fbpx
Wikipedia

Phototroph

Phototrophs (from Ancient Greek φῶς, φωτός (phôs, phōtós) 'light', and τροφή (trophḗ) 'nourishment') are organisms that carry out photon capture to produce complex organic compounds (e.g. carbohydrates) and acquire energy. They use the energy from light to carry out various cellular metabolic processes. It is a common misconception that phototrophs are obligatorily photosynthetic. Many, but not all, phototrophs often photosynthesize: they anabolically convert carbon dioxide into organic material to be utilized structurally, functionally, or as a source for later catabolic processes (e.g. in the form of starches, sugars and fats). All phototrophs either use electron transport chains or direct proton pumping to establish an electrochemical gradient which is utilized by ATP synthase, to provide the molecular energy currency for the cell. Phototrophs can be either autotrophs or heterotrophs. If their electron and hydrogen donors are inorganic compounds (e.g. Na
2
S
2
O
3
, as in some purple sulfur bacteria, or H
2
S
, as in some green sulfur bacteria) they can be also called lithotrophs, and so, some photoautotrophs are also called photolithoautotrophs. Examples of phototroph organisms are Rhodobacter capsulatus, Chromatium, and Chlorobium.

Terrestrial and aquatic phototrophs: plants grow on a fallen log floating in algae-rich water

History

Originally used with a different meaning, the term took its current definition after Lwoff and collaborators (1946).[1][2]

Photoautotroph

Most of the well-recognized phototrophs are autotrophic, also known as photoautotrophs, and can fix carbon. They can be contrasted with chemotrophs that obtain their energy by the oxidation of electron donors in their environments. Photoautotrophs are capable of synthesizing their own food from inorganic substances using light as an energy source. Green plants and photosynthetic bacteria are photoautotrophs. Photoautotrophic organisms are sometimes referred to as holophytic.[3] Such organisms derive their energy for food synthesis from light and are capable of using carbon dioxide as their principal source of carbon.[citation needed]

Oxygenic photosynthetic organisms use chlorophyll for light-energy capture and oxidize water, "splitting" it into molecular oxygen. In contrast, anoxygenic photosynthetic bacteria have a substance called bacteriochlorophyll – which absorbs predominantly at non-optical wavelengths – for light-energy capture, live in aquatic environments, and will, using light, oxidize chemical substances such as hydrogen sulfide rather than water.[citation needed]

Ecology

In an ecological context, phototrophs are often the food source for neighboring heterotrophic life. In terrestrial environments, plants are the predominant variety, while aquatic environments include a range of phototrophic organisms such as algae (e.g., kelp), other protists (such as euglena), phytoplankton, and bacteria (such as cyanobacteria). The depth to which sunlight or artificial light can penetrate into water, so that photosynthesis may occur, is known as the photic zone.[citation needed]

Cyanobacteria, which are prokaryotic organisms which carry out oxygenic photosynthesis, occupy many environmental conditions, including fresh water, seas, soil, and lichen. Cyanobacteria carry out plant-like photosynthesis because the organelle in plants that carries out photosynthesis is derived from an[4] endosymbiotic cyanobacterium.[5] This bacterium can use water as a source of electrons in order to perform CO2 reduction reactions. Evolutionarily, cyanobacteria's ability to survive in oxygenic conditions, which are considered toxic to most anaerobic bacteria, might have given the bacteria an adaptive advantage which could have allowed the cyanobacteria to populate more efficiently.[citation needed]

A photolithoautotroph is an autotrophic organism that uses light energy, and an inorganic electron donor (e.g., H2O, H2, H2S), and CO2 as its carbon source. Examples include plants.[citation needed]

Photoheterotroph

In contrast to photoautotrophs, photoheterotrophs are organisms that depend solely on light for their energy and principally on organic compounds for their carbon. Photoheterotrophs produce ATP through photophosphorylation but use environmentally obtained organic compounds to build structures and other bio-molecules.[6]

Flowchart

 
Flowchart to determine if a species is autotroph, heterotroph, or a subtype

See also

References

  1. ^ Lwoff, A., C.B. van Niel, P.J. Ryan, and E.L. Tatum (1946). Nomenclature of nutritional types of microorganisms. Cold Spring Harbor Symposia on Quantitative Biology (5th edn.), Vol. XI, The Biological Laboratory, Cold Spring Harbor, NY, pp. 302–303, [1].
  2. ^ Schneider, С. K. 1917. Illustriertes Handwörterbuch der Botanik. 2. Aufl., herausgeg. von K. Linsbauer. Leipzig: Engelmann, [2].
  3. ^ Hine, Robert (2005). The Facts on File dictionary of biology. Infobase Publishing. p. 175. ISBN 978-0-8160-5648-4.
  4. ^ Hill, Malcolm S. "Production Possibility Frontiers in Phototroph:heterotroph Symbioses: Trade-Offs in Allocating Fixed Carbon Pools and the Challenges These Alternatives Present for Understanding the Acquisition of Intracellular Habitats." Frontiers in Microbiology 5 (2014): 357. PMC. Web. 11 March 2016.
  5. ^ 3. Johnson, Lewis, Morgan, Raff, Roberts, and Walter. "Energy Conversion: Mitochondria and Chloroplast." Molecular Biology of the Cell, Sixth Edition By Alberts. 6th ed. New York: Garland Science, Taylor & Francis Group, 2015. 774+. Print.
  6. ^ Campbell, Neil A.; Reece, Jane B.; Urry, Lisa A.; Cain, Michael L.; Wasserman, Steven A.; Minorsky, Peter V.; Jackson, Robert B. (2008). Biology (8th ed.). p. 564. ISBN 978-0-8053-6844-4.

phototroph, this, article, about, phototrophism, obtaining, energy, from, light, tropism, that, governs, growth, toward, away, from, light, source, phototropism, from, ancient, greek, φῶς, φωτός, phôs, phōtós, light, τροφή, trophḗ, nourishment, organisms, that. This article is about phototrophism obtaining energy from light For the tropism that governs growth toward or away from a light source see Phototropism Phototrophs from Ancient Greek fῶs fwtos phos phōtos light and trofh trophḗ nourishment are organisms that carry out photon capture to produce complex organic compounds e g carbohydrates and acquire energy They use the energy from light to carry out various cellular metabolic processes It is a common misconception that phototrophs are obligatorily photosynthetic Many but not all phototrophs often photosynthesize they anabolically convert carbon dioxide into organic material to be utilized structurally functionally or as a source for later catabolic processes e g in the form of starches sugars and fats All phototrophs either use electron transport chains or direct proton pumping to establish an electrochemical gradient which is utilized by ATP synthase to provide the molecular energy currency for the cell Phototrophs can be either autotrophs or heterotrophs If their electron and hydrogen donors are inorganic compounds e g Na2 S2 O3 as in some purple sulfur bacteria or H2 S as in some green sulfur bacteria they can be also called lithotrophs and so some photoautotrophs are also called photolithoautotrophs Examples of phototroph organisms are Rhodobacter capsulatus Chromatium and Chlorobium Terrestrial and aquatic phototrophs plants grow on a fallen log floating in algae rich water Contents 1 History 2 Photoautotroph 2 1 Ecology 3 Photoheterotroph 4 Flowchart 5 See also 6 ReferencesHistory EditOriginally used with a different meaning the term took its current definition after Lwoff and collaborators 1946 1 2 Photoautotroph EditMain article Photoautotrophism Most of the well recognized phototrophs are autotrophic also known as photoautotrophs and can fix carbon They can be contrasted with chemotrophs that obtain their energy by the oxidation of electron donors in their environments Photoautotrophs are capable of synthesizing their own food from inorganic substances using light as an energy source Green plants and photosynthetic bacteria are photoautotrophs Photoautotrophic organisms are sometimes referred to as holophytic 3 Such organisms derive their energy for food synthesis from light and are capable of using carbon dioxide as their principal source of carbon citation needed Oxygenic photosynthetic organisms use chlorophyll for light energy capture and oxidize water splitting it into molecular oxygen In contrast anoxygenic photosynthetic bacteria have a substance called bacteriochlorophyll which absorbs predominantly at non optical wavelengths for light energy capture live in aquatic environments and will using light oxidize chemical substances such as hydrogen sulfide rather than water citation needed Ecology Edit In an ecological context phototrophs are often the food source for neighboring heterotrophic life In terrestrial environments plants are the predominant variety while aquatic environments include a range of phototrophic organisms such as algae e g kelp other protists such as euglena phytoplankton and bacteria such as cyanobacteria The depth to which sunlight or artificial light can penetrate into water so that photosynthesis may occur is known as the photic zone citation needed Cyanobacteria which are prokaryotic organisms which carry out oxygenic photosynthesis occupy many environmental conditions including fresh water seas soil and lichen Cyanobacteria carry out plant like photosynthesis because the organelle in plants that carries out photosynthesis is derived from an 4 endosymbiotic cyanobacterium 5 This bacterium can use water as a source of electrons in order to perform CO2 reduction reactions Evolutionarily cyanobacteria s ability to survive in oxygenic conditions which are considered toxic to most anaerobic bacteria might have given the bacteria an adaptive advantage which could have allowed the cyanobacteria to populate more efficiently citation needed A photolithoautotroph is an autotrophic organism that uses light energy and an inorganic electron donor e g H2O H2 H2S and CO2 as its carbon source Examples include plants citation needed Photoheterotroph EditMain article Photoheterotroph In contrast to photoautotrophs photoheterotrophs are organisms that depend solely on light for their energy and principally on organic compounds for their carbon Photoheterotrophs produce ATP through photophosphorylation but use environmentally obtained organic compounds to build structures and other bio molecules 6 Flowchart Edit Flowchart to determine if a species is autotroph heterotroph or a subtype Autotroph Chemoautotroph Photoautotroph Retinalophototroph Heterotroph Chemoheterotroph PhotoheterotrophSee also EditPrimary nutritional groups PrototrophReferences Edit Lwoff A C B van Niel P J Ryan and E L Tatum 1946 Nomenclature of nutritional types of microorganisms Cold Spring Harbor Symposia on Quantitative Biology 5th edn Vol XI The Biological Laboratory Cold Spring Harbor NY pp 302 303 1 Schneider S K 1917 Illustriertes Handworterbuch der Botanik 2 Aufl herausgeg von K Linsbauer Leipzig Engelmann 2 Hine Robert 2005 The Facts on File dictionary of biology Infobase Publishing p 175 ISBN 978 0 8160 5648 4 Hill Malcolm S Production Possibility Frontiers in Phototroph heterotroph Symbioses Trade Offs in Allocating Fixed Carbon Pools and the Challenges These Alternatives Present for Understanding the Acquisition of Intracellular Habitats Frontiers in Microbiology 5 2014 357 PMC Web 11 March 2016 3 Johnson Lewis Morgan Raff Roberts and Walter Energy Conversion Mitochondria and Chloroplast Molecular Biology of the Cell Sixth Edition By Alberts 6th ed New York Garland Science Taylor amp Francis Group 2015 774 Print Campbell Neil A Reece Jane B Urry Lisa A Cain Michael L Wasserman Steven A Minorsky Peter V Jackson Robert B 2008 Biology 8th ed p 564 ISBN 978 0 8053 6844 4 Retrieved from https en wikipedia org w index php title Phototroph amp oldid 1081033850, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.