2CID 24613863 Gitzendanner Matthew A Soltis Pamela S Wong Gane K S Ruhfel Brad R Soltis Douglas E 2018 Plastid phylogenomic analysis of green plants A billion years of evolutionary history American Journal of Botany 105 3 291 301 doi 10 1002 ajb2 1048 ISSN 0002 9122 PMID 29603143 Strassert Jurgen F H Jamy Mahwash Mylnikov Alexander P Tikhonenkov Denis V Burki Fabien 2019 01 22 Shapiro Beth ed New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life Molecular Biology and Evolution Oxford University Press OUP 36 4 757 765 bioRxiv 10 1101 403329 doi 10 1093 molbev msz012 ISSN 0737 4038 PMC 6844682 PMID 30668767 Gawryluk Ryan M R Tikhonenkov Denis V Hehenberger Elisabeth Husnik Filip Mylnikov Alexander P Keeling Patrick J 2019 09 08 Non photosynthetic predators are sister to red algae Nature 572 7768 240 243 doi 10 1038 s41586 019 1398 6 ISSN 0028 0836 PMID 31316212 S2CID 197542583 Irisarri Iker Strassert Jurgen F H Burki Fabien 2021 12 16 Folk Ryan ed Phylogenomic Insights into the Origin of Primary Plastids Systematic Biology 71 1 105 120 doi 10 1093 sysbio syab036 ISSN 1063 5157 PMID 33988690 Blaby Haas Crysten E Merchant Sabeeha S 2019 04 29 Comparative and Functional Algal Genomics Annual Review of Plant Biology Annual Reviews 70 1 605 638 doi 10 1146 annurev arplant 050718 095841 ISSN 1543 5008 OSTI 1502797 PMID 30822111 S2CID 73512522 Nowack Eva C M Weber Andreas P M 2018 04 29 Genomics Informed Insights into Endosymbiotic Organelle Evolution in Photosynthetic Eukaryotes Annual Review of Plant Biology Annual Reviews 69 1 51 84 doi 10 1146 annurev arplant 042817 040209 ISSN 1543 5008 PMID 29489396 Strassert Jurgen F H Irisarri Iker Williams Tom A Burki Fabien 2021 03 25 A molecular timescale for eukaryote evolution with implications for the origin of red algal derived plastids Nature Communications 12 1 1879 Bibcode 2021NatCo 12 1879S doi 10 1038 s41467 021 22044 z ISSN 2041 1723 PMC 7994803 PMID 33767194 Padilla Mejia Norma E Makarov Alexandr A Barlow Lael D Butterfield Erin R Field Mark C 2021 01 01 Evolution and diversification of the nuclear envelope Nucleus 12 1 21 41 doi 10 1080 19491034 2021 1874135 ISSN 1949 1034 PMC 7889174 PMID 33435791 Burki Fabien Roger Andrew J Brown Matthew W Simpson Alastair G B 2020 01 01 The New Tree of Eukaryotes Trends in Ecology amp Evolution 35 1 43 55 doi 10 1016 j tree 2019 08 008 ISSN 0169 5347 PMID 31606140 S2CID 204545629 Yazaki Euki Yabuki Akinori Imaizumi Ayaka Kume Keitaro Hashimoto Tetsuo Inagaki Yuji 2022 The closest lineage of Archaeplastida is revealed by phylogenomics analyses that include Microheliella maris Open Biology 12 4 210376 doi 10 1098 rsob 210376 PMC 9006020 PMID 35414259 Linzhou Li Sibo Wang Hongli Wang Sunil Kumar Sahu Birger Marin Haoyuan Li Yan Xu Hongping Liang Zhen Li Shifeng Chen Tanja Reder Zehra Cebi Sebastian Wittek Morten Petersen Barbara Melkonian Hongli Du Huanming Yang Jian Wang Gane Ka Shu Wong Xun Xu Xin Liu Yves Van de Peer Michael Melkonian Huan Liu 22 June 2020 The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants Nature Ecology amp Evolution 4 9 1220 1231 doi 10 1038 s41559 020 1221 7 PMC 7455551 PMID 32572216 Mackiewicz Pawel Gagat Przemyslaw 2014 12 31 Monophyly of Archaeplastida supergroup and relationships among its lineages in the light of phylogenetic and phylogenomic studies Are we close to a consensus Acta Societatis Botanicorum Poloniae 83 4 263 280 doi 10 5586 asbp 2014 044 ISSN 2083 9480 de Vries Jan Archibald John M 2017 Endosymbiosis Did Plastids Evolve from a Freshwater Cyanobacterium Current Biology 27 3 R103 R105 doi 10 1016 j cub 2016 12 006 PMID 28171752 Lewis L A 2017 Hold the salt Freshwater origin of primary plastids Proceedings of the National Academy of Sciences of the United States of America 114 37 9759 9760 doi 10 1073 pnas 1712956114 PMC 5604047 PMID 28860199 Raven John A 2013 Cells inside Cells Symbiosis and Continuing Phagotrophy Current Biology 23 12 R530 R531 doi 10 1016 j cub 2013 05 006 PMID 23787050 Andersson Jan O Roger Andrew J 2002 A cyanobacterial gene in non photosynthetic protists an early chloroplast acquisition in eukaryotes Current Biology 12 2 115 119 doi 10 1016 S0960 9822 01 00649 2 PMID 11818061 S2CID 18809784 Keeling Patrick J 2010 The endosymbiotic origin diversification and fate of plastids Philosophical Transactions of the Royal Society B Biological Sciences 365 1541 729 748 doi 10 1098 rstb 2009 0103 PMC 2817223 PMID 20124341 Bengtson Stefan Sallstedt Therese Belivanova Veneta Whitehouse Martin 2017 Three dimensional preservation of cellular and subcellular structures suggests 1 6 billion year old crown group red algae PLOS Biology 15 3 e2000735 doi 10 1371 journal pbio 2000735 PMC 5349422 PMID 28291791 Javaux Emmanuelle J Knoll Andrew H Walter Malcolm R 2004 TEM evidence for eukaryotic diversity in mid Proterozoic oceans Geobiology 2 3 121 132 doi 10 1111 j 1472 4677 2004 00027 x S2CID 53600639 Yoon Hwan Su Hackett Jeremiah D Ciniglia Claudia Pinto Gabriele Bhattacharya Debashish 2004 A molecular timeline for the origin of photosynthetic eukaryotes Molecular Biology and Evolution 21 5 809 818 doi 10 1093 molbev msh075 PMID 14963099 Butterfield Nicholas J 2000 Bangiomorpha pubescens n gen n sp implications for the evolution of sex multicellularity and the Mesoproterozoic Neoproterozoic radiation of eukaryotes Paleobiology 26 3 386 404 doi 10 1666 0094 8373 2000 026 lt 0386 BPNGNS gt 2 0 CO 2 S2CID 36648568 External links Edit Wikispecies has information related to Archaeplastida Tree of Life Eukaryotes Retrieved from https en wikipedia org w index php title Archaeplastida amp oldid 1122815902, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.